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Abstract 3 

The IUCN Red List of Threatened Species is central in biodiversity conservation, but 4 

insufficient resources hamper its long-term growth, updating and consistency. Models or 5 

automated calculations can alleviate those challenges by providing standardised estimates 6 

required for assessments, or prioritising species for (re-)assessments. However, while 7 

numerous scientific papers have proposed such methods, few have been integrated into 8 

assessment practice, highlighting a critical research-implementation gap. We believe this gap 9 

can be bridged by fostering communication and collaboration between academic researchers 10 

and Red List practitioners, and by developing and maintaining user-friendly platforms to 11 

automate application of the methods. We propose that developing methods better 12 

encompassing Red List criteria, systems and drivers is the next priority to support the Red List. 13 
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Glossary 18 

Assessor: An appointed expert, often a volunteer, who applies the IUCN Red List categories 19 

and criteria following associated guidelines, using all relevant data to assess the taxon 20 

appropriately, and ensures that the assessment has the required supporting information. 21 

Red List categories: Ordinal set of extinction risk classes used by the IUCN Red List, 22 

including two non-threatened categories [Least Concern (LC) and Near Threatened (NT)], 23 

three threatened categories [Vulnerable (VU), Endangered (EN), Critically Endangered (CR)], 24 

and two extinct categories [Extinct in the Wild (EW), Extinct (EX)]. When data are insufficient 25 

to assign a species to one of these categories, it is classified as Data Deficient (DD). Species 26 

that have not been assessed yet are classified as Not Evaluated (NE). A subset of Critically 27 

Endangered species are tagged as Possibly Extinct [CR(PE)] or Possibly Extinct in the Wild 28 

[CR(PEW)]. 29 

Red List criteria: Set of five criteria, and nested subcriteria, associated with quantitative 30 

thresholds used to assign Red List categories. These criteria relate to A: population size 31 

reduction in the past (A1 and A2), future (A3), or both (A4); B: small geographic range, either 32 

in the form of Extent of Occurrence (B1) or Area of Occupancy (B2), combined with severe 33 

fragmentation, and / or continuing decline in population, distribution or habitat quality, and / 34 

or extreme fluctuations; C: small population size and decline; D: very small or restricted 35 

population; E: quantitative analysis.  36 

Red List guidelines: Public document produced by the IUCN Red List Standards and Petitions 37 

Committee detailing how to apply the IUCN Red List criteria to assign categories.   38 

Red List parameters: Estimates which are compared with the quantitative thresholds listed in 39 

the Red List criteria to classify species into Red List categories. For instance, an ongoing 40 

reduction in population size of ≥ 30% over the last 10 years (or three generations, whichever 41 

is the longer) qualifies a species as Vulnerable (VU) under criterion A2. In this example, the 42 

reduction in species’ population is the parameter compared with the 30% threshold to apply 43 

the criterion. 44 

Red List Unit: Technical unit working for the IUCN Global Species Program.  45 



 

 

Major challenges for the IUCN Red List 46 

The IUCN (International Union for Conservation of Nature) Red List of Threatened Species 47 

(hereafter “Red List”) provides assessments of extinction risk for > 130,000 species of animals, 48 

fungi and plants [1]. These assessments are pivotal to inform conservation action, target 49 

resources and monitor global biodiversity trends and conservation effectiveness [2–7]. The Red 50 

List also informs international policies and reports (e.g., CBD, IPBES, CITES) by providing 51 

information and underpinning analyses on species’ status and trends, distributions, threats and 52 

conservation actions. The Red List uses a set of standard quantitative criteria (see Glossary) 53 

relating to species’ population size, trend, and distribution that are applied by assessors to 54 

assign species to a category of extinction risk [8,9]. 55 

Despite its influence, the Red List operates with a largely insufficient budget and staff [10,11], 56 

resulting in four major challenges that jeopardize its breadth and currency in the long term. 57 

First, assessments are concentrated on vertebrate species [12–14], with few for invertebrates 58 

and plants relative to the number of described species and very few for fungi (Fig. 1A). This 59 

taxonomic imbalance is being slowly reduced by the ongoing expansion of the Red List in 60 

accordance with an agreed strategic plan (Fig. 1A; [15]). Second, 14% of assessed species 61 

