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Abstract: Cardiovascular diseases (CVDs) are a primary cause of deaths worldwide. Thrombotic
diseases, specifically stroke and coronary heart diseases, account for around 85% of CVDs-induced
deaths. Platelets (small circulating blood cells) are responsible for the prevention of excessive bleeding
upon vascular injury, through blood clotting (haemostasis). However, unnecessary activation of
platelets under pathological conditions, such as upon the rupture of atherosclerotic plaques, results
in thrombus formation (thrombosis), which can cause life threatening conditions such as stroke
or heart attack. Therefore, antiplatelet medications are usually prescribed for people who are at a
high risk of thrombotic diseases. The currently used antiplatelet drugs are associated with major
side effects such as excessive bleeding, and some patients are resistant to these drugs. Therefore,
numerous studies have been conducted to develop new antiplatelet agents and notably, to establish
the relationship between edible plants, specifically fruits, vegetables and spices, and cardiovascular
health. Indeed, healthy and balanced diets have proven to be effective for the prevention of CVDs in
diverse settings. A high intake of fruits and vegetables in regular diet is associated with lower risks
for stroke and coronary heart diseases because of their plethora of phytochemical constituents. In this
review, we discuss the impacts of commonly used selected edible plants (specifically vegetables, fruits
and spices) and/or their isolated compounds on the modulation of platelet function, haemostasis
and thrombosis.
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1. Introduction

According to the World Health Organisation, cardiovascular diseases (CVDs) are a
major cause of deaths worldwide [1]. In 2017, more than 85% of total CVDs-associated
deaths were caused by thrombotic diseases (primarily strokes and coronary heart diseases),
and they are largely triggered by the rupture of atherosclerotic plaques [1,2]. Numerous
studies have demonstrated that the effective management of risk factors for CVDs is
critical for their prevention and management, as well as to improve the quality of life
for patients in the long-term [3]. An unhealthy diet is a key risk factor for CVDs, as the
regular consumption of food which has high levels of saturated fats, sugar, sodium, animal
proteins and low in fibre (fruit and vegetables) can cause hypertension, hyperglycaemia,
hyperlipidaemia and obesity, which ultimately result in CVDs [4–6].

CVDs are a group of pathological conditions that affect the heart and blood vessels due
to both non-modifiable and modifiable risk factors. Non-modifiable risk factors include
age, gender, ethnicity, and family history for CVDs. However, modifiable risk factors
involve high blood pressure, increased cholesterol level, high blood glucose, unhealthy
diet, obesity, reduced physical activities, smoking and stress [7]. The most common
type of CVDs, coronary artery disease, is mainly caused by the formation/rupture of
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atherosclerotic plaques within coronary arteries leading to reduced blood supply to heart
muscles [7]. Atherosclerotic plaques are formed due to the accumulation of low-density
lipoproteins (LDL) in the arterial intima, which results in endothelial dysfunction, initiation
of inflammatory responses and the formation of oxidised LDL [8]. As a result, immune
cells such as monocytes are attracted to the damaged site by chemokines, and inflammatory
markers are released from the affected region. The migrated monocytes differentiate into
macrophages that engulf oxidised LDL and become foam cells [8,9]. The accumulation
of an excessive amount of lipids over time causes necrosis, fibrous tissue formation and
calcification which increases the plaque size and subsequently leads to a reduction in
blood flow inside the affected arteries [7]. Notably, the plaque can rupture and trigger the
formation of blood clots (thrombi) within the blood vessels. Thrombosis can restrict the
blood flow to vital organs such as the heart and brain, and can cause myocardial infarction
or ischemic stroke, respectively [10].

At the site of vascular damage, the subendothelial matrix and its contents, mainly
collagen, are exposed to circulation. Collagen adheres to circulating platelets by binding to
von Willebrand factor (vWF) (immobilised on fibrillar collagen type I and III), platelet gly-
coprotein (GP) Ib-V-IX receptor complex and GPVI receptor and facilitates their activation
at the injury site [11]. As a result, a monolayer of platelets is formed to cover the damaged
region. Notably, GPVI plays an essential role in collagen-mediated platelet activation, and
also promotes a stable adhesion of collagen via integrin α2β1. GPVI-mediated signalling
activates phosphoinositol-3-kinase (PI3K) and phospholipase Cγ2 leading to intracellular
calcium mobilisation, inside-out signalling to integrin αIIbβ3, granule secretion and finally,
platelet aggregate or thrombus formation [11,12]. In addition to collagen-mediated activa-
tion, more platelets are activated by autocrine and paracrine signalling through adenosine
diphosphate (ADP) (released from platelet dense granules) and thromboxane A2 (TXA2,
synthesised and released from activated platelets). Fibrinogen (present in plasma) is the ma-
jor ligand for integrin αIIbβ3 on the surface of activated platelets and it promotes platelet
aggregation by acting as a bridge between platelets [13]. In addition, thrombin is produced
as a result of coagulation cascades and it activates more platelets via protease-activated
receptors (PARs) and converts fibrinogen into fibrin to form a polymerised fibrin network,
resulting in a stable clot/thrombus formation [14,15].

Platelets are small, anucleated circulating blood cells derived from megakaryocytes
in the bone marrow. They have a life span of around 8–10 days and their normal count in
blood is between 150–400 × 109/L. The primary function of platelets is to avoid excessive
blood loss upon vascular injury by forming a blood clot under physiological conditions (this
process is commonly known as ‘haemostasis’) [11]. However, as detailed above, platelets
become unnecessarily activated under various pathological conditions, leading to throm-
bosis [11,16]. Therefore, antiplatelet medications are predominantly prescribed for the
primary and secondary prevention of thrombotic diseases [17,18]. The most commonly pre-
scribed antiplatelet drugs are aspirin and clopidogrel either as monotherapy (single drug)
or dual therapy (two drugs) to achieve their optimal/maximal effects [19,20]. However,
even dual antiplatelet treatments may not prevent the recurrence of thrombotic incidents in
some patients and many patients develop resistance to aspirin and/or clopidogrel due to a
number of reasons, including inadequate dosing, drug–drug interactions and poor patient
compliance [21,22]. Moreover, excessive bleeding is a major side effect of these medica-
tions and may lead to the need for blood transfusion in some cases. The bioavailability of
clopidogrel may be affected by co-administered drugs that are metabolised in the liver by
CYP2C19 and CYP3A4/5 enzymes and this may affect the decision on prescribing it for
some patients [22].

Notably, an unhealthy diet that consists of high sugar, sodium and saturated fats and
lower amounts of fruit, vegetables, legumes, fibres, nuts and fish is a critical modifiable risk
factor for several chronic diseases, specifically CVDs [23–25]. In most cases, a healthy and
balanced diet is a part of the treatment/prevention plan for CVDs, including for thrombotic
diseases [26]. Several studies have demonstrated the effects of plants-based diets in reduc-
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ing risk factors for CVDs and the associated mortality rate [27]. In general, a daily intake
of five servings of fruits/vegetables (plant-based foods) ranging from 400–800 g/day is
recommended to reduce the risk for CVD [28]. The beneficial effects of fruits, vegetables
and other plant-based foods are mainly related to their antioxidant, anti-inflammatory,
hypotensive and hypoglycaemic effects as a result of a plethora of phytochemicals, includ-
ing flavonoids, phenolic acids, alkaloids and glycosides as well as vitamins, minerals and
fibres [29–32].

The outcomes of many observational studies demonstrated that a vegetarian diet has
favourable effects on cardiovascular health to control obesity, hyperlipidaemia, hyperten-
sion and type II diabetes compared to non-vegetarian diets [33]. Vegetarians displayed
lower body mass index (BMI), serum cholesterol level and diastolic blood pressure than
non-vegetarians [33–35]. In addition, it is reported that vegetarian diets offer significantly
lower risks for heart attacks and strokes [36–38]. Moreover, inflammatory biomarkers,
including interleukin-6 (IL-6), C-reactive protein (CRP) and tumour necrosis factor-alpha
(TNF-α) were significantly lower among vegetarians [39,40].

Overall, although antiplatelet drugs are the first line of defence for the prevention
and treatment of CVDs (specifically thrombotic diseases), they are associated with serious
side effects. Therefore, there is an urgent need to develop novel antiplatelet agents that
are more effective, safer, and affordable for short and long-term management of throm-
botic diseases/CVDs. Accordingly, numerous studies have investigated the impacts of
various edible plants and/or their isolated active compounds on the modulation of platelet
function. In this review, the effects of various vegetables, fruits, spices, and edible fungi
and their isolated compounds in the modulation of platelet activation and thrombosis are
discussed. Whilst some reviews were published on a specific plant compound or a group
of compounds, specific plants and their effects on platelets, this review will focus on the
effects of both plant extracts and their isolated compounds on the modulation of platelet
activation under diverse settings in an integrated manner.

