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1. Introduction
Coupling functions are widely used constructs in space physics designed to quantify the effect of given set of 
solar wind conditions incident upon the near-Earth space environment, the magnetosphere. They do not try to 
allow for every physical mechanism involved explicitly, rather they attempt to capture and amalgamate the key 
drivers and explain a large fraction of the variance of a terrestrial space weather index or indicator. Correlations 
between interplanetary parameters and terrestrial disturbance indices became possible after the first spacecraft 
to visit interplanetary space had acquired sufficient data (e.g., Arnoldy, 1971) and the concept of combining pa-
rameters into a coupling function that allows for the different influences on terrestrial space-weather disturbance 
was first introduced in the PhD thesis of Perreault (1974). This led to the much-used “epsilon factor” coupling 
function, ε (Perreault & Akasofu, 1978). Unfortunately, there was an error in the theoretical basis for ε (Lock-
wood, 2019) which causes it to perform significantly less well, on all timescales, than other coupling functions 
(Finch & Lockwood, 2007). A large number of alternative formulations have been proposed since (see reviews by 
Newell et al. [2007], McPherron, et al. [2015], and Lockwood and McWilliams [2021b]). Some of these coupling 
functions are based on theory, others are empirical fits to observations. In reality, most are a mixture of both ap-
proaches, with theory guiding the selection of parameters for empirical coupling functions (and the mathematical 
formulation used to combine them), whereas theoretically -derived coupling functions often use coefficients, 
branching ratios or exponents that are taken from observations. Coupling functions have also been derived and/or 
tested using global numerical MHD simulations of the magnetosphere (e.g., Wang et al., 2014).

For all coupling functions, correlation with one or more terrestrial space weather disturbance index has tradition-
ally been used as the metric by which their merit and performance is evaluated. In the past, not much attention 
was paid to the effects of this choice of performance metric, nor the effects of averaging timescale, nor the fact 
that different parts, features and indices of the coupled magnetosphere-ionosphere-thermosphere system respond 
differently to a given set of conditions. In addition, when building a space weather climatology, we will need 
to know the form of the occurrence probability distributions of indicators of space weather phenomena in or-
der to predict probabilities of certain conditions, events and integrated effects (Lockwood et al., 2019b, 2019c). 
However, little attention has been given to matching the distributions of a proposed coupling functions to those 
of the space weather indicator that they are designed to predict. Studies of coupling between the solar wind and 
the magnetosphere are now increasingly applying systems analysis and machine-learning techniques (e.g., Bor-
ovsky, 2021a; Borovsky & Osmane, 2019; Camporeale, 2019; McGranaghan et al., 2017; Stephens et al., 2020; 
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see also collection of papers edited by Camporeale et al. [2018]). This makes it very timely to take a detailed look 
at coupling functions, and the pitfalls inherent in their use, so that any mistakes and limitations are not carried 
forward and built into these new techniques.

A limitation of correlation studies that had not received much attention, at least not until recently, is “overfit-
ting” (Chicco, 2017). This is a recognized pitfall when signal-to-noise ratio in data is low, as is often the case 
in disciplines such as climate science (Knutti et al., 2006) or population growth and ecology (Knape & de Val-
pine, 2011). Overfitting occurs when a fit has too many degrees of freedom and it can start to fit to the noise in 
the training data which, by definition, is not the same as the noise in the test or operational data. As a result, the 
fit has reduced predictive accuracy and power. Overfitting is a particular problem for the generation of coupling 
functions because there are a great many sources of noise, not all of which have been recognized and some of 
which we cannot do much about, particularly considering the need to have large data sets to cover all potential 
regions of solar wind/magnetosphere parameter space.

In correlative studies of solar wind-magnetosphere coupling some major sources of noise are:

1.  Measurement errors and limitations in the interplanetary observations.
2.  Measurement errors and limitations in the observations of the terrestrial space weather indicator.
3.  Propagation errors. The lag between the interplanetary observations and the terrestrial response can generally 

be accommodated by studying the variation of the performance metric with applied lag between the interplan-
etary and terrestrial data (for example, using a lag correlogram—the correlation coefficient as a function of 
lag). More of a problem is spatial structure and/or temporal evolution in the solar wind and/or non-radial solar 
wind flow. All of these can cause the solar wind (SW) and/or interplanetary magnetic field (IMF) detected 
by the spacecraft to be different to that incident upon the magnetosphere. In this context, we must remember 
that many upstream monitor satellites are in large halo orbits around the L1 Lagrange point and so are further 
from the Sun-Earth line than satellites in geocentric orbits around the Earth which is a relevant factor (e.g., 
Crooker et al., 1982).

4.  Effects of the bow shock and magnetosheath. In particular, the orientation of the shocked IMF in the magne-
tosheath at the dayside magnetopause is a critical factor in the coupling of energy, mass, and momentum into 
the magnetosphere and this may not always be simply related to the IMF orientation in the undisturbed solar 
wind. This difference is very likely to be highly dependent on the averaging timescale, τ.

5.  Systematic errors introduced by Earth's orbital characteristics. These include seasonal effects on the global 
conductivity distribution of the ionosphere, dipole tilt effects at the dayside magnetopause or on the tail lobes, 
on instantaneous antisunward flux transfer (and hence transpolar voltage; Lockwood et al., 2021), and on the 
warping of the cross-tail current sheet.

6.  Data gaps. These are often ignored on the grounds that their effects average out. That is often not the case 
because they are source of noise in correlation studies. In particular, they facilitate overfitting. Lockwood 
et al. (2019a) demonstrated errors (both random and systematic) introduced into optimum coupling functions 
by introducing synthetic data gaps into near-continuous data.

7.  Short data series. If the training data do not adequately cover the range of possible values the applicability of 
the coupling function will be compromised. Larger data sets also give greater statistical significance to fits, 
allow higher time resolution studies and give lower uncertainties.

8.  Time history and pre-conditioning. The fundamental idea inherent in the derivation of most coupling func-
tions is that there is a given terrestrial response to a given set of upstream conditions. In practice we known 
that, for example, the response of the tail in generating substorms to a given set of conditions is different after 
a prolonged period of northward IMF (that leaves a low open magnetospheric flux) compared to that follow-
ing period of southward IMF that has generated a large open flux. There are several other pre-conditioning 
mechanism that have been proposed, which are discussed in Section 13 of this paper. Preconditioning effects 
become a greater factor at lower averaging timescales, τ.

Several of these noise sources raise the issue of averaging timescale (τ) used for both the interplanetary and the 
terrestrial data. Correlations increase dramatically with averaging timescale, so that whereas correlation coeffi-
cients of r of 0.7 (i.e., the coupling function is explaining just r2 = 0.49 of the variance of the terrestrial indicator) 
is a reasonably good outcome for τ = 1 min, values of r of 0.98 (i.e., explaining r2 = 0.96 of the variance of the 
terrestrial indicator) can be achieved for τ = 1 year. There are a number of reasons for this. The greater numbers 
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of samples means that the effects of random transient fluctuations are reduced and statistical significance is 
increased. In addition, observation and propagation errors are averaged out and systematic orbital errors are 
reduced (and even averaged out completely for τ that is an integer number of full years). In addition, short-term 
preconditioning effects are averaged out.

The purpose of this article is not to evaluate and compare the many individual coupling functions that have been 
proposed. In general, they are quite similar in that the differences in their performance are relatively minor and, 
indeed, often not statistically significant. Furthermore, a coupling function that generates the largest r2 for one 
terrestrial indictor is often not optimum for another or for a different averaging timescale. Rather, this paper looks 
at general principles, limitations, and pitfalls.

2. Terrestrial Disturbance Indicators and Indices
This paper aims to exploit the large data set of interplanetary observations made since 1995, an interval dur-
ing which data gaps were both much fewer in number and much shorter in duration than before then (Lock-
wood et al., 2019a). This requires comparison with terrestrial space weather indicators that have been available 
throughout that interval and that are homogeneous, in that they have not changed to any significant extent in their 
accuracy, resolution, region of coverage, method of construction, or dynamic range. These studies also require 
indicators that are, where possible, global so that results are not specific to a restricted region and ideally have no 
seasonal effects. This does not leave a great many possibilities.

For global geomagnetic indices there are the kp (and corresponding ap) and am indices, both derived from the 
range of variation in the horizontal field component in 3-hr intervals, as detected by mid-latitude stations. Of 
these kp (and hence ap) are not suitable, partly because their construction involves mapping the observations back 
to what would have been observed by the reference Niemegk station using look-up tables before averaging. This 
imprints the characteristics of the Niemegk site and location on the index and so, although they are measured by a 
network of stations across the globe, ap and kp do not have a global response. In addition, the network of stations 
used to generate them is clustered and not uniform (and predominantly northern hemisphere) and has changed 
several times during the interval of interest. In contrast, the compilation of the am index has remained relatively 
homogeneous and employs two rings of nearly equispaced stations at mid-latitudes, one in each hemisphere 
(Mayaud, 1980). It also deploys weighting functions to minimize the effects of the relatively small inhomogenei-
ties in the rings (in particular, the large longitudinal gap in the southern hemisphere ring caused by the Pacific 
ocean). This makes the response of the am index highly constant as a function of both Universal Time (UT) and 
time-of-year, whereas kp and ap have strong UT and time-of-year variations which would be sources of noise in 
correlation studies (Lockwood, Chambodut, et al., 2019). Hence am is ideal for coupling function studies, other 
than its major limitation that it is only 3-hourly in resolution.

For higher time resolution geomagnetic indices, we have 1-min values of the auroral electrojet indices, AU, AL 
and AE (Davis & Sugiura, 1966). These are generated by a ring of 12 auroral stations in the northern hemisphere. 
Southern hemisphere equivalents have been generated for limited intervals but large longitudinal gaps between 
stations, caused by oceans, give them a strong UT variation (Maclennan et al., 1991; Weygand & Zesta, 2008). Of 
particular importance is AL which becomes increasingly negative as the nightside auroral electrojet intensifies, 
making it a sensitive monitor of the substorm current wedge. A limitation of AL is that when terrestrial activity is 
high the auroral oval moves equatorward of the stations, so very large activity is underestimated. This is overcome 
by the SuperMAG SML index, constructed in the same way as AL but using all available northern hemisphere 
mid-latitude stations (typically 100 in number; Newell & Gjerloev, 2011). The resulting advantages of SML over 
AL have been demonstrated and discussed by Bergin et al. (2020). We here have carried out studies using both 
SML and AL and results are often not significantly different and in most cases we only show the results for SML. 
The major limitation of both indices is the fact that they are constructed from northern-hemisphere observations 
only and this gives them a seasonal variation that is a noise factor in correlation studies and is only averaged out 
by averaging timescales that are an integer number of whole years. Note that, in theory, both AL and SML can 
have positive values; however, in the years 1996–2020 (inclusive) used here, only 53 out of 13,150,017 valid 
1-min SML samples were positive and so −SML essentially behaves in the same way as a coupling function, that 
is, having a minimum value of zero and increasing with the level of activity.
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For studies of the ring current, the Dst index is widely used, compiled from a ring of four near-equatorial stations. 
This small number of stations gives Dst a marked UT variation for which there are first-order corrections (Takalo 
& Mursula, 2001) but it is reliable only at hourly resolution. Alternatives are SYM-H which uses 11 low-latitude 
stations (nine in the northern hemisphere, two in the southern and is available at 1-min resolution) and the Su-
perMAG SMR index which uses all available stations (typically 100 in number) at magnetic latitudes between 
−50° and +50° with a magnetic latitude correction factor and is available at 1-min resolution (Newell & Gjerlo-
ev, 2012). The problem with all these indices for coupling function studies is that they respond not only to the ring 
current but also the magnetopause currents and the tail currents: this means that there are negative values caused 
by enhancements to the ring current or the cross-tail current and positive ones (of smaller magnitude) caused by 
compressions that enhance the magnetopause currents and bring them closer to the observing stations (Burton 
et al., 1975). Coupling functions on the other had have a baselevel of zero and only increasingly positive values 
as activity is enhanced. We here use the SuperMAG SMR index, but to make it suitable for coupling function 
studies we apply the correction that Burton et al. (1975) applied to Dst to remove the effects of the magnetopause 
currents, thereby obtaining a pressure-corrected Dst index, Dst*. Dst* is dominated by the ring current, with pre-
dominantly negative values that grow increasingly negative as activity is enhanced. Burton et al. (1975) derived 
Dst* = Dst − b(Psw)1/2 − c, where Psw is the solar wind dynamic pressure. Estimates of the optimum coefficients 
b and c vary slightly, and we employ the frequently used values by O'Brien and McPherron (2000) of b = 0.76 
(for Psw in nPa) and c = 11 nT. Hourly means of the SMR index correlate very highly with Dst (r = 0.92), with a 
best-fit linear regression Dst = 1.031 × SMR − 3.911 nT which yields a correspondingly modified of SMR with a 
first order correction for magnetopause currents, SMR* = 7.04 × SMR − 10.7 nT, which is what we employ here.

