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Abstract 

The fast-paced informatization of power systems across the world provides an unprecedented amount of 

data, which greatly facilitates their study and offers in turn the possibility to assist in the transition 

towards truly smart, low-carbon energy systems. In this context, the use of clustering methods for the 

study of household Electricity Consumption Behaviour (ECB) proves highly beneficial as it facilitates, 

among other things, more effective deployment of distributed renewable energy assets, development of 

differentiated tariff policies and load forecasting. However, the similarity metrics used in traditional 

clustering methods have difficulties in accurately capturing the time variability of electrical load profiles. 

In order to address this problem, we developed a novel semi-supervised automatic clustering method 

based on a self-adapting metric learning process. The proposed method is a bespoke application to the 

analysis of electricity demand load patterns that combines the recently developed Deep Linear 

Discriminant Analysis algorithm for supervised learning with the data-adaptive Affinity Propagation 

clustering algorithm (DLDA+AP), and achieves high-quality automatic clustering with an accuracy that 

is 75 percentage points higher than traditional methods such as k-means, on average. Based on this 

bespoke method, a unified load dictionary which captures the mainstream daily electricity consumption 

patterns of 5566 households in London was produced. Through the analysis of the load dictionary and 

household daily electricity consumption, it’s possible to build a complete ECB profile for the households 

in the sample dataset. Furthermore, combining the 206 household properties which were found to be 

strongly correlated with the ECB, this method provides a practical approach to residential customer 

segmentation for the electricity market. 

 

Keywords: Household electricity consumption behaviour; Semi-supervised clustering; Metric learning 
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Nomenclature 

ACC Absolute value of correlation coefficient KNN K-Nearest Neighbors Classification 

AMI Adjusted mutual index L2 Euclidean distance 

AP Affinity propagation M Mean of daily electricity consumption 

ARI Adjusted rand index PNC Peak number category 

DBI Davies-Bouldin index P25 25 % percentile of daily electricity consumption 

DEC Daily electricity consumption P50 50 % percentile of daily electricity consumption 

DECP Daily electricity consumption pattern P75 75 % percentile of daily electricity consumption 

DLDA Deep linear discriminant analysis SC Silhouette coefficient 

DNN Deep neural network SSD Sum of squared distances of samples to their 

closest cluster center DTW Dynamic time warping 

ECB Electricity consumption behaviour Std Standard deviation of daily electricity 

consumption ECPk Electricity consumption peak 

 

1. Introduction 

The development of photovoltaic and wind power has brought green and low marginal cost electricity 

supply to the power system [1]. However, their inherently transient and fluctuating nature also poses a 

significant challenge to the stability of conventional power grids [2]. To address this issue, in addition to 

upgrading the grid hardware, a range of supply and demand matching technologies have been proposed, 

such as energy storage [3], demand response [4, 5], generation forecasting [6] and load forecasting [7, 8]. 

Coupled with the rise of “smart” devices, connected via the Internet of Things, along with artificial 

intelligence technologies that have provided researchers with a wealth of data and analytical tools, there 

has been an increased interest in researching potential benefits and applications of such technologies for 

demand-side management [9, 10]. 

 

When it comes to the diversity of electricity demand, the residential sector ranks second only after the 

industrial sector [1]. The vast market it represents and its inherent similarities make it one of the most 

promising targets for the implementation of demand-side management regulations. However, the success 

of such interventions vastly depends on how well understood the current energy consumption 

behaviours are, and their adaptability to any measures put in place. In this regard, a systematic 

exploration of the characteristics of household load profiles may provide the elements for a more helpful 

segmentation of the households that make up the residential electricity market. This in turn offers the 

possibility to identify specific groups (e.g. heavy users during peak periods) which can then be targeted 

for reduction measures. 
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In addition, a more in-depth analysis of the differences between the load profiles across households 

within the same group may reveal changes in electricity consumption behaviour (ECB) which can help 

reduce overall electricity consumption or improve efficiency through, for instance, changing the hours of 

use of specific equipment [11]. In summary, there are strong incentives for a more in-depth analysis of 

household ECB, as this forms the basis for smart tools such as energy storage strategies, modelling 

residential electricity demand and demand response [7, 12]. 

 

In recognition of this, several studies have used “traditional” clustering methods to explore the ECB of 

households [13]. However, most previous studies have focused on the classification of households based 

on their average load profile to represent the ECB [14, 15]. Such an approach may be suitable for 

describing the aggregated ECB, but the use of average profiles means that the variation within 

households is masked; while this approach provides a relatively straightforward classification of 

households’ ECB, it is clearly done at the expense of accuracy. The prevalence of such an approach is 

largely due to the complexity of the variability within and across load profiles, as well as the inability of 

traditional clustering similarity metrics to effectively capture the temporal variations between different 

patterns and thus accurately classify them into different categories [11, 16, 17]. 

 

To counter this issue, much effort has been devoted to comparing the effects of various time-series 

similarity metrics, such as Dynamic Time Warping (DTW), Pearson correlation coefficient, and other 

distance metrics such as the Euclidean distance (otherwise known as the L2 norm), in order to choose 

the best performing one for clustering purposes [18]. These traditional similarity metrics, however,  may 

still be inadequate for the analysis of household electrical load profiles, which consequently reduces the 

effectiveness of clustering methods. Moreover, as with any other data-driven approach, clustering results 

are highly sensitive to the quality of the data used, and the previous studies have been characterised by 

the following two issues. Firstly, the sample sizes of the groups of households studied have usually 

ranged from tens to a few hundred households. Secondly, the duration of the monitoring periods has 

usually been less than a year. These two issues in combination mean that the overall amount of data used 

in said studies is rather small for clustering purposes, which poses serious limitations on the 

representativeness of the findings and, in some cases, even leads to significant group bias; this may well 

be the main reason for conflicting findings across a number of studies [19]. 

 

This paper presents a unique methodological contribution to the energy research literature, in which: 

- a novel semi-supervised automatic clustering method based on a self-adapting metric learning 

process has been developed and tailored to the analysis of household load profiles; 

- the proposed method has been applied to the study of ECB in London as a case study; and 

- the results of its application have been compared to traditional clustering methods to assess its 

performance. 

The proposed method, henceforth referred to as DLDA+AP, combines the recently developed Deep 

Linear Discriminant Analysis (DLDA) algorithm for supervised learning [20] with the data-adaptive 
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Affinity Propagation (AP) clustering algorithm [21], and demonstrably achieves superior classification 

results when compared to traditional approaches to clustering-based ECB analysis. 

 

The method proposed in this paper is a response to the challenges imposed by ill-suited similarity 

metrics used in previous clustering studies of household ECB. Specifically, DLDA and AP work in 

tandem; DLDA is used to tailor a similarity metric best suited to the analysed data aided by a 

complimentary labeled daily load sample dataset; this tailored similarity metric is then used by AP to 

generate a load dictionary representing mainstream daily electricity consumption patterns (DECPs) 

based on the original dataset. The resulting load dictionary then provides the basis for an exploratory 

analysis of the characteristics and commonalities of ECB across households, as well as their potential 

correlation with household properties. Moreover, it allows for a more in-depth analysis of the 

composition of daily electricity consumption (DEC) and DECPs which capture the hourly variation of 

electricity consumption throughout the day. 

 

The specific case study serves as an illustration of the advantages of the use of DLDA+AP for the study 

of residential electricity consumption patterns, and allows us to place this novel method in the context of 

the traditional clustering approaches, such as k-means-based clustering, by means of a detailed 

comparison of their performance in the classification of household ECB based on the same dataset. In 

doing so, this paper lays the groundwork for the adaptation of a method expressly designed for the 

analysis of electricity consumption patterns to other sectors, as well as other regions and countries. 

 

What remains of this paper is arranged as follows: Section 2 provides a brief review of related work; 

Section 3 introduces the data used for the study and pre-processing methodology, as well as the elements 

of the semi-supervised clustering model and the classification model; Section 4 evaluates the 

performance of the trained models; Section 5 analyses the clustering results and household ECB; finally, 

Section 6 offers our concluding remarks. 

2. A brief review of clustering-based analyses of household ECB 

Clustering methods have found widespread applications in a number of fields, and the analysis of energy 

demand patterns is no exception. In what follows, we review some of the most recent studies on 

electrical load profile clustering, and we focus on three key aspects of clustering: data features, 

similarity metrics and clustering algorithms. 

 

When it comes to household ECB data, the defining features are the electricity consumption over a fixed 

length of time or the percentage of electricity consumption corresponding to a given period, such as 

daily, weekly, seasonal and annual samples, with temporal resolutions ranging from 15 minutes to half-



5 

 

hour or an hour [14]. Such features mainly reflect differences in the peaks and troughs of electricity 

consumption and can be understood intuitively as differences in the shape of the load curve. Markovič et 

al. [22] used the average weekly profile and the annual profile to explore the relationship between short-

term and long-term electricity consumption patterns and thus improved the clustering of household 

customers. Other methods such as dimension reduction and feature extraction, known as alternative 

time-series representation have been used as well [18]. Satre-Meloy et al. [23] proposed a clustering 

method for cumulative electricity consumption over time as a feature, which had a clear physical 

meaning and achieved promising results. 

 

In terms of similarity metrics, the Euclidean distance (L2), Dynamic Time Warping (DTW) and Pearson 

correlation coefficient are the most frequently used [18]. Iglesias et al. [16] compared L2, DTW, Pearson 

correlation coefficient and Mahalanobis distance as similarity metrics for clustering electrical load 

samples; the results showed that L2 outperformed the others, while DTW was also effective in some 

cases. However, given that the computational complexity of DTW is much higher than that of L2, most 

studies use L2 as their similarity metric. Nevertheless, the way in which L2 is calculated limits its ability 

to accurately describe the differences in temporal variation across electricity consumption patterns. This 

is particularly the case where the load samples have a large and relatively concentrated proportion of 

electricity consumption peaks (ECPks), as L2 cannot effectively reflect the temporal differences in 

where the peaks are located [23]. 

 

The algorithms used for household ECB clustering can be broadly classified into four categories: 

Partitioning, Hierarchical, Model-based and Density-based clustering [18]. Partitioning clustering is 

typically represented by the K-means algorithm which is usually based on L2 and is susceptible to 

outlier interference. More importantly, this kind of algorithm usually requires the number of clusters to 

be specified in advance. Hierarchical clustering can be performed in two ways: bottom-up and top-down. 

The former groups highly similar elements one by one, while the latter discards the elements with the 

lowest similarity one by one. The method is strongly influenced by changes in the samples. However, an 

arbitrary number of clusters can be chosen as required, and thus it is often used for similar category 

merging. Kwac et al. [24] first used adaptive K-means with constraints to cluster a large number of daily 

load samples to obtain over 100,000 highly similar classes, and then used bottom-up hierarchical 

clustering to obtain 1000 merged classes that satisfied its set constraint error of 5% to generate a load 

dictionary. The most commonly used Model-based approach for household ECB clustering is self-

organising maps (SOM), which is based on neural networks that update the network weights to form 

suitable clustering centers by comparing the distance between the input samples and the output vectors. 

