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A ROBUST ALGEBRAIC DOMAIN DECOMPOSITION1

PRECONDITIONER FOR SPARSE NORMAL EQUATIONS∗2

HUSSAM AL DAAS† , PIERRE JOLIVET‡ , AND JENNIFER A. SCOTT†§3

Abstract. Solving the normal equations corresponding to large sparse linear least-squares4
problems is an important and challenging problem. For very large problems, an iterative solver5
is needed and, in general, a preconditioner is required to achieve good convergence. In recent6
years, a number of preconditioners have been proposed. These are largely serial and reported7
results demonstrate that none of the commonly used preconditioners for the normal equations8
matrix is capable of solving all sparse least-squares problems. Our interest is thus in designing9
new preconditioners for the normal equations that are efficient, robust, and can be implemented in10
parallel. Our proposed preconditioners can be constructed efficiently and algebraically without any11
knowledge of the problem and without any assumption on the least-squares matrix except that it12
is sparse. We exploit the structure of the symmetric positive definite normal equations matrix and13
use the concept of algebraic local symmetric positive semi-definite splittings to introduce two-level14
Schwarz preconditioners for least-squares problems. The condition number of the preconditioned15
normal equations is shown to be theoretically bounded independently of the number of subdomains in16
the splitting. This upper bound can be adjusted using a single parameter τ that the user can specify.17
We discuss how the new preconditioners can be implemented on top of the PETSc library using only18
150 lines of Fortran, C, or Python code. Problems arising from practical applications are used to19
compare the performance of the proposed new preconditioner with that of other preconditioners.20

Key words. Algebraic domain decomposition, two-level preconditioner, additive Schwarz,21
normal equations, sparse linear least-squares.22

1. Introduction. We are interested in solving large-scale sparse linear least-23

squares (LS) problems24

(1.1) min
x
‖Ax− b‖2,25

where A ∈ Rm×n (m ≥ n) and b ∈ Rm are given. Solving (1.1) is mathematically26

equivalent to solving the n× n normal equations27

(1.2) Cx = A>b, C = A>A,28

where, provided A has full column rank, the normal equations matrix C is symmetric29

and positive definite (SPD). Two main classes of methods may be used to solve the30

normal equations: direct methods and iterative methods. A direct method proceeds31

by computing an explicit factorization, either using a sparse Cholesky factorization32

of C or a “thin” QR factorization of A. While well-engineered direct solvers [2, 12, 33]33

are highly robust, iterative methods may be preferred because they generally require34

significantly less storage (allowing them to tackle very large problems for which the35

memory requirements of a direct solver are prohibitive) and, in some applications,36

it may not be necessary to solve the system with the high accuracy offered by a37

direct solver. However, the successful application of an iterative method usually38

requires a suitable preconditioner to achieve acceptable (and ideally, fast) convergence39
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2 H. AL DAAS, P. JOLIVET, AND J. A. SCOTT

rates. Currently, there is much less knowledge of preconditioners for LS problems40

than there is for sparse symmetric linear systems and, as observed in Bru et al. [8],41

“the problem of robust and efficient iterative solution of LS problems is much harder42

than the iterative solution of systems of linear equations.” This is, at least in part,43

because A does not have the properties of differential problems that can make standard44

preconditioners effective for solving many classes of linear systems.45

Compared with other classes of linear systems, the development of preconditioners46

for sparse LS problems may be regarded as still being in its infancy. Approaches47

include48

• variants of block Jacobi (also known as block Cimmino) and SOR [19];49

• incomplete factorizations such as incomplete Cholesky, QR, and LU50

factorizations, for example, [8, 30, 38, 39];51

• sparse approximate inverses [11].52

A review and performance comparison is given in [22]. This found that, whilst none53

of the approaches successfully solved all LS problems, limited memory incomplete54

Cholesky factorization preconditioners appear to be the most reliable. The incomplete55

factorization-based preconditioners are designed for moderate size problems because56

current approaches, in general, are not suitable for parallel computers. The block57

