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A B S T R A C T   

According to the Spectral Variation Hypothesis (SVH), spectral variance has the potential to predict taxonomic 
composition in grasslands over time. However, in previous studies the relationship has been found to be unstable. 
We hypothesise that the diversity of phenological stages is also a driver of spectral variance and could act to 
confound the species signal. To test this concept, intra-annual repeat spectral and botanical sampling was per-
formed at the quadrat scale at two grassland sites, one displaying high species diversity and the other low species 
diversity. Six botanical metrics were used, three taxonomy based and three phenology based. Using uni-temporal 
linear permutation models, we found that the SVH only held at the high diversity site and only for certain metrics 
and at particular time points. We also tested the seasonal influence of phenological stage dominance, alongside 
the taxonomic and phenological diversity metrics on spectral variance using linear mixed models. A term of 
percentage mature leaves, alongside an interaction term of percentage mature leaves and species diversity, 
explained 15-25% of the model variances, depending on the spectral region used. These results indicate that the 
dominant canopy phenology stage is a confounding variable when examining the spectral variance-species di-
versity relationship. We emphasise the challenges that exist in tracking species or phenology-based metrics in 
grasslands using spectral variance but encourage further research that contextualises spectral variance data 
within seasonal plant development alongside other canopy structural and leaf traits.   

1. Introduction 

1.1. Grassland monitoring 

An important criterion when assessing field-level grassland condition 
is the complexity of the plant community, often summarised as the 
number of taxonomic units co-existing within the sward and their spatial 
distribution. These surveys are typically targeted at mid growing season 
when most plants are flowering, a time referred to as peak phenology 
(Stohlgren, 2006), with few data having been collected outside what is 
considered to be this ‘optimal’ window (Magurran, 2007). Plant com-
munities can be dynamic in terms of the number of taxa present at a 
single time point during a growing season (Mellard et al., 2019; Wang 
et al., 2016), however, repeat intra-annual botanical surveys are very 
time-consuming and so little is understood about these community 
dynamics. 

1.2. Spectral variation as a proxy for species diversity 

An option to increase our understanding is to utilise remote sensing 
(Ali et al., 2016; Wachendorf et al., 2017) and in particular hyper-
spectral reflectance data (Fava et al., 2010; Möckel et al., 2016; Wang 
and Gamon, 2019). The Spectral Variation Hypothesis (SVH) proposes 
that the variance in spectral reflectance within a given area can be used 
as a proxy for plant taxonomic diversity. The concept of reflectance 
variance as an ecological surrogate was first described by Palmer et al. 
(2002). Rocchini et al. (2010) provide a review of the concept and the 
challenges to its implementation. Evidence to support the hypothesis has 
been gathered at the landscape scale (Hall et al., 2010) using broad-band 
satellite data products, down to the leaf-level with close-range imaging 
spectrometers (Wang et al., 2018). In some studies, however, the SVH 
been found to be unstable (Schmidtlein and Fassnacht, 2017; Torresani 
et al., 2019) and context dependent (Imran et al., 2021). 

Convergent optical properties of photosynthetically active material 
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alongside the impact of environmental drivers, such as water avail-
ability, may prove obstacles to species differentiation (Asner et al., 2009; 
Ollinger, 2011). Furthermore, spectral distance between species may be 
affected more by functional variation rather than by the number of 
taxonomic units (Schweiger et al., 2018). This perspective is intrinsic to 
the ‘optical type’ theory (Ustin and Gamon, 2010), where, in the context 
of high spatial resolution reflectance data, ‘diversity’ can be framed as a 
product of leaf traits at the individual level (Leaf Mass Area, Nitrogen, 
Chlorophyll, Carotenoids, Lignin) rather than taxonomic variation (Ma 
et al., 2020). 

1.3. Measures of spectral variance 

One of the complications in assessing the SVH and prior findings in 
this field, is that measures of spectral variance are calculated in different 
ways. Sophisticated approaches have been employed to deal with the 
multi-variate data sets produced from hyperspectral data sensors, for 
example, the ‘Spectral Angle Mapper’ (Gholizadeh et al., 2018), k-means 
clustering (Rocchini et al., 2005) and Partial Least Squares regression 
(Möckel et al., 2016; Polley et al., 2019). It is arguable, however, that 
descriptive statistical approaches, such as taking dispersions around the 
mean value for a single wavelength or index value, are more useful at 
this stage to evaluate the hypothesis (Torresani et al., 2019; Wang et al., 
2018) as they allow the strength of the relationship to be more effec-
tively compared between study findings. The coefficient of variation 
(CoV) is an often-used metric when dealing with hyperspectral data 
(Aragón et al., 2011; Blanco-Sacristán et al., 2019; Lucas and Carter, 
2008; Wang et al., 2018) as it normalises the dispersion against the mean 
reflectance for each wavelength, thus accounting for the differences in 
magnitude between spectral regions. 

1.4. The performance of the SVH over time 

Another obstacle is that the relationship between spectral variance 
and taxonomic diversity when examined over time has been shown to be 
inconsistent (Schmidtlein and Fassnacht (2017)). Inter-annual studies 
with similar sampling dates in temperate systems (Gholizadeh et al., 
2020) suggest this inconsistency is not merely a product of ‘time of year’ 
but may be due to a complex relationship between reflectance and 
seasonally dynamic leaf and canopy traits (Feilhauer and Schmidtlein, 
2011; Feilhauer et al., 2017). High spatial resolution hyperspectral data, 
to our knowledge, has been collected on multiple dates in grasslands for 
only a couple of studies (Feilhauer and Schmidtlein, 2011; Gholizadeh 
et al., 2020), both of which reported varying relationships over time 
between taxonomic diversity and spectral reflectance. These observa-
tions could be due to the dynamic nature of grassland canopies, in terms 
of their responses to rainfall and management (Li et al., 2013) and 
phenological variability (Ustin and Gamon, 2010). 

1.5. The impact of phenological stage on the spectral variation 

Hyperspectral reflectance data are usually collected at peak biomass 
or growth when assessing taxonomic diversity, and there is good theo-
retical basis for this decision. At these times, grassland canopies are 
generally less affected by dead plant tissue and exposed soil, which are 
significant additional sources of spectral variation (Asner, 1998). When 
these sources are minimised, leaf intracellular structure and chemical 
traits drive variation in leaf reflectance (Ollinger, 2011; Ustin et al., 
2009) and it is this variation that has been shown to be strongly corre-
lated with the species present (Asner and Martin, 2011, 2016). In 
addition, leaf traits and so reflectance, and derived vegetation indices, 
alter with leaf age (Chavana-Bryant et al., 2017) which, if not accounted 
for, could be confounded with, among others, a taxonomic signal. On the 
other hand, the effect of leaf age and plant life cycle stage on reflectance 
could be exploited when the aim is to map single species or functional 
types. For example, in temperate deciduous woodlands, species specific 

timing of leaf emergence and senescence, accompanied with species 
specific leaf colouring, have been instrumental in distinguishing be-
tween tree species (Fassnacht et al., 2016; Hill et al., 2010; Voss and 
Sugumaran, 2008). 