A recent survey of data from the SuperDARN radars over the past 25 years has yielded a data set of hourly means 
of the transpolar voltage, ΦPC (Lockwood & McWilliams, 2021a). However, unlike the above geomagnetic indi-
ces, it cannot be used as a continuous data series. The reason is that the “map-potential” method used to derive 
ΦPC is a data assimilation technique employing a model of the ionospheric convection pattern, driven by the 
IMF orientation in the upstream solar wind. Tests against values from satellite over-passes show that an average 
number of radar echoes for the thirty 2-min pre-integrations in each hour must exceed 255 for the influence of the 
model in the ΦPC data to be reduced to an undetectable level and this condition leaves 65,133 usable hourly mean 
ΦPC values, about one third of the total obtained over 25 years. Despite not being a continuous record and despite 
the fact that it is only of hourly time resolution, these data are included in the present study because magnetic 
flux transport (i.e., voltage) is a known to be the key and fundamental part of the coupling of solar wind mass 
momentum and energy into the magnetosphere and Lockwood and McWilliams (2021b) have shown it requires a 
significantly different coupling function that geomagnetic indices.

3. Compiling a Coupling Function
When compiling a coupling function Cf for a given averaging timescale τ, a very important principle that has 
sometimes been overlooked is that parameters should be combined at the highest resolution available and then av-
eraged. Large errors can result if the data are averaged and then combined, particularly if they vary considerably 
during the averaging intervals. This general principle can be understood conceptually if, for example, we consider 
coupling functions that are aimed at quantifying the power input into the magnetosphere, Pα: over the averaging 
period τ, we want the total power input in that time, which by definition of the mean is

∫

�

0
���� = � × <��>� (1)

Similarly, if we use a coupling function aimed at quantifying the dayside reconnection voltage, ΦD we want the 
total magnetic flux opened in the period τ, which is the integral of ΦD over the interval, equal to τ × <ΦD>τ. A 
common functional form used by a great many proposed coupling functions (see Table 1 of Lockwood & McWil-
liams, 2021b) is

<�� >� =<��
⟂ ��sw� �

sw sin�(�∕2)>� (2)

where B⊥ is the transverse component of the IMF, perpendicular to the Sun-Earth line, VSW is the solar wind 
speed, ρSW is the solar wind mass density (ρSW = mSWNSW, where NSW is the number density and mSW is the mean 
ion mass); and θ is the clock angle of the IMF in the Geocentric Solar Magnetospheric (GSM) frame of reference, 
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defined as θ = tan−1(|BY|/Bz). It is important to note the difference between this definition and θ′ = tan−1(BY/Bz). 
The angles θ′ and θ increase together from 0 to π, but as θ′ increases further from π to 2π, θ decreases from π back 
down to 0. Thus whereas θ′ has a discontinuous change from 2π down to zero at purely northward IMF, there is no 
such discontinuous change in θ. This means that the extreme problems that arise for average θ′ for intervals that 
straddle the discontinuity at θ′ = 2π do not arise with θ. Adopting θ also means that there is no difference between 
IMF BY > 0 and BY < 0 as far as the coupling function is concerned. This may not be adequate because power 
input into the magnetosphere and/or magnetopause reconnection voltage and/or tail loading and unloading could 
all, potentially, be asymmetric with respect to the polarity of BY. However, it is vital we that avoid the 2π-to-zero 
discontinuity so we must use the definition θ given above and would have to employ a separate term to allow for 
any effects of the polarity of BY. The term sind(θ/2) is a commonly used example of an IMF orientation factor, 
F(θ), and is just one possibility of several proposed.

From above, we want the combine-then-average value over an interval of duration τ, <Cf>τ. In contrast, a full 
average-then-combine procedure would yield

[�∗
� ]� = [�⟂]�� ⋅ <�sw >�

� ⋅ <�sw >�
� ⋅ sin�([�]�∕2) (3)

which uses the formulae

[�]� = tan−1(|<�� >� |∕ <��>� ) (4)

and

[�⟂]� = (< �� >2
� + < �� >2

� )
1∕2 (5)

Figure 1a of Lockwood and McWilliams (2021b) demonstrates that <Cf>τ, from Equation 2, and [Cf*]τ, from 
Equations 3 to 5, are not only different, they are often very poorly correlated. This means, given that <Cf>τ is 
what we require, that an average-then-combine procedure can introduce considerable noise into the correlation 
and hence considerable error into the derived coupling function.

Lockwood and McWilliams  (2021b) show that the major errors in [Cf*]τ, compared to the required value of 
<Cf>τ, largely arise from the sind([θ]τ/2) term and from using [θ]τ from Equation 4, rather than computing θ at the 
highest available time resolution, then combining all the parameters to compute Cf and only then averaging. There 
is a similar but smaller problem with using Equation 5 to compute B⊥ = (BZ

2 + BY
2)1/2 and McPherron et al. (2013) 

and Lockwood and McWilliams (2021b) recommend that it is computed at the highest available time resolution 
before inclusion in Cf.

There is, however, another problem that arises because, in general, there is a difference between “Hölder means” 
(also called “power means”) [<xp>τ]1/p of a general variable x and the corresponding arithmetic means <x>τ and 
hence between <xp>τ and <x>τ

p. Only in the special cases that the exponent p = 1 and/or that x is constant over 
the interval τ, does <x>τ

p exactly equal <xp>τ. However, Lockwood and McWilliams (2021b) show that p is close 
enough to unity and/or the variability over the intervals of interest small enough to make <x>τ

p ≈ <xp>τ a valid 
approximation for x of B⊥, ρsw, and Vsw. However, this is not valid for sind(θ/2). This is because of the greater 
variability of sin(θ/2) compared to the other terms, a problem made worse if large d is used (values of d up to 9 
have been proposed in the literature). This makes it valid to use

[� ′
� ]� =< �⟂ >�

� ⋅ < �sw >�
� ⋅ < �sw >�

� ⋅ < sin�(�∕2) >� (6)

This is helpful because there is a problem in using Equation 2 with an iterative procedure to evaluate optimum 
values of the exponents: the average would have to be re-computed at the start of each round of the iteration, 
which takes considerable computer time when dealing with large numbers of samples (25 years' data at 1-min 
resolution is over 13 million samples). More importantly, this is likely to cause the iteration to fail to converge to 
within the required accuracy, especially when noting that the intervals that have to be excluded, and be treated as 
a data gap, because they do not meet a set error requirement also change with the exponent, as is discussed below.

The procedure adopted here to implement Equation 6 is that used by Lockwood and McWilliams (2021b). Spe-
cifically, we use a fixed d that is varied between 1 and 9 (which covers almost all of the proposed values in 
the literature) in steps of 0.1. For each d the values of <sind(θ/2)>τ are pre-calculated. Equation 6 is then used 
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with the Nelder-Mead simplex search method (Lagarias et al., 1998; Nelder 
& Mead, 1965) to find the combination of a, b, and c that maximizes the 
performance metric of choice for each d. (Lockwood and McWilliams use 
correlation coefficient for this but other performance metrics could be used). 
A version of the test proposed by Vasyliunas et al. (1982) is then employed 
to determine the value of d (which sets the required values of a, b, and c) that 
gives linearity of <Cf>τ with <T>τ, where T is the optimally- lagged terrestri-
al index that we wish to predict. This procedure is outlined in Section 3.3 of 
Lockwood and McWilliams (2021b) and here we just note that the polynomi-
al fitting used to derive the d required (and hence a, b, and c) can be weighted 
to give linearity over the whole range of T or over a selected smaller range of 
T, based on the desired application of the coupling function.

Data gaps are often neglected in solar wind-magnetosphere coupling stud-
ies on the pretext that their effects average out. In reality, they add noise to 
correlation studies and facilitate overfitting. Lockwood et al. (2019a) studied 
their effect on coupling functions by introducing synthetic data gaps into 
near-continuous data (with distributions of durations drawn from pre-1995 
data when data gaps were both more common and longer). In the text above, 
it was pointed out that the difference between <xp> and <x>p increases for a 
non-unity power p with the variability of x within the averaging period and, 
as explained below, that variability is also a key factor in determining what 
should be defined as a data gap in averaged data. We can study the variabil-
ity of interplanetary parameters by looking at their autocorrelation functions 
(a.c.f.s) as a function of lag time. These are presented in Figure 1, which is 
an extended and expanded version of Figure 1a of Lockwood et al. (2019a) 
(see also survey by Maggiolo et al. [2017]). It can be seen that the solar wind 
speed, VSW has the highest persistence of all the interplanetary parameters 
because its a.c.f. (in blue) declines least rapidly with lag time. VSW also shows 

the strongest peaks associated with solar rotation effects with a significant peak near 27 days and clear harmonics 
at 54 and 81 days. The most variable parameter, with the lowest persistence, is the IMF orientation factor sin(θ/2), 
the a.c.f. for which is shown in orange.

As well as the other interplanetary parameters, (the transverse IMF B⊥ in mauve, the solar wind mass density ρSW 
in green, the solar wind speed VSW in blue, and the IMF orientation factor sin(θ/2) in orange), Figure 1 shows the 
a.c.f.s for three example coupling functions. The black line is for the energy input to the magnetosphere estimate 
by Vasyliunas et al. (1982), Pα, for a coupling exponent α = 1/3 (the one free fit parameter in Pα), which yields 
a = 2/3, b = 1/3, and c = 5/3, for which the optimum IMF orientation term exponent is found to be d = 4. In 
addition, the dashed black line shows the same coupling function but with d = 2 to highlight the effect of varying 
d. A third coupling function is presented by the cyan line: this is the empirical coupling function CBEA of Boyle 
et al. (1997) which was designed to predict transpolar voltages and uses additive terms:

�BEA = 10−4� 2
sw +11.7� sin3(�∕2) (7)

where Vsw is in km s−1 and B is in nT. This coupling function CBEA does not fit the commonly used formulation 
given in Equation 2. In particular, it requires use of an empirical “branching ratio” of (10−4/11.7) km−2 s2 nT, 
which is derived from a best-fit to available data. The effects of conditions moving into parameter space beyond 
the applicability of the derived empirical branching ratio would be considerable as one or other of the two terms 
could then dominate.

It is interesting how the a.c.f.s of the interplanetary parameters influence that of these three example coupling 
functions. For the higher d, Pα behaves rather like sin(θ/2), whereas for the lower d, the greater persistence of 
the other parameters reduces this tendency. Despite using a d of 3, CBEA has less variability (more persistence) 
because of the additive term in VSW

2.

Figure 1. (a) Autocorrelation functions (a.c.f.s) as a function of lag time 
(on a log scale) for 1-min samples of: (blue) solar wind speed, VSW; (green) 
solar wind mass density, ρSW; (mauve) the transverse component of the 
interplanetary magnetic field (IMF), B⊥; (orange) the IMF orientation factor 
sin(θ/2), where θ is the IMF clock angle in GSM coordinates; (black) the 
estimated power input to the magnetosphere Pα for a coupling exponent of 
α = 1/3 and d of 4; (black dashed) Pα for a coupling exponent of α = 1/3 and 
d of 2; and (cyan) the coupling function of Boyle et al. (1997) (see Equation 7 
of text). The vertical gray lines marks times of 10 min, 1 hr, 3 hr, 6 hr, 1 day, 
27 days, and 1 year.
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These a.c.f.s have an important implication for how we should handle data gaps. This is investigated directly 
in Figure 2, which shows the root mean square (r.m.s.) percentage errors found by synthetically inserting data 
gaps into continuous 1-min data and computing the error that they cause in the means, as was done by Lock-
wood et al.  (2019a) in their Figure 1b. For Pα, for example, data from the years 1996–2020 (inclusive) yield 
N = 5,153,517 10-min intervals in which all 10 1-min data integrations are available (in all the parameters re-
quired to compute Pα) and N = 589,293 1 hr intervals in which all 60 1-min data integrations are available. For 
each of these intervals, a fraction of the one-minute samples were removed at random and the mean computed 
for the remaining fraction f of samples and the percentage error, compared to the known mean for all samples, 
computed. This was repeated 10 times for each interval and the r.m.s. error, ε, for the 10N estimates for that f 
computed. Data gaps were introduced in such a way as to match the distribution of data gap durations that exists 
in the full data series. The blue line in Figure 2a shows that the high persistence of VSW means that just one of 
the 10 1-min samples gives a 10-min mean that has only a very small error (ε < 0.5%). Figure 2a shows that 
errors are larger for the other solar wind parameters which have lower persistence. To get ε below, for example, 
2% (the lowest horizontal gray line) requires at least 60% of ρSW samples in the 10-min interval, 90% of B⊥ and 
CBEA samples and all 10 samples of sin(θ/2) and of both the Pα estimates. The very small error introduced by 
VSW means that the errors for B⊥ and CBEA are almost identical. The effect on the two versions of the Pα coupling 
functions show that errors caused by the low persistence of the IMF orientation factor are considerably increased 
by a larger exponent d.