The method is based on assumptions about the topology of the data, and its accuracy is usually similar to 

that of K-means. McLoughlin et al. [25] evaluated the clustering effectiveness of K-means, K-medoids 

and SOM using the Davies-Bouldin index and, based on this, decided to cluster daily electricity load 

samples of Irish households using SOM, obtaining 10 typical classes. Density-based clustering, such as 

DBSCAN, is often used to find anomalous samples [26]. However, due to the high computational 
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complexity of such methods, they are rarely used in clustering household ECB with large sample sizes 

[18]. In those studies, it was found that the most commonly used methods for clustering household ECB 

profiles are still classical clustering algorithms, which might be, at least in part, due to the slow 

development of alternative clustering algorithms [18]. Most algorithms perform large amounts of 

repetitive clustering by changing the parameters of the algorithm and thus, based on evaluation indices 

and expert knowledge, allow to choose a suitable number of clusters manually. This approach, however, 

creates a clear obstacle to the development and application of data-adaptive clustering. 

 

Some studies have shown that peak features can effectively describe the differences between electricity 

consumption patterns [14, 24]. However, traditional similarity metrics, including the high-performing L2, 

perform poorly in describing the temporal variation between peak features. To address this problem, we 

first label the training dataset with the value and time period of the ECPks of daily load samples to guide 

the supervised learning algorithm DLDA to learn the most suitable similarity metric. Then, the data-

adaptive AP clustering algorithm is used to perform clustering without manually specifying the number 

of clusters. This process allows for fully automated model training and clustering on different datasets. 

 

An in-depth description of the development of the DLDA and AP algorithms falls beyond the scope of 

this paper, but can be found elsewhere [20, 21, 27]. Likewise, for further details about clustering-based 

research in the context of energy consumption analysis, the reader is pointed to the following references: 

[7, 13, 14, 18, 28]. 

3. Data and Methods 

3.1 Description and processing of data 

3.1.1 Description of data 

The data used for the analysis presented in this paper stems from the Low Carbon London project, a 

study led by the UK Power Networks (one of the UK’s Distribution Network Operators), during which 

the electricity consumption of 5,566 London households was monitored between November 2011 and 

February 2014 [29]. Households were recruited such that they comprised a balanced sample, 

representative of the Greater London population [4], and grouped based on the Acorn household 

classification methodology [30]. The dataset contains a vast array of electricity consumption load 

profiles (half-hourly energy consumption in kWh), marked with a unique household identifier, date, 

tariff type [31, 32] and the corresponding Acorn group. 

 

The Acorn classification methodology segments consumer households into 17 groups from ACORN-A 

to ACORN-Q. By analysing significant social factors and population behaviour, it provides precise 
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information and an in-depth understanding of the different types of people living in London. The 

classification is based on 15 major items and 84 subitems for a total of 826 options as shown in Table A - 

1 in the Appendix. The major items include Population (P), Housing (Hou), Family (Fam), Economy 

(Eco), Education (Edu), Health (Hea), Transport (T), Marketing Channels (MC), Finance (Fin), Digital 

(D), Shopping (S), Contact (Con), Environment (Env), Community Safety (CS) and Leisure Time (LT). 

The value of each option is a relative value against the national average. Generally speaking, there is a 

decreasing trend of wealth from ACORN-A to ACORN-Q. 

3.1.2 Preprocessing of data 

Firstly, the half-hourly energy consumption records were turned into hourly profiles and then split into 

24-dimensional load samples corresponding to the different days of the monitoring period. The hourly 

load samples were then normalised to create the corresponding DECP of individual households, in order 

to examine the variation in hourly electricity consumption throughout the day. Thus, for the i-th load 

sample, the 𝑑𝑖 denotes the total DEC, ℎ𝑖(𝑡) denotes the electricity consumption at time 𝑡 (in hours), and 

𝑝𝑖(𝑡) denotes the electricity consumption at time 𝑡 (in hours) as a percentage of the total DEC. These 

relations are expressed by the following equations:  

𝑑𝑖 = ∑ ℎ𝑖
24
𝑡=1 (𝑡) 𝑎𝑛𝑑 𝑝𝑖(𝑡) =

ℎ𝑖(𝑡)

𝑑𝑖
× 100% ( 1 ) 

 

When analysing the dataset, we excluded samples based on the following criteria: 

- household samples with load profiles for less than a week; 

- almost zero 𝑑𝑖 load samples with DEC lower than 0.024 kWh. The threshold represents 1 W per 

hour for standby electrical appliances like smart meter. 

Besides, we found that group ACORN-U lacked the relevant information. Therefore, this group was only 

used for the analysis of properties not related to Acorn classifications. 

 

By clustering the normalised load samples, we can obtain a load dictionary that represents the household 

DECP for the whole London area. Based on the unified load dictionary patterns, we are able to analyse 

the DECP composition of each household. Further, in addition to the DEC, a complete ECB profile of 

the household can be created. 

After cleaning and preprocessing the raw data, we were left with a dataset containing the electricity 

consumption records of 5,557 households across 18 Acorn groups, which contains nearly 3.5 million 

daily load profile samples. Figure 1 shows that the household sample distribution is consistent with the 

load sample distribution after cleaning of the data, ensuring the dataset is representative of the London 

population. 
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Figure 1 - Distribution of household samples and load samples across Acorn groups.  

3.1.3 Building labeled dataset 

To provide DLDA with labeled load samples for metric learning, a labeling method for the value and 

time period division of the ECPk features is proposed. The proposed labeling method essentially 

consists in comparing individual load sample plots to a reference grid which divides the plotting canvas 

into the regions that capture the most (and least) interesting features of the plotted load samples. 

 

The identification of these regions of interest is based on empirical experience and partial visualisation 

of a subset of samples. Along the vertical axis, we divided the potential values of ECPk into 3 bands, 

and along the horizontal axis, we divided the 24 hours in a day into 8 time periods as detailed in Table 1 

and Table 2; see also Figure 2 for a graphical representation. It is worth noting that the choice of the 

boundaries of the regions of interest defined above is in fact arbitrary, and that as long as the sub-

divisions can reliably distinguish between different feature categories (e.g. peaks), any other labeling 

grid can be used to guide training of the semi-supervised clustering model. However, since the 

performance of the trained model greatly depends on the labeled dataset used, it is advisable to try and 

make the best possible choice. 

 

As discussed above, in the case of the proposed labeling method, the regions of interest were determined 

purely based on the characteristics of the empirical data used in this study, supported by our knowledge 

of load pattern dynamics. It should also be noted that for the purposes of our analysis, the ECPk is 

defined as the time period’s maximum hourly electricity consumption ℎ𝑖(𝑡) higher than 6.255% of the 

DEC (𝑑𝑖), in which the threshold value represents 1.5 times the average percentage of the 24-hour 

period. In addition, in order to avoid the peaks appearing near the dividing line of adjacent intervals 

along the vertical axis (which leads to blurred peak features), we narrowed down the value intervals for 

labeling the peak, which were called label range, as shown by the pink stripes in Figure 2; only the 
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sample with all peaks located in the label range of 3 levels or without peaks (e.g., all the value lie in 

average interval) would be selected and labeled. Figure 3 provides two examples of the application of 

these labeling criteria to produce two labeled samples. 

 

Table 1 - Value division of ECPk. 

Value level Value range (%) Label range (%) Notes 

Average 2.085 - 6.255 Same 100/24 ± 50% 

Level-1 6.255 - 12.51 8.255 - 10.51 12.51 = 6.255 × 2 

Level-2 12.51 - 50.00 14.51 - 40.00 50 ≈ 100 − 2.085 × 23 hours 

Level-3 50.00 - 100.00 Same  

 

Table 2 - Time period division of the day. 

Time period t-1 t-2 t-3 t-4 

Hour 1-3 4-7 8-10 11-13 

Time period t-5 t-6 t-7 t-8 

Hour 14-16 17-19 20-22 23-24 

 

Figure 2 - Visualization of labeling principles. 
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(a) Label "31-62"                                                  (b) Label "0A" 

Figure 3 - Examples of labeled samples. 

 

Figure 3 (a) label "31-62" indicates the sample has two ECPks, one at level-1 in the value range of time 

period t-3 and one at level-2 in the value range of time period t-6. Figure 3 (b) label "0A" indicates the 

sample has no ECPks. 

After labeling the load samples, we obtained 1979 classes containing 568,165 labeled samples, 

accounting for 16.45% of the total sample. To further filter out samples representing the mainstream 

DECPs, we selected classes with sample size greater than 365, and thus obtained 160 classes with a total 

of 514,595 labeled samples, representing 90.57% of the total labeled samples. Considering the 

unbalancing of class size, we conducted random downsampling to obtain a balanced dataset containing 

160 classes with 367 samples in each class which accounts for 11.41% of mainstream labeled class 

samples. Figure 4 shows the differences in the distribution of mainstream labeled samples represented 

by peak numbers before and after balancing. The Kolmogorov-Smirnov (KS) test [33] between each 

downsampled and unsampled class calculated a minimum p-value of 0.66 (as shown in Figure 5), 

indicating a consistent distribution between the two, which also demonstrates the validity of ECPk as a 

representation of the sample’s features. Finally, a balanced labeled dataset containing 58,720 samples in 

160 classes was built for the training and testing of the semi-supervised model. 
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Figure 4 - Differences in the distribution of mainstream labeled samples represented by peak numbers before and after 

balancing. 

 

Figure 5 - p-values of KS-test between unsampled and sampled data in each mainstream labeled class. 

3.2 Semi-supervised clustering method 

Figure 6 provides a graphical representation of the whole workflow - from data preprocessing to final 

segmentation of households – that was followed in the development. The proposed semi-supervised 

clustering method combines DLDA with AP, and is trained using the balanced labeled dataset. The 

trained model is further evaluated by means of comparing it with other clustering methods on new 

datasets (e.g., mini and mixed datasets for blind validation). During the supervised learning stage, a  

DLDA model is trained to find an effective projection space that can enhance the similarities of intra-

class samples and discrepancies of inter-class samples, which is also considered to be the metric learning 

process here as the new distance between two samples is calculated by using the non-linear 
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transformation of DLDA followed by L2. Both the DECP load samples and distance metric are then 

passed on to the next stage, where AP is used to carry out the unsupervised clustering. Since AP is a 

data-adaptive clustering algorithm, it does not require the number of clusters to be specified in advance 

and provides stable clustering results. This enables an automatic evaluation of DLDA during the training 

process and thus helps to achieve an adequate trade-off between fitting and generalisation. Therefore, a 

well-trained semi-supervised clustering model can adapt to DECP load samples in practical clustering 

applications. 

 

Figure 6 - Workflow of proposed clustering strategy. 

3.2.1 Deep linear discriminant analysis (DLDA) 

Classic Linear Discriminant Analysis (LDA) was originally proposed by Fisher [34] in 1936. The aim of 

LDA is to find a linear projection that maximizes inter-class scatter and minimizes intra-class scatter by 

maximizing the Fisher number. LDA is able to find the optimal decision boundaries when the data in 

different classes have the same prior distribution and possess Gaussian distributions with the same 

covariance. DLDA, proposed by Dorfer et al. [20], is a nonlinear extension of classic LDA, which takes 

the eigenvalue solutions of LDA to build the objective function for a deep neural network (DNN) , as 
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shown in Figure 7￼. In this work, the full DLDA model is generated by adding a LDA transformation 

(LDA layer) to the output of DNN, which makes full use of the nonlinear transformation ability of DNN 

to help classic LDA find a better projection space with higher  inter-class scatter and lower  intra-class 

scatter.  

 

Figure 7 - Schematic sketch of the DLDA algorithm [20]. 