The spatial scale of data acquisition is highly significant when 
assessing the SVH (Gamon et al., 2019). At the leaf level, phenological 
stage affects reflectance through the process of leaf maturation (the 
development of palisade and spongy mesophyll and increase in chloro-
phyll cell number) (Noda et al., 2021), followed by senescence (reallo-
cation of resources away from the leaf to over-wintering or reproductive 
structures). At the canopy scale, the quantity and developmental stage of 
leaves affect reflectance through increases in parameters such as leaf 
area index (LAI) and total canopy chlorophyll (Jacquemoud et al., 
2009). Non-leaf plant architecture (buds, flowers, seeds) will also in-
fluence reflectance as these parts of the plant are generally not photo-
synthesising (Asner, 1998). 

The number of differing phenological stages present will therefore be 
an additional driver of spectral variation alongside taxonomic diversity. 
The extent to which individuals within plant communities exhibit 
phenological stages at simultaneous or staged phases is known as 
phenological synchrony or asynchrony (Rathcke and Lacey, 1985; 
Forrest and Miller-Rushing, 2010) and the number of co-occurring 
phenological stages can be understood as phenological diversity 
(Lasky et al., 2016; Ramos et al., 2014). These properties may, however, 
be difficult to estimate as they are likely to vary between years and 
within a growing season (Mazer et al., 2013; Tansey et al., 2017) due to 
individual-based responses to environmental conditions (Wolkovich 
et al., 2014). 

1.6. Study aims 

This study uses intra-annual repeat taxonomic and phenological 
observations alongside the variance of high-resolution spectral reflec-
tance data collected at two grassland sites, with differing levels of spe-
cies diversity, soil type and management regime, to test the following:  

1) The temporal stability of the SVH across a growing season in relation 
to plant taxonomic metrics and to determine the best time of year for 
biodiversity surveys using this method.  

2) The extent to which the phenological diversity of the canopy drives 
spectral variance.  

3) The relative impact of phenological and taxonomic diversity and 
phenological stage dominance on spectral variance across the 
growing season. 

2. Methods 

2.1. Grassland site description and sampling campaign overview 

Two sites in the south east of England were used for the collection of 
remote sensing and botanical data. The first site is Dawcombe nature 
reserve, Betchworth, Surrey, UK (51.259, − 0.261). It is an example of 
medium quality chalk grassland situated on the scarp slope of the North 
Downs and is managed for biodiversity conservation. From hereon, this 
site will be referred to as ‘Dawcombe’. The second site is a long-term 
experimental grassland managed by Imperial College London and 
called ‘Nash’s Field’ located at Silwood Park, Sunningdale, Berkshire, 
UK (51.413, − 0.645). It is composed of acid grassland plots that have 
undergone varying soil nutrient and grazing treatments (Crawley et al., 
2005). The range of treatments have created a site with high levels of 
community variation within a small area. This site will be referred to as 
‘Silwood’. Both sites undergo annual late summer or winter biomass 
removal through mowing and grazing but are not managed during the 
spring and summer months when the sampling was undertaken. How-
ever, they are subject to some low-level grazing throughout the year by 
wild herbivores (deer and rabbits) and invertebrates. We selected the 
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sites for their strong gradients of community composition. They are also 
grasslands where plant species undergo their reproductive cycles 
without significant interruption, unlike in many agricultural grasslands 
where high grazing pressures can occur throughout the year. 

Twenty 50 × 50 cm (0.25m2) quadrats sub-divided into twenty-five 
10 × 10 cm subquadrats, using a botanical grid as a guide, were 
measured over the 2019 growing season. Ten of these were situated at 
Dawcombe and ten at Silwood (see Fig. 1). Quadrats were used as they 
represent the most common approach to monitoring vegetation in 
grasslands. At Dawcombe, quadrat locations were randomly chosen 
along a slope gradient, intended to capture maximum variation in the 
plant community, and were simply labelled 1–10. At Silwood, the 
quadrats were chosen to represent a range of nutrient and grazing ap-
plications, to the same aim. They were labelled to reflect the experi-
mental plot (L), whether they were subject to grazing (UF = unfenced) 
or not (F = fenced) and the nutrient treatment (N = nitrogen, K = po-
tassium, P = phosphate, All = all nutrients, None = control). The 
quadrats were marked with pegs and geolocated to sub-cm accuracy by 
use of a differential GPS so the same areas could be revisited. The 
botanical sampling grid was painted matt black to avoid interference 
with the reflectance observations. Botanical observations were made at 
six time points at Silwood and ten at Dawcombe. Hyperspectral sam-
pling events totalled five at Silwood and seven at Dawcombe. Details of 
botanical and spectral sampling are to follow. 

2.2. Plant community metrics 

We calculated two sets of metrics, which are listed with their 
respective equations in Table 1. The first set is based on taxonomic units 
and metrics were calculated per time point per quadrat. The second set is 
designed to evaluate the impact of plant phenological stage on spectral 
diversity. These metrics are based on phenological observations associ-
ated with the recorded taxa and were also calculated per time point per 
quadrat. 

2.2.1. Taxonomic metrics 
Plant taxonomic complexity can be described and summarised by 

using a range of metrics, each of which present a different aspect of, or 
approach to, diversity measurement (Magurran and McGill, 2011; 
Morris et al., 2014). The following three metrics were calculated 
(Table 1): ‘species richness’, which is a count of species occurrence and 
is the basic measure in biodiversity assessment; the ‘Simpson evenness 
index’, also known as relative abundance (Smith and Wilson, 1996) 
which describes the dominance distribution of the species present; and 
the ‘Simpson diversity index’, a composite measure which incorporates 
both richness and evenness. Visual estimations of percent cover per 
species, are often used in botanical assessments, but this measure is very 
subjective, especially in more complex species-rich quadrats. So, 
instead, the proportion of sub-quadrats in which the species occurred 
was used to calculate relative abundance and subsequently derive the 
Simpson’s diversity and Simpson’s evenness indices. 

Because proximal remote sensing instruments are generally set to 

Fig. 1. The sampling sites and the quadrat locations at Silwood and Dawcombe. Top left: the sampling grid used to acquire both spectral and botanical samples for 
each of the 20 quadrats at each time point. 
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nadir viewing and so are limited to sensing the top part of canopies, only 
species within the quadrat that were observed when looking directly 
down were considered. 

2.2.2. Phenology metrics 
Firstly, for each taxonomic unit observed in in the quadrat, an 

observation of phenological stage was made according to the definitions 
in Table 2. Some species displayed multiple stages at a single time point. 
The number of observations in each phenological category were then 
summed and weighted to produce a measure of phenology stage domi-
nance for each quadrat at each time point. 

Measures are available that describe the timing of plant phenology 
stages, such as frequency, regularity, amplitude, synchrony and duration 
(Newstrom et al., 1994; Denny et al., 2014). However, to evaluate the 
impact of plant phenological stage on spectral variance we required 
metrics that capture the phenology stage diversity observed at any 

moment in time. As far as we are aware, these do not exist. We therefore 
adopted the above taxonomic metrics to produce the following pheno-
logical metrics: ‘phenological richness’, the number of different 
phenology stages present at a given time in a given quadrat’; pheno-
logical evenness’, a measure of the relative abundance of phenology 
stages present; and ‘phenological diversity’ which was designed to 
reflect the diversity of phenology stages present at any moment in time 
within a quadrat, as a product of the species richness and abundance. For 
full definitions of the metrics and the calculations used to produce them 
see Table 1. 

2.3. Spectral data capture and calculation of spectral variance 

The Coefficient of Variance (CoV) from hyperspectral reflectance 
observations was selected as the spectral variance metric. The next 
sections outline the in-situ instrument setup and hyperspectral data pre- 
processing steps taken to ensure a robust dataset for reliable derivation 
of reflectance CoV. 