2. Vegetables
2.1. Onions

Allium cepa (onion) is one of the main Allium spices that were studied for their ben-
eficial effects on human health, specifically on the cardiovascular system. Their antiox-
idant, antihypertensive, antiplatelet, anti-inflammatory and antihyperlipidemic effects
were analysed in various settings [41,42]. Onions are a widely cultivated and consumed
vegetable all over the world, although they originate from Central Asia. Traditionally,
onions were used to treat cold, flu, dysentery, wound healing, and alleviate pain [42].
Several studies have explored the different classes of phytochemicals present in A. cepa
including volatile oil, and sulphur-containing compounds such as methyl 5-methylfuryl
sulphide and dimethyl disulphide which are responsible for their characteristic flavour.
In addition, phenolic compounds such as phenolic acids (e.g., p-hydroxybenzoic acid and
gallic acid) and flavonoids (e.g., anthocyanins, quercetin and kaempferol) were isolated
and characterised from onions [43–45]. These active constituents are associated with the
biological effects of A. cepa, including antioxidant, antibiotic, anti-cancer, anti-diabetic,
anti-inflammatory and anti-allergic activities. In addition, they significantly reduce CVD
risks through hypolipidemic, hypotensive, hypoglycaemic and antiplatelet effects [41,42].

To evaluate the antiplatelet effects of A. cepa bulb, different concentrations of its
aqueous extracts (250 and 500 mg/mL) were tested in human isolated platelets using
an aggregation assay upon stimulation with a TXA2 receptor agonist, U46619 (2 µM).
Both concentrations of the extract (250 and 500 mg/mL) significantly inhibited platelet
aggregation by around 85–100% [46]. In addition, an ethanolic extract of A. cepa bulb
showed significant antiplatelet effects when 5 µg/mL collagen was used as an agonist in
rat isolated platelets through reducing intracellular Ca2+ levels, cyclooxygenase 1 enzyme
(COX-1) and TXA2 synthase activities. It also increased cAMP levels in a concentration
dependent manner [47]. The anti-aggregatory effects of A. cepa are attributable to the
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abundant flavonoid, quercetin (Figure 1a) and its glycosides, quercetin-3,4′-O-diglucoside
(Figure 1b) and quercetin-4′-O-monoglucoside (Figure 1c). These compounds were isolated
from the methanolic extract of A. cepa and at a concentration of 2 mg/mL, they completely
inhibited 6 µg/mL collagen-induced platelet (rat) aggregation [48].
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Figure 1. Chemical structures of quercetin (a), quercetin-3,4′-O-diglucoside (b) and quercetin-4′-O-
monoglucoside (c) isolated from Allium cepa.

Furthermore, to test the impact of cooking methods and cooking time on A. cepa
bulb-mediated antiplatelet effects, conventional (200 ◦C) and microwave (500 W, which is
almost equivalent to 200 ◦C) ovens were selected to cook the samples for 10, 20 or 30 min.
For conventional oven cooking, A. cepa samples were divided into; whole (intact) bulb,
chopped into quarters, and crushed samples. For microwave cooking, only the whole
bulbs and crushed samples were tested. Then, all samples were tested in human whole
blood aggregation upon stimulation with 1 µg/mL collagen. First, a raw crushed sample
of A. cepa was tested and it significantly inhibited platelet aggregation by around 85%.
Samples that were cooked using the conventional oven showed different effects on platelet
aggregation compared to the raw samples as shown in Table 1. These data suggested that
the antiplatelet effects of A. cepa bulb can be lost due to aggressive processing using high
temperature. In addition, the long cooking time can change the anti-aggregatory effects of
A. cepa. On the other hand, samples that were cooked using the microwave method did not
exert any inhibitory effects on platelets, irrespective of the cooking time [49].

Furthermore, a human pilot study (n = 6) tested the acute effects of low (8.1 mg/L)
and high (114.8 mg/L) quercetin (Figure 1a) contents in onion soups on human platelet
activity via oral consumption. The anti-aggregatory effects of onion soups were evaluated
in human isolated platelets upon activation with collagen (0.5, 1, 2 and 3 µg/mL) after
1 and 3 h of consumption. The soup with high quercetin content significantly inhibited
platelet aggregation induced by different concentrations of collagen. In addition, the
effect of both soups on tyrosine phosphorylation of spleen tyrosine kinase (Syk) and
phospholipase C gamma 2 (PLCγ2) were evaluated, as they are crucial molecules in
the signalling pathways of GPVI (a major collagen receptor). The high quercetin soup
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significantly inhibited the phosphorylation of Syk and PLCγ2 in 25 µg/mL collagen-
induced platelets, when samples collected after 1 and 3 h of ingestion. In addition, the low
quercetin soup insignificantly inhibited platelet aggregation induced by collagen while it
stimulated tyrosine phosphorylation of Syk and PLCγ2 compared to the control at 1 and
3 h after ingestion (Figure 2) [50].

Table 1. The effects of conventional oven and microwave cooking, different preparation methods and
cooking time on antiplatelet activities of A. cepa [49].

Cooking Time (min). Type of Processing Effects on Platelet Aggregation

Conventional Oven Cooking

10
Crushed

No inhibition or activation effects
20 & 30 Pro-aggregatory by ~25%

10 Chopped into quarters 85% inhibition of aggregation
20 & 30 Pro-aggregatory by ~40%

10 & 20
Whole (intact) bulb

85% inhibition of aggregation
30 Pro-aggregatory by ~30%

Microwave cooking

2
Crushed

Insignificant inhibition
4 No inhibition or activation effects
8 Pro-aggregatory by ~25%

2
Whole (intact) bulb

Pro-aggregatory by ~20%
4 Pro-aggregatory by ~30%
8 Pro-aggregatory by ~40%
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2.2. Garlic

Allium sativum (garlic) is a common used vegetable and plays a critical role in the tradi-
tional medicine of many ancient cultures, such as the Egyptian, Indian, Chinese, Sumerian,
and Greek. It was widely used to treat persistent cough, arthritis, constipation, snakebites
and as a general antibiotic [51]. Various studies demonstrated that A. sativum exerts an-
tioxidant, anti-inflammatory, anti-tumor, antibiotic, hypoglycaemic and renal protective
effects [51,52]. In addition, it was reported that A. sativum has positive effects on CVDs
through its antioxidant, hypotensive and hypocholesterolaemic effects. These biological
effects are linked to sulphur-containing phytochemicals (including alliin and allicin) and
enzymes (including alliinase and peroxidase) as well as flavonoids (e.g., quercetin) in A.
sativum [52]. The antiplatelet effects of aqueous and methanolic extracts of A. sativum
bulbs were examined in human PRP aggregation using different agonists; 20 µM ADP,
190 µg/mL collagen and 20 µM epinephrine. The aqueous extracts (10 mg/mL) signifi-
cantly reduced ADP-induced aggregation by around 86% but did not affect aggregation
induced by other agonists. However, the methanolic extracts (10 mg/mL) significantly
inhibited ADP, epinephrin and collagen-induced aggregation by approximately 89%, 66%
and 32%, respectively. The antiaggregatory effects of the methanolic extracts were sug-
gested to be as a result of high contents of alliin (Figure 3a) and allicin (Figure 3b) in this
plant [53]. However, the tested concentrations of agonists were higher than the commonly
used concentrations (ADP: 0.5–10 µM; collagen: 1–5 µg/mL; epinephrin: 0.5–10 µM) for
platelet aggregation [53]. Therefore, the inhibitory effects were not apparent.
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Allicin is an organosulfur compound that accounts for around 70% of total thiosul-
finates [contain the functional group, R-S(O)-S-R] in A. sativum. It is produced upon the
physical disruption (e.g., by crushing or cutting) of tissues of A. sativum as the alliinase
enzyme converts alliin to allicin upon damage [53]. Allicin and alliin are the main com-
pounds responsible for the biological activities of A. sativum [52,54,55]. In human PRP
and isolated platelets, the effect of 40 µM allicin was tested using 5 µg/mL collagen or
10 µM ADP and 55 µM epinephrine (combined)-induced platelet aggregation. In PRP,
allicin did not affect aggregation, whilst in isolated platelets allicin markedly inhibited
aggregation by around 98% in collagen and ADP-epinephrine activated platelets which
indicates that the anti-aggregatory effects of allicin may be affected by plasma proteins in
PRP. In addition, 40 µM allicin demonstrated significant inhibitory effects on fibrinogen
binding and P-selectin exposure by around 80% and 90%, respectively, in ADP-epinephrine
activated platelets [55]. However, in this study the combined usage of ADP-epinephrine as
agonists was not justified. Moreover, the epinephrine concentration that was used appears
to be higher than the commonly used concentrations (0.5–10 µM).