Figure 2b shows that errors are smaller by a factor of about 2 for the hourly means. For VSW just one sample in 
an hour still gives an error as small as 0.2%. However, to get the error below 2% requires at least 11% of the 60 
samples for ρSW, 51% for B⊥, and 75% for sin(θ/2). For the coupling functions CBEA requires 62%, and Pα requires 
more than 91% for d = 2 and more than 97.5% for d = 4. This effect of the persistence on the required number 
samples in an average value has been understood and exploited in the past: in particular, spacecraft telemetry 

Figure 2. The root mean square (r.m.s.) percentage errors, ε, in (a) 10-min and (b) 1-hr means of 1-min integrated data as 
a function of data availability within the averaging interval, f, for the same parameters as in Figure 1, shown using the same 
color scheme. The horizontal gray lines are uncertainties ε of 10%, 5%, and 2%, in both panels and the graphs set threshold 
requirements for f to meet those levels of uncertainty. The data in (b) are based on all 589,293 running (boxcar) hourly means 
in the Omni data for 1996–2020 (inclusive) for which all 60 1-min integrations of all parameters were available. The data 
in (a) are based on the 5,153,517 running 10-min means from the same interval for which all 10 1-min integrations of all 
parameters were available. For each of these running means, (1-f) samples were removed at random 10 times and the r.m.s. 
error thereby introduced computed by comparison with the value for all data (f = 1). (based on Figure 1b of Lockwood 
et al., 2019a).
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requirements have been minimized by reducing the sampling rate of high-persistence parameters such as VSW. 
However, it has not been used in coupling function studies. In particular, the exponent d has often been treated 
as a free fit parameter using the sind(θ/2) IMF orientation factor formulation, without allowance for the fact that 
increasing d increases the number of samples that should be considered as a data gap to a given required level of 
accuracy.

The effect of increasing the exponent d on the errors in coupling functions due to data gaps has not previously 
been considered. Lockwood et al. (2019a) show that interpolation to fill data gaps was the worst policy for dealing 
with them, and just ignoring their existence was actually preferable. Best practice is to define an acceptable limit 
to the error ε of the average values over the averaging interval τ and then only use samples that, from graphs like 
those in Figure 2, meet the corresponding requirement for fractional availability in the interval, f. Correlations 
should then be carried out using piecewise removal (before averaging) of the terrestrial data series at the time 
of the data gaps, allowing for the propagation lag (Finch & Lockwood, 2007). The analysis presented here has 
demonstrated that increasing d also increases the error in a coupling function that is introduced by data gaps. This 
additional noise makes overfitting more likely when d is large. Good practice to avoid this would be to ensure that 
all coupling function averages (for any d) are made from enough high resolution-samples to meet the set required 
accuracy for the highest d that you wish to try to use. This would ensure that the number and accuracy of the 
averaged data used would be independent of the d employed, which means that the merit of a given value of d can 
be tested without introducing data accuracy complications.

4. The Effects of the Location of the Upstream Monitor and the Limits to 
Predictability
As noted in Section 1, one potential source of noise in correlation studies, and hence of error in the derived cou-
pling function, is the propagation of the solar wind from the monitoring spacecraft to the vicinity of the Earth. 
One aspect of this is the required propagation lag from the spacecraft to the dayside bow shock, where the solar 
wind-magnetosphere interaction sequence begins. To some extent, this lag can be allowed for by varying the time 
lag and then using the optimum lag δt that generates peak performance metric (if that metric is correlation, then 
this is the peak of a lag correlogram). The difficulty is that the optimum lag changes with solar wind speed (and 
to a lesser extent direction) and the IMF orientation. This means that the duration of the intervals over which the 
correlations are taken is a factor: if this is interval is too long the variations in the true lag will introduce noise, 
but if the intervals are too short the correlation and its significance are reduced because the number of samples 
is reduced.

A more significant problem is that the spatial structure in interplanetary space and/or non-radial solar wind flows 
and/or evolution of the conditions during propagation mean that the conditions that impinge on the magneto-
sphere can be different from those that were observed by the upstream monitor. The most continuous data series 
on upstream interplanetary conditions comes from spacecraft in halo orbits around the L1 Lagrange point. In 
particular, the Advanced Composition Explorer (ACE), the Global Geoscience International Physics Laboratory 
(known as “Wind”) and the Deep Space Climate Observatory (DSCOVR) satellites have made observations from 
such orbits since 1996, 2004, and 2015, respectively. The studies by Crooker et al. (1982) and Walsh et al. (2019) 
show that distance RZY = (Z 2 + Y 2)1/2 of an L1 spacecraft (at coordinates X, Y, and Z in the Geocentric Solar 
Ecliptic, GSE, frame of reference) from the Sun-Earth line (the X-axis) had an influence on the correlation 
with the corresponding data in the magnetosheath. The ACE halo orbit keeps RZY below about 40 RE (where 1 
RE = 6,370 km is a mean Earth radius) and for DSCOVR RZY is below about 50 RE. Wind is in a larger Halo orbit 
with RZY up to about 100 RE. The X coordinates of these spacecraft vary between 194 RE and 264 RE. The studies 
show that the differences between conditions in the magnetosheath and as observed by an L1 spacecraft increase 
with the RZY of the spacecraft.

Figure 3 studies the effect of the location of the L1 monitor on coupling function performance by looking at 
correlations of one example coupling function with the AL and SML indices. The top panels are for hourly means, 
the middle panels for 10-min means and the bottom panels are for the basic 1-min integrations of the data. The 
coupling function used is the optimum fit of Cf (Equation 2) to SML (which was almost identical to the best fit for 
AL) found by Lockwood and McWilliams (2021b), with a = 0.662, b = 0.061, c = 1.746; and d = 5.20. A basket 
of other coupling functions were used and the results differed only in small details and the behavior discussed 
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here was the same in all cases. The left-hand column compares the distributions of correlation coefficient for Cf 
and SML (in blue) with those for Cf and AL (in red) for all 2-day intervals available in the 1996–2020 (inclusive) 
data set. The distributions for AL and SML are almost identical at all three averaging timescales, τ. The correla-
tions increase with τ, with the mean and mode values of the distribution both increasing. The other distributions 
in the left-hand panels will be discussed in the next section. The middle column of panels is for AL and the right 
hand column for SML: both consider the location of the L1 craft. The light gray areas are the overall distribution 
shown in the corresponding panel of the left hand column and the colored lines are subsets of the data sorted by 
the distance from the Sun-Earth line, RYZ. The data are divided into five quantile ranges of RYZ (i.e., each con-
taining 20% of the data). For both SML and AL, the distributions are close to that for all cases for the four data 
subsets with RYZ < 81 RE. In these cases (shown by the green, orange, blue and cyan lines), there are no systematic 

Figure 3. Distributions of correlation coefficients at optimum lags over 2-day intervals between an example coupling 
function and the AL and SML geomagnetic indices. The example used is the optimum coupling function Cf with the best-fit 
coefficients for SML found by Lockwood and McWilliams (2021b), Cf = B0.662(mswNsw)0.016Vsw

1.746 sin5.2(θ/2). The data are for 
1996–2018 (inclusive) for AL and 1996–2020 (inclusive) for SML. The bottom panels (g–i) are for 1-min integrations of data 
(τ = 1 min), the middle panels (d–f) for 10-min running means of the 1-min data (τ = 10 min), and the top panels (a–c) for 
1-hr running means of the 1-min data (τ = 60 min). For each 2-day interval, the correlations were evaluated at lags between 
the L1 data (propagated to the nose of the bow shock using the procedure of Weimer et al. [2003] and the geomagnetic index 
of between −80 and +120 min and the peak value used). The left-hand plots compare the distributions for all L1 data for AL 
(in red) and SML (in blue). These distributions are repeated by the light gray shaded areas for AL in the middle panels and 
for SML in the right-hand panels: also shown by the colored lines in these panels are the variations for five quantile ranges 
(i.e., 20% of the data in each) of RYZ = (Y 2 + Z 2)1/2, the distance of the L1 craft from the Sun-Earth line (the X-axis). The 
left-hand panels also show the distribution of correlations with SML for the same coupling function measured by THEMIS-B 
over the interval 2011–2018 when it was in the undisturbed solar wind (orange line) and in the magnetosheath (green line). 
The thin blue dashed line and dot-dash line are the corresponding distributions for the L1 data and SML for the same times 
(allowing for the optimum propagation delay) as the THEMIS-B data from, respectively, the undisturbed solar wind and the 
magnetosheath.
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changes with RYZ. However, there is a systematic change for the fifth quantile range RYZ ≥ 81 RE (the mauve lines) 
for which r values are consistently lower. Interestingly, the effect is different for AL and SML, with AL showing 
significantly more low values of r at all three averaging timescales. In contrast for SML, although the correlations 
significantly lower for RYZ ≥ 81 RE at τ = 1 min, the effect is, although still present, much smaller for the larger 
τ values. It is expected that the effect of large RYZ would become greater at lower τ as the averaging smooths 
out spatial structure in interplanetary space. We conclude that although the correlations do start to degrade at 
RYZ ≥ 81 RE there is no evidence that at lower RYZ the distance for the L1 monitor from the Sun-Earth line is 
introducing significant noise into the overall correlations.