Cimmino method can be parallelized easily, however, it lacks robustness as the58

iteration count to reach convergence cannot be controlled and typically increases59

significantly when the number of blocks increases for a fixed problem [17]. Several60

techniques have been proposed to improve the convergence of block Cimmino but61

they still lack robustness [18]. Thus, we are motivated to design a new class of LS62

preconditioners that are not only reliable but can also be implemented in parallel.63

We restrict our study in this paper to the case where C is sparse. We observe64

that in some practical applications the matrix A contains a small number of rows that65

have many more nonzero entries than the other rows, resulting in a dense matrix C.66

Several techniques, including matrix stretching and using the augmented system, have67

been proposed to handle this type of problem. These result in solving a transformed68

system of sparse normal equations, see for example [40] and the references therein.69

In [3], Al Daas and Grigori presented a class of robust fully algebraic two-level70

additive Schwarz preconditioners for solving SPD linear systems of equations. They71

introduced the notion of an algebraic local symmetric positive semi-definite (SPSD)72

splitting of an SPD matrix with respect to local subdomains. They used this splitting73

to construct a class of second-level spaces that bound the spectral condition number74

of the preconditioned system by a user-defined value. Unfortunately, Al Daas and75

Grigori reported that for general sparse SPD matrices, constructing the splitting is76

prohibitively expensive. Our interest is in examining whether the particular structure77

of the normal equations matrix allows the approach to be successfully used for78

preconditioning LS problems. In this paper, we show how to compute the splitting79

efficiently. Based on this splitting, we apply the theory presented in [3] to construct80

a two-level Schwarz preconditioner for the normal equations.81

Note that for most existing preconditioners of the normal equations, there is82

no need to form and store the normal equations matrix C explicitly. For example,83

the lower triangular part of its columns can be computed one at a time, used84

to perform the corresponding step of an incomplete Cholesky algorithm, and then85

discarded. However, forming the normal equations matrix, even piecemeal, can entail86

a significant overhead and can potentially lead to a severe loss of information in highly87

ill-conditioned cases. Although building our proposed preconditioner does not need88

the explicit computation of C, our parallel implementation computes it efficiently89
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PRECONDITIONER FOR SPARSE NORMAL EQUATIONS 3

and uses it to setup the preconditioner. This is mainly motivated by technical90

reasons. As an example, state-of-the-art distributed-memory graph partitioners such91

as ParMETIS [28] or PT-SCOTCH [36] cannot directly partition the columns of92

the rectangular matrix A. Our numerical experiments on highly ill-conditioned LS93

problems showed that forming C and using a positive diagonal shift to construct the94

preconditioner had no major effect on the robustness of the resulting preconditioner.95

This paper is organized as follows. The notation used in the manuscript is given96

at the end of the introduction. In section 2, we present an overview of domain97

decomposition (DD) methods for a sparse SPD matrix. We present a framework for98

the DD approach when applied to the sparse LS problem in section 3. Afterwards, we99

show how to compute the local SPSD splitting matrices efficiently and use them in line100

with the theory presented in [3] to construct a robust two-level Schwarz preconditioner101

for the normal equations matrix. We then discuss some technical details that clarify102

how to construct the preconditioner efficiently. In section 4, we briefly discuss how103

the new preconditioner can be implemented on top of the PETSc library [7] and104

we illustrate its effectiveness using large-scale LS problems coming from practical105

applications. Finally, concluding comments are made in section 5.106

Notation. We end our introduction by defining notation that will be used in this107

paper. Let 1 ≤ n ≤ m and let A ∈ Rm×n. Let S1 ⊂ J1,mK and S2 ⊂ J1, nK be108

two sets of integers. A(S1, :) is the submatrix of A formed by the rows whose indices109

belong to S1 and A(:, S2) is the submatrix of A formed by the columns whose indices110

belong to S2. The matrix A(S1, S2) is formed by taking the rows whose indices belong111

to S1 and only retaining the columns whose indices belong to S2. The concatenation112

of any two sets of integers S1 and S2 is represented by [S1, S2]. Note that the order113

of the concatenation is important. The set of the first p positive integers is denoted114

by J1, pK. The identity matrix of size n is denoted by In. We denote by ker(A) and115

range(A) the null space and the range of A, respectively.116

2. Introduction to domain decomposition. Throughout this section, we117

assume that C is a general n × n sparse SPD matrix. Let the nodes V in the118

corresponding adjacency graph G(C) be numbered from 1 to n. A graph partitioning119

algorithm can be used to split V into N � n disjoint subsets ΩIi (1 ≤ i ≤ N) of120

size nIi. These sets are called nonoverlapping subdomains. Defining an overlapping121

additive Schwarz preconditioner requires overlapping subdomains. Let ΩΓi be the122

subset of size nΓi of nodes that are distance one in G(C) from the nodes in ΩIi123