In addition, N-feruloyltyramine (Figure 4a) is an amide alkaloid isolated from methano-
lic extracts of A. sativum and it is known to exhibit antioxidant, anti-fungal, anti-bacterial
and cytotoxic effects [56]. This compound was tested in mouse whole blood along
with its synthetic analogues, N-caffeoylnorephedrine (Figure 4b) and N-caffeoyltyramine
(Figure 4c) to evaluate their effects on platelet function, specifically on COX-I enzyme and
P-selectin exposure. N-feruloyltyramine and its analogues at the concentration of 0.05 µM
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significantly reduced the activity of COX-1. However, N-feruloyltyramine exhibited the
highest inhibitory effect of around 43% compared to a COX-1 inhibitor, ibuprofen. In
addition, N-feruloyltyramine, N-caffeoyltyramine and N-caffeoylnorephedrine (0.05 µM)
significantly inhibited P-selectin exposure by 31%, 30% and 39%, respectively, in mouse
whole blood upon stimulation with 2.5 µg/mL collagen [57].
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Moreover, the extracts of A. sativum were evaluated after 20 months following their
storage (aged extracts) for their antiplatelet effects. The aged extract was prepared by
placing the chopped A. sativum bulb in ethanol or water/ethanol mixture at room tem-
perature for 20 months. During this process, allicin, which is an unstable compound, is
converted to a stable compound, namely S-allylcysteine. In addition, this extract has a
higher content of total phenolic compounds compared to fresh A. sativum extracts (around
129 ± 1.8 mg/g compared to 56 ± 1.2 mg/g). Aged extracts showed better antioxidant,
hypotensive, hypoglycaemic and hypolipidemic effects than fresh A. sativum extracts [58].
The aged extract prepared in 15–20% water: ethanol was tested in 8 µM ADP-induced
human PRP aggregation at different concentrations; 0.29%, 0.58%, 1.56%, 3.12% and 6.25%
(v/v). All these concentrations significantly inhibited platelet aggregation and fibrinogen
binding (Figure 2) in a concentration dependant manner. Additionally, the extract markedly
affected the change of platelet shape by blocking filopodia formation upon stimulation
with ADP [59]. In another study, an aged extract [1.56%, 3.12%, 6.25%,12.5% and 25% (v/v)]
significantly reduced human PRP aggregation induced by 8 µM ADP in a concentration
dependant manner with almost 75% inhibition achieved at 25% (v/v) of the extract. In
addition, 25% (v/v) extract significantly suppressed intracellular Ca2+ levels in 5 µM A23187
(a calcium ionophore) activated human isolated platelets [60]. Moreover, at concentrations
of 3.12% and 12.5% (v/v), it markedly inhibited ADP-induced human PRP aggregation by
around 40% by reducing the binding of platelets to fibrinogen and increasing the levels of
intracellular cAMP (Figure 2) [61].

Furthermore, the antiplatelet effects of the aged extract were tested in rat PRP following
oral administration. Three doses (1, 2 or 5 g/kg/day) of the extract were administered for 7
or 14 days in different cohorts of rats and then PRP was tested using 10 µg/mL collagen.
All doses that were administered for 14 days significantly inhibited aggregation in a dose
dependent manner. In isolated platelets obtained from rats treated with a 5 g/kg/day dose
for 14 days, a significant inhibition of the phosphorylation of the mitogen-activated protein
(MAP) kinases; p38, c-JUN NH2-terminal kinase (JNK) and extracellular signal-regulated
kinase (ERK) (following activation with collagen), which are all important for platelets
signalling was observed [62].
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2.3. Wild Garlic

Allium ursinum has a less pungent taste than A. sativum (common garlic) and all of
its parts are edible, although the leaves are typically consumed (raw or cooked) rather
than the cloves, due to their high content of biologically active compounds, specifically
organosulfur molecules [63]. The leaves were used in Asian, Middle Eastern and European
folk medicine for their anti-bacterial, digestion stimulating and hypotensive effects [64].
Recent studies have demonstrated its antibiotic, cytotoxic, hypotensive, hypolipidemic and
antiplatelet effects [63].

A study tested the antiplatelet effects of aqueous, chloroform and methanolic extracts
of leaves of A. ursinum as well as the ethyl acetate fractions of the ethanolic extract (prepared
by liquid-liquid extraction) in human PRP upon activation with different agonists. The
ethanolic extract (10 mg/mL) showed a significant reduction in 20 µM ADP- induced
aggregation by around 66%. However, the inhibitory effects against A23178 (4 µg/mL)
and epinephrine (20 µM) were not significant. In addition, chloroform and ethyl acetate
fractions of the methanolic extract, at a concentration of 5 mg/mL, inhibited ADP-induced
platelet aggregation by almost 98% [53]. Similarly, the ethanolic extract of A. ursinum
leaves, essential oil, ethyl acetate and chloroform factions showed significant inhibitory
effects, specifically against 20 µM ADP-induced human PRP aggregation. In addition,
isolated compounds from chloroform fractions such as 1,2-di-O-α-linolenoyl-3-O-β-D-
galactopyranosyl-sn-glycerol (Figure 5a) and β-sitosterol-3-O-β-D-glucoside (Figure 5b)
showed inhibitory effects on ADP-induced human PRP aggregation [64].
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2.4. Cruciferous Vegetables

Cruciferous vegetables (family Brassicaceae) such as cabbage, Chinese cabbage, cauliflower,
broccoli and kale are cultivated and consumed globally [65]. Various studies have reported



Int. J. Mol. Sci. 2022, 23, 605 9 of 32

on the protective effects of cruciferous vegetables against different types of cancers in-
cluding lung, breast, gastric, bladder and prostate cancers [65–68]. Cruciferous vegetables
are a good source of vitamins (including vitamin C, E and folic acid), minerals (including
calcium, iron and zinc), flavonoids (mainly anthocyanins), phenolic acids (including hy-
droxycinnamic acid) and tannins [65]. However, most of the biological effects of cruciferous
vegetables result from their organosulfur compounds (glucosinolates) that are hydrolysed
into isothiocyanates and indole-3-carbinol by myrosinase present in plant cells during the
process of chopping, cooking or freezing, or in human gut [65,69,70]. In addition, crucifer-
ous vegetables significantly reduce CVDs-associated mortalities and exhibit antioxidant,
hypotensive, hypolipidemic, hypoglycaemic and antiplatelet effects [70,71].

The ethyl acetate and n-butanol extracts of Brassica oleracea L. var. capitata (cab-
bage) leaves, Brassica oleracea var. Italica (broccoli) florets, Brassica oleracea var. botrytis
L. (cauliflower) floral head, Brassica rapa subsp. rapa (turnip) root and Wasabia japonica rhi-
zome (wasabi) were evaluated for their antiplatelet effects in human PRP using 10 µM ADP
and 0.5 mM arachidonic acid (AA) as agonists (Table 2). In AA-induced PRP aggregation,
the ethyl acetate extracts of Wasabia japonica, Brassica oleracea L. var. capitata and Brassica rapa
subsp. rapa showed significant inhibitory effects by around 90%, 88% and 80%, respectively.
The ethyl acetate extract of Wasabia japonica inhibited platelets by 60%, while the n-butanol
extract inhibited platelets by 58% upon stimulation with ADP in platelets [72].

Table 2. Effects of extracts of selected cruciferous vegetables on human-platelet activation induced by
ADP and AA [72].

(%) Inhibition of Platelet
Aggregation Induced by

Vegetable Name Extract ADP AA

Brassica oleracea L. var. capitata (cabbage)

Ethyl acetate

28% 88%
Brassica oleracea var. Italica (broccoli) 40% 17%

Brassica oleracea var. botrytis L. (cauliflower) 8% 10%
Brassica rapa subsp. rapa (turnip) 30% 80%

Wasabia japonica (wasabi) 62% 90%

Brassica oleracea L. var. capitata (cabbage)

n-Butanol

22% 60%
Brassica oleracea var. Italica (broccoli) 33% 0%

Brassica oleracea var. botrytis L. (cauliflower) 10% 0%
Brassica rapa subsp. rapa (turnip) 4% 5%

Wasabia japonica (wasabi) 58% 62%

In addition, methanolic extracts of Brassica oleraceae L. var. acephala (kale) leaves
exhibited significant reduction in P-selectin exposure in AA (250 µg/mL)-induced whole
blood samples that were collected from patients who were diagnosed with pathological
conditions such as obesity, hypertension, hyperglycaemia, and hyperlipidaemia. However,
its effect on agonist-induced fibrinogen binding was insignificant [73].