As mentioned above, correlation coefficients are not the only metric by which a coupling function should be de-
rived and evaluated; indeed, it is sometimes not the best metric to use. A very important application of coupling 
functions is in predicting large space weather events, and correlation coefficient can be dominated by the core of 
the distribution of space weather indicators, rather than the large-event tail of that distribution. Figure 4 studies 
this distinction by employing a two-dimensional normalized histogram format that, hereafter, will be referred to 
as a “data-density plot.” This is used in preference to a scatter plot, in which information would be lost as many 
data points would be overplotted because they are so numerous. The fraction of all data points, n/Σn, in small 
bins is color-coded on a logarithmic scale: in all panels of Figure 4 the bins of width 0.05 along both axes. The 
low end of the color scale used is chosen to be just below the “one count level” (log10(1/Σn), that is, correspond-
ing to n = 1) to ensure that outlier data, with just one sample in a bin, show up as a blue pixel. Overlaid on the 
data density plots in Figure 4 are quantile-quantile (q-q) plots. These are a test of how alike two distributions (of 
general parameters x and y) are and the points of a q-q plot line up along the x = y diagonal if the distributions 
of x and y are identical. The form of any deviations from the diagonal in a q-q plot can be used to infer in what 
way the distributions differ. Figure 4 is for the SML index (normalized by dividing by its overall mean value, 
SML/<SML>) along the x-axis, and the similarly normalized coupling function Cf /<Cf> on the y-axis where Cf 
is the same as was used in Figure 3. The q-q plots show 1,000 quantiles, 0.1% apart, shown by the white dots 
connected by the thin red line. This means that the top/rightmost white dot in each panel is for the 99.9 percentile 
of both distributions. In each case, a lag correlogram is taken and the plot is for the optimum lag δt which gives 
the peak correlation, r: the δt and r values are given in each panel. Note that δt is the lag after the predicted arrival 
time of the measured Cf at the nose of the bow shock. The top row is for τ = 1 hr, the middle for τ = 10 min, and 
the bottom for τ = 1 min. The left-hand column is for all data, the middle column for the 20% of L1 data from 
closest to the Sun-Earth line (RYZ < 28 RE) and the right-hand plots for the 20% of L1 data from furthest away 
from the Sun-Earth line (RYZ ≥ 81 RE). The core of the data density plots give an overall indication of the level of 
agreement (also given by the correlation coefficient r) but the outliers (in blue) give an idea of the scatter for the 
largest events. For the all-data column on the left, the q-q plot for τ = 1 hr is very close to the ideal diagonal for 
all quantiles up to the 99.5 percentile. There is some small systematic deviation at the very lowest values, with 
the q-q plots below the line at the very lowest values and slightly above the above that. This is more pronounced 
for τ = 10 min and τ = 1 min and will be discussed later. However, above the 99.5 percentile (SML/<SML> above 
6) we see a slight but increasing deviation toward large Cf /<Cf>, which means the Cf distribution is very slightly 
“heavy-tailed” (also called “thick-tailed” or “fat-tailed”), compared to that for SML. In other words, this Cf tends 
to predict slightly too many of the very large SML events. The middle plot of the top row is again for hourly means 
but only for data taken close to the Sun-Earth line. Here the tail of the q-q plot remains close to the ideal line all 
the way to the 99.8 percentile and only start to show slight signs of a fat-tail Cf distribution at the 99.9 percentile. 
On the other hand, for the data taken furthest from the Sun-Earth line (the top right plot) the fat-tail of Cf is more 
pronounced and is for data above the 99.2 percentile. Hence, there is a tendency for all these data to predict too 
many large events, but the data density plots scatter around this trend is large. This behavior is essentially the 
same for τ = 10 min and τ = 1 min and is particularly pronounced for the latter and the deviation seen for the large 
RYZ data subset extends to close to the 50% percentile (the median, which is quite close to the mean SML), so the 
occurrence of all above-average events is overestimated. This shows the fat-tailed nature of the tail of the Cf dis-
tribution is worst at the larger RYZ values for the L1 satellite location, which is consistent with peak geoeffective 
solar wind conditions (very large Cf) passing over the spacecraft but then missing the Earth (which probably still 
receives large Cf, but not as large as seen by the spacecraft) and the SML enhancement is not as large as we would 
predict from the L1 data. The tendency can also be seen from the data density plot at large Cf. Note that there are 
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Figure 4. Data density plots overlaid with quantile-quantile (q-q) plots to compare the distributions of the normalized 
SML index (SML/<SML>, lagged by δt) and the example normalized coupling function Pα/<Pα> used in Figure 1 of 
Lockwood and McWilliams (2021b). The cyan dashed line in each panel is perfect agreement of lagged Pα and SML. The 
data are for 1996–2020 (inclusive) which yields Σn = 12,720,434 valid data pairs for τ = 1 min. As in Figure 3, the bottom 
panels (g–i) are for 1-min integrated data (τ = 1 min), the middle panels (d–f) for 10-min running means of the 1-min data 
(τ = 10 min), and the top panels (a–c) for 1-hr running means of the 1-min data (τ = 60 min). The left-hand plots are for all 
data, irrespective of the location of the L1 monitor. The middle panels are for the 20% of Pα samples closest to the Sun-Earth 
line (RYZ = (Y 2 + Z 2)1/2 < 28 RE) and the right-hand panels are for the 20% of Pα samples furthest from the Sun-Earth line 
(RYZ > 81 RE). The q-q plots use 1,000 quantiles, 0.1% apart, shown by the white dots, the largest value being the 99.9% 
quantile of both the Pα and SML distributions. The underlying data density plots shows the fraction of samples n/Σn, colored 
in bins that are 0.05 wide in both the Pα/<Pα> and SML/<SML> in the left hand column (for the full data set) and 0.10 wide 
in the other two columns (for which Σn is lower by a factor of 5 than for the full data set). The lower end of the logarithmic 
color scales used is just below the one count level (i.e., for n = 1). The peak correlation r and the lag δt (between predicted 
arrival of the solar wind at the nose of the bow shock and the SML response) giving peak correlation is also given in each 
panel.
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far fewer examples of the opposite happening, that is, that the spacecraft fails to see the largest Cf that hits the 
Earth. This asymmetry is the cause of the deviation of the q-q plot. Hence this is more than a matter of spatial 
structure in the solar wind and random chance as that would enhance Cf at Earth as much and as often as reduce it.

Hence the q-q plots and the data density plots at large values (meaning typically 5 times the mean and above) 
indicate that increased distance from the Sun-Earth line of an L1 monitor does somewhat reduce our ability to 
predict or quantify the largest events. Note that this effect would not have been identified from the correlation 
coefficients alone.

5. Comparison of Correlations With Auroral Activity Indices Using L1 Spacecraft 
and Near-Earth Spacecraft
Walsh et  al.  (2019) make the point that coupling across the magnetopause depends on the properties of the 
near-magnetopause magnetosheath rather than those in interplanetary space and that the two differ because the 
solar wind and IMF are processed on crossing the bow shock and passing through the magnetosheath. We here 
investigate this, and the effect of spatial structure in the undisturbed solar wind, using data from the THEMIS-B 
spacecraft. THEMIS stands for Time History of Events and Macroscale Interactions during Substorms and for 
the time interval studied here (2011–2018, inclusive), the THEMIS-B spacecraft performed near-Earth orbits, 
between about 55 RE and 65 RE from Earth which resulted in it being in the undisturbed solar wind for approx-
imately 70% of the time, in the shocked solar wind of the magnetosheath about 15% of the time and inside the 
magnetosphere for the remaining 15%. Correlations of THEMIS-B data with auroral indices and with L1 data are 
investigated in this section using the same procedure as in the previous section for L1 data and auroral indices 
(i.e., by taking the peaks of the lag correlograms for 2-day segments of data).

Because of the near-circular orbits of THEMIS-B, the undisturbed solar wind data are at distances RYZ from 
the Sun-Earth line of between zero and 55RE (toward both the dawn and dusk flank of the magnetosphere). A 
study of correlation coefficients with SML data revealed no consistent changes with RYZ (not shown here). The 
THEMIS-B magnetosheath data are from between X of −25 RE and −50 RE (i.e., down-tail) and at similar ranges 
of Y values (in GSE), both positive and negative (i.e., on either flank) and at Z that precesses between −5 RE 
and +5 RE. Hence these are not promising locations from which to be calculating coupling functions, when one 
really wants to know the sheath conditions near the nose of the magnetosphere. However, although there will be 
differences between the conditions in the magnetosheath near the nose and at THEMIS-B, one does at least know 
that THEMIS is sampling solar wind that has impacted Earth's bow shock.

The orange and green lines in the left-hand panels of Figure 3 show the correlations between the SML index and 
the example coupling function Cf, this time computed from THEMIS-B data when it was in the undisturbed solar 
wind (orange line) or in the magnetosheath (green line). The same coupling function is used as in the other panels 
of Figure 3. The orange line should be compared with the thin dashed blue line that shows the corresponding 
distribution of correlations for Cf from the L1 data that were taken at the same time as the solar wind THEMIS-B 
data (allowing for the optimum propagation lag). Similarly, the green line should be compared with the thin dot-
dash blue line that shows the corresponding distribution of correlations for the L1 data taken at the same time as 
the sheath THEMIS-B data (again allowing for the optimum propagation lag).

There are a number of points to note from these comparisons that are seen at all three averaging timescales. 
First, comparing the distributions of r shown by the orange and blue lines one might infer that correlations using 
THEMIS-B data are lower than for L1 craft. Given that we expect THEMIS-B to be in the more favorable loca-
tion, with lower propagation errors, this would imply a lower accuracy of the THEMIS data. However, the L1 data 
set used was observed over the interval 1996–2020 and so contains data from solar cycle 23, which ended toward 
the end of 2008 and was a more active than cycle 24, during which the THEMIS-B data were taken (2011–2018). 
The lower correlations in the THEMIS-B data are caused by lower average levels of solar and space weather 
activity. Thus, coupling functions perform better when space weather activity is high. This will be demonstrated 
and discussed again later. Hence we need to compare the orange distributions with that shown by the dashed blue 
line which is for the subset of the L1 data that is simultaneous (allowing for propagation lag) with the THEMIS-B 
is in the undisturbed solar wind. These distributions are very similar at all three values of τ. Hence, it initially 
appears that the propagation from L1 to THEMIS-B is making only very small differences to the correlations. 
However, more detailed analysis shows that this is only true for the overall average performance, demonstrated 
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by the distribution of r values: it is not true for the individual correlations taken over 2-day intervals. For some of 
the 2-day intervals, the correlations for L1 data and THEMIS-B data with SML are essentially identical whereas 
in others they can differ greatly: the r.m.s. difference between the two for τ = 1 min, τ = 10 min, and τ = 1 hr 
was 0.15, 0.15, and 0.17 when THEMIS-B was in the undisturbed solar wind and 0.28, 0.28, and 0.32 when 
THEMIS-B was in the magnetosheath.

However, there are differences between the overall performance for the L1 and Near-Earth data. These are gen-
erally small for THEMIS-B in the solar wind and the most significant are for τ = 1 hr when THEMIS in the 
magnetosheath, an observing location that generated a significantly better distribution of correlations than the 
L1 data. This is demonstrated by the comparison of the green and dot-dash lines in Figure 3a. The correlations 
for THEMIS-B in the magnetosheath are similar to those for THEMIS-B in the undisturbed solar wind, but again 
there are differences for τ = 1 hr when better agreement is found with SML when THEMIS-B is in the magne-
tosheath than in the solar wind.

At all three locations (near L1, near-Earth in the undisturbed solar wind and down-tail in the magnetosheath) 
averaging over 10 min makes only marginal improvements to correlations with SML, whereas averaging over an 
hour makes significant improvements. This is expected, given that SML is enhanced during substorm expansion 
phases which is the response of the magnetosphere to the accumulation of open flux in the geomagnetic tail 
during the prior growth phase (McPherron, 1970; Milan, Grocott, et al., 2009; Milan, Hutchinson, et al., 2009) 
which usually lasts between about 15 and about 90 min (Partamies et al., 2013). H. Li et al. (2013) show that for 
very high open flux production rates, growth phases can last less than 10 min and for very low rates more than 
90 min; from their data we see 0.1% of growth phases last less than 10 min and whereas 64% last more than 1 hr 
but only 30% last more than 90 min. In addition, Li et al. show that the substorm expansion phases that follow 
growth phases lasting longer than an hour are considerably weaker (quantified by maximum auroral power). 
Hence τ = 1 hr should give higher correlation coefficients with SML by integrating the coupling function over 
more strong growth phases.

6. Comparisons of L1 Data and Near-Earth Interplanetary and Magnetosheath Data 
Indices
To understand better the correlation differences caused by spatial structure in the solar wind, Figures 5 and 6 
compare directly the data observed at L1 with that observed by the THEMIS-B spacecraft during the 2011–2018 
period. Figure 5 is for 10 min averages. The top row shows the distribution of correlation coefficients r between 
L1 data and the corresponding data recorded by THEMIS-B when in the undisturbed solar wind. The rows are 
for different parameters, from left to right: the IMF B, the solar wind number density Nsw, the solar wind speed 
Vsw, the IMF orientation factor sin(θ/2), and the example coupling function used in Figures 1 and 2, namely the 
Vasyliunas et al.  (1982) estimate of the energy input into the magnetosphere Pα with a coupling exponent of 
α = 1/3 and d = 4. The mean ion mass msw was assumed not to change between L1 and THEMIS and in com-
puting Pα for the THEMIS-B data. In each plot, the gray area is for all data and the blue and mauve distributions 
look at the distribution for below two, relatively low, global space weather activity levels. These are determined 
using the planetary 3-hourly am index, averaged over the 2-day period over which the corresponding correlation 
was taken. The mauve histogram is for <am> ≤ 40 nT and the blue line is for <am> ≤ 20 nT. The behavior seen 
in all the distributions is that the lower correlations are occurring at low activity levels, with most values below 
0.5 occurring at <am> ≤ 20 nT and almost all at <am> ≤ 40 nT. This effect is emphasized by the bottom row of 
panels in Figure 5. These panels show the scatter plots of the r values as a function of <am> for the 2-day interval 
they are computed over. It can be seen that lowest r values occur at low <am>. The 20 and 40 nT thresholds used 
in the upper panels are also shown. Superposed in cyan on the scatter plots are the mean values in six quantile 
ranges of <am>. They show that, on average, the correlation increases with larger am for B, NSW, and VSW, but 
only very slightly for the IMF orientation factor sin(θ/2) and Pα. The rise in correlations with am implies that 
there is less small-scale structure in the interplanetary medium when activity is high, consistent with the fact that 
high activity is driven by large-scale coherent interplanetary structures such as Coronal Mass Ejections (CMEs) 
and Corotating Interaction Regions (CIRs).