(N=19,394) are classified as Data Deficient due to insufficient information available to apply 62 

Red List criteria (Fig. 1B), which introduces uncertainty in estimated proportions of threatened 63 

species and may preclude some species from receiving appropriate conservation efforts [16–64 

18]. Third, while species should be reassessed at least every 10 years [19], 18% of assessments 65 

(N=24,764) are currently outdated (Fig. 1C). About 2,100 species were last assessed 25 years 66 

ago, of which more than half are listed as threatened (Fig. 1D). Fourth, Red List assessments 67 

are conducted inconsistently across and within taxonomic groups [12,13,20], partly because of 68 

heterogeneity in available data among species, but also because of variation in the assessment 69 

process and criteria application. The Red List guidelines, which aim at reducing the latter by 70 

providing detailed information on how to apply the criteria [19], have expanded and evolved 71 

to further clarify the calculation of parameters and the resulting assignment of categories (see 72 

examples in Table 1), but substantial discrepancies among taxa or regions remain. 73 

In the last decade, many studies have proposed methods to capitalise on the increasing 74 

availability of ecological data and remote-sensing products to address the above-mentioned 75 

challenges, by enabling faster, more rigorous and more consistent assessments (e.g., [21,22]). 76 

In particular, relevant data, tools and models have been proposed to standardise the estimation 77 

of Red List parameters (e.g., Extent of Occurrence or population trends) or predict species’ 78 

Red List categories. However, while many methods have been published, very few have been 79 

implemented in practice [23].  80 

Here, we systematically reviewed recently published methods that aim either at identifying 81 

correlates of extinction risk, or at predicting species’ extinction risk categories for groups of 82 



 

 

species using modelling or automated calculation (considering papers published between 2001 83 

and June 2021; see Supplementary Information). We then evaluated their utility from a 84 

practical perspective and discussed the main barriers to their uptake in Red Listing. Finally, we 85 

suggested how to bridge this important research-implementation gap, and highlighted potential 86 

future research directions. 87 

 88 

 89 

Figure 1. Information on Red List assessments per taxonomic group. (a): Proportion of described species that are 90 

currently assessed (as in https://www.iucnredlist.org/resources/summary-statistics), planned to be assessed by 2030 91 

(calculated from [15]), or unassessed. (b): Proportion of assessed species in each Red List category (coloured bars) and 92 

proportion of these that are threatened (red line), assuming Data Deficient species are threatened in the same proportion 93 

as data-sufficient species. (c): Proportion of assessed species with an outdated assessment (year of last assessment 94 

coloured in 5-year classes up to 2010; more detail in Fig. S1). (d): Distribution of current Red List categories of outdated 95 

assessments (colours as in B). N refers to the number of assessed species per group, N’ refers to the number of species 96 

with outdated assessments. Data were extracted from the version 2021.2 from the Red List, using the rredlist package 97 

[24].  98 

Table 1. Examples of changes made in the Red List guidelines over the last two decades to strengthen consistency and 99 

rigour of Red List assessments, with year of inclusion in the Red List guidelines (multiple years indicate stepwise 100 

implementation) and references related to the issue (the reference may precede change in guidelines (e.g., if it suggested 101 

and provided rationale for such change), or follow it (e.g., if it tested or explained such change). Red List criteria and 102 

categories are detailed in the Glossary. 103 

Red List 
criterion 

Change made in guidelines Year 
Related 

references 

A - E Using fuzzy arithmetic to propagate data uncertainties and identify the 
range of plausible Red List categories 

2001 [25] 



 

 

A, C1 Extracting species generation length from databases of calculated and 
predicted generation lengths for entire taxonomic groups (mammals 
and birds)  

2003,  
2011 

[26,27] 

B2 Measuring Area of Occupancy (AOO) at the reference scale of 2x2 km 2003 [28] 

B1 Measuring the Extent of Occurrence (EOO) as the area of the minimum 
convex polygon 

2006 [29] 

A3 Using ecological niche models and climate projections outputs to infer 
future reductions resulting from climate change 

2010 [30,31] 

A2 Calculating 3-generation reduction of species with large fluctuations 
using statistical models fitted to longer time series  

2011 [32,33] 

B Calculating upper bounds of AOO and EOO based on habitat maps and 
Area of Habitat 

2014 [34] 

Red List 
category 

   

DD Differentiating (and flagging) three types of Data Deficient 2008 [16] 

EX, CR(PE) Defining (and flagging) species likely but not yet confirmed to be extinct 
as "Critically Endangered (Possibly Extinct)" CR(PE). 