The antiplatelet effects of the anthocyanin-rich extract were evaluated in human
platelets. Anthocyanins are a group of plant pigments that belong to the flavonoid class of
phytochemicals. Their basic structures consist of a flavylium cation (Figure 6) and based
on the substitutions at C3, C5–C7and C3′–C5′ positions, their structures are different in
diverse anthocyanins [74]. Various studies reported the health benefits of anthocyanins
including antioxidant, anti-inflammatory, anti-cancer, anti-bacterial, anti-thrombotic and
neuroprotective effects [74,75]. Brassica oleracea var. capitata F. rubra (red cabbage) leaves,
which are abundant in anthocyanins (around 322 mg of anthocyanins/100 g of fresh weight),
were prepared as a methanolic extract. The anthocyanin-rich extract at 5, 10 and 15 µM
(calculated based on absorption coefficient) showed a significant inhibition on human
isolated platelet aggregation induced by 0.5 U/mL thrombin to around 66%, 53% and
38%, respectively [76]. This extract also exhibited an inhibitory effect on lipid peroxidation
in platelets which leads to inappropriate platelet activation [76,77]. At a concentration
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of 15 µM, it significantly reduced the production of superoxide anion in human isolated
platelets activated by thrombin (6 U/mL) by around 80%, while at the concentration of
10 µM, it significantly inhibited the metabolism of AA and subsequently the formation of
TXA2 [75,76]. At 10 µM, it significantly suppressed lipid peroxidation in platelets activated
by lipopolysaccharides (LPS) from Escherichia coli and Pseudomonas aeruginosa (0.15 and
1.5 µg/mL) by around 50% (with E. coli LPS) and 60% (P. aeruginosa LPS) [77].
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Sulforaphane (Figure 7) is a sulphur compound that is abundant in Brassica oleracea var.
Italica (broccoli) florets (62.64–982.36 µg/g of dry weight) and stem (18.11 to 274.00 µg/g
of dry weight) [78] and in Brassica oleracea var. capitata F. rubra (red cabbage) leaves
(48–101.99 µg/g of dry weight) and Brassica oleracea L. var. capitata (green cabbage) leaves
(7.58–540 µg/g of dry weight) [79,80]. It has been reported that sulforaphane exhibits
anti-cancer, antibiotic, antioxidant, anti-inflammatory, hypotensive and hypoglycaemic
effects [69].
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The effect of sulforaphane on platelet aggregation has been evaluated in previous
studies [81,82]. In human isolated platelets, 25 µM and 50 µM sulforaphane markedly
inhibited 1 µg/mL collagen-induced platelet aggregation by around 60% and 90%, respec-
tively. However, the inhibitory effects of sulforaphane (25–200 µM) in platelets induced
by 60 µM AA, 1 µM U46619 or 0.05 U/mL thrombin were not significantly different from
controls. Moreover, 25 µM and 50 µM sulforaphane markedly inhibited the phosphory-
lation of PLCγ2 in platelets (Figure 2) [81]. Upon platelet activation, PLCγ2 hydrolyses
membrane phospholipid, phosphatidylinositol 4,5 bisphosphate (PIP2) to produce the sec-
ond messengers 1,4,5-trisphosphate (IP3), which increases the cytosolic calcium levels and
diacylglycerol (DAG) to stimulate protein kinase C (PKC) which in turn activates platelet
degranulation, TXA2 synthesis and release, and activation of integrin αIIbβ3 leading to
platelet aggregation [83]. Furthermore, sulforaphane at 0.125 and 0.25 mg/kg showed a
significant reduction in mortality rate due to ADP (700 mg/kg) induced acute pulmonary
thrombosis in mice by 58.3% and 41.7%, respectively [81]. Similarly, the effect of 60 µM and
100 µM of sulforaphane on platelet aggregation was tested in human isolated platelets after
30 min of incubation. Upon activation with thrombin (0.1 U/mL), 100 µM sulforaphane
showed 50% inhibition. However, in collagen (2.5 µg/mL)-activated platelets, both 60 µM
and 100 µM of sulforaphane inhibited aggregation by nearly 100%. However, neither
concentrations affected ADP (1.56 µM)-activated platelets [84]. In addition, aggregation
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using mouse platelets activated by 3 U/mL thrombin was significantly suppressed by
sulforaphane at 10, 20 and 50 µM. In vivo tail bleeding times in mice were also prolonged
to 58.2 ± 1.4 and 76.4 ± 1.2 s when 7.1 µg/mouse and 17.7 µg/mouse concentrations were
used, respectively [82].

Another anti-cancer compound isolated from cruciferous vegetables is indole-3-carbinol
(Figure 8). This compound is produced by the hydrolysis of glucobrassicin (which is a
glucosinolate) via myrosinase, during plant tissue processing, i.e., chopping, crushing, or
chewing or by the human gut microflora. Glucobrassicin is a major compound in Brassica
oleracea var. Italica (broccoli), Brassica oleraceae var. capitata F. alba (white cabbage) and
Brassica oleracea var. botrytis L. (cauliflower) as it accounts for almost 50% of the total
glucosinolate in those vegetables [85]. Indole-3-carbinol has been reported to possess
anticancer effects, specifically against hormone-dependent cancers such as breast, uterine,
ovarian and prostate [86,87].
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Additionally, the antiplatelet effects of indole-3-carbinol were evaluated using various
platelet functional assays. Different concentrations of indole-3-carbinol (3, 6, 12 and 25 µM)
showed a significant reduction in human isolated platelet aggregation activated by 5 µg/mL
collagen by around 70%. Thromboxane B2 (TXB2, a stable metabolite of TXA2) production
was also significantly inhibited by 25 µM indole-3-carbinol by around 70%. Moreover, in a
thromboembolism model in mice, the oral administration of 4.4, 8.8, 17.7 or 36.8 mg/kg of
indole-3-carbinol protected mice against mortality by 67%, 70%, 70% and 89%, respectively
upon stimulation with a mixture of 114 µg collagen and 13.20 µg epinephrine [88].

In another study, indole-3-carbinol (3, 6, 12 and 25 µM) displayed significant inhibitory
effects on 10 µM ADP-induced human PRP aggregation by 64%, 76%, 84% and 90%,
respectively. Additionally, in ADP (10 µM) activated rat PRP, oral doses of 12.5, 25, and
50 mg/kg/day of indole-3-carbinol for 14 days significantly suppressed PRP activation
by 33%, 55%, 66% and 77%, respectively. The same doses significantly reduced rat brain
infarction volume in a middle-cerebral artery occlusion rat model [89].

2.5. Green Leafy Vegetables

Green leafy vegetables are rich in flavonoids, vitamins such as vitamin A and C, glu-
cosinolates, carotenoids, essential polyunsaturated fatty acids and nitrate [90,91]. Nitrates
(NO3

−) that consist of nitrogen and oxygen atoms are crucial for plant growth as they
are used to synthesise amino acids and subsequently proteins. They are also important
for chlorophyll formation. Plants absorb nitrates from soil through their roots and then
store them in leaves [92]. Therefore, green leafy vegetables have a high content of nitrates.
Nitrates display different pharmacological effects, including antioxidant, gastroprotective,
antibacterial, hypotensive, and antiplatelet effects and have been found to improve en-
dothelial function and blood flow to ischaemic tissues [92,93]. Spinacia oleracea (spinach)
leaves have many beneficial effects on human health including antioxidant, anti-cancer,
anti-inflammatory, hypolipidemic and hypoglycaemic effects [94]. Cho et al. [95,96], stud-
ied the effect of Spinacia oleracea (spinach) leaf extract which is a saponin-rich extract on
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platelet activity. Saponins are natural compounds that have shown positive impacts on
cardiovascular health by acting as antioxidant, hypotensive, hypoglycaemic and hypoc-
holesterolaemic agents [97]. Different concentrations (100, 300 and 500 µg/mL) of the S.
oleracea saponin-rich extract showed significant inhibitory effects on aggregation in rat
isolated platelets upon activation by 10 µg/mL collagen in a concentration dependent
manner (53%, 50% and 40%, respectively). In addition, 500 µg/mL saponins-rich extract
significantly increased cAMP and cGMP levels in platelets by around 60% compared to the
controls [96].

Another leafy vegetable that demonstrated antiplatelet effects is Eruca sativa (Rocket)
leaves [98]. 1 mg/mL concentration of 30% methanolic extract of E. sativa leaves was tested
in human PRP, activated by 8 µM ADP, 1 mM AA and 1.5 µg/mL collagen. However, only
the ADP-stimulated platelet aggregation was inhibited by around 50% (IC50 of 0.71 mg/mL).
In addition, it inhibited P-selectin exposure from around 58% to 42% and the release of
TXB2 in platelets. A single dose of 200 mg/kg of the extract was tested in a thrombosis
model in mice and it postponed the artery occlusion time to 60 min compared to 30 min in
the control group and it significantly reduced the maximum occlusion from 100% to almost
56% [98].

3. Fruits
3.1. Tomatoes

Solanum lycopersicum (tomatoes) is widely consumed all over the world in differ-
ent forms, i.e., raw, cooked or processed. They are known for their antioxidant, anti-
inflammatory, anticarcinogenic, hypoglycaemic and lipid-lowering effects due to their ac-
tive components including phytosterols, flavonoids, nucleosides and carotenoids [99–101].
Specifically, lycopene, which accounts for more than 80% of total carotenoids in tomatoes,
and β-carotene, which accounts for around 10%, are two important molecules that display
biological effects in tomatoes [101].