 

In analytical terms, the DLDA algorithm can be summarised as follows. 

Let 𝑥1, … , 𝑥𝑛 = 𝑋 ∈ ℝ𝑛×𝑑 denote a set of 𝑁 samples belonging to 𝐶 different classes 𝑐 ∈ {1, … , 𝐶}. 

With a linear projection matrix 𝑊 ∈ ℝ𝑑×(𝐶−1), the elements of 𝑋 are transformed into the projection 

space. The Fisher number 𝐽𝐹(𝑊) is defined as: 

𝐽𝐹(𝑊) =
𝑆𝑏

′

𝑆𝑤
′ =

𝑊𝑇𝑆𝑏𝑊

𝑊𝑇𝑆𝑤𝑊
 ( 2 ) 

where 𝐽𝐹(𝑊) is the ratio of between-scatter matrix 𝑆𝑏
′ and within-scatter matrix 𝑆𝑤

′ in the projection 

space. Using the linear transformation 𝑊 , 𝑆𝑏
′  and 𝑆𝑤

′  can be calculated from the corresponding 

between-scatter matrix 𝑆𝑏 and within-scatter matrix 𝑆𝑤 in the original space where the elements of 𝑋 are 

located. 

Let 𝑋‾  and 𝑋𝑐
‾  be the mean-centered observations of the entire set 𝑋  and class 𝑐 's elements, 𝑋𝑐 , 

respectively. 𝑆𝑏 and 𝑆𝑤 can be calculated as follows. 

𝑆𝑐 =
1

𝑁𝑐−1
𝑋‾𝑐

𝑇𝑋‾𝑐 ( 3 ) 

𝑆𝑤 =
1

𝐶
∑ 𝑆𝑐𝑐  ( 4 ) 

𝑆𝑡 =
1

𝑁−1
𝑋‾ 𝑇𝑋‾  ( 5 ) 

𝑆𝑏 = 𝑆𝑡 − 𝑆𝑤 ( 6 ) 

The objective function of LDA is to maximize 𝐽𝐹(𝑊).  
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𝑎𝑟𝑔𝑚𝑎𝑥
𝑊

𝐽𝐹(𝑊) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑊

𝑊𝑇𝑆𝑏𝑊

𝑊𝑇𝑆𝑤𝑊
 ( 7 ) 

The solution of 𝑎𝑟𝑔𝑚𝑎𝑥
𝑊

𝐽𝐹(𝑊) can be transformed to the general eigenvalue problem 𝑆𝑏𝑒 = 𝜆𝑆𝑤𝑒. The 

linear projection matrix 𝑊 is the set of eigenvectors 𝑒 associated with this problem. 

For DLDA, in order to update the gradient of parameters in the DNN using back-propagation in an end-

to-end fashion, a new loss function was proposed (Equation (8)).  

𝑙(𝐻) =
1

𝑘
∑ 𝜆𝑖

𝑘
𝑖=1   𝑤𝑖𝑡ℎ  {𝜆1, … , 𝜆𝑘} = {𝜆𝑗|𝜆𝑗 < 𝑚𝑖𝑛{𝜆1, … , 𝜆𝐶−1} + 𝜀} ( 8 ) 

 

Where 𝜆 is the eigenvalue of 𝑆𝑏𝑒𝑖 = 𝜆𝑖(𝑆𝑤 + 𝛼𝐼)𝑒 based on the output 𝐻 ∈ ℝ𝑛×ℎ from the top hidden 

layer in a DNN. 

 

Adding a multiple of the identity matrix 𝛼𝐼 to the within-scatter matrix 𝑆𝑤 could enhance calculation 

stability and optimize for small eigenvalues [27]. The objective function 𝑎𝑟𝑔𝑚𝑎𝑥
𝛩

(𝑙(𝐻)) focuses on the 

optimization of smallest 𝑘 eigenvalues, which do not exceed a certain threshold 𝜀, of all 𝐶 − 1 available 

eigenvalues.  

 

During the training process of DLDA, the AP is used to achieve automatic and stable clustering of the 

final output from the LDA layer. Therefore, the validation of the model depends on the accuracy of the 

clustering results. If the results show high consistency with the true assignments, we assume the training 

process has been completed. 

3.2.2 Affinity propagation (AP) 

AP is a clustering algorithm that takes similarity between pairs of data points as input and clusters data 

points by passing and updating messages between them until high quality clusters emerge. Therefore, it 

does not need to prespecify the number of clusters and define an initial set of exemplar elements as with 

common k-centers clustering methods. It has been proved effective in detecting genes in microarray data, 

clustering images of faces, and identifying cities that are efficiently accessed by airline travel, and shows 

much lower error and time cost than other methods [21]. 

 

In analytical terms, the AP algorithm can be summarised as follows. 

Let 𝑥1, … , 𝑥𝑛 = 𝑋 ∈ ℝ𝑛×𝑑 denote a set of unlabeled samples. For the objective function of minimizing 

the sum of squared error (L2) from each data point to its nearest exemplar, the similarity for 𝑥𝑖 and 𝑥𝑘 is 

defined as 𝑠(𝑖, 𝑘) = −||𝑥𝑖 − 𝑥𝑘||2. And for the similarity of point 𝑥𝑘 itself, 𝑠(𝑘, 𝑘) is defined as a real 

number called “preference”, which determines the likelihood of 𝑥𝑘  becoming an exemplar and will 

influence the final number of clusters. The shared value of this preference is the median of input 

similarities resulting in a moderate number of clusters or the minimum of input similarities resulting in a 

small number of clusters as usual. 

The message passing between data points contains two parts which reflect different kinds of competition 
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respectively. One is the “responsibility”, 𝑟(𝑖, 𝑘), which captures the information offered to 𝑥𝑘 by 𝑥𝑖; it 

determines the probability of 𝑥𝑘  to serve as exemplar for 𝑥𝑖  and takes into account other potential 

exemplars for 𝑥𝑖 . The other one is the “availability”, 𝑎(𝑖, 𝑘), passed from 𝑥𝑘  to 𝑥𝑖 , which shows the 

probability of 𝑥𝑖 to choose 𝑥𝑘 as its exemplar; it takes into account the situation in which other points 

choose 𝑥𝑘 to be their exemplar. Figure 8 shows the diagram of sending responsibilities and availabilities. 

When the passing and updating iteration converges, and a solution point 𝑥𝑘  of 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘

(𝑟(𝑖, 𝑘) +

𝑎(𝑖, 𝑘)) is found, it means that point 𝑥𝑘 should be 𝑥𝑖 's exemplar. And if 𝑖 = 𝑘, it means 𝑥𝑖 should be an 

exemplar. 

 

Figure 8 - Diagram of message passing [21]. 

For updating responsibility 𝑅 ∈ ℝ𝑛×𝑛 and availability 𝐴 ∈ ℝ𝑛×𝑛, the algorithm needs to compute the 

similarity between data points and set preference to offer the input similarity matrix 𝑆 ∈ ℝ𝑛×𝑛 in the 

beginning; 𝐴 is initialized as zero matrix. Firstly, 𝑅 is updated using Equation (9). 

𝑟𝑡+1(𝑖, 𝑘) = {
𝑠(𝑖, 𝑘) − 𝑚𝑎𝑥

𝑘′≠𝑘
{𝑎𝑡(𝑖, 𝑘′) + 𝑠(𝑖, 𝑘′)}, 𝑖 ≠ 𝑘

𝑠(𝑘, 𝑘) − 𝑚𝑎𝑥
𝑖′≠𝑘

𝑠(𝑖′, 𝑘) , 𝑖 = 𝑘
 ( 9 ) 

Then, 𝐴 is updated using Equation (10). 

𝑎𝑡+1(𝑖, 𝑘) = {
𝑚𝑖𝑛{0, 𝑟𝑡(𝑘, 𝑘) + ∑ max{0, 𝑟𝑡(𝑖′, 𝑘)}𝑖′∉{𝑖,𝑘} }, 𝑖 ≠ 𝑘

∑ 𝑚𝑎𝑥{0, 𝑟𝑡(𝑖′, 𝑘)}𝑖′≠𝑘 , 𝑖 = 𝑘
 ( 10 ) 

To avoid numerical oscillations, a damping factor 𝛽 ∈ (0,1) is introduced. Thus, the new 𝑅’s and 𝐴’s are 

calculated as follows: 

𝑟𝑡+1 = (1 − 𝛽)𝑟𝑡+1 + 𝛽𝑟𝑡 ( 11 ) 

𝑎𝑡+1 = (1 − 𝛽)𝑎𝑡+1 + 𝛽𝑎𝑡 ( 12 ) 

 

The algorithm stops when any of the following conditions is met: (𝑎) a fixed number of iterations is 

reached; (𝑏) changes of message are lower than a threshold; (𝑐) exemplars do not change within a fixed 

number of iterations. 

In what follows, DLDA transformation followed by L2 between load samples was taken as the similarity 

measure, and the median of input similarities was set as the preference of all points to achieve a trade-off 
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between quality and number of clusters. 

3.3 K-Nearest Neighbors Classification (KNN) 

KNN is a kind of instance-based learning or non-generalizing learning model, which means that it does 

not try to construct a general internal model, but simply stores instances from training samples [35]. The 

classification procedure is done through “voting” from 𝑘 nearest instances around the sample. If the 

voting is not weighted, the predicted sample would be classified to the majority class of k nearest 

neighbors. If voting is weighted, the vote of the closer neighbor would normally have a heavier weight.  

KNN was used here to reassign load samples into the formed load dictionary classes to improve the 

quality of mainstream clusters. For the purposes of implementing KNN, the DLDA transformation 

followed by L2 was taken as the distance metric, and the value of 𝑘 was set to 1, which means each data 

sample would be assigned to its nearest load dictionary class. 

4. Evaluation of clustering and classification 

4.1 Evaluation criteria 

External clustering criteria, namely Adjusted Rand Index (ARI) and Adjusted Mutual Information (AMI), 

were used to evaluate the performance of the semi-supervised model and classification model since 

these models use samples with knowledge of the ground truth classes. For clustering samples without 

label, internal clustering criteria, namely the Silhouette Coefficient (SC) and Davies-Bouldin Index 

(DBI), were used to evaluate the quality of clusterings. A brief description of them has been summarized 

in Table A - 2 in the Appendix. Bigger values of ARI, AMI, and SC closer to 1 and smaller value of DBI 

closer to 0 mean better results.  

4.2 Training and testing of semi-supervised model 

All the models were implemented in Python (v3.7), using the packages scikit-learn (v0.23) [35] and 

tensorflow (v2.2.0) [36] on a machine with a NVIDIA K80 GPU.  

4.2.1 Optimization of hyperparameters in DLDA 

As part of the DNN of the DLDA model, we built a “dense layer - batch normalization layer - activation 

layer” block to enhance the numerical stability. In what follows, the number of layers refers to the 

number of this block. To ensure better model training, we used the Python package hyperopt [37] which 

provides methods based on Bayesian optimization to find optimal candidates of hyperparameters (as 

listed in Table 3) and allows for making improvements based on them manually. The objective function 

of optimization is to maximize the mean of ARI and AMI between true assignments of samples and AP 

clustering results based on the output of DLDA under 3-fold cross validation (CV). The activation 
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function was set as sigmoid for the top hidden layer and as ReLU for the remaining layers of the DNN. 