2008 [35] 

EX, CR(PE) Inferring that a species is extinct based on threats and time series of 
records and surveys 

2019 [36,37] 

Published methods to predict Red List categories 104 

Four main objectives of published studies 105 

Of the 98 studies identified in our review, 46% aimed at predicting Red List categories, and we 106 

identified three related objectives depending on the species group targeted (Fig. 2). The first 107 

objective aimed at prioritising or informing first assessments by assigning plausible Red List 108 

categories to unassessed species (e.g., [38]; 13% of studies). The second aimed at resolving 109 

Data Deficient species’ status (e.g., [18]; 11% of studies), by providing information that may 110 

enable assigning data sufficient categories to species with no taxonomy uncertainty [16,17]. 111 

The third aimed at prioritising or informing reassessments, by highlighting species likely to be 112 

misclassified (e.g., [22]; 22% of studies), sometimes also including Data Deficient species’.  113 

Additionally, 54% of studies aimed at understanding correlates of extinction risk using Red 114 

List categories as a proxy for risk (Fig. 2). These studies showed, for instance, that mammals 115 

with high weaning age, small geographic range size, and high human population density within 116 

their geographic range were particularly likely to be categorised as threatened [39]. We define 117 

this objective as fundamental, in the sense that it does not aim to assist Red List assessments 118 

directly, but rather contributes to understanding vulnerability to extinction, which in turn may 119 

guide the development of predictive approaches. 120 

 121 

Two main approaches to predict Red List categories 122 

To meet the objectives mentioned above, studies have relied on two main approaches (Fig. 2): 123 

(1) the modelling or automated calculation of Red List parameters, then used to apply Red List 124 

criteria (criteria-explicit) or (2) using correlates of extinction risk to predict Red List categories 125 

with no explicit use of criteria (category-predictive). 126 



 

 

Criteria-explicit approach 127 

Criteria-explicit methods mirror the process of assessments by applying Red List criteria based 128 

on Red List parameters that have been automatically calculated from data such as species 129 

occurrences, species habitat requirements, and remote-sensing products (N=25; Fig. 2). For 130 

example, species occurrence data can be used to estimate Extent of Occurrence and Area of 131 

Occupancy (e.g., [40]), and several platforms and R packages have been developed to calculate 132 

these parameters automatically (e.g., GeoCAT and rCAT [41]; red [42]; ConR [43]; redlistr 133 

[44]; rapidLC [45]). These methods are particularly useful if species’ geographic distributions 134 

have not been mapped although substantial occurrence data exist, and are thus more often used 135 

for plant and invertebrate groups. Similarly, abundance data can allow estimating population 136 

trends [46], although extensive temporal data are required. 137 

Other studies use habitat and geographic data, often derived from remote-sensing products, to 138 

estimate Red List parameters (Fig. 2). For example, combining current land cover and digital 139 

elevation maps with data on species’ habitat preferences and elevational limits allows mapping 140 

an estimate of the Area of Habitat of species. This in turn can be used to calculate upper bounds 141 

of the Extent of Occurrence and Area of Occupancy [34], and inform application of criteria B 142 

and D2 [47,48]. Similarly, land cover time series can be used to estimate past or future trends 143 

in suitable habitat within species range, which enables inferring population trends and apply 144 

criteria A, B and C (e.g., [49–51]). Most studies focus on only one or two Red List criteria 145 

rather than the full spectrum (Fig. 2), although two studies applied each of criteria A to D; one 146 

focused on past data [22] and the other on future projections [49].  147 

It may perhaps be surprising that criterion E – related to quantitative estimates of extinction 148 

probability – is rarely considered in these studies. This criterion is also rarely used in 149 

assessments (currently only used for four species, always in combination with another criterion 150 

[1]). This scarce use of Criterion E results from the large amount of information required (e.g., 151 

demographic data or patterns of occupancy used to perform Population Viability Analyses; 152 