The loss of correlation between L1 and THEMIS-B can be caused by spatial structure but also could reflect 
random instrumental errors in both or either of the measurements made by the spacecraft. Note that systematic 
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calibration errors (in gain or offset) would not degrade the correlation between the two data series. The similarity 
of the correlation distributions for the different parameters strongly suggests that they have a common cause, such 
as spatial structure in the solar wind, rather than error in the various instruments that observed the parameters.

The middle panels are the same as the upper panels but are for THEMIS-B in the magnetosheath. The correlations 
with L1 data for B, NSW, and VSW are all lowered and in these cases the global activity level quantified by am 
appears to have little effect. The reduction in r varies with the location of THEMIS-B in the sheath and is caused 
by the processing of the plasma and field on crossing the bow shock and passing through the magnetosheath to 
the point of observation. However, the distribution of correlations with the L1 data for sin(θ/2) are very similar for 
THEMIS-B in the magnetosheath and THEMIS-B in the undisturbed solar wind. Theoretically, the clock angle 
in the undisturbed solar wind would be close to being conserved into the magnetosheath, for some simplified 

Figure 5. Peak correlation coefficients r between data from the near-Earth THEMIS-B spacecraft for the interval 2011–2019 
(inclusive) and the lagged Omni data set (from interplanetary spacecraft in halo orbits around the L1 point) for 8-hr intervals 
(which yields 48 fully independent samples in each correlation). This plot is for 10-point running (boxcar) means of 1-min 
integrations of the Omni data and corresponding means of the THEMIS-B data that have been linearly interpolated from 
the raw data (96-s integrations) to the times of the Omni data. The upper panel gives the distribution of peak correlation 
coefficients, r for when THEMIS-B is in the undisturbed solar wind. The middle panels are the corresponding distributions 
for when THEMIS-B is in the magnetosheath. The lower panels are scatter plots of r for the THEMIS-B data from the 
undisturbed solar wind as a function of the am geomagnetic index (interpolated linearly from the 3-hourly index values). 
The L1 satellite data are lagged using the optimum lag which yields peak correlation. Columns are for (a) the Interplanetary 
Magnetic Field (IMF), B; (b) the solar wind number density, Nsw; (c) the solar wind speed, Vsw; (d) the IMF orientation factor, 
sin(θ/2), where θ is the IMF clock angle in Geocentric Solar Magnetospheric (GSM) coordinates; and (e) an example of 
a coupling function, the Vasyliunas et al. (1982) power input into the magnetosphere estimate, Pα for a coupling exponent 
α = 1/3 and d = 4. Note that for Pα, the mean ion mass msw for the THEMIS-B data are taken to be the same as from the Omni 
data set. A correlation coefficient is assigned only if more than 90% of the possible 1-min data pairs are available for all the 
6 parameters, which yields 3,090 correlations for each parameter for when THEMIS-B is in the undisturbed solar wind and 
754 for when it is in the magnetosheath. In the upper plots, the histograms shaded gray are for all data, whereas the mauve 
and blue lines are histograms for mean am < 40 nT and mean am < 20 nT, respectively. The number of samples n in each bin 
is plotted as a ratio of is peak value. The mean value of r is also given. In the bottom panels, the am = 40 nT and am = 20 nT 
thresholds used in the upper panels are shown by mauve and blue vertical lines and the cyan dots are means of r and am in 6 
equispaced quantile ranges of the am index. The black lines in the upper two panels of part (e) give the distribution of r values 
between the optimally lagged L1 values of Pα and the SML index for this τ of 10 min. This distribution has been normalized 
to the n/nmax y-axis such that the area under the black line is the same as that of the gray area and gives a mean correlation 
between Pα and the SML of 0.531.
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situations but this is not generally the case and, in practice, although clock angle θ is only conserved to some 
degree, changes are introduced and can be quite large (Coleman, 2005; Crooker et al., 1985; Walsh et al., 2019; 
Zhang et al., 2019). Thus, it is somewhat surprising that the distributions of r for sin(θ/2) for THEMIS inside and 
outside the bow shock are so similar. Even more surprising, given the changes to the correlations for B, NSW and 
VSW caused by the processing in passing through the bow shock and magnetosheath, is that the coupling function 
Pα shows a similar distribution of correlations for THEMIS-B inside and outside the bow shock. This must reflect 
the dominant role in Pα (and all coupling functions) of the clock angle and the IMF orientation term.

Part (e) of Figure 5 gives an insight into where agreement between the coupling function Pα and the SML index 
is likely to be lost for this averaging timescale of 10 min. The mean correlation with the L1 value of Pα falls from 
unity at L1 to 0.71 in the near-Earth undisturbed solar wind which falls further to 0.66 in the magnetosheath and 
to 0.53 with SML The distributions of r reflect this fall in mean correlation and the mode values falling from unity 
to 0.86 in the near-Earth solar wind to 0.66 after crossing the bow shock and to 0.59 in the auroral electrojet. The 
end-to-end correlation caused by this interaction chain can only be as good as that of the weakest link and the 
similarity of the distributions of r with SML for L1, near-Earth and sheath observations (discussed in the previous 
section) implies that although some correlation is clearly lost because of spatial structure in interplanetary space 
and by the processing by traversal of the bow shock and sheath, the biggest uncertainty remains in accounting for 
the driving mechanisms of the auroral currents by the magnetosheath flow.

Figure 6 is the same as Figure 5 for hourly means. The most obvious difference is that correlations are all greatly 
enhanced. The same analysis of the loss of agreement can be applied. The mean correlation falls to 0.84 in near-
Earth undisturbed solar wind which falls further to 0.75 after crossing the bow shock and to 0.63 in the auroral 
electrojet. The mode values of the distributions of r fall to 0.94 in the near-Earth solar wind to 0.82 after crossing 
the bow shock and to 0.75 in the auroral electrojet.

Figure 6. The same as Figure 5 for hourly means of the data from 2011 to 2019, inclusive. The correlations are made using 
60-point running (boxcar) means of both the Omni and THEMIS-B data for 2-day data segments (which again yields 48 fully 
independent samples in each interval). Correlation coefficients r are only given if at least 90% the number of potential 1-min 
data pairs are available in the 2-day interval for all six parameters which yields 812 correlations for each parameter for when 
THEMIS-B in in the undisturbed solar wind and 184 for when it is in the magnetosheath. The black lines in the upper two 
panels of part (e) are the normalized distributions of correlations between the optimally lagged L1 values of Pα and the SML 
index for this τ of 1 hr which has a mean value of 0.632.



Space Weather

LOCKWOOD

10.1029/2021SW002989

16 of 30

7. A Quick Survey of Coupling Function Performance as a Function of Timescale
Given the extremely large number coupling functions proposed since epsilon was published in 1978, it is not pos-
sible to survey the performance of all the proposed formulations. Nor would it be a useful comparison. Lockwood 
and McWilliams (2021b) make the point that a coupling function's performance depends upon both the averaging 
timescale τ used and which terrestrial space-weather indicator it was designed to predict. In this section, we re-
view the performance of a small basket of proposed coupling functions against the terrestrial indices discussed in 
Section 2 but, importantly, as a function of timescale.

Figure 7 is a “postage stamp” presentation of lag correlograms for averaging timescales τ which increase from 
1 min to 1 year from left to right with different rows being for different parameters. The top six rows (a–f) are 
interplanetary parameters, the next five rows (g–k) are for different coupling function combinations of interplan-
etary parameters and the bottom four rows (l–o) are for the four selected terrestrial disturbance indexes. In each 
row the lag correlograms are given for the parameter in question with: (mauve line) −SML; (green line) −SMR*; 
(blue line) ΦPC (available for τ ≥ 1 hr only); and (orange line) am (available for τ ≥ 3 hr only). In all cases, a pos-
itive lag corresponds to the parameter, defined by the row in question, being lagged. The lags covered are chosen 
for each τ to be large enough to define the width of the main peak but small enough to make any lags between 
the peaks detectable. In all cases, the correlations are for all valid data taken between 1996 and 2019 (inclusive).

Before discussing the correlograms between interplanetary parameters and the terrestrial activity indices, we first 
discuss the relationships between the terrestrial indices, analyzed in the bottom four rows of Figure 7. In these 
rows, one of the four variations plotted is therefore an a.c.f. rather than a cross-correlogram. Row (l) is for the am 
index (for τ ≥ 3 hr). It can be seen that −SML is highly correlated with am which is known because both these 
indices are dominated by the auroral electrojet of the substorm current wedge (see Supplementary Information 
to Lockwood et al. [2019a]). The −SMR* index shows a more persistent but delayed response consistent with 
the longer integration times of solar wind forcing that correlate best with enhanced ring current (Lockwood 
et al., 2016). The transpolar voltage ΦPC correlates less well with am than the other geomagnetic indices and tends 
to lead am at peak correlation. This can be seen most clearly in row (m) which is for ΦPC (for τ ≥ 3 hr) and which 
shows the responses of all the geomagnetic indices are slightly after the peak in ΦPC. This is expected because of 
the duration of substorm growth phases in which ΦPC is enhanced by reconnection in the dayside magnetopause 
but the geomagnetic indices not yet strongly enhanced. But note also that there is a second component because 
ΦPC is also enhanced by reconnection in the cross-tail current sheet in the subsequent substorm expansion phases 
(Lockwood & McWilliams, 2021a) as predicted by the expanding-contracting polar cap (ECPC) model of the 
excitation of ionospheric convection (Cowley & Lockwood, 1992). This gives an in-phase element to the rela-
tionship between ΦPC and the −SML and am indices. Rows (n and o) confirm the delayed response of −SMR* 
with respect to the other indices discussed above. For τ = 27 days the correlograms cover −2.5 BR to +2.5 BR, 
where BR is a Bartels solar rotation period (27 days) and the harmonic peaks seen in the a.c.f.s of interplanetary 
parameters in Figure 1 are a factor and make the main peak less pronounced. For the annual timescales shown 
in the right-hand panels of rows the same behavior is seen in all four of these rows which is associated with the 
nature of the solar cycle, as discussed below.

The top row (a) of Figure 7 is for the magnitude of the IMF, B. Moving from left to right we see that peak corre-
lations with −SML increase from a modest 0.5 for τ = 1 min to 0.95 for τ = 1 year. Peak correlations with −SMR* 
for τ < 1 day exceed those for −SML but lag behind them reflecting the time for the ring current to be enhanced. 
All parameters show the rise in peak correlation with τ. This rise has four main causes. First, random noise (such 
as measurement errors) are increasingly averaged out within the averaging period. Second, systematic noise 
(such as seasonal and dipole tilt effects) are averaged out, but only completely for τ = 1 year. Third the ranges of 
variability in both B and the terrestrial indices are reduced by the averaging. And lastly, factors which have an 
influence at low τ tend toward constant values under the central limit theorem (Fischer, 2010): as will be shown 
in the next section, the most important example of this is the IMF orientation factor. The lag correlograms for am 
and −SML are somewhat asymmetric, with higher correlation tending to linger after the peak, slightly more than 
the persistence seen in the rise up to the peak. This asymmetry is considerably more pronounced for −SMR*. This 
was also noted in the correlation study for τ = 5 min by Maggiolo et al. (2017). For τ up to about 1 day the corre-
lograms are similar for all four terrestrial indices (−SML, −SMR*, ΦPC, and am). However, the asymmetry is seen 
even in the annual means for the geomagnetic indices −SML, −SMR* and am but not in the transpolar voltage 
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ΦPC. This difference between the behavior is interesting as it implies there is some magnetospheric “memory” 
(i.e., preconditioning by prior years) in action for geomagnetic indices that is not present in ΦPC. This could indi-
cate that there is a small solar cycle variation in the difference between dayside and nightside reconnection rates 
and hence in open solar flux which means prior years could have a small preconditioning influence. This also will 
be discussed below in relation to the coupling functions.