The Adam optimization algorithm was used as optimizer. The labeled dataset was split, using three-

quarters of it as the training set and one-quarter as the test set, which was taken as the input for the 

model without further processing.  

Table 3 - Value range and optimized results of hyperparameters. 

Parameter Value range Optimized result 

Number of layers [2,10] (Integer) 3 

Units [48,2400] (Integer) 2048 

Epochs [5,3000] (Integer) 950 

Output dimensions of top hidden layer [24,1200] (Integer) 1024 

Regularization factor (l2) 
{0, 10-1, 10-2, 10-3,  

10-4, 10-5, 10-6} 
0 

𝑘 value of Equation (8) 

(𝜖 is not considered here) 
[1,159] (Integer) 120 

4.2.2 Evaluation of semi-supervised model 

Using the optimized hyperparameters, we obtained the trained semi-supervised clustering model. The 

results in Table 4 demonstrate the model exhibits excellent generalisation on the test set with an ARI and 

AMI mean of 0.977, which is also better than its performance in 3-fold cross-validation. This indicates 

that the trained semi-supervised clustering model can effectively capture the peak features of load 

samples and thus differentiate them well, which essentially achieves the intended goal. 

Table 4 - Evaluation of trained model in 3-fold cross validation and on the test set. 

Criteria CV-1 CV-2 CV-3 Test set 

ARI 0.933 0.928 0.937 0.967 

AMI 0.953 0.942 0.947 0.987 

Average 0.943 0.935 0.942 0.977 

Number of clusters 

(real number is 160) 
218 223 219 181 

To demonstrate the superior performance of the trained model, we compared it with other clustering 

methods including K-means using L2 and DTW distances respectively, AP, classic LDA combined with 

AP, only using the DNN part of DLDA combined with AP, as well as full DLDA combined with K-

means. For comparison purposes, the series of steps associated with each of the discussed clustering 

methods is shown in Figure 9. The preference of AP was set as the median of input similarities. A mini 

labeled dataset for this blind validation was created by randomly selecting 10 load samples per class 

from the 160-class unbalanced labeled dataset described in the previous section. The selections of mini 

dataset and clusterings were repeated 10 times to ensure that the results were statistically sound. The 

results of these comparisons, which are summarized in Table 5 and Table 6, reveal that the trained semi-

supervised clustering model (DLDA + AP) significantly outperforms other clustering methods and 

provides clustering results almost identical to the true assignments. Furthermore, another blind 

validation dataset called mixed dataset which contains a portion of the mini labeled dataset (14.9 %) and 

randomly selected unlabeled samples (85.1%) was built to evaluate the performance of the trained 
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model in practical clustering, which was carried out 10 times independently as well. The results of this 

final test prove how accurate the clustering of labeled samples is, where a mean value of 0.964 for ARI 

and AMI was observed (See Table 7). Therefore, it can be concluded that the semi-supervised clustering 

model successfully finds a projection space which effectively separates samples between classes based 

on the prior knowledge provided by the labeled dataset, and achieves high-quality automatic clustering. 

 

Figure 9 – Different key steps followed by different clustering methods used for comparison purposes. 

 

Table 5 - Results of different clustering methods on mini labeled dataset (mean of 10 repeats). 

Methods Mean of ARI and AMI Mean number of clusters 

K-means (L2) 
0.262 160 (Prespecified) 

0.147 20 (Unspecified) 

K-means (DTW) 
0.213 160 (Prespecified) 

0.158 10 (Unspecified) 

AP (L2) 0.249 116 

LDA + AP (L2) 0.264 113 

DNN + AP (L2) 0.526 170 

DLDA + K-means (L2) 
0.988 160 (Prespecified) 

0.980 158 (Unspecified) 

DLDA + AP (L2) 0.996 159 

Notes: “Unspecified” in K-means methods means the best number of clusters is chosen according to the scores of SC, DBI 

and SSD (elbow principle) with number of clusters ranging from 2 to 200. 

 

Table 6 - SC and DBI of AP and K-means clustering results based on DLDA on mini labeled dataset (mean of 10 

repeats). 

Criteria SC DBI 

DLDA + K-means (L2) 

(Prespecified) 
0.601 0.616 

DLDA + K-means (L2) 0.604 0.613 
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(Unspecified) 

DLDA + AP (L2) 0.612 0.554 

Best one DLDA + AP DLDA + AP 

 

Table 7 - Evaluation of trained semi-supervised model on mixed dataset (mean of 10 repeats). 

Criteria SC DBI 
Mean of ARI and AMI 

(only labeled samples) 

DLDA + AP (L2) 0.169 1.697 0.964 

4.3 Three-step clustering 

As the whole dataset contains over 3 million load samples, we proposed a three-step clustering strategy 

based on the trained semi-supervised clustering model to produce a load dictionary representing 

mainstream DECPs; the three steps correspond to household, Acorn group and region levels, 

respectively. Firstly, the load samples were clustered to obtain each household’s cluster centers (average 

value) which were then used as the samples for clustering at the Acorn group level. Then the samples at 

the Acorn group level were clustered to obtain the cluster centers of each Acorn group which were then 

used as the samples constituting the region level. The final clustering results were obtained by clustering 

the samples at region level. The number of samples at household, Acorn group and region levels, as well 

as the final number of clusters are given in Table 8. 

Table 8 - Number of samples at household, Acorn group and region level, and final clusters. 

Level Household Acorn Region Final clusters 

Size 3,453,171 336,595 6630 458 

The clustering results at each level were evaluated and compared with the clustering results from the 

mini labeled dataset and mixed dataset as shown in Figure 10. The results show the clustering quality of 

the whole dataset is lower than that of the mini labeled dataset, but it’s better than that of the mixed 

dataset. This is due to the fact that the labeled dataset contains only well-characterised samples of the 

dominant classes, while both the whole dataset and mixed dataset contain a large number of “noisy” 

samples. Although the physical meaning of ECB ensures the peak features of samples remain distinct, 

the noisy and outlier samples still affect the quality of clustering and reduce the scores of evaluation 

criteria, which is clearly reflected by the large number of clusters containing only a very small number 

of samples generated during the clustering process. 
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(a)                                                                      (b) 

 

(c)                                                                      (d) 

Figure 10 - Silhouette Coefficient (SC) and Davies-Boulding Index (DBI) for the three-step clustering results: SC (a) 

and DBI (b) at household level; SC (c) and DBI (d) at Acorn group and region levels. 

4.4 Reclassification of samples 

The total number of clusters at the region level (458) is much less than that of the originally labeled data 

(1979), but is almost 3 times that of the selected labeled dataset (160). This could potentially be 

attributed to either many outliers or low-frequency patterns incorrectly clustered together with 

mainstream pattern samples. Therefore, we make a reassignment of all samples to improve the quality of 

clusters. 

As mentioned before, KNN with 𝑘 = 1 and DLDA transformation followed by L2 was used to build the 

classification model. The training set was the cluster centers of final clusters. For testing the accuracy of 

the KNN model, samples and clustering results at region level were used as a rough test set. Results in 

Table 9 indicate most samples can be correctly classified. Considering the deficiency of test set (e.g. 

presence of outliers), we consider the accuracy of KNN is acceptable. 

Table 9 - Evaluation of KNN model on test set. 

Criteria ARI AMI Accuracy 
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KNN 0.897 0.923 0.926 

5. Results and Discussion 

5.1 Load dictionary of DECP 

The proposed three-step clustering approach produced a total of 458 final clusters. By allocating each 

sample to its corresponding final clusters according to the inheritance relationship between the three 

levels, we got the size of each final cluster and sorted them in descending order. Table 10 illustrates the 

number of top clusters corresponding to different percentages of samples and their minimum cluster size. 

Since we want to construct a load dictionary that represents mainstream DECPs, the cluster center of the 

top 282 clusters which account for 99.9 % of the samples were chosen. And for the other 176 clusters, 

their cluster centers were defined as low-frequency patterns and outliers, and labeled in the dictionary as 

“-1”.  

Table 10 - Size information of top clusters corresponds to different percentages of samples. 

Percentage (%) Number of top clusters Minimum size of cluster 

90.0 114 6220 

95.0 152 3008 

99.0 226 1094 

99.9 282 204 

Then, a reclassification of all samples was done by using the KNN model which took the 458 final 

cluster centers as training set. Each sample was assigned into one of the 283 classes which include the 

282 mainstream classes and the ‘dismissed class’ (“-1”). According to the reclassification results (Figure 

11), the new proportion of samples falling into the 282 mainstream classes is 96.46 %. This lower 

overall proportion, combined with the changes in the proportion of samples corresponding to each class 

shown in Figure 12, indicates that a substantial number of samples from the mainstream clusters are 

being reassigned to the ‘dismissed class’ of low-frequency pattern samples and outliers. The high 

proportion of samples corresponding to mainstream classes in both the initial clustering and 

reclassification results supports the validity of selected mainstream classes in the load dictionary. Figure 

A - 1 provides a sample visualization of the load dictionary. By means of performing manual checks, it’s 

found that the load dictionary captures many minor differences between patterns (e.g., time periods and 

magnitude of value), while maintaining a relatively high level of distinction overall. In what remains of 

the analysis, the results of reclassification were used. 
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     (a)                                                                            (b) 

Figure 11 - Sample percentage of mainstream classes (a) and top classes number (b) in reclassification results. 

 

         (a)                                                                                 (b) 

Figure 12 - Sample percentage of mainstream classes (a) and their changes between clustering and reclassification (b). 

After obtaining the load dictionary, the 282 mainstream classes were classified into different peak 

number categories (PNCs) according to their number of ECPks. The distribution of PNCs is shown in 

Figure 13, which indicates that the maximum number of peaks is 4 (Peak-4), and the distribution is close 

to that of the labeled dataset used for DLDA training. This implies that the trained semi-supervised 

clustering model effectively follows the sample pattern embodied in the training set for clustering. 
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Figure 13 - Similarity of distributions of PNCs for mainstream load dictionary classes and labeled dataset classes. 

The series of boxplots in Figure 14 show the distribution of peaks for the mainstream classes with 

respect to the hour; the blue band corresponds to the Average in Table 1. It’s noted that in the vast 

majority of cases, the value of 𝑝(𝑡) is less than 20%. A more detailed inspection of the periods labeled 

as t-1 and t-2 in Figure 14(a) shows that the 𝑝(𝑡) varies considerably between 1 and 7 a.m.. What's more, 

the load sample statistics indicates that ECPks are much less likely to occur at 3-5 a.m. than at 1-2 a.m. 

and 6-7 a.m. (see Figure 17).  This is important to note because it implies that there are substantial 

differences in electricity use habits. Thus, in order to highlight this, we re-partitioned this period into to 

3, instead of 2 periods, as follows: 1-2 a.m. (t-1), 3-5 a.m. (t-2) and 6-7 a.m. (t-3). As a result, a new 

overall partitioning with a total of 9 time periods throughout the day was built (Figure 14(b)). The 

subsequent analysis was carried out using this new partitioning. 

  

         (a)                                                                                 (b) 

Figure 14 - Time distribution of ECPks in mainstream load dictionary classes: (a) original partitioning and (b) re-

partitioning of time. 
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5.2 Analysis of household ECB 

Based on the reclassification results obtained earlier and the DEC data, a detailed analysis of London’s 

household ECB is provided in this section. 