[19]), which is not available for a vast majority of species. This may also explain the lack of 153 

relevant multi-species studies targeting Criterion E. We found one single study attempting to 154 

apply criterion E on a large set of species [53], with extinction probability estimated from very 155 

limited information (generation length and past transition between categories), thus being 156 

unreliable at the species level. 157 

 158 

Category-predictive approach 159 

Category-predictive methods rely on comparative extinction risk analyses using statistical 160 

models that link Red List categories with other species-level information (see below; N=73 161 

studies; Fig. 2). These statistical relationships are then used to identify the main drivers of risk 162 

(e.g., [53,54]) and/or to predict Red List categories of unassessed species (e.g., [55]), Data 163 



 

 

Deficient species (e.g., [18]), or species with outdated assessments (e.g., [56]). In addition to 164 

species-level predictions, these approaches have estimated and mapped proportions of 165 

threatened species for incompletely assessed taxa or regions [40,55]. 166 

Many species-level predictors have been used [57], the most common being biological traits 167 

(e.g., body mass, weaning age; 86% of studies), and range characteristics (often range size, 168 

sometimes insularity or spatial configuration; 67%; Fig. 2). Many studies also included 169 

predictors representing levels of human pressure within species’ ranges (e.g., human footprint 170 

index, river fragmentation; 40%), which are important correlates of extinction risk [54,58]. 171 

Other predictors include conservation actions in place (e.g., proportion of species’ range 172 

overlapping with protected areas; 4%), which may be important covariates of extinction risk 173 

[59–61]. Importantly, we found only nine studies using the threats listed in species Red List 174 

assessments as predictors (e.g., [53,62]), although these can modulate trait-extinction risk 175 

relationships (e.g., human consumption more strongly threatens large frogs whereas pet trade 176 

threatens small frogs; [63]). 177 

Two main types of models are used in this category-predictive approach: machine learning 178 

(e.g., Random Forest [55] or Neural Networks [64]) and statistical linear models (e.g., 179 

Generalised Linear Models [65]). Studies comparing their performance in predicting extinction 180 

risk are yet too scarce to provide clear guidance on which modelling method is best [66]. An 181 

important consideration when building these models is in how to define the extinction risk 182 

response variable. Risk can be binary (threatened vs non-threatened; 43% of studies; e.g., [67]), 183 

include individual Red List categories (15%, e.g., [68]) or transforming them in a discrete 184 

quantitative variable (39%, e.g., [69] where LC=1, NT=2, etc), or be described as the change 185 

in categories between two assessments (3%, e.g., [58]). The preferred option depends on the 186 

envisioned applications of the predicted Red List categories. For instance, binary threat 187 

predictions are often more accurate [70] and can be sufficiently detailed for a first sorting of 188 

species likely to be threatened [45], whereas category-specific models may be needed to inform 189 

and prioritise reassessments. When category-specific predictions are needed, using a discrete 190 

quantitative variable requires making assumptions about the distance between categories that 191 

are generally untested. This could be resolved by using Cumulative Link Mixed Models, which 192 

deal with multinomial ordered variables [68,71].  193 

Many studies investigating range size as a correlate of extinction risk have excluded 194 

assessments made under criterion B as they could introduce circularity (e.g., because range size 195 

is highly correlated with Extent of Occurrence used in criterion B1; see [57,71]). This exclusion 196 

is necessary when the objective is fundamental (i.e., to understand if range size correlates with 197 

extinction risk), but not necessarily required when the objective is predicting species Red List 198 

category. 199 

 200 



 

 

System and taxonomic biases 201 

Our review revealed biases in extinction risk research across taxa and systems, with 73% of 202 

studies focusing only on terrestrial species, vs 11% on marine and 3% on strictly freshwater 203 

species (rare examples include [69,72]); 13% cover several systems. Additionally, only one 204 

criteria-explicit study focused specifically on marine species and none on freshwater species 205 

(Fig. 2), possibly because it is less straightforward to derive binary maps of suitable habitat 206 

from remote-sensing products for these systems compared to the terrestrial system. Marine and 207 

freshwater species, however, are facing particular threats and thus need specific data and 208 

methods (e.g., to estimate impacts of dam-induced fragmentation on Area of Habitat; [69]). 209 