Due to the beneficial effects of S. lycopersicum on CVD risk factors, various studies
have investigated the effects of S. lycopersicum extracts or their isolated compounds on
platelet function. Fuentes et al. [102] demonstrated the effect of methanolic extracts of
S. lycopersicum ripe fruit and processed products (paste and pomace) and their liquid-
liquid fractions (petroleum ether, ethyl acetate, and aqueous) on platelet activation. In
human PRP stimulated by ADP (8 µM), 1 mg/mL of methanolic extract of ripe fruits and
aqueous fractions significantly inhibited platelet aggregation by around 50%. Additionally,
adenosine (Figure 9a), a purine nucleotide was isolated from the aqueous fraction of
tomatoes and it significantly reduced PRP aggregation by around 45% at a concentration
of 4.6 µM [103,104]. The aqueous extract (1 mg/mL) of S. lycopersicum pomace (industrial
tomato by-product consists mainly of peels and crushed seeds) and paste (cooked and
concentrated whole fruits) significantly supressed ADP-induced PRP activation by around
35–40% [102]. These data indicate that processing of S. lycopersicum fruits, which involves
heating up to 100 ◦C, may not affect their antiplatelet effects.
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In another similar study, the methanolic extract of S. lycopersicum and its petroleum
ether, ethyl acetate and aqueous fractions as well as guanosine (Figure 9b) (another purine
nucleotide), which was isolated from the aqueous fraction, were tested on human isolated
platelets. The aqueous fraction (1 mg/mL) was found to have the highest (around 54%)
inhibition on platelet aggregation, stimulated by 8 µM ADP, followed by the petroleum
ether (43 ± 6%) and ethyl acetate (39 ± 8%) fractions. Moreover, 4 mM guanosine sup-
pressed ADP-induced aggregation by 95% and ATP release by 92%. However, in collagen
(1.5 µg/mL) activated PRP, aggregation was significantly inhibited by approximately 97%,
with ATP release inhibited by around 72%. Guanosine also inhibited platelet spreading
and sCD40L release in thrombin-activated platelets (Figure 2). Collagen-induced platelet
adhesion under controlled flow was reduced by nearly 70% with 2 mM guanosine [105].
Data from the previous two studies indicate that the aqueous extract of S. lycopersicum is
more effective as an antiplatelet agent in ADP- and collagen-activated platelets than the
total extract and its fractions. This is mostly due to the purine nucleotides (adenosine and
guanosine), with guanosine showing higher antiplatelet activities than adenosine.

Moreover, 40 µL aqueous extract of S. lycopersicum fruit significantly reduced ADP
(10 µM) and collagen (2 µg/mL)-induced human PRP aggregation by approximately 70%
and 41%, respectively. However, the extract did not affect platelet aggregation stimulated
by 0.5 mM AA. In this study, the effects of different incubation times (5, 10, 15 and 30 min) of
the extract with PRP in collagen-induced platelet aggregation were probed and the results
demonstrated that the inhibitory effect of the extract (40 µL) was positively correlated with
the incubation time. Platelet activation was inhibited by around 23%, 25%, 30% and 49%,
respectively, for those incubation times. Furthermore, the authors suggested that the extract
inhibits platelet aggregation through inhibiting phospholipase C (Figure 2), and not by
increasing cAMP levels [106]. Although it was suggested that the inhibitory effects are
positively correlated with the concentrations of extract tested, the precise concentrations of
the extract were not stated and instead the volumes were used to express the amount of
extract utilised in this study.

The effect of oral intake of S. lycopersicum fruit pomace on platelet function was
evaluated in a human pilot, randomised, single-blind, and placebo-controlled intervention
study. A total of 99 participants were divided equally into three groups. Two doses (1 g and
2.5 g) of the extract were tested against placebo and all were administered in the form of
flavoured beverages for five consecutive days. The blood samples were collected on day 1
and 5 and the PRP was tested upon activation with 4 µM ADP. The inhibition (around 35%)
of platelet aggregation was found to be significant, after day 5 in the group that received 1 g
dose. However, the inhibitory effect of the 2.5 g dose was not found to be significant [107].

A previous study evaluated the differences in antiplatelet effects between 1 mg/mL
aqueous extract of fresh S. lycopersicum fruit and the following commercially available
processed products; sauce, ketchup, juice, and pomace in human PRP aggregation using
four different agonists; 8 µM ADP, 1.5 µg/mL collagen, 1 µM AA and 30 µM thrombin
receptor activator peptide 6 (TRAP-6) (Table 3). All extracts showed significant reductions
in aggregation upon stimulation with ADP and collagen. In ADP activated PRP, ketchup
and sauce showed the highest inhibitory effects of around 50%. In collagen activated PRP,
ketchup and pomace exerted the highest inhibitory effect by around 40%. In addition, the
abundant phenolic compounds in the extracts, chlorogenic, p-coumaric, ferulic and caffeic
acids were identified and their antiplatelet effects were evaluated at a concentration of
500 µM using the same four agonists (Table 3). Generally, these compounds exhibited sig-
nificant anti-aggregatory effects on ADP and collagen-stimulated platelets, but p-coumaric
and chlorogenic acids showed the highest inhibitory effects [108]. Although the phenolic
compounds showed antiplatelet effects, the toxicity of the tested (high) concentration,
500 µM was not evaluated in platelets.
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Table 3. Antiplatelet effects of aqueous extracts of S. lycopersicum and its isolated phenolic com-
pounds [108].

KERRYPNX (%) Inhibition on Aggregation
ADP Collagen AA TRAP-6

Aqueous Extract
Fresh fruits 40 20 8 (ns) 3 (ns)

Sauce 48 30 7 (ns) 5 (ns)
Ketchup 50 40 6 (ns) 10 (ns)

Juice 30 28 10 (ns) 6 (ns)
Pomace 38 38 20 22

Isolated Compounds
Caffeic acid 35 42 20 25

Chlorogenic acid 69 50 22 19
Ferulic acid 47 36 ns * ns *

p-Coumaric acid 71 69 41 ns *
ns = not significant and * ns = not significant and not mentioned in the paper.

In another study, the effect of different concentrations of an active compound from
S. lycopersicum, lycopene (Figure 10) on platelet function was examined [109]. Lycopene
is a natural, red pigment that belongs to carotenoid phytochemicals (specifically hydro-
carbon carotenoids). The content of lycopene in fresh S. lycopersicum fruit is around
0.88–7.74 mg/100 g and it differs according to the stage of fruit ripeness [110,111]. It is
reported that lycopene content is higher in processed products because heating facili-
tates the release of lycopene from plant tissues and increases its bioavailability [111]. For
example, ketchup contains 9.9–13.44 mg/100 g of lycopene. The beneficial effects of ly-
copene were previously documented on cardiovascular health, as it acts as an antioxidant,
anti-inflammatory, hypotensive, hypolipidemic and antiplatelet agent [111].
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The antiplatelet effects of different concentrations (4, 6, 8, 10 and 12 µM) of lycopene
were examined in human PRP stimulated by 2.5 µM ADP and 1 µg/mL collagen (Table 4).
All tested concentrations of lycopene displayed significant inhibitory effects in ADP- and
collagen-induced platelets. However, when compared to aspirin (140 µM), inhibitory effects
of lycopene were insignificant, as aspirin reduced aggregation by 47.79% ± 15.99% and
70.37% ± 7.49% upon stimulation with ADP and collagen, respectively. In addition, the
synergistic inhibitory effects of lycopene and aspirin combinations were investigated but
they were not significant [109].



Int. J. Mol. Sci. 2022, 23, 605 15 of 32

Table 4. Inhibitory effects of lycopene and its combination with aspirin on ADP- and collagen-
stimulated platelets [109].

(%) Inhibition on Aggregation

ADP Collagen

Lycopene Concentration (µM)
4 41.22 50.01
6 43.19 49.86
8 43.62 51.89

10 45.18 51.48
12 44.47 49.20

Lycopene (L, µM) and Aspirin (A, µM) Combinations
L4 + A70 53.19 73.17
L8 + A70 43.47 66.97
L4 + A140 53.12 71.27
L8 + A140 47.71 68.49

Furthermore, Zhang et al. [112] examined the antiplatelet effects of a pharmaceutical
preparation of S. lycopersicum, Fruitflow® powder in rat isolated platelets [113]. Fruitflow®

is a pharmaceutical preparation of an aqueous extract of S. lycopersicum fruits. It is available
in a syrup and powder form and it mainly consists of active ingredients, adenosine, chloro-
genic acid, rutin and lycopene all of which are reported to have antiplatelet effects [108]. At
concentrations of 4 and 6 g/L Fruitflow® inhibited by around 55% and 74%, respectively
in 2.5 µM ADP-induced platelets. However, in collagen stimulated platelets, aggregation
was reduced by 40% and 71%, respectively. Additionally, the binding of fibrinogen to
integrin αIIbβ3 was significantly inhibited by 32% at 6 g/L of Fruitflow® in 10 µM ADP
activated isolated platelets. Moreover, the antiplatelet effects of Fruitflow® were tested
in 2.5 µM ADP-induced isolated platelets after 4 weeks of oral administration of 25, 75
and 150 mg/kg doses of Fruitflow®. The 150 mg/kg dose markedly inhibited platelet
aggregation to 24% [114].

3.2. Berries

Several studies on many varieties of berries have shown that the regular intake of
berries may decrease CVD risk factors due to their antioxidant, anti-inflammatory, hy-
poglycaemic, and hypotensive effects. These effects have been attributed to their high
content of vitamins specifically vitamin C and E, phenolic compounds mainly flavonols,
phytoestrogen, minerals and essential fatty acids [115,116]. Thus, several studies have
evaluated the effects of different species of berries on platelet function.