5.2.1 Analysis of DEC 

It’s found that the 𝑙𝑜𝑔(1 + 𝐷𝐸𝐶) conforms to a Gaussian distribution as shown in Figure 15, which is 

similar to that described by Kwac et al. [24] for household electricity consumption in California, USA; 

in both cases, a relatively concentrated household DEC distribution is observed. 

 

Figure 15 - Distribution of 𝑙𝑜𝑔(1 + 𝐷𝐸𝐶) and corresponding Gaussian distribution fit. 

Electricity consumption across the 18 Acorn groups is compared using the mean (M), standard deviation 

(Std), 25 % (P25), 50 % (P50) and 75 % (P75) percentile of DEC. As shown in Figure 16, from 

ACORN-A to ACORN-Q, DEC shows a roughly decreasing trend, which is consistent with the 

decreasing economic income trend, according to the relevant socio-demographic data. It is noteworthy 

that the Std of DEC for ACORN-A, D, E and J, which correspond to "Lavish Lifestyles", "City 

Sophisticates", "Career Climbers" and "Starting Out" respectively, is large, indicating some divergence 

in electricity consumption within these groups. For ACORN-U, no further analysis is undertaken here 

due to the lack of socio-demographic information of this group. 
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Figure 16 - Quantitative analysis of DEC for all data and Acorn groups. 

5.2.2 Analysis of DECP 

The frequency of ECPks during the 9 periods throughout the day was calculated based on the number of 

samples attributed to each mainstream class in the load dictionary to explore the general variation of 

electricity consumption within a day. In Figure 17, the vertical axis indicates the total frequency of 

samples with an ECPk during each of the 9 periods, which is understood as the probability of an ECPk 

occurring during that period. The results show that the dusk (t-7) and evening (t-8) periods have 

significant ECPk potential, with a probability around 0.5; this is perhaps not surprising as these are 

periods in which households are mainly involved in energy-intensive activities such as dining, 

entertaining and washing at home [23, 38-40]. Then it’s followed by daytime (t-4, t-5 and t-6) and late 

night (t-9), when the probability of a peak exceeds 0.2. Finally, in sleep time and early morning (t-1, t-2, 

t-3), the probability of ECPk is less than 0.1. The same trend is observed for virtually all Acorn groups. 

However, it is clear that the likelihood profile of ACORN-P, corresponding to the "Struggling Estates" 

group, differs significantly from the predominant pattern, with a considerable increase in the likelihood 

of a peak occurring during sleep time (>0.1) and a decrease in the probability of a peak at night. 
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Figure 17 - Probability of ECPk occurrence in each time period for each Acorn group. 

For the household DECP, due to the excessive number of mainstream classes, the high-level PNCs 

mentioned above were used for further analysis here. According to the number of samples attributed to 

each mainstream class, the proportion of samples and DEC of the PNCs was calculated as shown in 

Figure 18. Beyond our expectation, the percent of non-peak category 0A is 8.63%, higher than the 

smallest one Peak-4's 4.12%, and has the smallest M and the largest Std of DEC, which is not reflected 

in the time distribution of ECPk. This might suggest that a significant proportion of households have 

either high or low electricity consumption throughout the day. Furthermore, the trend of DEC increasing 

with the number of peaks is also observed in Figure 18 (b), though at a very low rate of increase. This 

appears to be in line with the common assumption that the longer the duration of the ECPks, the higher 

the electricity consumption becomes. 

   

(a)                                                                                            (b) 

Figure 18 - Sample percentage (a) and DEC (b) of PNCs. 

Figure 19 and Figure 20 show the proportional breakdown of DECP samples according to the ECPk 
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potential associated with each time period and the shape of their top 3 proportional groups of DECP 

samples, respectively, under the Peak-1 to Peak-4 categories. The results presented in these figures are 

an indication that the probability of ECPk for the different time periods is consistent with the results 

shown in Figure 17. 

 

   (a)                                                                                (b) 

 

   (c)                                                                                (d) 

Figure 19 - Sample percentage of DECP represented by ECPk time periods under Peak-1 (a), Peak-2 (b), Peak-3 (c) and 

Peak-4 (d). 
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Figure 20 - Shape of top three sample percentage DECPs in each PNC. Figures from top to bottom represent Peak-1 to 

Peak-4 categories. 

5.3 Similarity analysis of ECB among households 

Based on the household DEC and DECP results obtained in the previous section, this section examines 

the similarity of ECB between households by clustering them. To ensure the representativeness of the 

results, households with more than 365 load samples were selected for analysis, which yields a total of 

5310 households, which corresponds to 95.56% of the total number of households and still provides a 
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socio-demographic composition consistent with that of the London population. 

 

Firstly, to demonstrate the complexity of DECP variation within individual household datasets, the level 

of entropy (Equation (13)) is calculated for each of the load dictionary classes contained within the 

dataset of household load samples. The results are shown in Figure 21.  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑥) = ∑ −𝑝𝑐log (𝑝𝑐)𝐶
𝑐=1  ( 13 ) 

Where 𝐶 is the number of load dictionary classes, and 𝑝𝑐 =
𝑁𝑐

𝑁
 is the ratio between the sample size of 

class 𝑐 (𝑁𝑐) and the household (𝑁). 

 

Households in the dataset have an average of 124 DECPs (“-1” is considered a valid class). And the 

entropy values representing their variability are also more concentrated, which suggests that even the 

variability of DECP within individual household datasets is extremely complex. This phenomenon was 

also identified by Kwac et al. [24] and poses a significant challenge to the quality of the clustering of 

household DECP described below. 

 

Figure 21 - Distribution of entropy for household DECPs. 

5.3.1 Segmentation of households 

In order to group households with similar ECB into the same category, clustering based on household 

DEC and DECP was carried out separately. The M, Std, P25, P50 and P75 of DEC were chosen as the 

features for household DEC clustering. The proportional breakdown of the 282 mainstream classes 

attributed to the load samples in each individual household dataset was chosen as the feature of 

household DECP clustering as well. The number of clusters was selected by comparing the results of SC, 

DBI and sum of squared distances of samples to their closest cluster center (SSD) yielded from K-means 

and AP clustering. Figure 22 shows the evaluation criteria of K-means clustering with the number of 

clusters set to 2 through to 49 and AP clustering results with the preference set to the minimum 

similarity input value to obtain the minimum number of clusters. For K-means, the appropriate number 
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of clusters of DEC and DECP are between 4-8 and 9-13, respectively, according to the “elbow principle” 

of SSD in conjunction with the value of SC and DBI. The clustering results of AP all lie within these 

intervals. Considering the superior clustering performance of AP over K-means [21], the clustering 

results of AP were finally selected. That is, the number of clusters for household DEC and DECP was 6 

and 12, respectively. The information of clustering results is listed in Table 11 and Table 12. 

 

           (a)                                                                                (b) 

Figure 22 - Optimal number of clusters based on clustering quality assessment for household DEC (a) and DECP (b). 

 

Table 11 - SC and DBI of clustering results for household DEC and DECP using AP. 

 DEC DECP 

SC 0.455 0.070 

DBI 0.766 2.135 

Number of clusters 6 12 

 

Table 12 - Cluster size breakdown of clustering results for household DEC and DECP. 

Cluster (DEC) C1 C2 C3 C4 C5 C6 

Size 110 389 21 1778 987 2025 

Cluster (DECP) C1 C2 C3 C4 C5 C6 

Size 511 613 1206 72 80 495 

Cluster (DECP) C7 C8 C9 C10 C11 C12 

Size 1613 143 298 17 38 224 

 

The clustering results of household DEC show the 5310 households can be broadly classified into 6 

classes; the corresponding class centers are shown in Figure 23. The four classes with lower DEC 

contain the majority of households and are also more concentrated in terms of DEC, which is consistent 

with the normally distributed DEC presented in Figure 15. Further analysis of class DEC-C3 was carried 
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out, since it has the highest DEC; the results are shown in Figure 24. The top four Acorn groups for 

DEC-C3 correspond to ACORN-A, D, E, and J with the larger Std described above, while the boxplot of 

the percentage of PNCs for DEC-C3 households shows a significantly higher percentage of 0A and 

Peak-1 compared to the overall situation. Taking into account the fact that these households have a 

relatively favourable income profile, this could be attributed to the tendency of households in this 

category to have a high number of high-powered electrical appliances and often maintain high levels of 

utilisation throughout the day. 

 

Figure 23 - Cluster centers of  household DEC clustering results. 

 

     (a)                                                                                  (b) 

Figure 24 - Distribution of Acorn groups (a) and percentage of PNCs (b) in class DEC-C3. 

Figure 25 gives the distribution of household DECP clustering results in terms of the percentage of load 

samples allocated to the load dictionary classes in each cluster and the DECP entropy values of 

households in that cluster. As Figure 25 shows, the clustering reinforces the aggregation of households 

with similar DECP entropy values, but the high complexity of DECP variation within households allows 
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the sample shares of DECP for similar households to still show some variation. Nonetheless, the 

clustering results reveal households in the same cluster show high similarity in certain DECPs. 

 

Figure 25 - Sample percentage of DECP; each panel corresponds to a cluster. For each individual cluster plot, the red 

curve represents the mean value, and the upper right corner subplot in blue shows its entropy distribution. 

Based on the clustering results of household DEC and DECP, which were compared with the household 

Acorn groups, the mean of ARI and AMI are listed in Table 13. The results indicate there is no 

association between any of the three groupings. Therefore, a highly similar ECB household 

classification may be a combination of DEC categories representing similar capabilities and DECP 

categories representing similar operations. 

Table 13 - Mean of ARI & AMI between the three results of household segmentation using the Acorn grouping, 

household DEC clustering and household DECP clustering. 

Groupings DEC and DECP DEC and Acorn DECP and Acorn 

Mean of ARI & AMI 0.008 0.018 0.007 

5.3.2 Correlation between household properties and ECB 

Although household Acorn groups do not match the exact segmentation of similar ECB households, it is 

feasible to use them as a single dataset with a large amount of electricity consumption data and then 
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study the correlation between household properties and ECB. Therefore, this section explores the 

correlation between household ECB, as represented by the households’ macro-DEC and DECP, and their 

socio-demographic characteristics. 

 

The Acorn household classification is based on 15 major items and 84 subitems for a total of 826 options 

(as shown in Table A - 1). Correlations between each Acorn group’s 826 option properties and its DEC 

and DECP were calculated respectively using the same features used for household clustering in the 

previous section. Based on the analysis, we found 445 and 822 household properties that were correlated 

with DEC and DECP features, respectively; 75 and 186 (with an overlap of 55) properties were found to 

have a strong correlation, as indicated by an absolute value of correlation coefficient (ACC)  greater than 

0.8. The results for the household properties strongly correlated with ECB are shown in Table A - 3, 

Figure A - 2 and Figure A - 3 in the Appendix. 

 

Figure 26 shows the correlation between DEC and DECP, and major Acorn classification items. This is 

illustrated by using the mean ACC value for correlation between ECB and corresponding Acorn 

classification option properties. Due to the large number of patterns representing DECP and the fact that 

only certain patterns appear to be strongly correlated with particular types of household, they result in 

significantly lower values of DECP compared to the values obtained for DEC. It was found that there 

are no option properties which are strongly correlated with DEC for Family and Contact, and no option 

properties which are strongly correlated with DECP for Transport and Contact. Taken together, only 

Contact is observed not having a significant influence on the ECB of households, according to the 

analysis of linear relationship based on Pearson correlation coefficient. Besides, the correlation between 

the strongly ECB correlated option properties (Figure A - 4) reveals there are more independent factors 

influencing DECP than DEC, which accounts for the complex variability of DECPs in households. 