The second row in Figure 7 is for the solar wind mass density, ρsw. Peak correlations are much lower in this case 
than for IMF B and the lag correlograms are highly asymmetric, with small, zero or even negative correlations 
before the peak and larger ones after it. The peaks for ρsw lag behind the peaks for B. There is no significant effect 
of ρsw on annual timescales. The results of Lockwood and McWilliams (2021a) show statistically that transpolar 
voltage is increased by enhanced solar wind dynamic pressure Psw (and hence ρsw) and Lockwood et al. (2019b) 
show that geomagnetic activity is also enhanced by enhanced solar wind dynamic pressure. These effects have 
been studied in observations of events of sudden increases in Psw impacting the magnetosphere. For example, 
Boudouridis et al. (2021) show that there is an almost immediate response to a sudden rise in Psw in the inferred 
magnetopause reconnection voltage followed by a larger increase in the nightside reconnection voltage roughly 
15 min later, and these effects were reproduced by Boudouridis et al. (2021) using global MHD modeling of the 
magnetosphere. Lockwood and McWilliams (2021a) find the same responses in a statistical correlative survey 
of 25 years of transpolar voltage data: interestingly the dayside reconnection voltage only responds to Psw when 
the IMF points southward, whereas the delayed response on the nightside persists after the IMF has turned north-
ward. This indicates a squeezing of the tail and an increase in the magnetic shear across the cross-tail current 
sheet between the two tail lobes, (which remains present during northward IMF, whereas at the dayside magnet-
opause the equivalent effect can only occur when the magnetic shear is present because the IMF has a southward 
component). The increase in geomagnetic activity has the longer response time of the nightside reconnection 
voltage and Finch et al. (2008) demonstrated that the Psw effect arose in the nightside auroral electrojet of the sub-
storm current wedge. Modeling using a global MHD model and an empirical model of magnetopause locations 
shows that the delayed effect is indeed associated with the squeezing of the tail Lockwood et al. (2019c), a factor 
which increases the amplitude of the “equinoctial” (a.k.a., “McIntosh”) pattern in geomagnetic activity that is 
associated with the Earth's dipole tilt (Lockwood et al., 2019b, and references therein). This is consistent with the 
lack of an effect of ρsw in annual means, for which dipole tilt effects are averaged out. The enhanced correlations 
are seen for timescales up to about a day, which is what we expect for the squeezing effect in the tail and the 
persistence of the solar wind dynamic pressure (Lockwood & McWilliams, 2021a).

The third row of Figure 7 is for the solar wind speed, Vsw. As for B, peak correlations grow with τ. Correlograms 
are again asymmetric, but in the opposite sense to ρsw, with larger values at negative lags that fall sharply for 
positive lags. These negative lags (meaning that correlation is seen with solar wind speed that was observed after 
the terrestrial activity) does not question causality and was also noted in the correlation study for τ = 5 min by 
Maggiolo et al. (2017), who correctly interpret it as being due to the geoeffectiveness of enhanced solar wind den-
sity and field (and the potential for enhanced southward out-of-ecliptic IMF) in CIR and CME fronts ahead of fast 
solar wind, caused by the enhanced solar wind interacting with slow solar wind ahead of it. That a similar asym-
metry is present for annual means in the far right can be understood because solar wind effects are greater in the 
declining phase of the solar cycle when low-latitude extensions to coronal holes form giving more fast streams: 
hence the declining phase activity will correlate better with annual means for the prior year than for the next year.

Figure 7. Lag correlograms for the various averaging timescales τ between interplanetary parameters, coupling functions and terrestrial space weather disturbance 
indices using data from 1996 to 2020. The columns (from left to right) are for τ = 1 min; τ = 10 min; τ = 1 hr; τ = 3 hr; τ = 6 hr; τ = 1 day; τ = 27 days; and τ = 1 year. 
The top six rows (a–f) are interplanetary parameters, the next five rows (g–k) are for different coupling function combinations of interplanetary parameters and the 
bottom four rows (l–o) are for the selected terrestrial disturbance indexes. Specifically, rows are for: (a) IMF, B; (b) solar wind mass density, ρSW; (c) solar wind speed, 
VSW; (d) the IMF orientation factor F(θ) = sin2(θ/2); (e) F(θ) = sin4(θ/2); (f) F(θ) = sin6(θ/2); (g) the Vasyliunas et al. (1982) power input into the magnetosphere 
estimate Pα for α = 1/3 and d = 4; (h) the Boyle et al. (1997) transpolar voltage prediction, CBEA; (i) the empirical “Nearly Universal” coupling function of Newell 
et al. (2007), CU (for which d = 2.67); (j) the theory based coupling function of Borovsky and Birn (2014) (for which d = 2); (k) the empirical coupling function of 
Temerin and Li (2006), CTL (for which d = 6); (l) the am planetary geomagnetic index; (m) the transpolar voltage ΦPC from the SuperDARN radar using the data set of 
Lockwood and McWilliams (2021a) with the mean number of echoes exceeding 255; (n) the SuperMAG SML auroral electrojet index (Newell & Gjerloev, 2011) and 
(o) the modified SuperMAG SMR ring current index, SMR* (see Section 2 of text). Note that the ΦPC data are hourly integrations and am is a range index derived from 
3-hourly intervals. In each panel, the correlations of the parameter in question for that row with −SML, −SMR*, ΦPC (τ ≥ 1 hr only) and am (τ ≥ 3 hr only) are shown 
by mauve, green, blue and orange lines, respectively. In all panels, a positive lag corresponds to the parameter that is defined by the row number being lagged. Note that 
the orange lines in row (l) are autocorrelation functions of am; the blue lines in row (m) are autocorrelation functions of ΦPC; the mauve lines in (n) are autocorrelation 
functions of SML; and the green lines in (o) are autocorrelation functions of SMR*. Correlations that do not meet the 2σ significance level are omitted.
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The next three rows, (d–f), look at the variation of three IMF orientation factors of the form sind(θ/2), being for 
d = 2, d = 4, and d = 6. The behavior is very similar in all three cases, with peak correlations growing with τ up 
to about 1 day, after which they decline again. Note that no significant correlations (at the 2-σ level) were obtained 
at τ = 1 year because at this timescale sind(θ/2; for all d) is essentially constant, as will be discussed later. This is 
also the reason why peak correlations for sind(θ/2) decline for τ > 1 day and one of the most important reasons 
why correlations with B and Vsw grow with increased τ. Lockwood and McWilliams (2021b) reviewed proposed 
values for d and note that they range from 1 to 9, but most lie in the range between 2 and 6 studied in Figure 7.

The next five rows are for examples of coupling functions that combine the factors studied in the previous rows 
and have been chosen to cover a range of d from 2 to 6. Row (g) is for the Vasyliunas et al. (1982) power input 
into the magnetosphere estimate Pα for α = 1/3 and d = 4; row (h) is for the Boyle et al. (1997) transpolar voltage 
prediction, CBEA (which uses an additive term with d = 3); row (i) is for the empirical “Nearly Universal” cou-
pling function of Newell et al. (2007), CU (for which d = 2.67); row (j) is for the theory-based coupling function 
of Borovsky and Birn (2014) (for which d = 2); and row (k) is for the empirical coupling function of Temerin and 
Li (2006), CTL (for which d = 6). Although there are some small differences, Figure 7 makes the point that they 
are actually rather similar in their performance if we use correlation as a metric. Correlations rise with τ from 
typically 0.65 for τ = 1 min to up to 0.99 for τ = 1 year. Incidentally, this is not to say that the form of the coupling 
function does not matter; for example, the best performance of a coupling function found in this survey was that 
derived by McPherron et al. (2015) for predicting the −SML index, giving a correlation of 0.688 at τ = 1 min, 
rising to 0.973 for τ = 1 year: this coupling function (with a = 0.70 ± 0.01, b = 0.096 ± 0.009, c = 1.92 ± 0.04 
and d = 3.67 ± 0.04) was derived empirically using best practice and the AL index (which is very similar to SML) 
for τ = 1 hr. The worst-performing was the epsilon factor, ε, which yielded correlations that varied from 0.47 to 
0.62 for the same range of τ.

The correlations for coupling functions are dominated by the effect of the IMF orientation factors up to about 
τ  =  1  day (removing the other factors was found to cause only relatively minor loss of correlation) but for 
τ = 1 year the IMF orientation factor makes no difference and no loss of correlation at all is incurred if it is 
omitted at this timescale. Rather than looking at the relatively small differences between the various coupling 
functions, we here look at their common behavior. A feature seen for all the better coupling functions is that after 
the peak, the correlation falls faster for ΦPC than for all the three geomagnetic indices. This is consistent with the 
effect of some open flux, transported into the tail by enhanced ΦPC remaining there and continuing to drive an 
enhanced level of geomagnetic activity until the enhanced open flux has decayed away (Lockwood & McWil-
liams, 2021a). The annual correlations are also asymmetric, with transpolar voltage weakly showing the sort of 
solar cycle effect noted for solar wind speed, whereas the geomagnetic parameters weakly show the long-term 
memory effect seen for the IMF. As noted above, this is also seen in the correlograms for τ = 1 year between the 
various terrestrial indices in rows (l–o).

8. Occurrence Distributions of Coupling Functions and the Data That They Predict
An aspect of coupling functions that has not attracted much attention in the past is what they predict for the oc-
currence distribution of a given terrestrial parameter. A major reason for this is that interest has focused on large 
events, in other words on the large-event tail of the distribution and not on its “core” around the mode value, 
because much of space weather science is concerned with the major disturbance events. However, some space 
weather effects are caused by the integrated effects of enhanced activity. Examples include: integrated lifetime 
radiation doses for spacecraft electronics and for astronauts; and integrated GIC induced current effects on power 
grid transformers and on pipeline corrosion. However, it is not just these “lifetime dose” issues that mean we 
should also consider the full distributions, they are very likely to be important for understanding preconditioning 
effects in the magnetosphere, in which the response of the magnetosphere in a large event also depends on the 
accumulated activity level of prior intervals. Preconditioning is discussed further in Section 13. If we are to learn 
how to allow for and predict preconditioning effects, we need to look at the whole distribution of the coupling 
function and how well it matched that of the parameter it is attempting to predict. For these reasons, a full space 
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weather climatology should look at the full distributions of parameters, and not just the large event tails. These 
distributions depend critically on averaging timescale (Lockwood et al., 2019a, 2019b, 2019c).

Figure 8 presents a postage stamp plot of occurrence distributions for the same parameters, averaging timescales 
and data intervals as Figure 7. The gray histograms give the number of samples n, normalized by its peak value 
n/nmax,, in bins that are 0.01wide. These are histograms of the normalized parameter value x/<x>, where <x> 
is the mean over all available samples. The vertical mauve lines are at the distribution mean, x/<x> = 1. The n 
values are normalized by nmax rather than Σn because the latter can require some very large y-axis scales when 
the distribution tends to a delta function.

The distributions for the IMF, B and solar wind mass density ρsw at τ < 1 day are close to lognormal and do not 
change much in form with τ. However, for larger τ, the central limit theorem begins to have a large effect and 
distributions narrow and become more Gaussian as they evolve toward the delta function that would be obtained 
for τ equal to the whole 25-year data set. The distribution for solar wind speed Vsw is different because, unlike B 
and ρsw, Vsw never falls anywhere close to zero and has a baselevel value of around 350 km s−1. This makes the 
distribution of Vsw/<Vsw> narrower: it too narrows under the central limit theorem as τ is increased.

Lockwood et al. (2019b) and Lockwood and McWilliams (2021b) explain the details of how the strange distri-
butions of sin(θ/2), and hence of sind(θ/2) shown in Figure 8, arise for low τ. However, it should be noted that 
such a distribution will arise for most IMF orientation factors that allow for the “half-wave rectifier” aspect of 
IMF orientation control of coupling between the solar wind and the magnetosphere. For example, because the 
distribution of the southward component of the IMF in GSM coordinates, BZ, is symmetric about zero, use of a 
half-wave rectified southward (BS = −BZ for BZ < 0 and BS = 0 for BZ ≥ 0), yields a distribution in which 50% of 
the samples are in a delta function at BS = 0. Because of the large variability in θ these distributions of sind(θ/2) 
evolve quickly with increased τ, in general from the strange distributions at high time resolution to a lognormal, 
and then to a Gaussian that then thins to a delta function. However, the evolution depends strongly on the value 
of d: for example, for d = 2 the distributions remains symmetric at all τ and the lognormal phase is not seen. In 
general, the larger the value of d, the greater the delta function spike at zero and the larger is the τ value needed 
to remove it and obtain a lognormal form. Hence the value of d used has great effects on the distribution of the 
coupling function. Note that for τ = 1 year, the larger variability of θ means that the distributions of sind(θ/2) are 
reduced to delta functions for all d. This is the reason why highly successful coupling functions on annual times-
cales, giving correlations of about 0.98, do not contain an IMF orientation terms. It is also why no significant 
correlations could be found for τ = 1 year in rows (d–f) of Figure 7.