2.3.1. Hyperspectral field radiometry setup 
Hyperspectral reflectance measurements (350 nm – 2500 nm) were 

collected for each sub-quadrat (25) of each quadrat (20). We used two 
SVC non-imaging spectrometers (SVC HR2024i spectroradiometers, 
Spectra Vista Corporation, USA) in a Dual Field Of View (DFOV) mode 
(Maclellan, 2017; Punalekar et al., 2018), to simultaneously record 
irradiance and reflected radiance. This approach is recommended when 
data is collected under fluctuating illumination conditions (which is 
often the case in the UK) and is expected to deliver more accurate ob-
servations, which are particularly important when, as in most vegetation 
studies, spectral distance between target classes is small. Before target 
sampling began, both spectrometers were mounted on tripods pointing 
at their respective Spectralon panels and reference readings were taken 
concurrently. The instrument measuring down-welling radiation was 
then set to timed-mode while the instrument measuring upwelling ra-
diation was used on a boom held at nadir 70 cm above the grassland 
canopy, resulting in a sample spot size of 10 cm. Each grassland quadrat 
measured 50 × 50 cm and was subdivided into twenty-five 10 × 10 cm 
sub-quadrats using as a guide, the same matt black grid that was used in 
the botanical sampling. For each sub-quadrat one reading was taken. 
The target spots were intended to be non-overlapping but spatially 
correlated in order to emulate the effect of pixels from an imaging 
sensor. All measurements were taken between the hours of 10 am and 3 
pm local time (BST). Twenty-five measurements were taken of each 

Table 1 
Definitions of the taxonomic and phenological metrics used in this study.  

Name of Metric Description Category Equation 

Species Richness 
(S) 

The total number of 
species observed for 
each time point (t) 

Taxonomic St 

Species 
Diversity 
(Simpson’s 
diversity 
inverse or 
reciprocal) 
(D) 

The inverse of the 
probability that two 
species drawn from the 
same sample will 
belong to the same 
species. Index ranges 
from 1 to infinity, 
where 1 represents a 
community with a 
single species and the 
higher the number the 
more complex the 
community. 

Taxonomic Dt =
1

∑St
it

(
Nit
Nt

)2  

Where: N is the total 
species abundance; 
Ni is the abundance 
of species i; t is time 
point t  

Species Evenness 
(Simpson’s 
Evenness) 
(E) 

Describes the 
distribution of 
individuals among 
classes and is therefore 
a measure of relative 
abundance. E is 
expressed as a 
proportion of the 
maximum value which 
D could assume if 
individuals in the 
community were 
completely evenly 
distributed (which 
equals S). The metric 
takes a value between 
0 and 1 where 1 is 
complete evenness. 

Taxonomic Et =
Dt

St  

Phenological 
Richness 
(P) 

The number of 
phenological stages 
observed for each time 
point (t) 

Phenology Pt 

Phenological 
Diversity 
(PhenD) 

Index ranges from 1 to 
infinity, where 1 
represents a 
community with a 
single phenological 
stage present and 
higher values indicate 
a greater number of 
phenological classes 
and a more complex 
distribution of classes 
among species. 

Phenology PhenDt =

1
∑Pt

it

(
Mit
Mt

)2 

Where M is the total 
number of phenology 
stages observed and 
Mi is the total number 
of phenology stages 
observed for species 
i. t is time point t  

Phenological 
Evenness 
(PhenE) 

As definition for E but 
for phenological stage 

Phenology PhenEt =
Phen Dt

Pt   

Table 2 
Descriptions of the phenology stages used to calculate the phenological diversity 
metrics.  

Phenology 
stage code 

Stage name Stage description 

SEN(1) Senescent Plant material in senescence (brown, lacking in 
chlorophyll) when quadrat was first examined in 
the spring (principally from last years’ growth 
season). 

YOU(2) Young Leaf material is thin/downy – displays colours 
(bright green) not in line with those expected 
from mature leaves. 

MAT(3) Mature Leaf material is thickened / some cases waxy – 
displays colours in line with those expected from 
mature leaves 

BUD(4) Budding 
flowers 

Plant has the beginnings of reproductive organs - 
flower buds for broadleaved herbs, or sheathed 
heads for grasses 

FLO(5) Flowering Plant is in flower; flower heads emerged 
SEE(6) Seeding Plant has seeds or seed encapsulating organs 

visible 
SEN(7) Senescent The current growth season’s plant material in 

senescence (brown or red/brown discoloured 
leaves).  
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quadrat at each time point resulting in 250 measurements per sampling 
date for each site, totalling 3000 spectral samples. 

2.3.2. Hyperspectral data pre-processing 
Pre-processing of the spectrometry data involved calibration of each 

sub-quadrats’ reflected radiance spectrum against its respective Spec-
tralon white reference panel spectrum to produce reflectance. Parts of 
the spectrum affected by water absorption and scattering were removed 
(339–399 nm, 1900–2051 nm, 2450–2519 nm) and a Savitzky-Golay 
smoothing filter was applied. The spectrum was binned by 10 nm in-
crements. Smoothing and binning was carried out with the package 
HSDAR (Lehnert et al., 2019) in R (R Core Team, 2021). 

Spectrometry data can suffer from erroneous measurements caused 
by slight changes in viewing angle and subject illumination (Wehrens, 
2011). It is vital to ensure that the inclusion of these measurements is 
minimalised as we are dealing here with variance measures from a mean 
or a centroid value. A common practice is to carry out repeat measures of 
the same target and take an average. Due to the number of measure-
ments required per day this process was not feasible. Instead, thorough 
data cleaning and pre-processing was carried out to identify the erro-
neous readings. Two principal sources of measurement error were 
considered; 1) time stamp mismatch between the two spectrometers 
(one measuring the quadrats, the other the white reference panel), 
especially in rapidly changing conditions and 2) changes in reflectance 
caused by variations in viewing and sun angle. To minimise these 
sources of error, we used ‘Robust Principal Component Analysis’ 
(ROBPCA) (Hubert et al., 2005; Hubert, 2020) which was applied to the 
spectra grouped by time-point and quadrat (amounting to 120 data sets). 
Outliers are computed using ‘projection pursuit’ techniques and the 
Minimum Covariance Determinant (MCD) method (Hubert and 
Debruyne, 2010). The ROBPCA approach can be used to compute PC 
scores that are outlier resistant, but also to detect the outliers them-
selves. The level of data cleaning changed with the α parameter 
(0.5–0.9); lower values indicate more ‘robust’ outlier detection, with 
more samples being removed from the analysis. Data sets produced with 
five values of α (0.5, 0.6, 0.7, 0.8 and 0.9) were used to help assess the 
stability of the model fits for the uni-temporal data sets (Section 2.5.1). 
For the rest of the analysis, we used the ROBPCA corrected data with an 
α value of 0.8 resulting in a total sample size of 2561 spectra. For sample 
sizes, the sampling dates and their corresponding day of year (DoY) see 
Table 3. 