(1 ≤ i ≤ N). The overlapping subdomain Ωi is defined to be Ωi = [ΩIi,ΩΓi], with124

size ni = nΓi + nIi.125

Associated with Ωi is a restriction (or projection) matrix Ri ∈ Rni×n given by126

Ri = In(Ωi, :). Ri maps from the global domain to subdomain Ωi. Its transpose R>i127

is a prolongation matrix that maps from subdomain Ωi to the global domain. The128

one-level additive Schwarz preconditioner [16] is defined to be129

(2.1) M−1
ASM =

N∑
i=1

R>i C
−1
ii Ri, Cii = RiCR

>
i .130

That is,131

M−1
ASM = R1

C
−1
11

. . .

C−1
NN

R>1 ,132
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4 H. AL DAAS, P. JOLIVET, AND J. A. SCOTT

where R1 is the one-level interpolation operator defined by133

R1 :

N∏
i=1

Rni → Rn

(ui)1≤i≤N 7→
N∑
i=1

R>i ui.

134

135

Applying this preconditioner to a vector involves solving concurrent local problems136

in the overlapping subdomains. Increasing N reduces the sizes ni of the overlapping137

subdomains, leading to smaller local problems and faster computations. However,138

in practice, the preconditioned system using M−1
ASM may not be well-conditioned,139

inhibiting convergence of the iterative solver. In fact, the local nature of this140

preconditioner can lead to a deterioration in its effectiveness as the number of141

subdomains increases because of the lack of global information from the matrix C [16,142

21]. To maintain robustness with respect to N , an artificial subdomain is added to143

the preconditioner (also known as second-level correction or coarse correction) that144

includes global information.145

Let 0 < n0 � n. If R0 ∈ Rn0×n is of full row rank, the two-level additive Schwarz146

preconditioner [16] is defined to be147

(2.2) M−1
additive =

N∑
i=0

R>i C
−1
ii Ri = R>0 C

−1
00 R0 +M−1

ASM, C00 = R0CR
>
0 .148

That is,149

M−1
additive = R2


C−1

00

C−1
11

. . .

C−1
NN

R>2 ,150

where R2 is the two-level interpolation operator151

R2 :
N∏
i=0

Rni → Rn

(ui)0≤i≤N 7→
N∑
i=0

R>i ui.

(2.3)152

153

In the rest of this paper, we will make use of the canonical one-to-one correspondence154

between
∏N

i=0 Rni and R
∑N

i=0 ni so that R2 can be applied to vectors in R
∑N

i=0 ni .155

Observe that, because C and R0 are of full rank, C00 is also of full rank. For any full156

rank R0, it is possible to cheaply obtain upper bounds on the largest eigenvalue of the157

preconditioned matrix, independently of n and N [3]. However, bounding the smallest158

eigenvalue is highly dependent on R0. Thus, the choice of R0 is key to obtaining a well-159

conditioned system and building efficient two-level Schwarz preconditioners. Two-160

level Schwarz preconditioners have been used to solve a large class of systems arising161

from a range of engineering applications (see, for example, [23, 27, 29, 31, 41, 42, 45]162

and references therein).163
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PRECONDITIONER FOR SPARSE NORMAL EQUATIONS 5

Following [3], we denote by Di ∈ Rni×ni (1 ≤ i ≤ N) any non-negative diagonal164

matrices such that165

(2.4)