Studies were also strongly biased towards tetrapod species (74% of studies), while they would 210 

be particularly valuable for groups that are less known, such as fishes, invertebrates, plants and 211 

fungi.   212 



 

 

 213 

Figure 2: Graphical summary of studies reviewed, presenting the two approaches and the four objectives of studies developing modelling or automated calculation methods to predict Red List categories. 214 

All studies cited in the main text are reported in the figure in brackets (full references in Fig. S2); the total number of studies found in the systematic review per approach and objective is given in the 215 

doughnut plots. Colours denote the system investigated, with freshwater designating only fully aquatic freshwater species and “not specific” for R packages that can be applied to any system. Yellow ellipses 216 

present the main types of variables used in the category-predictive approach and the main methods used in the criteria-explicit approach (AOH: Area of Habitat). Thin horizontal lines are used to illustrate 217 

studies belonging to several adjacent columns (e.g., including criteria B and D, but not C for [47]). Red List criteria are detailed in the Glossary. DD: Data Deficient. Grey boxes encompass studies that 218 

share the same objective and approach. The dotted grey line indicates that only some studies in the grey box share the objective. 219 



 

 

From research to implementation 220 

The limited uptake of methods developed to support Red List assessments is striking. Perhaps 221 

the most widely used tools are platforms and packages that facilitate the use of criterion B from 222 

occurrence data, such as GeoCAT [41], which have been cited in 8,921 assessments as of early 223 

June 2021, or red [42]. Additionally, some studies have been conducted in collaboration with 224 

groups undertaking Red List assessments, or have been communicated directly to assessors 225 

[22,48,50,51], and have thus informed actual assessments. So far, however, most studies 226 

remain research exercises. 227 

 228 

Overcoming barriers 229 

The important research-implementation gap can be broadly attributed to a lack of 230 

communication between extinction risk researchers and Red List practitioners [23]. From the 231 

research side, implementation is hindered by misunderstandings or misapplications of Red List 232 

criteria in the proposed methods, mismatches between researchers’ interests and assessors’ 233 

needs, or because developed methods do not provide the outputs needed by assessors [73] (Box 234 

1). This may be partly due to researchers being unclear about the most appropriate entry points 235 

in the Red List system to discuss and propose change. On the Red List side, assessors may not 236 

be able to use potentially relevant tools if these require detailed input data, substantial time, or 237 

advanced technical skills and capacity to apply (Box 1). Additionally, some tools have been 238 

implemented and used by assessors but, because of a lack of funding, are not being maintained 239 

(e.g., the Freshwater Mapping Application, used in many assessments, had no funding to 240 

support development and maintenance at the time of writing). 241 

 242 

Box 1: Main barriers to the implementation of recent methods to predict Red List 243 

categories 244 

● Misunderstanding of Red List criteria: in many publications, the Red List guidelines are 245 

ignored or misinterpreted [31,74], rendering outputs unhelpful for Red List assessments. For 246 

instance, considerable confusion has arisen over the interpretation of the slightly ambiguous 247 

language around the Extent of Occurrence metric (e.g., [75]), despite attempts to clarify how 248 

this should be calculated [29,34,76].  249 

● Divergent interests: there may be differences between what is needed by Red List assessors 250 

and what is appealing to researchers. While assessors need tools that give them easy access to 251 

basic information (e.g., deforestation rates within species ranges) or readily applicable 252 

estimates of Red List parameters, researchers may be more interested in developing 253 

sophisticated modelling methods, to increase the novelty of potential publications). 254 



 

 

● Misaligned output: methods may sometimes output parameters in formats that are not directly 255 

usable in Red List assessments. For instance, a model predicting species’ Red List categories 256 

cannot be used by assessors if it fails to output the specific parameters that assessors must 257 

provide to justify categories (e.g., typical of the category-predictive approach).  258 

● Lack of data: methods that require extensive species-specific data (e.g., occurrences across 259 

range [41], life-history traits across taxa [66]) cannot be applied to all taxa.  260 