2.3.3. Coefficient of variation 
The coefficient of variation (CoV) was used as the spectral diversity 

metric and was calculated for each waveband i as follows: 

CoVi (%) =
σi

μi
x 100 (1)  

where μi equals the mean reflectance of the 25 subplots and σi equals the 
standard deviation. Wang et al., 2018 used the mean of the band specific 
CoV values across spectral regions as a summary measure of hyper-
spectral variance and found strong positive correlations with taxonomic 
diversity metrics. Here we follow this method in order to compare 
findings. Firstly, the band specific measures of CoV were averaged across 
the full visible to short wave infra-red spectrum and then, secondly, 
across three spectral regions; the visible (400–699 nm), the near infra- 
red (700–1299 nm) and the short wave infra-red (1300–2519 nm). 
These averages are referred to as ‘mean-CoV’, ‘vis-mean-CoV’, ‘NIR- 
mean-CoV’ and ‘SWIR-mean-CoV’, respectively. Although the exact 
values of these regional cut-off points are somewhat arbitrary, spectral 
variation within these three chosen spectral regions (visible, NIR and 
SWIR) has been shown, through use of radiative transfer models and 
global sensitivity analysis, to be driven by different leaf or canopy traits 
(Li and Wang, 2011; Xiao et al., 2014). At the leaf level, use of the 
PROSPECT model (Jacquemoud and Baret, 1990) shows that global 

spectral variation is dominated by variation in chlorophyll concentra-
tion in the visible region (400 nm – 699 nm) and the leaf structural 
parameter (N) in the NIR (700–1299 nm). Although the influence of N is 
still relevant at certain spectral sub-regions beyond 1300 nm, equivalent 
water thickness (Cw) becomes the principal contributor to spectral 
variance throughout the SWIR region (1300– 2500 nm). Similarly, at the 
canopy scale, the PROSAIL model (Jacquemoud et al., 2009) shows that 
these spectral regions retain their discrete importance. Variation in 
reflectance in the visible region is driven by chlorophyll content and by 
water throughout the SWIR. In contrast to the leaf level, at this scale, 
spectral variation in the NIR is mainly driven by dry matter content (Cm) 
and leaf area index (LAI). We hypothesise that, during the growing 
season, different leaf and canopy traits will be dominant in driving 
spectral variance and summarising data by these regions will help with 
interpretation of results. 

2.4. Satellite NDVI to contextualise findings 

A time-series of satellite derived NDVI values obtained from the 
Sentinel-2 mission at 10 m spatial resolution was used to contextualise 
the findings of the field observations in terms of the main growing 
season periods: green-up, peak biomass and senescence (Fig. 2). For each 
available time-point, cloud free MSI pixels corresponding with site 
quadrats locations were extracted and a site-specific mean NDVI (and 
standard error) was calculated. Seven pixels over 31 dates were used to 
construct the time-series for Dawcombe and five pixels over 19 dates for 
Silwood. 

The NDVI time-series were divided into three phenology stages, 
which we call “Pre-NDVI max” (representing ‘green-up’ of the site 
vegetation), “NDVI max” (the plateaux of maximum NDVI which we 
assume to coincide with the vegetation being at maximum growth stage) 
and “Post-NDVI max” (where vegetation begins to senescence). The 
period of peak growth (NDVI max) corresponded to 25 days either side 
of the highest NDVI value, although this value was more difficult to 
ascertain at Silwood, as the site exhibited cloudy conditions at this time 

Table 3 
Sample sizes and dates for the hyperspectral data set.  

Site Date Day of 
Year 

Time 
point 

Spectrometer sample 
size(n=) 

All 
data 

ROBPCA 
screen 

Dawcombe 18th April 
2019 

108 1 250 216 

1st May 2019 121 2 250 215 
16th May 
2019 

136 3 250 209 

31st May 2019 151 4 N/A N/A 
11th June 
2019 

162 5 N/A N/A 

27th June 
2019 

178 6 N/A N/A 

13th July 
2019 

194 7 250 215 

24th July 
2019 

205 8 250 217 

8th August 
2019 

220 9 250 211 

20th August 
2019 

232 10 250 213 

Silwood 29th April 
2019 

119 1 250 210 

21st May 2019 141 2 250 217 
5th June 2019 156 3 250 218 
20th June 
2019 

171 4 N/A N/A 

12th July 
2019 

193 5 250 210 

29th July 
2019 

210 6 250 210  
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of year. Pre-NDVI max covers the months of March, April and May (DoY 
50 to 150), NDVI max covers June and the first half of July (DoY 150 to 
200) and Post-NDVI max covers late July, August and September (DoY 
200 to 300). 

2.5. Statistical analysis of spectral variance and taxonomic and 
phenological metrics 

The key aims of this study are to test the temporal stability of the SVH 
in relation to taxonomic metrics and to assess the extent to which 
phenological diversity drives spectral variance. In order to test these 
hypotheses two types of modelling were carried out. The first consisted 
of simple linear models which assessed the strength of the relationship 
between spectral variance and the three taxon and three phenology 
based metrics at each sampling event at each site. The second utilised 
mixed models to evaluate the consistency of these same relationships 
over all sampling points and across both sites. 

We also used mixed modelling to investigate the third aim of the 
work which was to assess the relative impact of taxonomic and pheno-
logical diversity, alongside phenological stage dominance on spectral 
variance over all sampling points. 

2.5.1. Simple linear models 
Simple linear models were used to test the relationship between each 

narrow band value (the hyperspectral approach), as well as mean-CoV, 
vis-mean-CoV, NIR- mean-CoV and SWIR-mean-CoV, (the spectral re-
gions approach) and the three species-based and three phenology-based 
diversity measures. For the spectral regions models, 288 uni-temporal 
model runs were carried out (Dawcombe: 7 time-points x 6 diversity 
metrics x 4 spectral regions =168 and Silwood: 5 time-points x 6 di-
versity metrics x 4 spectral regions = 120). Our data sets are small, when 
considered for each time point and site, so a permutation modelling 
approach was applied (LaFleur and Greevy, 2009), where p values for 
each linear model are assessed for stability using imputation, and the 
resulting adjusted r2 values are reported. 

2.5.2. Linear mixed models 
One of the challenges associated with the data set collected is its 

structure, which includes temporal and spatial auto-correlation. Each 
quadrat was revisited several times so within-quadrat samples could be 
more similar to each other than to the data from other quadrats. It is also 
possible that samples taken at similar times of year will be more similar 
to each other. With this in mind, all data were modelled using a mixed 
model (Zuur et al., 2009), where the fixed effect is the taxonomic or 
phenological metric and the random effects, the quadrat and sampling 
time point (Pinheiro and Bates, 2000). 

The package lme4 (Bates et al., 2015) in R was used for the mixed 
model analysis. The model random effects structure was determined 
following the procedure outlined in Barr et al. (2013). The model fitting 
was performed using restricted maximum likelihood (REML) and the 
most complex random structure that would converge, used sampling 
event (day of year) and quadrat as random effects, producing an inter-
cept only model with two random terms. Site was added as a fixed effect, 
because it only has two levels (the recommended minimum number of 
levels in a random effect is five (Zuur et al., 2009)). Examination of 
model residuals displayed heteroscedasticity, so spectral variance was 
converted to the natural log. This brought the residuals into an accept-
able distribution. Application to the model residuals of a first order auto- 
correlation function revealed no significant temporal autocorrelation 
(Mitchell et al., 2020). 

We also used mixed modelling to investigate the sources of spectral 
variance over time and used spectral variance as the response variable. 
Before modelling, all predictor variables are scaled from − 1 to +1 and 
centred to allow interaction effects to be suitably assessed. The maximal 
model, containing the same random effects structure as in the first 
modelling stage, was fitted by Maximum Likelihood (ML) with all six of 
the taxonomic and phenology-based community variables and the per-
centage canopy stages as predictors with interaction terms included. The 
most parsimonious model, assessed using Akaike Information Criterion 
and Bayesian Information Criterion, included the terms % Mature leaves 
(MAT(3)) and species diversity and a term of their interaction. 