N∑
i=1

R>i DiRi = In.166

We refer to (Di)1≤i≤N as an algebraic partition of unity. In [3], Al Daas and Grigori167

show how to select local subspaces Zi ∈ Rni×pi with pi � ni (1 ≤ i ≤ N) such that,168

if R>0 is defined to be R>0 = [R>1 D1Z1, . . . , R
>
NDNZN ], the spectral condition number169

of the preconditioned matrix M−1
additiveC is bounded from above independently of N170

and n.171

2.1. Algebraic local SPSD splitting of an SPD matrix. We now recall172

the definition of an algebraic local SPSD splitting of an SPD matrix given in [3].173

This requires some additional notation. Denote the complement of Ωi in J1, nK by174

Ωci. Define restriction matrices Rci, RIi, and RΓi that map from the global domain175

to Ωci, ΩIi, and ΩΓi, respectively. Reordering the matrix C using the permutation176

matrix Pi = In([ΩIi,ΩΓi,Ωci], :) gives the block tridiagonal matrix177

(2.5) PiCP
>
i =

 CI,i CIΓ,i

CΓI,i CΓ,i CΓc,i

CcΓ,i Cc,i

 ,178

where CI,i = RIiCR
>
Ii, C

>
ΓI,i = CIΓ,i = RIiCR

>
Γi, CΓ,i = RΓiCR

>
Γi, C

>
cΓ,i = CΓc,i =179

RΓiCR
>
ci, and Cc,i = RciCR

>
ci. The first block on the diagonal corresponds to the180

nodes in ΩIi, the second block on the diagonal corresponds to the nodes in ΩΓi
, and181

the third block on the diagonal is associated with the remaining nodes.182

An algebraic local SPSD splitting of the SPD matrix C with respect to the i-th183

subdomain is defined to be any SPSD matrix C̃i ∈ Rn×n of the form184

PiC̃iP
>
i =

 CI,i CIΓ,i 0

CΓI,i C̃Γ,i 0
0 0 0

185

such that the following condition holds:186

0 ≤ u>C̃iu ≤ u>Cu, for all u ∈ Rn.187

We denote the 2× 2 block nonzero matrix of PiC̃iP
>
i by C̃ii so that

C̃i = R>i C̃iiRi.

Associated with the local SPSD splitting matrices, we define a multiplicity188

constant km that satisfies the inequality189

(2.6) 0 ≤
N∑
i=1

u>C̃iu ≤ kmu>Cu, for all u ∈ Rn.190

Note that, for any set of SPSD splitting matrices, km ≤ N .191

The main motivation for defining splitting matrices is to find local seminorms that192

are bounded from above by the C-norm. These seminorms will be used to determine a193

subspace that contains the eigenvectors of C associated with its smallest eigenvalues.194
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6 H. AL DAAS, P. JOLIVET, AND J. A. SCOTT

2.2. Two-level Schwarz method. We next review the abstract theory of the195

two-level Schwarz method as presented in [3]. For the sake of completeness, we present196

some elementary lemmas that are widely used in multilevel methods. These will be197

used in proving efficiency of the two-level Schwarz preconditioner and will also help198

in understanding how the preconditioner is constructed.199

2.2.1. Useful lemmas. The following lemma [34] provides a unified framework200

for bounding the spectral condition number of a preconditioned operator. It can be201

found in different forms for finite and infinite dimensional spaces. Here, we follow the202

presentation from [16, Lemma 7.4].203

Lemma 2.1 (Fictitious Subspace Lemma). Let C ∈ RnC×nC and B ∈ RnB×nB204

be SPD. Let the operator R be defined as205

R : RnB → RnC

v 7→ Rv,
206

207

and let R> be its transpose. Assume the following conditions hold:208

(i) R is surjective;209

(ii) there exists cu > 0 such that for all v ∈ RnB210

(Rv)
>
C (Rv) ≤ cuv>Bv;211

(iii) there exists cl > 0 such that for all vC ∈ RnC there exists vB ∈ RnB such that212

vC = RvB and213

clv
>
BBvB ≤ (RvB)

>
C (RvB) = v>CCvC .214

Then, the spectrum of the operator RB−1R>C is contained in the interval [cl, cu].215