● Insufficient skills, capacity, or time: Red List assessors vary in their ability to use 261 

technological tools (e.g., GIS, R scripts) and may lack the necessary background, skills and 262 

time to learn how to use newly developed methods if they are not easy to apply (e.g., [22]). For 263 

example, the success of GeoCAT [41] is likely due to its user-friendly interface. Specific 264 

training on how to use newly developed tools (e.g., courses, tutorials, fora), is very rarely 265 

offered.  266 

● Disconnect with the Red List database: all Red List assessments are conducted in the IUCN’s 267 

online database (the Species Information Service, SIS). Uptake of new methods and approaches 268 

would be greatly increased if outputs, such as Red List parameters, could readily be integrated 269 

into SIS (e.g., through the existing SIS Connect tool).  270 

 271 

These barriers could be mitigated in various ways. First, the best means of resolving poor 272 

communication between researchers and practitioners is by involving Red List stakeholders 273 

early in the development of new approaches and methods to ensure effective orientation of 274 

research efforts and avoid misunderstanding or misapplication of the Red List categories and 275 

criteria, or of assessors’ needs and constraints [77]. This could include members of Red List 276 

Authorities, the Red List Committee and its working groups, IUCN Red List Unit or IUCN 277 

Standards and Petitions Committee (noting that part of these members are also recognised 278 

experts in extinction risk research), or sending a request to the generic IUCN Red List email 279 

address when researchers cannot identify the correct entry point. Particular attention must be 280 

given to the ultimate outputs to ensure they are useful in practice. On this point, criteria-explicit 281 

methods which, by definition, estimate Red List parameters that can be directly used by 282 

assessors to apply Red List criteria, seem more useful than category-predictive methods. 283 

However, the latter could prove useful to designate priorities for species (re-)assessment (see 284 

Future research directions). 285 

Second, because of the heterogeneity in assessors’ backgrounds, uptake of any new method 286 

requires easy use. This can be achieved by releasing methods through user-friendly online 287 

platforms, such as Shiny Apps (e.g., [45]), and ensuring their long-term maintenance and 288 

update with new data and methods. At the same time, any information provided should come 289 

with high transparency (so that assessors can understand basic assumptions and limitations of 290 



 

 

underlying methods), with explicit uncertainty bounds, and be open-source. In addition, 291 

platforms could benefit from allowing assessors to adjust some methodological choices (e.g., 292 

selecting variables to include in a given model) based on their expertise. However, this may 293 

come at the expense of consistency and may increase the risk of cherry-picking (e.g., assessors 294 

may be tempted to adjust methods to meet the output they expected). 295 

Finally, these platforms should be promoted to assessors, provided with adequate guidance and 296 

training (e.g., through webinars, workshops, documentation, video tutorials), and connected 297 

with IUCN database (the Species Information Service, SIS). From a longer-term perspective, 298 

it is also important to enable assessors to provide feedback on these platforms to inform future 299 

development, and to track their use (e.g., through citations in assessments). 300 

 301 

Future research directions 302 

In addition to making developed methods accessible to assessors, further research is needed to 303 

create methods that (1) better support the assignment of Red List categories and (2) help 304 

prioritise assessments and data collection. Before implementation, all methods have to be 305 

rigorously validated to measure their performance (Box 2).  306 

 307 

Supporting assignment of Red List categories  308 

Considering the diversity of threats: With most published methods targeting terrestrial 309 

habitat loss (especially in the criteria-explicit approach; Fig. 2), it is important to develop 310 

methods that focus on the impact of other threats on species extinction risk (e.g., harvesting, 311 

pollution, diseases, invasive species), including those specific to freshwater and marine species 312 

(e.g., dams, water pollution, overfishing). In particular, while climate change is threatening 313 

>10,000 species [1] and can significantly increase extinction risk [78], estimating its impact 314 

consistently across species is complex [19,79]. We need tools providing assessors with species’ 315 

exposure to past and future climate change (e.g., change in climatic envelope, sea-level rise, 316 

frequency of extreme climatic events, ocean acidification), and the ability to integrate this 317 

knowledge with information on species’ sensitivity to climate change [80–82] in accordance 318 

with Red List guidelines [19,79].  319 

Facilitating the application of criterion E: A wider use of criterion E would have two main 320 

advantages: direct incorporation of quantitative analyses in Red List assessments, and explicit 321 

consideration of longer time frames than all other criteria (up to 100 years in the future, 322 

regardless of generation length). Methods may build on allometry-driven parameters (e.g., 323 