The coupling function distributions in rows (g–k) show that for τ ≤ 1 day they are highly dependent of the form 
of the IMF orientation term used and, in particular, the value of d. The strange shape to the distributions only 
evolves at larger τ into the lognormal and quasi-Gaussian distributions seen for the terrestrial indices. For the 
Borovsky and Birn (2014) coupling function with d = 2, this is achieved by τ = 3 hr, whereas for the Temerin and 
Li (2006) coupling function with d = 6 this is only achieved with τ ≥ 1 day. At timescales of an hour and less the 
sind(θ/2) formulations do not work well in terms of matching the core and low-activity end of the distribution, but 
the additive formulation of the Boyle et al. (1997) coupling function CBEA means that it provides a much better 
match at low τ. However, close inspection shows that the Boyle et al. (1997) formulation has a light high-activity 
tail compared to the terrestrial geomagnetic indices, whereas sind(θ/2) formulations (sometimes with large d) can 
fit the high activity tail rather better. Thus, none of the formulations available at the present time are suitable for 
quantifying both the core of the distribution and the large-event tail. We note that the Boyle et al. (1997) formula 
was designed to predict transpolar voltages, the distribution for which do not show as heavy large-event tail as the 
geomagnetic indices, particularly at larger τ.

9. Correlation Coefficients as a Metric of Performance
Previous sections have used linear correlation coefficients as a metric to assess the performance of various cou-
pling functions. This is indeed the metric that has been used in almost all coupling function studies. In this 
section, we look at the implications of the adoption of this metric and ask if it is always appropriate. Vasyliunas 
et al.  (1982) make the important point that correlation coefficients do not guarantee linearity of the coupling 
function over the range of activity level you are most interested in. For example, if you are interested in a very 
large and extreme event tail, correlation coefficient could be set by the large number of samples in the core of 
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Figure 8. Distributions of the same parameters x and timescales τ as in Figure 7, also for data from 1996 to 2020. In 
each case, the histogram is of x (normalized to its overall mean value, i.e., x/<x>) and the vertical mauve dashed line is at 
x/<x> = 1. Bins are of width <x>/10 and histograms are normalized, with the number of samples in each bin n, being plotted 
as a ratio of its maximum value, nmax.
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the distribution and that might not be the best fit to the small number of tail samples that you are interested in. 
More subtly, Lockwood and McWilliams (2021b) demonstrate that even in the core of the distribution, peak lin-
ear correlation coefficient between samples does not necessarily guarantee you linearity and linearity between a 
coupling function and the terrestrial indicator that it aims to predict is what one requires.

Figures 9–11 of Lockwood and McWilliams (2021b) present their implementation of the test for linearity sug-
gested by Vasyliunas et al. (1982) (for ΦPC, am and SML, respectively). This ensures that the IMF orientation 
factor F(θ) is of the correct form for the proposed coupling function Cf by studying the behavior of a parameter 
G = Cf/F(θ) to ensure that the coupling function has a linear relationship to the parameter it is designed to pre-
dict. Note that the polynomial fit used by Lockwood and McWilliams (2021b) could be weighted to ensure that 
the linearity is over the range of the terrestrial index that is of greatest interest, although in the implementation 
by Lockwood and McWilliams (2021b) equal weighting was given to equal width averaging bins that covered 
the whole range of F(θ). The full procedure for the derivation of the optimum value of d and its 1σ, 2σ, and 3σ 
uncertainties, is described in the paper by Lockwood and McWilliams (2021b). At each d, the Nelder-Mead sim-
plex search yields the values of exponents a, b, and c and hence their optimum values (and their uncertainties) 
are also defined.

The correlation obtained for ΦPC, for example, is r = 0.858, an extremely high value for τ = 1 hr which means 
that r2 = 73.6% of the variance in hourly transpolar voltages is explained. It is the fit given by the linearity con-
dition. However, it is not the fit that gives the highest possible value of r: that was obtained for d = 2.20 and was 
r = 0.8646 (explaining 74.8% of the variance). What is happening here can be seen in Figure 8 of Lockwood and 
McWilliams (2021b): Part a of that figure is for d = 1.1 (too low); Part b is for d = 2.2 (and yields the highest 
correlation); Part c is for d = 6.5 (that is too high); and Part d is for d = 2.5 (that yields linearity). These plots show 
that maximizing r also minimizes the root-mean-square (r.m.s.) deviation of observation and coupling function 
fit, Δrms, and so minimum Δrms does not give linearity either.

There is an important point to note about Figure 8c of Lockwood and McWilliams (2021b) in which the d val-
ue is too large, in relation to identifying and quantifying transpolar voltage “saturation” effects (e.g., Hairston 
et al., 2005; Shepherd, 2007). These effects are when the transpolar voltage does not increase as much with solar 
wind forcing at higher forcing levels than at lower ones and may even lead to a leveling off such that there is a 
maximum voltage that can be achieved. Global MHD simulations (for example, Kubota et al., 2017) can repro-
duce such effects and so do indicate it is a real phenomenon. There is no reason to doubt that saturation does 
occur to some extent in ΦPC, but the nature of the mechanism(s) is still a matter of debate and it is not at all clear 
that this saturation effect in ΦPC causes saturation to anything like the same degree in geomagnetic indices, if 
at all (Borovsky, 2021b). Some geomagnetic indices do not show any saturation effect, others do but to varying 
degrees. In general, any geomagnetic index saturation is less pronounced than that in ΦPC, a fact that is reflected 
in the distributions shown in Figure 8 in that the large event tail is fatter and longer for geomagnetic indices than 
for ΦPC. This urges caution when quantifying a saturation effect because it demonstrates that similar behavior can 
be brought about by an inadequate coupling function. A similar point was recently made by Borovsky (2021b).

10. Fitting the Bulk of the Distribution and the Large Event Tail
Figure 9 returns to the point about fitting the core of distribution, versus fitting the large-event tail for the fits to 
ΦPC described above. The gray area bounded by the black line in Figure 9a is the distribution of the 65,133 valid 
hourly transpolar voltage values in the survey of 25 years of SuperDARN by Lockwood and McWilliams (2021a). 
The yellow and cyan lines break this distribution into two subsets, for IMF BZ ≥ 0 (in GSM) in cyan and BZ < 0 
in yellow. The two sub-set distributions cross at ΦPC/<ΦPC> = 0.85, below which the distribution is increasingly 
dominated by northward IMF and above which is increasingly dominated by southward IMF: at ΦPC below about 
0.3 <ΦPC> the distribution is almost exclusively due to northward IMF whereas for above about 2 <ΦPC> it is 
almost exclusively due to southward IMF.

Figure 9b repeats the observed distribution (as a black line) and compares it to the mauve line, which is the distri-
bution for the optimum (linear) fit Cf (given by Equation 2 with d = 2.50) discussed in the previous section. Also 
shown for comparison, the blue line is Cf for the optimum fit to the simultaneous −SML data (given by Equation 2 
with d = 5.20) and the green line is the predictions of the Boyle et al. (1997) formula (Equation 7), CBEA. It can 
be seen that CBEA matches the distribution exceptionally well, whereas Cf with d = 2.50 only matches well for 
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ΦPC above about 2.5 <ΦPC> and is very poor in the northward-IMF dominated part of the distribution below 0.85 
<ΦPC>. This problem increases with d and is very severe for Cf with d = 5.20.

To understand the implications of these fits, the lower panels of Figure 9 are the same data as in the upper panels, 
but shown as cumulative distributions functions (c.d.f.s) rather than probability distribution functions (p.d.f.s). 
Figure 9c makes the point that about a third of the total flux transport across the polar cap takes place when the 
IMF is northward and about 2/3 when it is southward. This is a prediction of the ECPC convection model, as 
discussed by Lockwood and McWilliams (2021a). Figure 9d shows the predictions for integrated flux transport 
by the various coupling function fits. The observed distribution shows that 36% of the total flux transport is at 
below-average values of ΦPC and, not surprisingly given Figure 9b, this is very well matched by CBEA which pre-
dicts 38%, but not so well matched by Cf which gives 28% with d = 2.50 and just 22% with d = 5.20. Hence using 
Cf with even the optimum d underestimates the total flux transport in quiet times, but because in Figure 9f the 
mauve line reaches close to unity at very large activity levels, it correspondingly overestimates the flux transport 
at high activity levels.

Figure 10 is the same as Figure 9 but for the observed distribution of −SML values for τ = 1 hr. The p.d.f.s and 
c.d.f.s are shown in the right hand panels for Cf with 4 different d values, including (in green) the optimum linear 
fit value of d = 5.20, derived using the same procedure as was used for ΦPC in Section 10. The other lines are for 

Figure 9. (top) Probability density functions (pdfs) and (bottom) cumulative distribution functions (c.d.f.) of (left) 
normalized observed transpolar voltage ΦPC/<ΦPC> and (right) normalized hourly coupling functions, Cf/<Cf>. In the left 
hand plots yellow lines are for data when the lagged IMF is southward in the GSM frame (Bz < 0, using the optimum lag of 
30 min found by Lockwood & McWilliams, 2021b) and the cyan line for when it is northward (Bz ≥ 0). In the right-hand 
plots, the green line is for the transpolar voltage predictor of Boyle et al. (1997), CBEA; the mauve line the best empirical Cf fit 
to the transpolar voltage derived in Figure 15 of Lockwood and McWilliams (2021b) (Cf for a = 0.642, b = 0.018, c = 0.552, 
d = 2.50). The blue line is the corresponding best fit to the SML geomagnetic index (Cf for a = 0.662, b = 0.061, c = 1.746, 
d = 5.20: see Figure 10). The black lines in (b and d) are for the observations, that is, they are the same as in (a and c), 
respectively. Part (c) shows that 64% of the total convection flux transport in the magnetosphere takes place during southward 
IMF and 36% takes place during northward IMF or IMF BZ = 0. The vertical dashed line in part (d) is at Cf/<Cf> = 1 and 
shows that below-average transpolar voltage is responsible for 35% of the observed flux transport over the polar cap, which is 
very close to the 36% predicted by CBEA. However, the poorer fits to the low values of the distribution mean that the empirical 
fits using the F(θ) = sind(θ/2) formulation do not predict this number as well, Cf for d = 2.50 giving 28% and, Cf for d = 5.20 
giving 22%.



Space Weather

LOCKWOOD

10.1029/2021SW002989

24 of 30

(in mauve) d = 2.0 (too low); (in blue) d = 3.82 (gives peak correlation, r); and (in orange) d = 7.5 (too high). As 
noted earlier, the observed distribution for −SML is much more “heavy tailed” than for ΦPC and this makes the 
poor fit for the northward-IMF-dominated part of the curve less pronounced although still present. The higher d 
of the fit means the behavior for −SML is much more like a “half-wave rectifier” behavior than it is for ΦPC. In 
terms of the integrated value, the problem of missing the contribution of very quiet times is not as marked as it is 
for ΦPC, but it is still present and is indeed inherent in the sind(θ/2) formulation. Figures 10b and 10d show that 
the higher d value of 5.2, on the other hand, can match the large-event tail of the distribution well.

Figure 11 looks at how well individual cases are matched by these coupling functions for the SML index. The four 
panels are for the same four values of d that were used in Figure 10. Each shows a data density plot of normalized 
SML against normalized Cf, overlaid with a q-q plot, as used in Figure 4. The color scale is chosen so that a single 
hourly average in a counting bin (pixel) of size 0.03 × 0.03 will show up in blue and so, at the extremes, the data 
density plot takes on the information of a scatter plot for individual samples. It can be seen that although the fit is 
good at low, average and moderately high values, the scatter is increasingly large at high and extreme values. The 
q-q plots in Figure 11c show how the optimum linear fit, despite giving a lower correlation than in Figure 11b, 
is matching the observed distribution very well, the agreement being almost perfect up to the 99 percentile and 
the predicted tail is just marginally heavier than that for the observations for the largest percent. For the peak 
correlation, shown in Figure 11b, the deviation from the ideal is also small but the predicted tail is detectably thin 
for SML/<SML> above about 2.5. Again, peak correlation is not giving the best match to the very large events, 
but we note that the scatter is high and so the accuracy of individual hourly predictions is not high, despite the 
overall correlation being high.