The challenge is to define the second-level projection matrix R0 such that the two-level216

additive Schwarz preconditioner M−1
additive and the operator R2 (2.3), corresponding217

respectively to B and R in Lemma 2.1, satisfy conditions (i) to (iii) and, in addition,218

ensures the ratio between cl and cu is small because this determines the quality of the219

preconditioner.220

As shown in [16, Lemmas 7.10 and 7.11], a two-level additive Schwarz221

preconditioner satisfies (i) and (ii) for any full rank R0. Furthermore, the constant cu222

is bounded from above independently of the number of subdomains N , as shown in223

the following result [10, Theorem 12].224

Lemma 2.2. Let kc be the minimum number of distinct colours so that the spaces225

spanned by the columns of the matrices R>1 , . . . , R
>
N that are of the same colour are226

mutually C-orthogonal. Then,227

(R2uB)
>
C (R2uB) ≤ (kc + 1)

N∑
i=0

u>i Ciiui,228

for all uB = (ui)0≤i≤N ∈
∏N

i=0 Rni .229

Note that kc is independent ofN . Indeed, it depends only on the sparsity structure230

of C and is less than the maximum number of neighbouring subdomains.231

The following result is the first step in a three-step approach to define a two-level232

additive Schwarz operator R2 that satisfies condition (iii) in Lemma 2.1.233
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PRECONDITIONER FOR SPARSE NORMAL EQUATIONS 7

Lemma 2.3. [16, Lemma 7.12] Let uB = (ui)0≤i≤N ∈
∏N

i=0 Rni and u = R2uB ∈234

Rn. Then, provided R0 is of full rank,235

N∑
i=0

u>i Ciiui ≤ 2 u>Cu+ (2kc + 1)

N∑
i=1

u>i Ciiui,236

where kc is defined in Lemma 2.2.237

It follows that (iii) is satisfied if the squared localized seminorm u>i Ciiui is238

bounded from above by the squared C-norm of u.239

In the second step, we bound u>i Ciiui by the squared localized seminorm defined240

by the SPSD splitting matrix C̃i, which can be bounded by the squared C-norm (2.6).241

The decomposition of u =
∑N

i=0R
>
i ui ∈ Rn is termed stable if, for some τ > 0,242

τu>i Ciiui ≤ u>Cu, 1 ≤ i ≤ N.243

The two-level approach in [3] aims to decompose each Rni (1 ≤ i ≤ N) into two244

subspaces, one that makes the decomposition of u stable and the other is part of the245

artificial subdomain associated with the second level of the preconditioner. Given the246

partition of unity (2.4), u =
∑N

i=1R
>
i DiRiu and, if Πi = Π>i ∈ Rni×ni , we can write247

u =

N∑
i=1

R>i Di(Ini
−Πi)Riu+

N∑
i=1

R>i DiΠiRiu248

=

N∑
i=1

R>i ui +

N∑
i=1

R>i DiΠiRiu, with ui = Di (Ini
−Πi)Riu.249

250

Therefore, we need to construct Πi such that251

τu>R>i (Ini
−Πi)DiCiiDi(Ini

−Πi)Riu ≤ u>Cu.252

The following lemma shows how this can be done.253

Lemma 2.4. [3, Lemma 4.2] Let C̃i = R>i C̃iiRi be a local SPSD splitting of254

C related to the i-th subdomain (1 ≤ i ≤ N). Let Di be the partition of unity255

(2.4). Let P0,i be the projection on range(C̃ii) parallel to ker(C̃ii). Define Li =256

ker(DiCiiDi) ∩ ker(C̃ii), and let L⊥i denote the orthogonal complementary of Li in257

ker(C̃ii). Consider the following generalized eigenvalue problem:258

find (vi,k, λi,k) ∈ Rni × R259

such that P0,iDiCiiDiP0,ivi,k = λi,kC̃iivi,k.260261

Given τ > 0, define262

(2.7) Zi = L⊥i ⊕ span

{
vi,k | λi,k >

1

τ

}
263

and let Πi be the orthogonal projection on Zi. Then, Zi is the subspace of smallest264

dimension such that for all u ∈ Rn,265

τu>i Ciiui ≤ u>C̃iu ≤ u>Cu,266

where ui = Di (Ini
−Πi)Riu.267
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8 H. AL DAAS, P. JOLIVET, AND J. A. SCOTT

Lemma 2.5 provides the last step that we need for condition (iii) in Lemma 2.1.268