For both stages of mixed modelling, reported coefficients, confidence 
intervals and p-values for fixed effects were obtained by fitting the 
models using Restricted Maximum Likelihood (REML) and by use of the 
Swatterwaite post-hoc test. Two pseudo r2 were calculated to assist with 
the evaluation of the models: the marginal r2, which is the fixed effects 
variance divided by the total variance (fixed + random + residual) and 
the conditional r2, which is the fixed and random effects variance 
divided by the total variance. The marginal r2 indicates the percentage 
of the total model variance explained by the fixed effects and the con-
ditional r2 indicates how much of the model variance is explained by the 
complete model (Nakagawa and Schielzeth, 2013). These values enable 
assessment of the relative impact of the spatial (quadrat) and temporal 
(sampling time) grouping variables and the fixed-effect predictor 
variables. 

3. Results 

3.1. Plant taxonomic and phenological diversity between sites and over 
time 

The two sites were very distinct in terms of their species and 
phenology-based community composition (Fig. 3a). Throughout the 
season, relatively speaking, species richness is low to medium at Silwood 
(1–10 species) and medium to high at Dawcombe (9–24 species). 
Dawcombe shows very high levels of quadrat evenness (0.4–0.6) in all 
quadrats at all times, meaning there is no single dominant species. Sil-
wood displays a range of quadrat evenness from 1.0 (only one species 
present – so completely even) to levels comparable with Dawcombe for 
more uneven quadrats (0.4). 

In terms of phenological richness, Dawcombe shows higher values, 
partly reflecting the fact that the site has more species, so is more likely 

Fig. 2. The three phenology stages (Pre-NDVI max, NDVI max and post-NDVI 
max) derived from Sentinel-2 MSI NDVI time-series for two grassland sites. 
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to have many phenological stages occurring at one time. Results for 
phenological evenness concur with species evenness, with Silwood 
having more phenologically homogenous swards compared to Daw-
combe. All quadrats at Silwood have low phenological diversity, 
whereas at Dawcombe there is a large spread in the values of this metric 
with some quadrats displaying different species’ specific phenological 
states simultaneously. 

In terms of seasonal patterns (Fig. 3b), at Dawcombe phenological 
richness and diversity follow species richness and diversity, with a sharp 
build up at pre-NDVI max stage followed by a peak at around DoY 150, 
and then a decline into post-NDVI max. Both species and phenology 
diversity metrics at Silwood, the species poor site, peak slightly later 
than at Dawcombe, and less strongly, coinciding more with NDVI-max. 
These results suggest that if we want to capture the full extent of species 
and phenological diversity we should sample just before and during 
NDVI-max. We speculate that both spring and summer emerging species 
are occurring simultaneously at this time, thus maximising measures of 
both species and phenological diversity. 

When comparing the community metrics for each site using pair-wise 
correlation (Fig. 4), high intra-site positive correlation between species 
richness and species diversity can be observed (Pearson’s correlation co- 
efficient of 0.83 at Dawcombe and 0.93 at Silwood). The strength of the 
pairwise correlations between the two types of community metrics 
(species and phenology based) is generally greater at Silwood than at 
Dawcombe. This result indicates that at the species poor site (Silwood), 
phenological traits of the community over the whole season are more 
closely aligned to species community traits and in contrast, at the more 
species rich site (Dawcombe), phenological and species traits are more 
divergent. 

Phenological stage dominance was determined by use of the seven 
phenological stage definitions and weighted percentages of total canopy 
coverage per stage per quadrat were calculated (Fig. 5). YOU(2) (young 
material) dominated the swards at both sites in early spring sampling 
(DoY 108 and 121 at Dawcombe and DoY 119 at Silwood). By DoY 156 
at Silwood no new material was emerging, except in very small amounts 
in three quadrats (LUFN and LUFNone and LUFP). In contrast, at 

Species diversity Species evenness Species richness

Phenological diversity Phenological evenness Phenological richness
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Fig. 3. a (top): Density distributions of the community metrics across the two sites for all times. b: (bottom): Community metrics over time at the two sites. All 
metrics have been scaled so they can be displayed together and the inter-site differences can be emphasised. A lowess smoother has been applied to emphasise any 
seasonal data trends. 
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Fig. 4. Correlation heat map of the taxonomic (Species diversity, evenness and richness) and phenology (Phenological diversity, evenness and richness) metrics over 
all sampling times. Pearson’s correlation coefficients are shown. Light colours indicate a negative correlation; dark colours a positive correlation. 
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Dawcombe, young material was still emerging in all quadrats up to DoY 
194 and 205, towards the end of the phenology period NDVI-max. YOU 
(2) material was absent in all quadrats during the last two sampling 
points (DoY 220 and 232). Peak MAT(3) was reached on DoY 151 at 
Dawcombe and occurred at the cusp of the two satellite derived 
phenology stages (pre-NDVI-max and NDVI-max). At Silwood, peak 
MAT(3) was recorded at DoY 171, well into the NDVI-max satellite 
period. The percentage of the sward in stages BUD(4), FLO(5) or SEE(6) 
(bud, flowering or seed respectively) was very variable between quad-
rats at any one time. 

3.2. Spectral CoV over time 

Mean reflectance values per quadrat, per sampling time are shown in 
Fig. 6a and 6b alongside changes in the spectral variance for each 
wavelength. Mean reflectance for some quadrats (quadrat 5 at Daw-
combe and quadrat LUFP at Silwood for example) remained very stable 
throughout the season whereas other quadrats displayed clear seasonal 

shifts (quadrat 4 at Dawcombe and quadrat LUFAll at Silwood). The 
largest magnitude in changes is observed in the NIR part of the spec-
trum. Seasonal patterns in CoV also changed dramatically in some 
quadrats but not in others. The temporal change in spectral variability 
were evaluated by the slope of a linear regression model CoV = f(DoY) 
for each quadrat (See Supplementary Material B, Table B1). Within 
quadrat rates of change were not very different between the spectral 
regions and the extent of change was principally a cross spectra phe-
nomenon, therefore, only the mean-CoV is reported here. At Dawcombe 
quadrats 2, 3, 5 and 8 remained stable in time (model slope close to zero) 
whereas quadrats 1, 4, 6, 7, 9, and 10 increased over time (model slopes 
> +0.1, the fastest changing quadrat was quadrat 6 at +0.34). At Sil-
wood, quadrats LFK and LUFK were stable, whereas all other quadrats at 
this site increased in spectral variability as the season progressed (with 
the maximum rate of change found at quadrat LFNone, model slope +
0.47). 

At the site level, mean-CoV followed the same overall trajectory at 
both sites, starting at a low level and increasing as the season progressed 

Fig. 6. a: Mean spectral reflectance and Coefficient of Variation (CoV) per quadrat per wavelength over the sampling days from the quadrat-based spectrometry data 
for Dawcombe. b: Mean spectral reflectance and Coefficient of Variation (CoV) per quadrat per wavelength over the sampling days from the quadrat-based spec-
trometry data for Silwood. 
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through pre-NDVI max and NDVI max, with the highest values occurring 
in late summer during post-NDVI max (Figs. 6 and 7). The extent to 
which the CoV changed over time is expressed as the slope of a linear 
regression model (Dawcombe r2 = 0.18, p = 0.00021 (2sf), slope =
+0.08 and Silwood r2 = 0.20, p = 0.000069, slope = +0.15). The rate of 
change was slightly higher at Silwood in all spectral regions compared to 
Dawcombe. 