Fragaria ananassa (strawberry) intake has a protective effect on cardiovascular health,
mainly because it has the highest antioxidant effects compared to other berries as well
as other fruits and vegetables due to their high total polyphenolics and vitamin C con-
tents [117,118]. Thus, the antiplatelet effects of F. ananassa were evaluated by testing the
aqueous extract of fruits (0.1, 0.5, and 1 mg/mL) in human isolated platelets upon stim-
ulation with ADP (8 µM), collagen (15 µg/mL), AA (1 mM) and TRAP-6 (30 µM). The
extract inhibited platelet activation induced by AA and ADP by around 65% and 55%,
respectively at a concentration of 1 mg/mL. The same concentration of extract markedly
reduced the release of inflammatory markers such as sCD40L, P-selectin, chemokine ligand
5 (CCL5) and interleukin-1β (IL-1β) from platelets (Figure 2) by around 43%, 37%, 41% and
37%, respectively following stimulation with 2 U/mL thrombin. In an in vivo thrombosis
model, a dose of 200 mg/kg of the extract significantly delayed thrombus formation (60 min
compared to 20 min in the control group) with a maximum occlusion of 35% compared to
control which resulted in 100% occlusion [119].

The antiplatelet effects of Aronia melanocarpa (black chokeberry fruit) were examined
during hyperhomocysteinemia, which induces platelet activation. Hyperhomocysteinemia
is caused by increased plasma levels of homocysteine (Hcy) (or its metabolite, homocysteine
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thiolactone), which is produced in the body as a result of the metabolism of methionine [120].
A high level of homocysteine is a risk factor for CVDs as it induces oxidative stress,
inflammation, endothelial dysfunction and platelet aggregation. The phenolic rich extract
(2.5, 5 and 10 µg/mL) of A. melanocarpa was combined with 100 µM homocysteine or 1 µM
homocysteine thiolactone (HTL) and tested in thrombin- (0.1 U/mL) stimulated human
isolated platelets (Table 5), A. melanocarpa extracts showed anti-aggregatory effects in a
concentration dependant manner. However, the inhibitory effects of the extract were found
to be insignificant on platelet adhesion to collagen and fibrinogen. In addition, when the
extract was combined with Hcy or HTL, it was able to significantly reduce the stimulatory
effects of both Hcy and HTL in thrombin-induced platelet aggregation and adhesion in a
concentration dependant manner [121]. These effects are attributable to the antioxidant
effects of A. melanocarpa’s phenolic rich extracts (that mainly contain flavonoids) as reported
by other studies [121,122].

Table 5. Inhibitory effects of different extracts of A. melanocarpa combined with Hcy (homocysteine)
and HTL (homocysteine thiolactone) on platelet aggregation and adhesion [121].

(%) Inhibition
Platelet

Aggregation
Collagen
Adhesion

Fibrinogen
Adhesion

Extract (µg/mL)
2.5 29.41 1.70 0.10
5 56.47 2.30 1.10
10 65.88 4.20 4.10

Extract (µg/mL) + Hcy (100 µM)
2.5 + Hcy 18.40 9.00 12.00
5 + Hcy 40.50 18.90 29.50

10 + Hcy 48.90 32.30 43.80

Extract (µg/mL) + HTL (1 µM)
2.5 + HTL 26.30 16.30 17.70
5 + HTL 39.40 35.00 33.80

10 + HTL 51.30 47.40 45.50

In a recent human study, the effects of 5, 10 and 50 µg/mL of the phenolic fraction of
80% methanolic extract of Hippophae rhamnoides (sea buckthorn berry fruit) were tested on
platelet adhesion to collagen and fibrinogen upon stimulation with 0.2 U/mL thrombin or
10 µM ADP activated human isolated platelets. In resting platelets, platelet adhesion was
significantly reduced in a concentration-dependent manner. However, in thrombin and
ADP stimulated platelets, adhesion to fibrinogen was significantly inhibited by around 65%
and 55%, respectively at 50 µg/mL. In ADP activated PRP, the extract showed insignificant
inhibition on aggregation [123] which indicates that the extract may have no effect on
platelet ADP receptors. In a similar study, 10 µg/mL of isorhamnetin (Figure 11), an
abundant flavonol in H. rhamnoides, and its glycoside derivative [isorhamnetin 3-O-beta-
glucoside-7-O-alfa-(3′ ′ ′-isovaleryl)-rhamnoside] were tested in human PRP using 10 µM
ADP, collagen 2 µg/mL and 0.1 U/mL thrombin as agonists. Isorhamnetin accounts
for around 44.5–78.3% of total flavonol content in H. rhamnoides [124] and is reported
to exert antioxidant, anti-inflammatory, anti-microbial, anti-cancer and hepatoprotective
effects [125]. The antiaggregatory effects of both compounds were significant in thrombin
activated platelets with around 25% effect while it was only minor in ADP and collagen
activated platelets [126].
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4. Spices
4.1. Turmeric

Curcuma longa rhizome, which is known as turmeric, is widely used as a spice and
food colouring agent, and it was routinely used in Asian traditional medicine. It was
used to treat malaria, rheumatoid arthritis, hyperglycaemia and wound healing [127].
The curcuminoids such as curcumin (Figure 12a), demethoxycurcumin (Figure 12b) and
bisdemethoxycurcumin (Figure 12c) are its major active constituents [128]. However,
curcumin is more abundant, comprising, on average, 70–80% (w/w) of the total extract,
whereas demethoxycurcumin accounts for 11.47–23.81% (w/w) and bisdemethoxycurcumin
accounts for 5.97–13.88% w/w [129].
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cumin isolated from C. longa.

A recent study showed that 250 µg/mL of ethanolic extract of C. longa and 25 µM of
its another active compound, cyclocurcumin, (Figure 13) significantly reduced shear-stress
induced platelet aggregation in a dose-dependent manner in human PRP by around 75%
and 70%, respectively, with an IC50 value of 6.33 ± 3.29 µM for cyclocurcumin [130].
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Isolated Compounds (µg/mL) (%) Inhibition of SIPA 
Artumerone 20 

Bisabolatraen 30 
Bisacurone 20 

Bisdemethoxycurcumin 18 
Curcumin 15 

4-Dehydroxybisacurone 16 
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b-Hydroxycinnamic acid 19 
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To examine the antiplatelet effects of curcuminoids, Maheswaraiah et al. [132] tested 
different concentrations of curcumin (10, 30 and 60 µg/mL) and the curcuminoids rich-
ethanolic fraction (10, 20 and 30 µg/mL) on platelets. The curcuminoids rich fraction con-
sists of 33% curcumin, 18% demethoxycurcumin and 48% bisdemethoxycurcumin and 
was tested in rat PRP aggregation stimulated by ADP (40 µM), collagen (15 µg/mL) and 
AA (0.75 mM) (Table 7). Generally, all tested concentrations of curcuminoids and curcu-
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Shear-stress describes the force applied by blood flow within blood vessels which
increases in blocked vessels due to thrombosis [131]. In addition, the effects of 25 µM of
nine active constituents isolated from C. longa ethanolic extract: artumerone, bisabolatraen,
bisacurone, bisdemethoxycurcumin, curcumin, 4-dehydroxybisacurone, demethoxycur-
cumin, β-hydroxycinnamic acid and β-sitosterol were examined (Table 6). Although these
compounds reduced aggregation to different extents, they were insignificant compared to
cyclocurcumin. Moreover, cyclocurcumin showed similar inhibitory effects on aggrega-
tion in human isolated platelets. Cyclocurcumin (1,5 and 10 µM) also markedly reduced
intracellular Ca+2 levels, serotonin release, dense and α- granules secretion, fibrinogen and
von Willebrand factor (vWF) binding to platelets in shear-stress-induced human isolated
platelets (Figure 2) [130].

Table 6. Inhibitory effects of various compounds isolated from C. longa on platelets [130]. SIPA-shear
stress induced platelet aggregation.

Isolated Compounds (µg/mL) (%) Inhibition of SIPA

Artumerone 20
Bisabolatraen 30

Bisacurone 20
Bisdemethoxycurcumin 18

Curcumin 15
4-Dehydroxybisacurone 16

Demethoxycurcumin 5
b-Hydroxycinnamic acid 19

b-Sitosterol 22

To examine the antiplatelet effects of curcuminoids, Maheswaraiah et al. [132] tested
different concentrations of curcumin (10, 30 and 60 µg/mL) and the curcuminoids rich-
ethanolic fraction (10, 20 and 30 µg/mL) on platelets. The curcuminoids rich fraction
consists of 33% curcumin, 18% demethoxycurcumin and 48% bisdemethoxycurcumin and
was tested in rat PRP aggregation stimulated by ADP (40 µM), collagen (15 µg/mL) and
AA (0.75 mM) (Table 7). Generally, all tested concentrations of curcuminoids and cur-
cumin showed reductions in aggregation to different levels when three agonists were used,
but curcuminoids showed higher inhibitory effects. In addition, 20 µg/mL of curcumi-
noids enhanced the release of nitric oxide in rat platelets upon activation with ADP, AA
and collagen.
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Table 7. Inhibitory effects of curcuminoids and curcumin on rat PRP aggregation [132].