It defines u0 and checks whether (ui)0≤i≤N is a stable decomposition.269

Lemma 2.5. Let C̃i, Zi, and Πi be as in Lemma 2.4 and let Zi be a matrix whose270

columns span Zi (1 ≤ i ≤ N). Let the columns of the matrix R>0 span the space271

(2.8) Z =

N⊕
i=1

R>i DiZi.272

Let u ∈ Rn and ui = Di (Ini −Πi)Riu (1 ≤ i ≤ N). Define273

u0 =
(
R0R

>
0

)−1
R0

(
N∑
i=1

R>i DiΠiRiu

)
.274

Then,275

u =

N∑
i=0

R>i ui,276

and277
N∑
i=0

u>i Ciiui ≤
(

2 + (2kc + 1)
km
τ

)
u>Cu.278

Finally, using the preceding results, Theorem 2.6 presents a theoretical upper279

bound on the spectral condition number of the preconditioned system.280

Theorem 2.6. If the two-level additive Schwarz preconditioner M−1
additive (2.2) is281

constructed using R0 as defined in Lemma 2.5, then the following inequality is282

satisfied:283

κ
(
M−1

additiveC
)
≤ (kc + 1)

(
2 + (2kc + 1)

km
τ

)
.284

2.3. Variants of the Schwarz preconditioner. So far, we have285

presented M−1
ASM, the symmetric additive Schwarz method (ASM) and M−1

additive,286

the additive correction for the second level. It was noted in [9] that using the287

partition of unity to weight the preconditioner can improve its quality. The288

resulting preconditioner is referred to as M−1
RAS, the restricted additive Schwarz (RAS)289

preconditioner, and is defined to be290

(2.9) M−1
RAS =

N∑
i=1

R>i DiC
−1
ii Ri.291

This preconditioner is nonsymmetric and thus can only be used with iterative292

methods such as GMRES [37] that are for solving nonsymmetric problems. With293

regards to the second level, different strategies yield either a symmetric or a294

nonsymmetric preconditioner [44]. Given a first-level preconditioner M−1
? and setting295

Q = R>0 C
−1
00 R0, the balanced and deflated two-level preconditioners are as follows296

(2.10) M−1
balanced = Q+ (I − CQ)>M−1

? (I − CQ),297

and298

(2.11) M−1
deflated = Q+M−1

? (I − CQ),299
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PRECONDITIONER FOR SPARSE NORMAL EQUATIONS 9

respectively. It is well-known in the literature that M−1
balanced and M−1

deflated yield better300

convergence behavior thanM−1
additive (see [44] for a thorough comparison). Although the301

theory we present relies on M−1
additive, in practice we will use M−1

balanced and M−1
deflated. If302

the one-level preconditioner M−1
? is symmetric, then so is M−1

balanced, while M−1
deflated303

is typically nonsymmetric. For this reason, in the rest of the paper, we always304

couple M−1
ASM with M−1

balanced, and M−1
RAS with M−1

deflated. All three variants have the same305

setup cost, and only differ in how the second level is applied. M−1
balanced is slightly more306

expensive because two second-level corrections (multiplications by Q) are required307

instead of a single one for M−1
additive and M−1

deflated.308

3. The normal equations. The theory explained thus far is fully algebraic but309

somewhat disconnected from our initial LS problem (1.1). We now show how it can310

be readily applied to the normal equations matrix C = A>A, with A ∈ Rm×n sparse,311

first defining a one-level Schwarz preconditioner, and then a robust algebraic second-312

level correction. We start by partitioning the n columns of A into disjoint subsets313

ΩIi. Let Ξi be the set of indices of the nonzero rows in A(:,ΩIi) and let Ξci be the314

complement of Ξi in the set J1,mK. Now define ΩΓi to be the complement of ΩIi in315

the set of indices of nonzero columns of A(Ξi, :). The set Ωi = [ΩIi,ΩΓi] defines the316

i-th overlapping subdomain and we have the permuted matrix317

(3.1) A([Ξi,Ξci], [ΩIi,ΩΓi,Ωci]) =

(
AI,i AIΓ,i

AΓ,i Ac,i

)
.318

To illustrate the concepts and notation, consider the 5× 4 matrix319

A =


1 0 6 0
2 4 0 0
3 0 0 0
0 5 0 7
0 0 0 8

320

and set N = 2, ΩI1 = {1, 3}, ΩI2 = {2, 4}. Consider the first subdomain. We have321