3.3. The relationship between spectral diversity (CoV) and taxonomic and 
phenological diversity using linear permutation models 

3.3.1. The spectral regions approach 
The strength of the relationship between spectral variance averaged 

across spectral regions and each of the six uni-temporal plant commu-
nity metrics (species richness, species evenness, species diversity, 
phenological richness, phenological evenness and phenological di-
versity) was very variable across time (Fig. 8), indicating that at the 
quadrat level spectral variance does not track changes in these metrics 
over a season. Values of adjusted r2 for 209 out of 288 of the models 
were less than 0.1, meaning that at the majority of sampling points and 

for most community variables very little variation, if any, was explained 
by the metrics. Twenty-five out of 288 of the models were significant at 
p < 0.05. In eight of these models, mean-CoV was the predictor variable, 
in four, vis-mean-CoV, in seven, NIR-mean-CoV and in six, SWIR-mean- 
CoV. Three of the significant models predicted well values of pheno-
logical diversity, six phenological evenness, five phenological richness, 
six species diversity, one species evenness and four species richness (see 
Table 4). The sampling times when spectral variance best predicted 
taxonomic diversity (highest r2 values and significant models) was at the 
end of pre-NDVI max (DoY 136) and post-NDVI-max (DoY 220 and 232) 
for Dawcombe and during NDVI-max (DoY 156) for Silwood. 

The stability of the model r2 also depended on the level of data 
cleaning imposed by the alpha parameter in the ROBPCA (Supplemen-
tary Material, Section A Fig. A1 and A2). At some time points, model r2 

steadily increased with more robust data cleaning. For example, at 
Dawcombe, Phenological diversity at DoY 194, during NDVI-max and 
Phenological evenness and diversity at DoY 136, during pre-NDVI-max, 
displayed this behaviour. Other model r2 values remained constant, 
despite the level of data cleaning, for example for species evenness and 
species diversity at DoY 108. These results suggests that, at times, the 

Fig. 6. (continued). 
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quadrat level CoV can depend on a few reflectance outliers caused by, 
for example, bare soil, or a single plant dominating a sub quadrat or 
measurement errors such as un-intended off-nadir viewing. Our confi-
dence in the SVH should increase with models that remain stable or 
improve in fit with data cleaning. 

3.3.2. The hyperspectral approach 
The linear permutation models were also applied to spectral variance 

at the hyperspectral level. The adjusted r2 of these models is reported in 
Fig. 9. At Dawcombe at DoY 220 and 232, the whole of the spectrum 
displayed strong correlations to the metrics, however, at DoY 136 only 
narrow regions of the spectrum were correlated. Examination of the 
model fits from the hyperspectral approach demonstrated that the 
spectral regions approach was largely effective at picking up the best 
sampling times and metrics of interest. 

3.4. Mixed models: relationships between variables over time 

All the spectral data, summarised as spectral regions (the spectral 
regions approach), was included in a series of mixed models, allowing 
for temporal and spatial pseudo-replication. In the first stage of mixed 
modelling, which tested the ability of the CoV of spectral variance to 
predict taxonomic or phenological metrics over all sampling times and 
both sites, none of the models contained significant terms (see Supple-
mentary Material C, Table C1). A large amount of variance in these 
models was explained by the random terms. Values of the Intra-class 
Correlation Coefficient (ICC) (the ratio of the between group variance 
to the total variance) (Nakagawa et al., 2017) ranged from 0.32–0.43 
(these are considered high values and validify the use of the mixed 
model approach). The random term, quadrat, had a much smaller 
impact on the model, with estimates of around 10% that of sampling- 
time. These results further support the results from the uni-temporal 
models, that the strength of the relationship between spectral variance 
and these metrics is heavily time dependent. 

During the second stage of mixed modelling, differing interaction 
effects of percent phenology stage dominance (SEN(1), YOU(2), MAT 
(3), BUD(4), FLO(5), SEE(6), SEN(7)) and taxon and phenology-based 
community metrics on spectral variance were tested. A significant ef-
fect of MAT(3) mature stage (slope = 0.19, p = 0.003) alongside a sig-
nificant interaction effect of MAT(3) and species diversity (slope = 0.12, 
p = 0.014) was found for mean-CoV (Fig. 10) with similar results for the 
other spectral regions (see Supplementary Material C, Table C2 for full 
model results). NIR was the spectral region with the highest marginal r2, 
with around 25% of the variance explained by the fixed terms, and an 
effect size of 0.25 for the mature term and 0.15 for the interaction term 
mature and species diversity. The model using vis-mean-CoV as the 
response variable displayed the largest values of conditional r2 with 43% 
variance explained, 16% of which was explained by the fixed terms. 

4. Discussion 

4.1. Relationships between spectral variance and taxonomic and 
phenology metrics over time 

The uni-temporal models at the site level were able to predict gra-
dients of both taxonomic and phenology-based community metrics. 
However, the predictive ability of the models varied over time indi-
cating that tracking these metrics across a growing season using spectral 
variation is problematic. The highest correlations between spectral and 
community metrics tended towards late pre-NDVI-max and early NDVI- 
max at both sites, suggesting that late spring (around DoY 150) is 
optimal for estimation of taxonomic and phenological traits in these 
grassland systems. These dates coincided with maximum species and 
phenological diversity at both sites. Late summer sampling (DoY 220 
and 232 during post-NDVI-max) also proved productive at Dawcombe, 
although data was not collected on comparable dates for Silwood due to 
the site management regime. Using the mixed model approach, we 
found that none of the six metrics displayed a consistent relationship to 
spectral variance over time, further confirming that there is a temporal 
dependence in the relationship. 

However, at the low species diversity site, Silwood, the best models 
(DoY 156) consistently predicted a negative relationship between the 

Fig. 7. Mean-CoV and spectral-regions-CoV over time, with linear model re-
sults describing the temporal increase at the site level. 
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metrics and spectral variance, for five out of six of the metrics (none of 
the models predicted well Species Evenness). At Dawcombe, regardless 
of the sampling time, for the best models, there was always a positive 
relationship between spectral variance and the metrics; a result that 
supports the SVH (note that species and phenological evenness should 
under the hypothesis display a negative relationship, as low measures of 
evenness represent more varied communities). 

We proposed that grassland community phenological dynamics 
could be responsible for some of the variation in spectral variance. We 
tested this hypothesis using our own phenological metrics and looked for 
interactions between these metrics and the species-based metrics in a 
mixed modelling approach. However, we found no significant interac-
tion terms, implying that phenology-based spectral signals are not 
operating systematically across the growing season either to detract 
from species-based signals or to enhance them. 

When considering the overall trend in spectral variance between 
sites, despite Silwood and Dawcombe displaying low and high taxo-
nomic and phenological diversity, respectively, the mean-CoV values at 
the site level were marginally higher at Silwood (Fig. 7) clearly 
demonstrating that, in this instance, the site with the higher diversity 
did not have a higher spectral variance. 