     

      (a) The 75 options strongly correlated with DEC;       (b) The 186 options strongly correlated with DECP. 

Figure 26 - Correlation between strongly ECB correlated household option properties and DEC (a) and DECP (b), 

represented by Mean ACC of major items. 
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5.4 Further potential applications 

The analysis of household ECB helps in the fine-grained segmentation of household electricity 

customers and hence the formulation of different tariff strategies [19]. The paper presents a detailed 

analysis of the commonalities and characteristics of ECB across households,  as well as its variation 

based on household DEC and DECP, and proposes a combination of DEC segmentation and DECP 

segmentation for electricity customers.  

 

The DECP segmentation method based on a set of load dictionary classes may prove particularly useful 

as it effectively exploits the intra-day and inter-day variation characteristics of household ECB and 

captures underlying household electricity consumption habits. However, the strong emphasis on 

accuracy in this method comes at the cost of an increase in complexity. Higher level abstractions based 

on load dictionary classes, such as PNCs and pattern merging, can reduce the associated complexity 

while still providing a satisfactory description of household DECP at the macro level. Thus, it is 

important to keep in mind that choosing the most adequate ECB description method for different 

application scenarios can achieve the intended goal, even if this comes at the expense of some accuracy. 

 

As we discussed in Section 3.1.1, the original data was resampled from half-hourly to hourly resolution. 

The hourly resolution was chosen due to considerations of significance of the differences between 

patterns, as well as difficulties associated with model training, but also the convenience of displaying the 

physical meaning of load samples and clustering results. However, moving towards higher resolutions 

remains an interesting avenue for further developments and, indeed, may prove necessary as more and 

more highly resolved data becomes available. 

 

Another potential practical application for household ECB segmentation is household load forecasting. 

Based on the results of the analysis of the variability of individual household DECPs, it is clear that 

there is a wide variety of ECBs linked to individual households. Therefore, achieving high levels of 

accuracy when it comes to load forecasting for individual households might prove difficult if the full 

gamut of ECBs is not taken into account [41]. 

6. Conclusion 

This study set out to address the current challenges posed by the ill-suited similarity metrics typically 

used for clustering of electrical load samples, and proposed a novel semi-supervised automatic 

clustering method which combines the supervised learning DLDA algorithm and the unsupervised 

learning AP clustering algorithm to overcome such problem. As a self-adapting metric learning method, 

DLDA+AP performs well on the LCL household electricity consumption dataset, obtaining much higher 
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scores of ARI and AMI than traditional similarity metrics used in previous studies (73 to 78 percentage 

points higher; see Table 5 for comparison). It should be highlighted that the proposed method has a 

strong migration capability and the quality of the results is not tied to the particular choice of dataset. 

That is, it is possible to implement this method on a completely new dataset and obtain a high-quality 

automatic clustering solution adapted to the scenario due to the built-in similarity metric learning 

capabilities. 

 

Based on the trained semi-supervised clustering model, the three-step clustering strategy and 

reclassification produced a load dictionary representing the typical DECP of households in the London 

area, which supported the analysis of household ECB from both DEC and DECP perspectives. In terms 

of ECB similarity between households, the clustering of DEC and DECP provided 6 and 12 categories 

respectively, and combining the two allowed for accurate targeting of a household ECB status. Further 

analysis involving the household properties provided by the Acorn household classification found that 

206 option properties were strongly correlated with ECB, which included 14 of the 15 major items used 

for such classification. 

 

As the deployment of smart grids technologies progresses, having the ability to quickly and effectively 

identify the potential grid requirements will be critical to their operation. In this regard, a detailed 

segmentation of the residential consumer base offers the possibility to create effective operation plans 

and prevent unforeseen peaks that threaten the stability of the grids. The residential sector already 

accounts for one of the largest shares of demand during peak times, and this is only likely to worsen as 

the electrification of other energy-intensive end uses gets under way. This only further highlights the 

importance of developing more adequate methods for the identification of customer energy consumption 

patterns so that the implementation of demand-side management strategies can fully leverage its 

potential and ensure the smooth operation of the future smart systems that will allow us to keep the 

lights on. 
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Appendix 

Table A - 1 Items and subitems used in the Acorn household classification methodology [30]. 

Items 
Abbr. of 

items 

Number of 

subitems 
Subitems 

Number of 

options 

Population P 5 

Age 8 

Geography 4 

Ethnicity 5 

Country of Birth 11 

Religion 7 

Housing Hou 5 

House Type 5 

House Tenure 6 

House Size 5 

House Value 7 

Moving House 1 

Family Fam 3 

Structure 7 

Children in household 4 

Household Size 4 

Economy Eco 4 

Economic Activity 8 

NS Socio-Economic Classifications 9 

Social Grade 6 

Occupation 11 

Education Edu 6 

Highest Level of Qualifications (Adults) 6 

England: Pupils at the end of KS1 4 

England: Pupils at the end of KS2 4 

England: Pupils at the end of KS4 2 

Scotland: Pupils in the S4 cohort 1 

Scotland: Pupils in the S5 cohort 2 

Health Hea 1 Behaviours & Lifestyle 7 

Transport T 4 

Travel To Work 8 

Public Transport Accessibility Level 8 

Car Ownership 4 

Main Car Class 5 

Marketing Channels MC 2 
Channels Received 12 

Future Responses 15 

Finance Fin 14 

Household Annual Income 7 

Financial Attitudes 5 

Financial Situation 6 

Benefits 3 

Credit Cards 6 

Savings and Investments 14 

Loans 4 
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Insurance and Pensions 7 

Financial Channel: Arrange Current Account 5 

Financial Channel: Arrange commoditised financial 

product 
5 

Financial Channel: Arrange considered financial 

product 
6 

Financial Channel: Manage Current Account 6 

Financial Channel: Manage Savings Account 6 

Expenditure per person per week 14 

Digital D 17 

Internet Access: Frequency 4 

Internet Access: Usage in Last Week 5 

Digital Attitudes 6 

Technology at Home 3 

TV on Demand 3 

Mobile phone 1 

Smartphone Brand 8 

Tablet Devices 1 

Social Media Activity (at least weekly) 16 

Social Media Brands (used at least weekly) 18 

Number of apps on mobile phone (free or paid) 6 

Types of internet usage : Laptop or PC 45 

Types of internet usage : Mobile Phone 46 

Types of internet usage : Tablet / iPad 45 

Regularly research on the internet 40 

Purchased on the internet 40 

Sites regularly visited 85 

Shopping S 7 

Preferred Supermarket 7 

Food Shopping 4 

Clothing & Footwear Stores 3 

Furniture & Fittings Stores 3 

Electrical Stores 3 

High Street Retailers 12 

Attitudes 12 

Contact C 1 Preferred Channel 4 

Environment Env 3 

Environmental Groups 1 

Action 10 

Attitude 1 

Community Safety CS 1 Crime Survey for England 22 

Leisure Time LT 11 

Daily Newspapers 10 

Magazines Read 14 

Charities 13 

Books Read 6 

Interests & Hobbies 22 
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Visit Pubs for a Drink - Day 3 

Visit Pubs for a Drink - Evening 3 

Visit Pubs for a Meal - Day 3 

Visit Pubs for a Meal - Evening 3 

Restaurants - Most Often 3 

Holiday Destination/Type 12 

 

Table A - 2 Evaluation criteria for clustering and classification. 

Criteria Equation 
Value meaning better 

results 

ARI[42] 𝐴𝑅𝐼(𝑈, 𝑉) =
𝑅𝐼−𝐸[𝑅𝐼]

𝑚𝑎𝑥(𝑅𝐼)−𝐸[𝑅𝐼]
 (test the similarity between 𝑈 and 𝑉) 

where: 

‧ 𝑈, 𝑉 denote label assignments, 

‧ 𝑅𝐼(𝑈, 𝑉) =
𝑎+𝑏

𝐶2
𝑁  is the rand index between 𝑈 and 𝑉, 

‧ 𝑎 is the number of pairs of elements in the same class both in 𝑈 and 𝑉, 

‧ 𝑏 is the number of pairs of elements in different classes both in 𝑈 and 𝑉, 

‧ 𝐶2
𝑁 is the total number of pairs of elements (without ordering) 

‧ 𝐸[𝑅𝐼] is the expectation of 𝑅𝐼. 

Value closer to 1 

(ARI ∈ [−1,1]) 

AMI[43] 𝐴𝑀𝐼(𝑈, 𝑉) =
𝑀𝐼−𝐸[𝑀𝐼]

𝑚𝑎𝑥(𝐻(𝑈),𝐻(𝑉))−𝐸[𝑀𝐼]
 (test the agreement between 𝑈 and 𝑉) 

where: 

‧ 𝑈, 𝑉 denote label assignments, 

‧ 𝑀𝐼(𝑈, 𝑉) = ∑ ∑ 𝑝
|𝑉|
𝑗=1

|𝑈|
𝑖=1 (𝑖, 𝑗)𝑙𝑜𝑔 (

𝑝(𝑖,𝑗)

𝑝(𝑖)𝑝′(𝑗)
) is the mutual information between 

𝑈 and 𝑉, 

‧ 𝐻(𝑈) = ∑ 𝑝
|𝑈|
𝑖=1 (𝑖)𝑙𝑜𝑔 (𝑝(𝑖)) is the entropy of 𝑈, 

‧ 𝐸[𝑀𝐼] is the expectation of 𝑀𝐼. 

Value closer to 1 

(AMI ∈ [−1,1]) 

SC[44] 𝑆𝐶 =
1

𝑁
∑

𝑏𝑖−𝑎𝑖

𝑚𝑎𝑥(𝑎𝑖,𝑏𝑖)

𝑁
𝑖=1   (from the perspective of sample) 

where: 

‧ 𝑁 is the number of samples, 

‧ 𝑎𝑖 is the average distance from sample 𝑖 to other samples in the same class, 

‧ 𝑏𝑖  is the average distance from sample 𝑖  to other samples in the nearest 

different class 

Value closer to 1 

(SC ∈ [−1,1]) 

DBI[45] 𝐷𝐵𝐼 =
1

𝐾
∑ max

𝑖≠𝑗
𝑅𝑖𝑗

𝐾
𝑖=1  (from the perspective of cluster) 

where: 

‧ 𝐾 is the number of clusters, 

‧ 𝑅𝑖𝑗 =
𝑠𝑖+𝑠𝑗

𝑑𝑖𝑗
 is the similarity between cluster 𝐶𝑖 and cluster 𝐶𝑗, 

Value closer to 0 

(DBI ∈ [0, +∞)) 



39 

 

‧ 𝑠𝑖 is the average distance between each sample and cluster centriod in 𝐶𝑖, 

‧ 𝑑𝑖𝑗 is the distance between the cluster centriod of 𝐶𝑖 and 𝐶𝑗 

 

Table A - 3 Acorn classification options strongly correlated (ACC>0.8) with either household DEC or DECP features. 