(%) Inhibition

ADP Collagen AA

Curcuminoids (µg/mL)
10 15 20 18
20 38 40 45
30 70 80 78

Curcumin (µg/mL)
10 15 15 20
30 20 38 50
60 70 70 80

Another compound isolated from C. Longa that possesses antiplatelet effects is the
sesquiterpene ketone, aromatic-turmerone or ar-turmerone (Figure 14), which is the major
component of the essential oil (61.79%) and has antioxidant, anti-inflammatory, and anti-
cancer effects [133]. In animal models, it demonstrated positive impacts on neurogenerative
diseases, including Parkinson’s and epilepsy by exhibiting anticonvulsant and protective
effects on neurons [134–136]. Antiplatelet effects of ar-turmerone were tested in rabbit
isolated platelets induced by 2 µg/mL collagen at concentrations of 1, 5 and 10 µg/mL.
It inhibited aggregation significantly by 60% and 80%, respectively, with an IC50 value of
1.2 µM [133].
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In a myocardial ischemia-reperfusion injury study in rats, the effect of 500 mg/kg
oral dose of C. longa oil on platelet function was evaluated. The oil exhibited significant
improvement on neurological impairment and reduced the percentage of apoptotic cells
as well as reactive oxygen species resulting from ischemic injury in rats [137,138]. The oil
exhibited an inhibitory effect in rat PRP aggregation after 1 and 24 h of administration upon
stimulation with 10 µg/mL collagen, 10 µM ADP and 0.64 U/mL thrombin at around 28%,
31% and 34%, respectively. However, C. longa oil did not affect A23187, AA and 12-phorbol
13-myristate acetate (PMA) induced platelet aggregation. In addition, oral administration
of C. longa oil at 500 mg/kg and 1000 mg/kg markedly reduced tyrosine phosphorylation
of signalling proteins with molecular weights between 55–60, 70–75, 80–85 and 90–120 kDa
in rat isolated platelets upon activation with collagen, ADP, and thrombin. Furthermore, in
a mouse pulmonary thromboembolism model, both doses of oil showed anti-thrombotic
effects of 43 ± 7% and 63 ± 5%, respectively, after 1 h of administration compared to the
38 ± 3% obtained by 30 mg/kg aspirin. Moreover, rats treated with C. longa oil displayed a
prolonged tail bleeding time by 18% and 25% for the 500 mg/kg and 1000 mg/kg doses,
respectively compared to the controls (3–5 min) [139].

Another study reported that curcumin (1, 10, 20, 50 and 100 µM) greatly reduced
platelet aggregation in aspirin pre-treated (for synergistic effects) human isolated platelets
stimulated by a snake venom toxin, convulxin. Additionally, the inhibitory effects of 50 µM
curcumin upon activation with 50, 100, 200, 500 ng/mL convulxin were approximately 98%,
75%, 40% and 30%, respectively. Curcumin (50 µM) also significantly suppressed platelet
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aggregation induced by 20 µg/mL collagen and 5 µg/mL cross-linked collagen related
peptide (CRP-XL). However, it did not affect aggregation induced by a protease activated
receptor 4 (PAR4) agonist, AYPGKF. Curcumin considerably suppressed the degranulation
of dense granules in a concentration-dependent manner and phosphorylation of linker for
activated T-cells (LAT) and PLCγ2 upon activation by 100 ng/mL convulxin (Figure 2) [140].

4.2. Ginger

In ancient Chinese, Indian and Roman cultures Zingiber officinale rhizome (ginger) was
widely used as a spice and for treating nausea, indigestion, diarrhoea, cough, and blood sta-
sis [141]. Several research studies demonstrated the pharmacological effects of Z. officinale
including, antioxidant, anti-inflammatory, anti-cancer and pain-relieving effects [141,142].
The most abundant active constituents of Z. officinale are gingerols, followed by shogaols
and paradols. Gingerols are phenolic compounds that differ in the number of their carbon
chain (after the carbonyl group) (Figure 15a). They are thermolabile compounds, as they are
transformed into shogaols (Figure 15b) at high temperature (40 ◦C or higher) during drying
or prolonged cooking [143]. After ingestion, shogaols are metabolised to paradols inside
the body [144]. Thus, the most abundant gingerol in Z. officinale is 6-gingerol (Figure 15c)
which is reported to exhibit analgesic, anti-pyretic and cytotoxic effects as well as inhibiting
nitric oxide production in macrophages [142,143].
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To evaluate the antiplatelet effects of Z. officinale powder, a placebo-controlled study
examined the effect of a daily dose of 4 g of Z. officinale extract capsules on patients (n = 30)
with acute myocardial infarction (more than 6 months). Patients were asked to stop their
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daily dose of aspirin for 2 weeks before the beginning of the study. Blood samples were
collected after 45 and 90 days of administration and PRP aggregation was performed using
ADP and epinephrin as agonists. Although the effect of Z. officinale on platelet aggregation
was insignificant, a single 10 g dose led to a reduction in PRP aggregation of nearly 25%
against ADP and epinephrin-induced activation after 4 h from administration. In addition,
the n-hexane extract (5, 10, 25 and 125 µg/mL) decreased PRP aggregation induced by
0.5 µM AA in a concentration dependent manner [145].

Another study compared the antiplatelet effects of 10 µM of isolated compounds of Z.
officinale and their synthetic analogues in 0.5 mM AA activated human whole blood aggrega-
tion (Table 8). All tested compounds showed significant antiplatelet effects. The aggregation
was totally inhibited by 12-gingerol, 8-paradol, 8-shogaol, 5-hydroxy-1,7-bis(4-hydroxy-
3-methoxyphenyl)-hept-6-ene-3-one and 3-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)
heptane [146].

Table 8. Inhibitory effects of phenolic compounds of Z. officinale on whole blood aggregation [146].

% Inhibition

Isolated Compounds
6-Gingerol 86
8-Gingerol 96
9-Gingerol 86

12-Gingerol 100
6-Paradol 90
8-Paradol 100
6-Shogaol 91
8-Shogaol 100

Synthetic analogues
3-Hydroxy-1-(4-hydroxy-3-methoxyphenyl) dec-4-ene 92

2-Hydroxy-1-(4-hydroxy-3-methoxyphenyl) dodecan-3-one 96
5-Hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-hept-6-ene-3-one 100

3-Hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl) heptane 100

5. Edible Fungi

In the past, mushrooms were categorised within the plant kingdom and considered as
vegetables. However, mushrooms are now categorised as fungi [147]. Mushrooms (also
known as macrofungi) are different from microfungi (such as moulds, smuts and plant
rusts) due to their visible fruiting bodies. Mushrooms lack chlorophyll, as they do not
undergo photosynthesis and they do not consist of many organs such as fully developed
roots, stems, leaves or flowers [148]. In recent years, there has been an increasing interest
in exploring the pharmacological effects of different species of edible mushrooms due to
their high mineral, vitamins, essential amino acids and fibre content along with low fat
content [149,150]. Some commonly consumed mushrooms such as Ramaria flava (changle),
Pleurotaceae ostreatus (oyster mushroom), Agaricus bisporus (button mushroom), Lentinus
edodes (oak mushroom) and Flammulina velutipes (winter fungus) have demonstrated many
biological effects including anti-cancer, antioxidant, antibiotic, immune enhancing, hypo-
glycaemic, hypocholesterolaemic, hepatoprotective and cardioprotective effects [151–153].

Some species of edible mushrooms were demonstrated to affect platelet activation.
The methanolic extract of fruit bodies of Pleurotus florida (500 µg/mL) was reported to
significantly reduce human isolated platelets aggregation upon stimulation by 1 mM ADP
by around 88% and 95% after 5- and 15 min incubation, respectively. It was suggested
that this effect was due to flavonoids and polysaccharide in the extract [154]. In addition,
methanolic, ethyl acetate and aqueous (5 mg/mL) extracts of Pleurotus eous (pink oys-
ter mushroom) showed significant anti-aggregatory effects upon stimulation with ADP
(1 mM) in human isolated platelets by 45%, 35% and 36%, respectively [155]. Poniedzi-
ałek et al. [156] studied the effect of the hot aqueous extract of eight edible mushrooms:
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Agaricus bisporus, Auricularia auricularia-judae, Coprinus comatus, Ganoderma lucidum, Heri-
cium erinaceus, Lentinula edodes, Pleurotus eryngii and Pleurotus ostreatus in human whole
blood platelet aggregation induced by 6.5 µM ADP. However, only P. eryngii, A. bisporus,
A. auricularia-judae and C. comatus, showed significant inhibition effects, of 65.1%, 58.0%,
54.3%, and 51.6%, respectively. These effects were more significant than aspirin’s (140 µM)
inhibitory effects in this study. Additionally, these four extracts, as well as the extract of
G. lucidum, inhibited aggregation induced by 0.5 mM AA (30–34%). The inhibitory effects
were linked to total polysaccharides and ergosterol (Figure 16) content and the antioxidant
effects of the extracts [156].
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Polysaccharides of mushrooms such as galactans, chitin and mannans are consumed
as prebiotics to stimulate the growth of human gut bacteria and improve the gut health.
They were also reported to have anti-tumor and immune enhancing effects [157]. Ergosterol
is a sterol that found in mushroom cell membrane, and it is used as a vitamin D precursor in
vitamin D supplement preparations and known to have anti-inflammatory and anti-tumor
activities [158].