4.2. Taxonomic and phenological dynamics between sites 

The trends in taxonomic and phenology metrics show how grasslands 

can display diverse temporal dynamics in terms of the seasonal devel-
opment of their community composition which may have effects on our 
ability to monitor them using remote sensing techniques and the SVH. 
Judging from these results if we want to capture the full extent of 
taxonomic and phenological diversity we should sample just before and 
during NDVI-max. We speculate that both spring and summer emerging 
species are occurring simultaneously at this time, thus maximising 
measures of both species and phenological diversity. We observed that 
at Silwood the phenology and taxonomic metrics were more strongly 
correlated across the season than at Dawcombe (Fig. 4). This suggests 
that at Silwood phenological diversity follows seasonal species turnover 
whereas at Dawcombe there is a more complex relationship. This 
complexity could be a direct result of the higher species diversity of the 
site or the type of species present. It could also reflect other phenomena 
such as assortative mating and the development of discrete sub- 
populations that over time become reproductively isolated (Elzinga 
et al., 2007). 

4.3. Mature leaves as drivers of spectral variance 

Across the growing season, at the site level an increase in spectral 
variance was observed, which was found to be independent of the 
taxonomic and phenological based metrics. Rather spectral variance was 
found to be partly driven by the occurrence of plant parts in MAT(3) 
phenology stage. There are different possible interpretations of this 

Fig. 8. Adjusted r2 of the simple uni-temporal linear permutation models (spectral variance = f(diversity metric) using the spectral regions approach.  
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Table 4 
Results of the significant uni-temporal permutation models at p < 0.05. Results that do not support the SVH are highlighted in grey. 

Site Time 
Point DoY Satellite derived 

phenology stage Community metric Spectral 
variable

(Coefficient) 
Intercept

(Coefficient) 
     Slope

adjusted r2 p value

Dawcombe 3 136 Pre-NDVI-max Species evenness NIR-mean-
CoV 8.652 -13.775 0.345 0.043

Dawcombe 9 220 Post-NDVI-max Species diversity mean-CoV 31.025 7.716 0.387 0.032

Dawcombe 9 220 Post-NDVI-max Species diversity NIR-mean-
CoV 28.028 6.770 0.353 0.041

Dawcombe 9 220 Post-NDVI-max Species diversity SWIR-mean-
CoV 33.774 8.797 0.397 0.030

Dawcombe 9 220 Post-NDVI-max Species diversity vis-mean-
CoV 27.855 6.006 0.398 0.030

Dawcombe 3 136 Pre-NDVI-max Phenological 
richness mean-CoV 11.055 2.129 0.345 0.043

Dawcombe 3 136 Pre-NDVI-max Phenological 
richness

SWIR-mean-
CoV 12.307 2.676 0.387 0.032

Dawcombe 10 232 Post-NDVI-max Phenological 
evenness mean-CoV 27.107 -129.600 0.519 0.011

Dawcombe 10 232 Post-NDVI-max Phenological 
evenness

NIR-mean-
CoV 23.407 -115.058 0.493 0.014

Dawcombe 10 232 Post-NDVI-max Phenological 
evenness

SWIR-mean-
CoV 29.626 -144.397 0.507 0.013

Dawcombe 10 232 Post-NDVI-max Phenological 
evenness

vis-mean-
CoV 26.114 -109.356 0.578 0.006

Silwood 3 156 NDVI-max Species richness mean-CoV 13.237 -0.803 0.521 0.011

Silwood 3 156 NDVI-max Species richness NIR-mean-
CoV 9.453 -0.712 0.449 0.020

Silwood 3 156 NDVI-max Species richness SWIR-mean-
CoV 15.341 -0.892 0.337 0.046

Silwood 3 156 NDVI-max Species richness vis-mean-
CoV 13.791 -0.688 0.342 0.044

Silwood 3 156 NDVI-max Species diversity mean-CoV 13.237 -1.029 0.433 0.023

Silwood 3 156 NDVI-max Species diversity NIR-mean-
CoV 9.453 -1.024 0.499 0.013

Silwood 3 156 NDVI-max Phenological 
richness mean-CoV 13.237 -1.528 0.626 0.004

Silwood 3 156 NDVI-max Phenological 
richness

NIR-mean-
CoV 9.453 -1.490 0.682 0.002

Silwood 3 156 NDVI-max Phenological 
richness

SWIR-mean-
CoV 15.341 -1.707 0.418 0.026

Silwood 3 156 NDVI-max Phenological 
evenness mean-CoV 13.237 9.911 0.371 0.036

Silwood 3 156 NDVI-max Phenological 
evenness

SWIR-
means-CoV 15.341 12.890 0.360 0.039

Silwood 3 156 NDVI-max Phenological 
diversity mean-CoV 13.237 -0.051 0.478 0.016

Silwood 3 156 NDVI-max Phenological 
diversity

NIR-mean-
CoV 9.453 -0.059 0.787 0.000

Silwood 3 156 NDVI-max Phenological 
diversity

vis-mean-
CoV 13.791 -0.046 0.365 0.038
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result. Firstly, mature leaves of plants could, in fact, be more spectrally 
variable than other leaf growth stages. Another perspective is that when 
plants are in their mature stages canopy structural attributes contribute 
to spectral variance through self-shading. This problem is difficult to 
eliminate in mixed ‘pixel’ situations, but if the pixel sizes were small 
enough (i.e., those obtained through drone acquisition), this problem 
could be reduced through removal of low NDVI ‘shade’ pixels, in a 
similar way to soil correction techniques (Gholizadeh et al., 2018). 
Additionally, as canopies develop over time, they could become more 
spectrally variable due to vertical complexity (Conti et al., 2021). The 

mixed model with the highest explained variance by the fixed terms 
(MAT(3) and species diversity) was in the NIR spectral region. This 
suggests that canopy traits such as LAI and leaf angle distribution could 
be influential. 

Irrespective of the ultimate driver of spectral variance associated 
with the presence of mature leaves, the observed underlying seasonal 
increase in spectral variance needs to be taken into account when 
sampling across dates for the purposes of taxonomic diversity evaluation 
as it will likely confound the desired signal. The observed interaction 
effect of species diversity and mature leaves implies that the usefulness 
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Fig. 9. Adjusted r2 of the simple uni-temporal linear permutation models (spectral variance = f(metric) using the hyperspectral approach. Significant wavelengths 
are shown in colour; non-significant in grey. 
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of spectral variance as a surrogate for species diversity is dependent on 
the extent to which plant species are synchronous in terms of their 
display of mature leaves. 

4.4. Issues of scale in estimations of species diversity 

One of the major challenges in testing the SVH is that the strength of 
findings may rely on both the temporal and spatial scale of the obser-
vations. Here we investigated whether the species diversity of small 
grassland plots could be predicted using very high resolution (10 cm2) 
simulated pixels. A similar study in grasslands showed significant cor-
relations between spectral variance and species diversity at single points 
in time (Wang et al., 2018) and demonstrated that spectral variance 
calculated using the smallest pixels (1mm2) had the strongest relation-
ship to taxonomic-based metrics, with the relationship declining as pixel 
size increased and 10 cm2 pixels being the largest size at which the 
relationship held. A possible explanation for this decline in the rela-
tionship with increased scale is that species diversity metrics per quadrat 
may not be well aligned to the spectral data. Consider the situation 
where one quadrat has many species but they are small and evenly 
distributed throughout the quadrat. This situation is typical of the 
quadrats at Dawcombe in the species rich calcareous grassland. The 
spectral diversity of this quadrat at 10 × 10 cm pixel resolution could be 
very low, as each of the pixels are very similar. Compare this to a quadrat 
with only two species that are distributed in clumps and spectrally dis-
similar. In contrast the spectral diversity of this quadrat could be high. 
To adequately assess community complexity using reflectance data our 
plant diversity metrics need to be robust in light of this type of dilemma 
with consideration given to the appropriate pixel size scaling to the 
community at hand. 