Items Subitems Options 
DEC (M, Std, P25, 

P50, P75) 

DECP (load 

dictionary class) 

Population 

Age 
Age 18-24  181 

Age 35-49  -274 

Geography Scotland  216 

Ethnicity Black  47,148 

Religion Jewish M,Std,P75  

Housing 

House Type Terraced house  42 

House Tenure Mortgaged  -118 

House Size 

Number of Beds : 2  6 

Number of Beds : 4  139,-147 

Number of Beds : 5 plus M,P75  

House Value 

House Value up to 100k  118 

House Value 500k-750k  233 

House Value 1m+ M,Std,P75  

Family 

Structure Couple family no children  -118 

Household Size 
Household size : 1 person  269 

Household size : 3-4 persons  -269 

Economy 

Economic Activity Employee Full-Time  16,-274 

NS Socio-Economic 

Classifications 

Higher managerial, 

administrative and professional 

occupations 

M,Std,P75 -147,224 

Lower managerial, 

administrative and professional 

occupations 

 16,94,-147,224 

Routine occupations  147 

Social Grade 

A M,Std,P25,P50,P75 232 

B P75 94,-147,224 

D -P75 -94,118,147,-224 

Occupation 

Director / Managerial  146 

Professional  16 

Retired  101 

Education 

Highest Level of 

Qualifications (Adults) 

No formal qualifications  147 

Degree or higher degree Std,P75 224 

England: Pupils at the 

end of KS1 

Achieving expected level in 

writing 
M,P75 224 

England: Pupils at the Achieving expected level in  224 
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end of KS2 reading 

Achieving expected level in 

writing 
M,P75 224 

Achieving expected level in 

maths 
M,P75 224 

Achieving expected level in 

reading, writing and maths 
M,Std,P50,P75 224,245 

England: Pupils at the 

end of KS4 

Achieving 5+ A*-C at GCSE or 

equivalent 
M,P50,P75 -6,-147,224,232 

Achieving 5+ A*-C (including 

English and Maths) at GCSE or 

equivalent 

M,P50,P75 -147,224 

Scotland: Pupils in the 

S4 cohort 

Attained 5 awards at SCQF 

level 5 and above 
M,P50,P75 

94,-

147,224,232,238,2

45 

Scotland: Pupils in the 

S5 cohort 

Attained 3 awards at SCQF 

level 6 and above 
M,P50,P75 

94,-

147,224,232,238,2

45 

Attained 5 awards at SCQF 

level 6 and above 
M,Std,P50,P75 

-

147,224,232,238,2

45 

Health Behaviours & Lifestyle 

Takes regular exercise M,Std,P75 -147,224 

Eats fruit 3 or less days per 

week 
 118,-224 

Eats vegetables 3 or less days 

per week 
 -224 

Transport Main Car Class Luxury or Executive M,Std,P75  

Marketing 

Channels 

Channels Received 
Email  -147 

Cinema Advertising P75 -147 

Future Responses 

Mail - Addressed to you by 

name 
P75 94,224 

Newspaper / Magazine Adverts  224 

Finance 

Household Annual 

Income 

￡0-￡20,000  118,147,-224,269 

￡60,000-￡80,000 P75 
94,-118,-147,224,-

269 

￡80,000-￡100,000 M,Std,P75 -147,224,-269 

￡100,000+ M,Std,P50,P75 -147,224 

Average Household Income M,Std,P75 -147,224,-269 

Financial Attitudes 

I am very good at managing 

money 
 50 

Financial security after 

retirement is your own 

responsibility 

 50 
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Financial Situation 

Saving  -147,224 

Not saving  147,-224 

Saving a lot M,P75 -147,224 

Saving a little  -118 

Just managing to make ends 

meet 
 147,-224 

Benefits 

Job Seeker's Allowance  118 

Disability Living Allowance  118 

Income Support  118 

Credit Cards 

Has credit card  -118,-147,224 

Has 2+ credit cards  94,-147,224 

Spent ￡500+ in last month on 

a credit card 
M,P75 -147,224 

Uses credit card 6+ times per 

month 
M,P75 -147,224 

Usually makes minimum 

payment on card 
 137 

Always pays credit card 

balance in full 
 -147,224 

Savings and Investments 

Has savings account  -118 

Has instant access account  -118 

Has Stocks and Shares ISA M,P50,P75 -147,224,232 

Has Unit Trusts M,Std,P75  

Has stocks and shares M,P50,P75 -147,224,232 

Has investment bonds P75 -147,224 

Has Investments M,P75 -147,224,232 

Value of investments￡25,000+ M,Std,P25,P50,P75 232 

Savings value ￡1 - ￡500  168 

Savings value ￡10,000+ M,P75 -147,224,232 

Loans 

Has 2+ loans  189 

Unsecured debt greater than 

￡15,000 
 -118 

Insurance and Pensions 

Has Private Health Care M,Std,P75 224 

Has Company Health Care  16,146,224 

Has Life Assurance  22 

Has life protection policy  -181 

Has pension scheme organised 

through company 
 -274 

Has pension scheme organised 

personally 
 16,94,-118,146,-

147,224,-269 

Plans to use other investments 

for retirement 
 -147,224 
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Financial Channel: 

Arrange commoditised 

financial product 

Online  -118 

By post  16,94,224,245 

Financial Channel: 

Arrange considered 

financial product 

Online  94,-118,-147,224,-

269 

By phone  16,-118,146,-

147,224,-269 

By post  -118,-147,224,-269 

Used price comparison site  16 

Used IFA  16,94,-118,146,-

147,224,-269 

Financial Channel: 

Manage Current 

Account 

In branch  -16,-224,269 

Online  16 

Online at home or work  16,-147,224 

Expenditure per person 

per week 

Total Expenditure Std -147,-192,224,-269 

Clothing and footwear  -147,224,-269 

Furnishings, household 

equipment and routine 

maintenance 

M,P75 -6,-147,224 

Health  -118,-147,224 

Transport  -118,-147 

Recreation and Culture  -147 

Restaurants and hotels  -147,224,-269 

Miscellaneous goods and 

services 
 -147,224,-269 

Total Online Expenditure  -118,146,-147,224,-

269 

Digital 

Internet Access: Usage 

in Last Week 
8-19 hours  -147 

Technology at Home 
Has a smartwatch, fitness band 

or payment band 
 224 

Smartphone Brand Samsung  140 

Tablet Devices 
Has Tablet (e.g. iPad, Samsung 

Galaxy Tab, Sony Xperia) 
 -147,224,-269 

Social Media Activity 

(at least weekly) 

Update your status/tell people 

what you are up to/tell people 

what's happening 

 -227 

Types of internet usage : 

Laptop or PC 

Check 

stocks/shares/investments 
 16,94,146,-147,224 

Gambling/Betting  -232 

Types of internet usage : 

Mobile Phone 
Listen to the radio  189 

Types of internet usage : Enter competitions  -269,-274 
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Tablet / iPad Use GPS services (e.g. Maps)  -192 

Send and receive personal 

emails 
 -147,224,-269 

Listen to the radio  -12,-192 

Take pictures/video clips M,Std  

Source info on 

products/services via Internet 
 -269 

Download music via the 

Internet 
 -97 

Locate places/shops/businesses 

via the Internet 
 -147 

Manage personal finances 

(banking) via the Internet 
 224,-269 

Post ratings and reviews  -222,268,-275 

Access news via news site 

(other than online newspapers) 
 -269 

Online auctions (e.g. ebay)  -269 

Read newspapers online  16,224 

Read magazines online Std  

Make an online purchase  16,-118,-269 

Regularly research on 

the internet 

Savings/Investments  -147,224 

Household utilities (e.g. Gas, 

Electricity) 
 -118 

Furniture  58,189 

Sports equipment  -147 

Mortgages  189 

Other Insurance (e.g. Life, 

Travel) 
 16,94,-118,224,-

269 

Books  224,-269 

Hotel reservations  16,94,-118,146,-

147,224,-269 

Airline tickets Std  

Holidays  -118,-147,224 

Purchased on the 

internet 

Credit Cards  -37 

Household utilities (e.g. Gas, 

Electricity) 
Std 224 

Other Insurance (e.g. Life, 

Travel) 
 16,94,146,224 

Household electrical products Std  

Books  -147 

Hotel reservations  224 

Sports and Leisurewear/trainers  -222 

Holidays  16,146 
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None of these  -147,224 

Sites regularly visited 

Argos -M,-P50,-P75 -94,147,-224,-245 

bbc.co.uk  16 

Boots.com  189 

eHow.com  -259 

johnlewis.com M,Std,P75 -147,224 

Lastminute.com M  

Marks and Spencer P75 -118,-147,224 

Moneysavingexpert.com M,Std,P75 -118,-147,224 

Moneysupermarket.com  -118 

Myvouchercodes  -179 

Net-a-Porter M  

Notonthehighstreet.com  16 

Play.com -M  

Quidco  16 

Ticketmaster M,Std  

Tripadvisor  16,94,146,224 

Shopping 

Preferred Supermarket 

Asda -M,-P75 -238,-245 

M & S M,Std,P50,P75 94,-147,224,245 

Waitrose M,Std,P75 224,245 

Food Shopping 
Fairtrade M,Std,P50,P75 232 

Premium Ranges M,P75 -147,224 

Clothing & Footwear 

Stores 

Premium M,Std,P75 -147,224 

Value -M,-Std,-P50,-P75 -224,-245 

Furniture & Fittings 

Stores 
Premium M,P75 -147,224 

Electrical Stores 

Premium M,Std,P75 -147,224 

Mass Market  -118 

Value -M,-P25,-P50,-P75 -94,147,-224,-232 

High Street Retailers 
McDonalds  -227 

Poundland  -16 

Attitudes 

I am prepared to pay more for 

products that make life easier 
 224 

It's worth paying extra for 

quality goods 
M,P75 -147,224 

I tend to go for premium rather 

than standard goods/services 
M,Std,P75 224 

I only shop at supermarkets 

that sell good quality fresh food 
 50 

I check a number of sources 

before making a significant 

purchase 

 -147,224 

Environme Action Rarely keep the tap running  -118 
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nt while brushing teeth 

Rarely leave the heating on 

when out for a few hours 
-P25 -232,-259 

Communit

y Safety 

Crime Survey for 

England 

Breakdown of family M,P50,P75  

Being physically attacked by 

strangers 
 118 

Being raped  147 

Leisure 

Time 

Daily Newspapers 

Daily Star  118,147,-224 

The Times M,Std,P50,P75  

Daily Telegraph M,P75 139,-147,224 

Magazines Read Travel  259 

Charities 
Overseas Development  224 

Regularly donate to charity M,P50,P75 -147,224,232 

Books Read History/Biography M,Std,P75  

Interests & Hobbies 

Antiques or Fine Art M,Std,P75  

Foreign Travel M,P25,P50,P75 232,259 

Gambling  -16,-94,118,-146,-

224 

Healthy Eating  52,63,119,187,193,

199 

Organic Foods M,Std  

Reading Books  -262 

TV  242 

Restaurants - Most 

Often 
Premium  16,146,224 

Holiday 

Destination/Type 

USA / Canada M  

Caribbean  224 

Africa M,Std  

Activity / Outdoor Sports M,P75 -6,139,-147,224 

Package  259 

Notes: “-” means negative correlation. For example, “-M” means the option is negatively correlated with M (the mean) 

of DEC, or “-6” means that the option is negatively correlated with the load dictionary class 6 of DECP. 
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(a) Label 1 – 60 
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(b) Label 61-120 
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(c) Label 121-180 
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(d) Label 181-240 
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(e) Label 241-282 

Figure A - 1 Visualization of load dictionary. 