[83]) and population density estimates [84] to inform extinction risk simulations on entire 324 

groups of species. Extinction probability could also be estimated by modelling the probability 325 



 

 

that a species’ Area of Habitat disappears in the future, according to climate and land-use 326 

change projections [19]. 327 

Predicting the probability of meeting thresholds: In analogy with the category-predictive 328 

approach (i.e., linking extinction risk of multiple species to species-specific data such as 329 

biological traits or human pressure in the range), models could be developed to predict the 330 

probability of meeting the threshold for a given criterion (e.g., the probability that past 331 

population decline is ≥ 30% over 10 years), instead of the categories themselves. Such models 332 

would thus benefit from the power of multi-species comparisons inherent in category-333 

predictive methods, but provide an output more likely to be useful to assessors.  334 

Accounting for biotic dependencies: Informing assessors on biotic dependencies between 335 

species (e.g., parasite-host, plant-pollinator, or plant-phytophagous relationships) can lead to 336 

better integration of associated co-extinction risk in assessments [12], which could affect 337 

several thousands of species [85–87]. For instance, the population trend of Barrett’s Plant-louse 338 

Trioza barrettae – an endemic bug from Australia – was estimated based on the population 339 

trend of its Critically Endangered and sole known host plant Brown’s Banksia Banksia brownii, 340 

and the louse was consequently categorised as Critically Endangered [1]. 341 

Predicting down-listing: While previously mentioned methods can also identify species 342 

warranting down-listing to lower categories of threat, specific research efforts should focus on 343 

predicting positive population trends (considering for instance conservation actions 344 

undertaken) or range expansions. Such methods may later support assessments of the IUCN 345 

Green Status of Species [88,89].  346 

 347 

Prioritising assessments or data collection 348 

Prioritising first assessments: Both category-predictive and criteria-explicit approaches can 349 

help prioritise assessments to optimise allocation of limited resources [11]. Specifically, for 350 

assessors or teams undertaking first-time assessments for large groups of species, these 351 

approaches can be used to help provide an initial indication of whether species are likely to be 352 

threatened (e.g., [55,59]) or Least Concern (and hence could be fast-tracked [45]). 353 

Prioritising reassessments: Given that reassessments rates are currently insufficient to 354 

provide updates every 10 years for most groups (Fig. 1C), the identification of species most 355 

likely to have changed their category is also relevant [22,60]. Additionally, a period of 10 years 356 

between assessments may be too long to detect rapid changes in some species’ status (e.g., the 357 

Mount Gorongosa Pygmy Chameleon, Rhampholeon gorongosae, Least Concern in 2014 was 358 

Endangered five years later following rapid habitat loss; [1]). Identifying which species are 359 

most likely to have changed in status since the previous assessment could inform targeted 360 

reassessments and thus help to keep the Red List up-to-date. Similarly, it would be useful to 361 



 

 

develop tools that flag Data Deficient species for which recent increases in data availability 362 

may allow application of Red List criteria (e.g., through accumulation of new information on 363 

citizen science platforms). 364 

Prioritising data collection: Methods that predict species or areas for which data collection 365 

would make the biggest difference for Red List assessments can deliver useful information to 366 

guide data collection. For instance, Data Deficient species that are predicted as threatened by 367 

category-predictive methods may be prioritised for data collection [66]. Further, predicting 368 

where data collection may be the most valuable for conservation (e.g., species that could 369 

become data sufficient with few additional data, or regions where collecting contextual 370 

information would benefit many species) can also be useful to guide fieldwork efforts 371 

[16,90,91]. Synergies with the IUCN Species Monitoring Specialist Group, which aims to 372 

produce prioritized lists of existing species data gaps, would be beneficial. 373 

 374 

 375 

Box 2: Best practices to validate methods predicting Red List categories 376 

Model validation is necessary to assess the ability of models to correctly predict species’ Red 377 

List categories. 378 

● In the criteria-explicit approach, validation simply requires comparison of predicted 379 

categories with the actual categories from published assessments.  380 

● In the category-predictive approach, three main validation methods can be undertaken: 381 