We tested the SVH using both the spectral regions approach and the 
hyperspectral approach. In this instance, the models fitted using the 
spectral variance of very narrow wavelengths did not perform better, or 
provide more insight, than using broad spectral bands (regions) in terms 
of the timing of sampling nor the taxonomic or phenological metrics. 
Wang et al., 2018 also showed that summary measures of variance taken 
across the spectrum were sufficient to predict species diversity. How-
ever, other previous studies have demonstrated that species discrimi-
nation is possible only by small differences in reflectance in narrow 

bands (Kokaly et al., 2003; Schmidt and Skidmore, 2003). These results 
suggest that high spectral resolution data may be less important for di-
versity studies than for detecting species classes. 

4.5. Challenges and further study: other sources of spectral variance in 
grasslands 

Diversity in temperate grasslands has been shown to be a product of 
structural lack of species dominance in the canopy and light ‘sharing’ 
(Borer et al., 2014; Pulungan et al., 2019). Diverse grasslands by 
consequence have sparser canopies, are lower in absolute biomass and 
are usually found in soils lower in nutrients (which determines the 
absence of nitrophiles, that tend to dominate the canopy) (Crawley 
et al., 2005; Silvertown et al., 2006). Grasslands that follow this defi-
nition may be detectable by virtue of their canopy structural parameters 
such as height and LAI (Stenzel et al., 2017). It is possible that the 
negative relationship between spectral variance and the diversity met-
rics at Silwood is linked to these variables. Self-shading or vertical 
complexity as a source of spectral variation in high biomass swards 
could be additional sources of variation at this small scale. At this site, 
high spectral variance was found in high fertilizer addition plots with 
single species (LUFAll at DoY 210) alongside a large seasonal growth in 
CoV (model slope 0.23–0.29 depending on spectral region, see supple-
mentary material table B1). In this instance, we could say that high 
levels of intra-specific spectral variation are displayed as this change is 
not associated with changes in species composition. 

The principal challenge in interpreting the results of this study is that 
we don’t know the relative importance of leaf and canopy traits in 
driving spectral variance over time. A future option would be to monitor 
biomass variation both between sampling points and within a sampling 
unit. It is obviously impossible to monitor changes in biomass within a 
quadrat using destructive sampling techniques. However, biomass 
models using non-destructive measures of LAI and NDVI, in partnership 
with radiative transfer modelling, have been shown to provide reason-
ably accurate time-series of fluctuations (Punalekar et al., 2018). Some 
traits could therefore be simulated from spectral data. Future studies 
into the relationship between spectral variance and diversity metrics 
should attempt to incorporate at least some other leaf and canopy traits. 

Temporal variability in the relationship between floristic patterns 

Fig. 10. Left: Forest plot showing the standardised effect sizes of the fixed terms in the mixed model; percent mature leaves (MAT(3)) species diversity and their 
interaction term. 
Right: Significant interaction effect of MAT(3) and species diversity on mean spectral variance. Prediction lines with confidence intervals show values of species 
diversity at extremes of the data set (Dt = 1 and 13). MAT(3) is scaled with values ranging from − 2 = 0% and + 3 = 100%). 
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and spectral response in grasslands have been demonstrated in other 
studies using multi-temporal hyperspectral sampling and the physical 
model, PROSAIL (Feilhauer et al., 2017). In this case, the driver of 
spectral variability was found to be local resource stressors (i.e., leaf 
dehydration) and had little to do with changes in the actual canopy 
composition. In other multi-temporal studies, seasonal burning of the 
sward was proposed to be responsible for the failure of spectral variance 
to predict species diversity in some years (Gholizadeh et al., 2020). 
Large scale disturbance events could be associated with a re-setting of 
phenological niche partitioning that drives phenological diversity 
causing the relationship between spectral variance and plant community 
diversity to break down. 

The observation that the amount of data cleaning changed the 
strength of the relationship between spectral variance and the taxo-
nomic and phenology metrics also deserves further investigation. We 
may expect that in the early part of the growing season bare soil may be 
present in certain sub-quadrats. By recording total vegetation cover per 
plot it would be possible to infer if reflectance measurements were being 
affected by the present of bare ground. Later in the season, some plants 
with erect growth forms could cast shadow on other plants that display a 
more recumbent habit. Alongside erroneous data, these are the kinds of 
spectra that require filtering from the dataset. Ensuring the correct level 
of data cleaning and the most appropriate methods remain significant 
challenges. 

5. Conclusion 

Results of this study suggest that spatial variability in reflectance 
fails to hold across space and time as a predictor of species diversity in 
grasslands. It appears that at a single point in time stochastic combi-
nations of species and/or phenological traits of canopies can drive 
spectral diversity. This may explain the instability of previous studies 
that examine similar questions. We observe that for these grasslands the 
canopy stage MAT(3) is positively correlated with canopy spectral 
variance over the season and that if this canopy stage is accounted for 
there may be an opportunity to predict well species diversity using these 
data. The full reasons for these observations remain unclear and we 
highlight the need for simultaneous collection of some leaf and canopy 
traits in future similar studies to help determine the cause. 

The fact that species and phenological properties of canopies were 
comparably estimated in the uni-temporal models suggests that spectral 
variance may be at least as suitable for looking at phenological proper-
ties as taxonomic ones. Establishing a link between spectral variance and 
phenological patterning of grassland communities would be an impor-
tant addition to the study of plant phenology and conservation biology 
(Morellato et al., 2016) as well as furthering our understanding of the 
effects of climate change on species phenological partitioning. 

Under current knowledge, application of the SVH to within-site 
monitoring of taxonomic diversity should be approached with caution. 
More studies are required that incorporate multiple sampling dates, at 
differing spatial scales, to determine if the relationship is stable enough 
to be useful in ecological evaluations. However, verifying the results of 
this study by expanding the geographical extent of detailed multi- 
temporal studies will remain a significant challenge due to the time- 
consuming nature of repeat botanical and spectral sampling at a 
gradient of spatial resolutions. 
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Möckel, T., Dalmayne, J., Schmid, B.C., Prentice, H.C., Hall, K., 2016. Airborne 
hyperspectral data predict fine-scale plant species diversity in grazed dry grasslands. 
Remote Sens. 8 (2), 1–19 [Online]. https://doi.org/10.3390/rs8020133. 

Morellato, L.P.C., Alberton, B., Alvarado, S.T., Borges, B., Buisson, E., Camargo, M.G.G., 
Cancian, L.F., Carstensen, D.W., Escobar, D.F.E., Leite, P.T.P., Mendoza, I., Rocha, N. 
M.W.B., Soares, N.C., Silva, T.S.F., Staggemeier, V.G., Streher, A.S., Vargas, B.C., 
Peres, C.A., 2016. Linking plant phenology to conservation biology. Biol. Conserv. 
195, 60–72. https://doi.org/10.1016/j.biocon.2015.12.033. 

Morris, E.K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T.S., Meiners, T., 
Müller, C., Obermaier, E., Prati, D., Socher, S.A., Sonnemann, I., Wäschke, N., 
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