A(:,ΩI1) =


1 6
2 0
3 0
0 0
0 0

 .322

The set of indices of the nonzero rows is Ξ1 = {1, 2, 3}, and its complement is Ξc1 =323

{4, 5}. To define ΩΓ,1, select the nonzero columns in the submatrix A(Ξ1, :) and324

remove those already in ΩI1, that is,325

(3.2) A(Ξ1, :) =

1 0 6 0
2 4 0 0
3 0 0 0

 ,326

so that ΩΓ1 = {2} and Ωc1 = {4}. Permuting A to the form (3.1) gives327

A([Ξ1,Ξc1], [ΩI1,ΩΓ1,Ωc1]) =


1 6 0 0
2 0 4 0
3 0 0 0
0 0 5 7
0 0 0 8

 .328
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In the same way, consider the second subdomain. ΩI2 = {2, 4} and329

A(:,ΩI2) =


0 0
4 0
0 0
5 7
0 8

 ,330

so that Ξ2 = {2, 4, 5} and Ξc2 = {1, 3}. To define ΩΓ2, select the nonzero columns in331

the submatrix A(Ξ2, :) and remove those already in ΩI2, that is,332

(3.3) A(Ξ2, :) =

2 4 0 0
0 5 0 7
0 0 0 8

 ,333

which gives ΩΓ2 = {1} and Ωc2 = {3}. Permuting A to the form (3.1) gives334

A([Ξ2,Ξc2], [ΩI2,ΩΓ2,Ωc2]) =


4 0 2 0
5 7 0 0
0 8 0 0
0 0 1 6
0 0 3 0

 .335

Now that we have ΩIi and ΩΓi, we can define the restriction operators336

R1 = I4(Ω1, :) =

1 0 0 0
0 0 1 0
0 1 0 0

 , R2 = I4(Ω2, :) =

0 1 0 0
0 0 0 1
1 0 0 0

 .337

For our example, nI1 = nI2 = 2 and nΓ1 = nΓ2 = 1. The partition of unity338

matrices Di are of dimension (nIi + nΓi) × (nIi + nΓi) (i = 1, 2) and have ones339

on the nIi leading diagonal entries and zeros elsewhere, so that340

(3.4) D1 = D2 =

1 0 0
0 1 0
0 0 0

 .341

Observe that Di(k, k) scales the columns A(:,Ωi(k)).342

Note that it is possible to obtain the partitioning sets and the sets of indices343

using the normal equations matrix C. Most graph partitioners, especially those that344

are implemented in parallel, require an undirected graph (corresponding to a square345

matrix with a symmetric sparsity pattern). Therefore, in practice, we use the graph346

of C to setup the first-level preconditioner for LS problems.347

3.1. One-level DD for the normal equations. This section presents the348

one-level additive Schwarz preconditioner for the normal equations matrix C =349

A>A. Following (2.1) and given the sets ΩIi,ΩΓi, and Ξi, the one-level Schwarz350

preconditioner of C = A>A is351

M−1
ASM =

N∑
i=1

R>i
(
RiA

>AR>i
)−1

Ri,

=

N∑
i=1

R>i
(
A(:,Ωi)

>A(:,Ωi)
)−1

Ri,

352

353
354
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Remark 3.1. Note that the local matrix Cii = A(:,Ωi)
>A(:,Ωi) need not be355

computed explicitly to be factored. Instead, the Cholesky factor of Cii can be356

computed by using a “thin” QR factorization of A(:,Ωi).357

3.2. Algebraic local SPSD splitting of the normal equations matrix. In358

this section, we show how to cheaply construct algebraic local SPSD splittings for359

sparse matrices of the form C = A>A. Combining (2.5) and (3.1), we can write360

PiA
>AP>i =

 A>I,iAI,i A>I,iAIΓ,i

A>IΓ,iAI,i A>IΓ,iAIΓ,i +A>Γ,iAΓ,i A>Γ,iAc,i

A>c,iAΓ,i A>c,iAc,i

 ,361

where Pi = In([ΩIi,ΩΓi,Ωci], :) is a permutation matrix. A straightforward splitting362