 - Temporal block validation is the most recommended method, if applicable (i.e., 382 

species have been assessed at least twice), where models are trained on Red List categories 383 

from past assessments and validated against current assessments. This is relevant only if 384 

changes in categories are “genuine” (i.e., not due to improved knowledge or other non-genuine 385 

reasons, this is specified in Red List data).  386 

 -  Phylogenetical or spatial block validation, is the most recommended method when 387 

temporal block validation is not applicable, where each independent taxon or region is 388 

separately set aside (i.e., not used in model training) and used for validation (e.g., [65]).  389 

 - Other split sample validation methods randomly split the dataset into training and 390 

testing sets (e.g., [67]). This is the least recommended, as accuracy can be overestimated due 391 

to the autocorrelation in training and testing samples [92]. 392 

● For both approaches, we advise systematically reporting confusion matrices and measures of 393 

accuracy (i.e., proportion of species correctly categorised), sensitivity (proportion of threatened 394 

species correctly categorised) and specificity (proportion of non-threatened species correctly 395 

categorised), as they provide key and complementary information [93]. Models with high 396 

sensitivity are particularly useful to identify species likely to be threatened, while models with 397 



 

 

high specificity can rule out species unlikely to be threatened. A model with intermediate 398 

specificity and sensitivity is less informative. Additionally, exploring how geographically / 399 

taxonomically consistent is model performance may provide important insights on model 400 

limitations. 401 

● For both approaches, we advise sub-setting the species used for validation, keeping only the 402 

most accurate assessments, to avoid underestimating the accuracy of the developed methods. 403 

We suggest selecting species: 404 

 - With up-to-date assessments 405 

 - Threatened by processes accounted for in the modelling (e.g., species threatened by 406 

habitat loss when validating methods based on Area of Habitat). 407 

- With high certainty in Red List category, although in practice it may be difficult to 408 

identify such assessments.  409 

 410 

Concluding Remarks 411 

The multiple approaches reviewed in this paper include some with significant potential to assist 412 

Red List assessments. Improved communication between researchers and the Red List 413 

community is required to develop the tools and outputs most relevant for assessors. Uptake 414 

also requires additional research to tackle key remaining methodological challenges (see 415 

Outstanding Questions) and deliver practical tools. We believe that further development of 416 

such tools, and ensuring their long-term availability to assessors, could constitute an important 417 

milestone for the future of the Red List. 418 

Importantly, the proposed methods will neither substitute nor reduce the role of assessors, but 419 

rather support them with appropriate and readily usable outputs and techniques. In doing so, 420 

these methods may help fast-track or prioritise assessments. However, it is important to note 421 

that they will not address the urgent need to increase Red List resources for targeted fieldwork, 422 

workshops, tool development, fora and remunerated assessors. 423 

Increasing resources and embracing new data and methods will enable the Red List to become 424 

more taxonomically and geographically representative, data sufficient, up-to-date and 425 

consistent, and thus remain the standard and authoritative source of information on species’ 426 

extinction risk [11]. This is crucial to ensure that the Red List can best guide future conservation 427 

actions [2,3], and support accurate monitoring of the effectiveness of global conservation 428 

efforts under the post-2020 global biodiversity framework [6,94].  429 
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Supplementary Figures 
 

Supplementary Figure 1: Histogram of date of last assessment per taxa (detail of Fig. 1C). Colours as in Fig. 1C. 



 

Supplementary Figure 2: Copy of Fig.2 with full references 



Systematic review 
 

Methods 
We systematically searched for scientific articles that developed models or automated calculation methods aiming at predicting global Red List 

categories for groups of species. We did not consider studies focusing on National or Regional Red Lists, as they are based on other criteria.  

We also included studies aiming at identifying correlates of extinction risk (i.e., using models to link Red List categories with species-level 

predictors), because they can inform method development of applied studies. 

We ran a search in the Web of Science (complete collection) on the 2nd of June 2021, searching for the following keywords in the articles “Topic” 

(i.e. title, abstract, keywords): extinction AND ("IUCN" OR "International Union for Conservation of Nature" OR "Red List*") AND (model* OR 

"remote sensing" OR "analys*" OR "predict*" OR "data-driven"). We only considered publication published later than 2001. 

We screened titles and abstracts of the 1132 hits and extracted 78 relevant studies. In addition, we included 20 studies that were not detected by 
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