Moreover, isolated compounds from the ethanolic extract of Hericium erinaceus (lion’s
mane) mushroom; hericenone B (Figure 17) significantly inhibited 3 µg/mL collagen
activated human isolated platelet aggregation with an IC50 value of 3 µM [159].
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In an animal study, davallialactone (Figure 18), isolated from Inonotus xeranticus
mushroom, significantly reduced rat isolated platelet aggregation stimulated by thrombin
(0.1 U/mL), collagen (2.5 µg/mL) and ADP (10 µM) in a dose-dependent manner. In
addition, it suppressed the concentration of intracellular Ca2+ following activation with
collagen. Moreover, it reduced the phosphorylation of p38 mitogen-activated kinase
(MAPK) and extracellular signal-regulated kinase (ERK2) in collagen (2.5 µg/mL) and
thrombin (0.1 U/mL) stimulated platelets [160].
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Additionally, ethanolic extract of Hypsizygus marmoreus (white beech mushroom)
markedly inhibited rat isolated platelet aggregation, ATP release and intracellular Ca2+

levels after activation with 1 µg/mL collagen, although it did not affect platelet activation
by ADP (5 µM) or thrombin (0.05 U/mL) [161]. The ethanolic extract of Cordyceps militaris
mushroom reduced rat PRP aggregation induced by 10 µM ADP and collagen 5 µg/mL in
a dose-dependent manner after oral administration of 30 mg/kg, 100 mg/kg or 300 mg/kg
of the extract for 3 weeks [162].

6. Clinical Trials for Plant Extracts and Their Isolated Compounds

Although natural products do not require Food and Drug Administration (FDA)
approval to be released in the market, some pharmaceutical companies apply for FDA
approval as a proof of drug’s efficacy and safety [163–165]. The FDA drug-review process
consists of preclinical studies (on animals) followed by three phases of human studies.
These phases determine the efficacy and safety of potential drug molecules using different
cohorts of human volunteers. Some examples of natural plant extracts/compounds (that
are already sold in the market as supplements) with antiplatelet effects that are currently in
the process of FDA approval (no data released) are shown in Table 9 [166–168].

Table 9. Plant extracts and/or their compounds with antiplatelet effects that are currently in clinical
trials [166–168].

Antiplatelet Extracts Isolated Compounds Study Phase

Ginseng root extract:
Panax ginseng (Korean red ginseng)
Panax notoginseng (Chinese ginseng)

Panax quinquefolium (American ginseng)
Panax japonicas (Japanese ginseng)

Ginsenosides Phase 3

Ginkgo biloba (maidenhair tree) leaves
Flavonoids (ginkgo-flavone
glycosides) and terpenoids

(ginkgolides and bilobalide)
Phase 3

Gynostemma pentaphyllum (miracle grass)
leaves Gypenoside saponins Phase 2

Salvia miltiorrhiza (red sage) roots Salvianolic acid B Phase 2

Not defined Berberine Phase 3

Colchicum autumnale (autumn crocus) Colchicine Phase 3

7. Conclusions

CVDs are a primary cause of deaths worldwide and they are mainly caused by
impaired platelet function as well as other risk factors such as unhealthy diet, hypercholes-
terolemia, hyperglycaemia, hypertension, and smoking. Therefore, antiplatelet agents are
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predominantly used in the treatment regimen for CVD patients. Although there are various
classes of antiplatelet agents that act through different mechanisms, they are associated
with serious side effects and the development of resistance. Some patients with aspirin
and/or clopidogrel resistance are at higher risk of recurrent strokes, large infarct size and
early neurological deterioration. Some high-risk patients with recurrent ischemic stroke
or transient ischemic attacks and taking three antiplatelet agents (aspirin, clopidogrel and
dipyridamole) for three months experienced bleeding incidents ranging from mild to fatal
although the rate of stroke recurrence was not significantly reduced. Therefore, many stud-
ies were conducted to evaluate the effects of numerous edible plants on platelet activation,
with the aim of discovering novel antiplatelets agents with better bioavailability, activity
and safety profiles whilst promoting the regular intake of healthy diet.

Indeed, plants are important sources for drug discovery to treat different diseases
including CVDs. Several prescribed CVD medications are derived from plants, and they
mainly comprise alkaloid, cardiac glycosides and polyphenolic phytochemicals. Most of
the alkaloid-derived CVD drugs (such are deserpidine and reserpine) are used to treat
hypertension. In addition, digoxin and digitoxin (common heart failure and antiarrhythmic
drugs) are cardiac glycosides, whereas the phenolic compounds aspirin and hesperidin are
used as antiplatelet drugs. However, developing new medications for CVDs is challenging
because of the complicated treatment plans due to coexistence of comorbidities and other
chronic conditions such as hyperlipidaemia and hypertension. These conditions increase
the possibility of developing serious side effects and drug–drug interactions that might
affect the bioavailability. Moreover, the complex plant extracts that contain numerous active
compounds are often difficult to separate in reasonable quantities (large scale extraction
and isolation are needed) and semisynthetic or synthetic strategies may be required.

Plant extracts or their active constituents can be consumed as supplements to act
synergistically with prescribed medications to improve outcomes. In Chinese clinical
practice, certain plant-based supplement formulations are used as adjunct treatments
with CVD medications for better outcomes. For example, Rhodiola sacra and Rhodiola
kirilowii capsules and injection formulations are prescribed regularly for ischemic heart
disease patients (doses are adjusted according to patient’s condition) [169]. The roots and
rhizomes of both species are known to act as antioxidant, cytotoxic, antidepressant and
cardioprotective agents. Data from a meta-analysis study (n = 1672) demonstrate that using
one of the Rhodiola formulations significantly improved ischemic heart disease symptoms
(chest pressure, chest pain and shortness of breath) and electrocardiography compared to
registered medications alone [169–171]. However, the use of plants supplements in CVDs is
not always supported by clinical practice. The main concerns are that plants supplements
do not need approval by the FDA or European Medicines Agency (EMA) to be released in
the market. There is a lack of controlled clinical studies regarding the efficacy and safety,
and insufficient knowledge of possible interactions between supplements active constituent
(s) and drugs. The underreporting of adverse effects or poisoning due to consumption
of plant products to the local and international regulatory organisations is another major
concern. Indeed, plant supplements may be used to improve patients’ outcomes, but must
be used under the guidance/supervision of health care providers. Finally, in studies that
investigate the effect of plant extracts and/or phytochemicals on CVDs, human clinical
trials should be considered as part of the FDA drug-approval process to determine the
efficacy, safety and their interactions with other molecules.

Overall, plants are known to be a rich source for bioactive compounds that have
numerous beneficial effects on cardiovascular health. They can be consumed safely as
part of our diet in the form of fresh raw fruit and vegetables as recommended by health
organisations. The WHO recommends the daily consumption of at least 400 g of fruit and
vegetables (excluding starchy vegetables), which is equivalent to five portions daily. Based
on this recommendation, many countries began a 5-a-day campaign in 1990. However,
its importance has been better acknowledged since 2000, as governments have started to
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promote its importance in schools and big supermarkets, which are used to advertise this
via their ready to eat fruit and vegetables [172].

The effects of consumption of five servings of fruit and vegetables on CVDs have been
evaluated by many longitudinal studies as reviewed in this article. They reported that con-
suming five servings showed a significant reduction in the mortality rate of CVDs by almost
10% [173,174]. In addition, incidence of stroke was decreased regardless of sex and con-
sumption duration compared to the group that consumed three or less servings [175–177].
Moreover, in hypotensive patients, the consumption of five servings for 12 weeks showed a
significant improvement in blood flow through vasodilatation [178]. Furthermore, patients
who were followed up for venous thromboembolism, who consumed 3–5 portions of fruit
and vegetables, were at significantly lower risk of developing venous thromboembolism
(around 27–53%) [179]. In addition, patients who survived stroke were at a lower risk
(34%) of recurrence when this dietary plan was followed. Hence, consuming a minimum of
400g/day of fresh fruit and vegetables daily must be a part of the daily diet for children
and adults, and especially for CVD patients. We believe that this article provides a plethora
of information on the antiplatelet effects of selected and commonly used edible plants
consumed regularly. This article aims to create awareness among members of the public
and CVD patients on the necessity to adhere to a healthy diet. Moreover, it will encourage
scientific communities to further investigate the impacts of these plants for the prevention
and treatment of CVDs. Although we covered a wide range of commonly available edible
vegetables, fruits, spices and fungi in this article, we were unable to discuss several other
edible plants (e.g., green tea) that also exhibit antiplatelet effects due to their occasional
and/or limited medicinal uses.
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