(“Label” means the order of the class in load dictionary; “rank” means the order of sample size of the class in load 

dictionary; “size” means the sample size of the class; “percent” means the sample percentage of the class. All the data 

comes from reclassification results.) 
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Figure A - 2 Heatmap of correlation coefficients between proxy features of DEC and Acorn option properties with 

ACC > 0.8. 
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Figure A - 3 Heatmap of correlation coefficients between proxy features of DECP and Acorn option properties with 

ACC > 0.8. (Only representative parts of results are shown for viewability)  
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(a) The 75 options with strong correlation to DEC; 

 

(b) The 186 options with strong correlation to DECP; 



54 

 

 
(c) The 206 options with strong correlation to DEC or DECP. 

Figure A - 4 - Heatmap of correlation coefficients between the strongly ECB correlated option properties by mean ACC 

of major items. 

 

 

References 

 
 [1] IEA. World Energy Outlook 2020. Paris, 2020. https://www.iea.org/reports/world-energy-outlook-2020. 
 [2] Perera KS, Aung Z, Woon WL. Machine Learning Techniques for Supporting Renewable Energy Generation and 

Integration: A Survey. Cham: Springer International Publishing; 2014. p. 81-96. 10.1007/978-3-319-13290-7_7. 
 [3] Dawoud SM, Lin X, Okba MI. Hybrid renewable microgrid optimization techniques: A review. Renewable and 

Sustainable Energy Reviews. 2018;82:2039-2052. DOI:10.1016/j.rser.2017.08.007. 
 [4] Schofield JR. Dynamic time-of-use electricity pricing for residential demand response: Design and analysis of the Low 

Carbon London smart-metering trial: Imperial College London; 2015. DOI:10.13140/RG.2.1.2663.6644/2. 
 [5] Behl M, Smarra F, Mangharam R. DR-Advisor: A data-driven demand response recommender system. APPL ENERG. 

2016;170:30-46. DOI:10.1016/j.apenergy.2016.02.090. 
 [6] Salcedo-Sanz S, Cornejo-Bueno L, Prieto L, Paredes D, García-Herrera R. Feature selection in machine learning 

prediction systems for renewable energy applications. Renewable and Sustainable Energy Reviews. 2018;90:728-741. 

DOI:10.1016/j.rser.2018.04.008. 
 [7] Wei Y, Zhang X, Shi Y, Xia L, Pan S, Wu J, et al. A review of data-driven approaches for prediction and classification 

of building energy consumption. Renewable and Sustainable Energy Reviews. 2018;82:1027-1047. 

DOI:10.1016/j.rser.2017.09.108. 



55 

 

 [8] Chitalia G, Pipattanasomporn M, Garg V, Rahman S. Robust short-term electrical load forecasting framework for 

commercial buildings using deep recurrent neural networks. APPL ENERG. 2020;278:115410. 

DOI:10.1016/j.apenergy.2020.115410. 
 [9] Vázquez-Canteli JR, Nagy Z. Reinforcement learning for demand response: A review of algorithms and modeling 

techniques. APPL ENERG. 2019;235:1072-1089. DOI:10.1016/j.apenergy.2018.11.002. 
[10] Perera ATD, Wickramasinghe PU, Nik VM, Scartezzini J. Machine learning methods to assist energy system 

optimization. APPL ENERG. 2019;243:191-205. DOI:10.1016/j.apenergy.2019.03.202. 
[11] Piao M, Shon HS, Lee JY, Ryu KH. Subspace Projection Method Based Clustering Analysis in Load Profiling. IEEE T 

POWER SYST. 2014;29:2628-2635. DOI:10.1109/TPWRS.2014.2309697. 
[12] Torriti J. A review of time use models of residential electricity demand. Renewable and Sustainable Energy Reviews. 

2014;37:265-272. DOI:10.1016/j.rser.2014.05.034. 
[13] Fan C, Xiao F, Li Z, Wang J. Unsupervised data analytics in mining big building operational data for energy efficiency 

enhancement: A review. ENERG BUILDINGS. 2018;159:296-308. DOI:10.1016/j.enbuild.2017.11.008. 
[14] Chicco G. Overview and performance assessment of the clustering methods for electrical load pattern grouping. 

ENERGY. 2012;42:68-80. DOI:10.1016/j.energy.2011.12.031. 
[15] Rhodes JD, Cole WJ, Upshaw CR, Edgar TF, Webber ME. Clustering analysis of residential electricity demand profiles. 

APPL ENERG. 2014;135:461-471. DOI:10.1016/j.apenergy.2014.08.111. 
[16] Iglesias F, Kastner W. Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy 

Patterns. ENERGIES. 2013;6:579-597. DOI:10.3390/en6020579. 
[17] Toit JD, Davimes R, Mohamed A, Patel K, Nye JM. Customer Segmentation Using Unsupervised Learning on Daily 

Energy Load Profiles. Journal of advances in information technology. 2016;7:69-75. DOI:10.12720/jait.7.2.69-75. 
[18] Aghabozorgi S, Shirkhorshidi AS, Wah TY. Time-series clustering – A decade review. INFORM SYST. 2015;53:16-

38. DOI:10.1016/j.is.2015.04.007. 
[19] Guo Z, Zhou K, Zhang C, Lu X, Chen W, Yang S. Residential electricity consumption behavior: Influencing factors, 

related theories and intervention strategies. Renewable and Sustainable Energy Reviews. 2018;81:399-412. 

DOI:10.1016/j.rser.2017.07.046. 
[20] Dorfer M, Kelz R, Widmer G. Deep Linear Discriminant Analysis. International Conference on Learning 

Representations, ICLR. 2016. https://arxiv.org/abs/1511.04707. 
[21] Frey BJ, Dueck D. Clustering by passing messages between data points. SCIENCE. 2007;315:972-976. 

DOI:10.1126/science.1136800. 
[22] Markovič R, Gosak M, Grubelnik V, Marhl M, Virtič P. Data-driven classification of residential energy consumption 

patterns by means of functional connectivity networks. APPL ENERG. 2019;242:506-515. 

DOI:10.1016/j.apenergy.2019.03.134. 
[23] Satre-Meloy A, Diakonova M, Grünewald P. Cluster analysis and prediction of residential peak demand profiles using 

occupant activity data. APPL ENERG. 2020;260:114246. DOI:10.1016/j.apenergy.2019.114246. 
[24] Kwac J, Flora J, Rajagopal R. Household Energy Consumption Segmentation Using Hourly Data. IEEE T SMART 

GRID. 2014;5:420-430. DOI:10.1109/TSG.2013.2278477. 
[25] McLoughlin F, Duffy A, Conlon M. A clustering approach to domestic electricity load profile characterisation using 

smart metering data. APPL ENERG. 2015;141:190-199. DOI:10.1016/j.apenergy.2014.12.039. 
[26] Jalori S, Reddy TA, "A new clustering method to identify outliers and diurnal schedules from building energy interval 

data," in 2015 ASHRAE Annual Conference, (ASHRAE Transactions, Atlanta, 2015), pp. 33-44. 
[27] Stuhlsatz A, Lippel J, Zielke T. Feature extraction with deep neural networks by a generalized discriminant analysis. 

IEEE Transactions on Neural Networks & Learning Systems. 2012;23:596-608. DOI:10.1109/TNNLS.2012.2183645. 
[28] Liao TW. Clustering of time series data — a survey. PATTERN RECOGN. 2005;38:1857-1874. 

DOI:10.1016/j.patcog.2005.01.025. 
[29] Low Carbon London project: Data from the dynamic time-of-use electricity pricing trial., 2013. 

https://innovation.ukpowernetworks.co.uk/projects/low-carbon-london/. 
[30] CACI. Acorn consumer classification data., 2013. http://acorn.caci.co.uk. 
[31] Carmichael R, Schofield J, Woolf M, Bilton M, Ozaki R, Strbac G. Residential consumer attitudes to time-varying 

pricing, Report A2 for the Low Carbon London LCNF project.: Imperial College London; 2014. 

https://innovation.ukpowernetworks.co.uk/wp-content/uploads/2019/05/A2-Residential-Consumer-Attitudes-to-Time-

varying-Pricing.pdf. 
[32] Schofield J, Carmichael R, Tindemans S, Woolf M, Bilton M, Strbac G. Residential consumer responsiveness to time-

varying pricing, Report A3 for the Low Carbon London LCNF project.: Imperial College London; 2014. 

https://innovation.ukpowernetworks.co.uk/wp-content/uploads/2019/05/A3-Residential-Consumer-Responsiveness-to-

Time-varying-Pricing.pdf. 



56 

 

[33] Hodges JL. The significance probability of the smirnov two-sample test. Arkiv Fr Matematik. 1958;3:469-486. 

DOI:10.1007/BF02589501. 
[34] Fisher RA. The Use of Multiple Measurements in Taxonomic Problems. Annals of eugenics. 1936;7:179-188. 

DOI:10.1111/j.1469-1809.1936.tb02137.x. 
[35] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. 

J MACH LEARN RES. 2011;12:2825-2830. DOI:10.5555/1953048.2078195. 
[36] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine Learning on 

Heterogeneous Distributed Systems. 2016. https://arxiv.org/abs//1603.04467. 
[37] Bergstra J, Yamins D, Cox D, "Making a Science of Model Search: Hyperparameter Optimization in Hundreds of 

Dimensions for Vision Architectures," in Proceedings of the 30th International Conference on Machine Learning, 

PMLR, (2013), pp. 115-123. 
[38] Torriti J, Yunusov T. It’s only a matter of time: Flexibility, activities and time of use tariffs in the United Kingdom. 

ENERGY RES SOC SCI. 2020;69:101697. DOI:10.1016/j.erss.2020.101697. 
[39] Torriti J, Hanna R, Anderson B, Yeboah G, Druckman A. Peak residential electricity demand and social practices: 

Deriving flexibility and greenhouse gas intensities from time use and locational data. INDOOR BUILT ENVIRON. 

2015;24:891-912. DOI:10.1177/1420326X15600776. 
[40] Ramírez-Mendiola JL, Grünewald P, Eyre N. Residential activity pattern modelling through stochastic chains of 

variable memory length. APPL ENERG. 2019;237:417-430. DOI:10.1016/j.apenergy.2019.01.019. 
[41] Amasyali K, El-Gohary NM. A review of data-driven building energy consumption prediction studies. Renewable and 

Sustainable Energy Reviews. 2018;81:1192-1205. DOI:10.1016/j.rser.2017.04.095. 
[42] Hubert L, Arabie P. Comparing Partitions. J CLASSIF. 1985;2:193-218. DOI:10.1007/BF01908075. 
[43] Vinh NX, Epps J, Bailey J, "Information theoretic measures for clusterings comparison: is a correction for chance 

necessary?" in Proceedings of the 26th Annual International Conference on Machine Learning, ICML, (ACM, 2009), 

pp. 1073-1080. DOI:10.1145/1553374.1553511. 
[44] Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of 

Computational & Applied Mathematics. 1987;20:53-65. DOI:10.1016/0377-0427(87)90125-7. 
[45] Davies DL, Bouldin DW. A Cluster Separation Measure. IEEE Trans Pattern Anal Mach Intell. 1979;PAMI-1:224-227. 

DOI:10.1109/TPAMI.1979.4766909. 
 