Note that all the q-q plots in Figure 11 show deviations from linearity at low values. This is a problem inherent 
with the sind(θ/2) IMF orientation factor that becomes more pronounced as d is enhanced. This means using this 
formulation with a large d to fit the large event tail causes problems for fitting the core and small value end of 

Figure 10. The same as Figure 9 for fits to the SML geomagnetic activity. Part (c) shows that 75% of the integrated activity 
in takes place during southward IMF and 25% takes place during northward IMF or IMF BZ = 0. The vertical dashed line 
in part (d) shows that below average SML is responsible for 29% of the integrated activity which is very close to the 30% 
predicted by Cf for d = 2.00 (mauve line) but exceeds the 24% for d = 3.86 (which gives peak correlation between Cf and 
SML, r—the blue line), the 22% for the optimum d of 5.20 (which yields linearity between Cf and SML—green line) and the 
19% for the excessive d of 7.5.
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the distribution. To avoid this, we could use different coupling functions to 
model the core and the large event tail of the distribution, but a better solution 
would be to derive a better IMF orientation factor that can accommodate 
both.

11. Variations Over Parameter Space
Thus far, we have been looking at coupling functions derived and evaluat-
ed over all usable observations taken over a 25-year interval. But this does 
not tell us how a coupling function performs in different parts of parameter 
space. To illustrate this point, Figure 12 looks at the performance of two dif-
ferent coupling functions, both designed to predict ΦPC, over IMF (B) and so-
lar wind speed (Vsw) parameter space. Data are divided into 40 inter-quantile 
ranges of both Vsw and B. Figure 12a gives the fraction of available samples in 
each Vsw -B bin (on a logarithmic scale). Note the bin widths change because 
they are defined by the quantiles for that parameter. Figure  12b gives the 
mean value of ΦPC in the same bins. The other two panels of Figure 12 show 
the fraction of the variance r2 of the transpolar voltage ΦPC that is explained 
by coupling functions (c) CBEA and (d) Pα for d = 2.5, where r is the corre-
lation coefficient. The peak of the lag correlograms r is found and r2 plotted 
as a function of Vsw (along the x-axis) and B (along the y-axis). Figure 12a 
shows that samples are rarest for high Vsw and low B and low Vsw and high B, 
whereas the most common combination is low B and low Vsw. When taking 
correlations between the coupling functions only those with significance ex-
ceeding the 2-σ level are retained and those failing that test are in the param-
eter space where sample numbers are low.

Figures 12c and 12d are for the Boyle et al. (1997) and Vasyliunas et al. (1982) 
coupling functions, CBEA and Pα respectively, where Pα is for α = 1/3 and 

d = 2.5. The overall correlations r are 0.733 and 0.784 respectively (r2 of 54% and 61%). The variation over 
parameter space is very similar for the two coupling functions and also considerable, with r2 varying between 
0.25 and 0.75. There is a marked trend with highest correlations for low Vsw and high B and lowest correlations 
for high Vsw and low B. It is clear that a high correlation can hide a considerable variation in performance over 
parameter space.

12. Preconditioning
The fact that observed correlations are as high as they are (although the lev-
el varies considerably with averaging timescale, τ) places limits on the im-
portance of factors that have been omitted, which thus far we have largely 
regarded as a source of noise. This section looks at preconditioning by the 
pre-existing state of the magnetosphere-ionosphere-thermosphere system or 
other variations that can alter the response to a given set of interplanetary 
conditions, which is (in the author's view) the most interesting and the most 
challenging scientifically.

There are two ways in which preconditioning can come about. The first con-
cerns the orbital and characteristics of Earth which cause an annual variation 
in the Earth-Sun distance, and seasonal and Universal Time (UT) effects asso-
ciated with the dipole tilt (see review by Lockwood, Owens, Barnard, Haines, 
et al. [2020]). There have been attempts to allow for dipole tilt effects in cou-
pling functions (X. L. Li et al., 2007; Luo et al., 2013; Murayama et al., 1980; 
Svalgaard, 1977) with terms that allow for the fraction of the calendar year, 
F, and UT. In addition, such effects have been included in the filters used 
in the linear prediction filter technique (McPherron et al., 2013). However, 

Figure 11. Data density and overlaid quantile-quantile (q-q) plots for the 
normalized hourly averaged SML geomagnetic index and the normalized 
empirical hourly averaged coupling function Cf for: (a) d = 2.00 (which gives 
the mauve lines in Figure 10); (b) d = 3.86 (which gives peak correlation 
between Cf and SML and the blue lines in Figure 10); (c) d = 5.20 (which 
yields linearity between Cf and SML and the green lines in Figure 10) and 
d = 7.5 (which gives the orange lines in Figure 10). 500 quantiles (white dots) 
are used at separation of 0.2% and the lower end of the color scale used is 
below log10(1/Σn) (i.e., the one count level, n = 1) to ensure that even single 
hourly samples show up as a blue pixel. Pixels (counting bins) are 0.03 × 0.03 
in size. For these hourly data Σn = 61,922 and so there are either 123 or 124 
hourly values in each quantile.
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Figure 12. Analysis of the fraction of the variance r2 of the transpolar voltage 
ΦPC explained by coupling functions (c) CBEA and (d) Pα for d = 2.5, where r 
is the correlation coefficient. Data are divided into 40 inter-quantile ranges of 
both the solar wind speed Vsw and IMF B. The peak of the lag correlograms 
r is found and r2 plotted as a function of Vsw (along the x-axis) and B (along 
the y-axis). Part (a) gives the fraction of samples in each bin (on a logarithmic 
scale); (b) gives the mean transpolar voltage in each bin.
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the F-UT effects are not independent of solar variations. For example, ionospheric conductivity effects will also 
depend on the flux of EUV and X-ray ionizing radiations (for which F10.7 or sunspot number are often used as 
proxy indices) and Lockwood, McWilliams, et al. (2020), Lockwood, Owens, Barnard, Watt, et al. (2020), and 
Lockwood et al. (2021) have shown that the amplitude of the F-UT pattern in geomagnetic activity (the “equinoc-
tial,” a.k.a. “McIntosh” pattern) is linearly proportional to the solar wind dynamic pressure. There are a number 
of theories as to how this dipole tilt effect arises (see Lockwood, Owens, Barnard, Haines, et al., 2020) and each 
has implications for how an F-UT dependence should be introduced. Note also that seasonal effects mean that 
this allowance will be different for truly global indices such as am and for northern-hemisphere-only indices such 
as AL and SML. Hence although some allowance for these effects could be achieved used by using F and UT 
with average values for solar-terrestrial variables, full allowance is likely to require the inclusion of more free fit 
parameters which increases the potential for, and probability of, overfitting.

The second form of pre-conditioning relates to the pre-existing activity level of the magnetosphere-iono-
sphere-thermosphere system and hence on the prior history of the solar wind driving it. There are a number of 
proposed mechanisms. The storage-release system that yields the substorm cycle shows that the response of the 
magnetosphere depends on the pre-existing flux of open magnetospheric field. A method to allow for this using 
an extremely large number of coupled equations was proposed by Luo et al. (2013). Another way of dealing with 
this non-linearity is by using neural networks (e.g., Gleisner & Lundstedt, 1999). One more widely used tech-
nique to allow for the non-linearity of response caused by this type of preconditioning is the local linear predic-
tion filter technique (Vassiliadis, 2006; Vassiliadis et al., 1995), in which moving average filters are continually 
calculated as the system evolves and these are used to compute the output of the system. The filter used is derived 
or selected according to the state of the system.

The design of the best filter to use, or the best set of coupled equations would, in general, depend on the physical 
preconditioning mechanism(s) that are active and many have been proposed. These are numerous. They include: 
mass loading of the near-Earth tail with ionospheric O+ ions from the cleft ion fountain (Yu & Ridley, 2013); 
the formation of thin tail current sheets (Pulkkinen & Wiltberger, 2000); the development of a cold dense plas-
ma sheet (Lavraud et al., 2006); and mass loading of the dayside magnetopause reconnection region (Walsh & 
Zou, 2021).

The best way to include the effects of the above mechanisms into coupling functions is far from clear, although 
system science studies could potentially provide answers. However, some other proposed preconditioning effects 
may be easy to include because they involve other terrestrial indices that can be predicted using a purpose-de-
signed coupling function. An example would be the proposed effect on the reconnection rate in the cross-tail 
current sheet of enhanced ring current (Milan, 2009; Milan et al., 2008, Milan, Hutchinson, et al., 2009) for which 
predictions of the Dst, SYM-H or SMR indices, based on the prior history of a relevant coupling function, could 
be used to modify the predicted response in another index (for example ΦPC or SML) for a given value of its opti-
mum coupling function. The magnetosphere sometimes responds to continued solar wind forcing (over a period 
of tens of minutes) by generating a substorm, or a string of substorms and sometimes with a steady convection 
event (e.g., Kissinger et al., 2012; Lockwood et al., 2009; Milan et al., 2021). It is known that the response of 
the auroral electrojet indices depends on the current Dst value (Gleisner & Lundstedt, 1999; Juusola et al., 2013; 
O'Brien et al., 2002). This evidence points to using a preconditioning factor based on Dst, or other ring current 
index, may be viable. This raises an interesting point about timescales, as Lockwood et al. (2016) have shown 
that Dst correlates best with the integrated solar wind forcing over a prolonged (∼12 hr) prior period. Hence the 
precondition term may well require a different averaging timescale than the main coupling function.

13. Concluding Remarks
This paper has taken a general and detailed look at solar wind-magnetosphere coupling functions. These have 
been used for almost 50 years now, but an in-depth review is now timely because systems analysis techniques are 
increasingly being applied to the magnetosphere (see review by Borovsky and Valdivia [2018]). For example, 
Borovsky and Osmane (2019) introduced a methodology using a state-vector-reduction technique and canonical 
correlation analysis which treats the magnetosphere as an example of a multivariable system driven by multiple 
inputs that identifies independent modes of reaction of the magnetospheric system to its drivers. Techniques 
such as these are likely to offer solutions to many of the limitations of traditional coupling function-terrestrial 
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observation correlation analysis, particularly in the limitations of preconditioning and the effects of the pre-ex-
isting state of the magnetosphere. In addition, application of machine learning techniques should avoid common 
problems such as overfitting (e.g., Baumann & McCloskey, 2021; Camporeale, 2019). However, other limitations 
and sources of noise may be unwittingly carried forward into these techniques. Hence, it is timely to take a step 
back and review them.

Testing the predictive and analysis uses of coupling functions also raises another set of complications, with a 
variety of performance metrics available for consideration (Liemohn et al., 2018). The most appropriate one (or 
ones) for the application in question should be deployed, especially in the context of forecasting (Owens, 2018). 
The derivation and testing of coupling functions has, in the past, been almost entirely based on correlation analy-
sis and it clearly has an important role into the future, but this paper has highlighted that it is not always the most 
appropriate metric to be using, and metrics more appropriate to the specific application are likely to be needed.

Data Availability Statement
The data sets used in this study are publicly available. The Omni interplanetary are available from NASA's 
Space Physics Data Facility http://omniweb.gsfc.nasa.gov/ow.html the THEMIS-B data from NASA's Coordi-
nated Data Analysis Web (CDAWeb) https://cdaweb.gsfc.nasa.gov/index.html/; satellite locations from NASAs 
satellite Situation Center https://sscweb.gsfc.nasa.gov; the AL index data from World Data Center for Geomag-
netism, Kyoto http://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html and the am index form the International Service 
of Geomagnetic Indices (ISGI) http://isgi.unistra.fr/data_download.php; the SML and SMR geomagnetic indices 
from the SuperMAG project at The Johns Hopkins University: https://supermag.jhuapl.edu/. The SuperDARN 
radar data and associated processing software is available from Virginia Polytechnic Institute and State University 
http://vt.superdarn.org/tiki-index.php?page=Data+Access or from PI groups participating in the project.
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