of PiA
>AP>i is given by363

PiA
>AP>i =

 A>I,iAI,i A>I,iAIΓ,i 0

A>IΓ,iAI,i A>IΓ,iAIΓ,i 0

0 0 0

+

0 0 0
0 A>Γ,iAΓ,i A>Γ,iAc,i

0 A>c,iAΓ,i A>c,iAc,i

 .364

365

It is clear that both summands are SPSD. Indeed, they both have the form X>X,366

where X is
(
AI,i AIΓ,i 0

)
and

(
0 AΓ,i Ac,i

)
, respectively. The local SPSD367

splitting matrix related to the i-th subdomain is then defined as:368

C̃ii = A(Ξi,Ωi)
>A(Ξi,Ωi) =

(
AI,i AIΓ,i

)> (
AI,i AIΓ,i

)
,(3.5)369

370

and
C̃i = R>i C̃iiRi = A(Ξi, :)

>A(Ξi, :).

Hence, the theory presented in [3] and summarised in subsection 2.2 is applicable. In
particular, the two-level Schwarz preconditioner M−1

additive (2.2) satisfies

κ(M−1
additiveC) ≤ (kc + 1)

(
2 + 2(kc + 1)

km
τ

)
,

where kc is the minimal number of colours required to colour the partitions of C371

such that each two neighbouring subdomains have different colours, and km is the372

multiplicity constant that satisfies the following inequality373

N∑
i=1

R>i C̃iiRi ≤ kmC.374

The constant kc is independent of N and depends only on the graph G(C), which is375

determined by the sparsity pattern of A. The multiplicity constant km depends on376

the local SPSD splitting matrices. For the normal equations matrix, the following377

lemma provides an upper bound on km.378

Lemma 3.2. Let C = A>A. Let mj be the number of subdomains such that379

A(j,ΩIi) 6= 0 (1 ≤ i ≤ N), that is,380

mj = #{i | j ∈ Ξi}.381

Then, km can be chosen to be km = max1≤j≤mmj. Furthermore, if kΩi is the number
of neighbouring subdomains of the i-th subdomain, that is,

kΩi
= #{j | Ωi ∩ Ωj 6= φ},
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12 H. AL DAAS, P. JOLIVET, AND J. A. SCOTT

then382

km = max
1≤j≤m

mj ≤ max
1≤i≤N

kΩi
.383

Proof. Since C = A>A and C̃i = A(Ξi, :)
>A(Ξi, :), we have384

u>Cu =

m∑
j=1

u>A(j, :)>A(j, :)u,385

u>C̃iu =
∑
j∈Ξi

u>A(j, :)>A(j, :)u,386

N∑
i=1

u>C̃iu =

N∑
i=1

∑
j∈Ξi

u>A(j, :)>A(j, :)u.387

388

From the definition of mj , the term u>A(j, :)>A(j, :)u appears mj times in the last389

equation. Thus,390

N∑
i=1

u>C̃iu =

m∑
j=1

mju
>A(j, :)>A(j, :)u,391

≤ max
1≤j≤m

mj

m∑
j=1

u>A(j, :)>A(j, :)u,392

= max
1≤j≤m

mj(u
>Cu),393

394

from which it follows that we can choose km = max1≤j≤mmj . Now, if 1 ≤ l ≤ m,395

there exist i1, . . . , iml
such that l ∈ Ξi1∩· · ·∩Ξiml

. Furthermore, ml ≤ max1≤p≤l kΩip
.396

Taking the maximum over l on both sides, we obtain397

km ≤ max
1≤i≤N

kΩi
.398

Note that because A is sparse, km is independent of the number of subdomains.399

3.3. Algorithms and technical details. In this section, we discuss the400

technical details involved in constructing a two-level preconditioner for the normal401

equations matrix.402

3.3.1. Partition of unity. Because the matrix AIΓ,i may be of low rank, the403

null space of C̃ii (3.5) can be large. Recall that the diagonal matrices Di have404

dimension ni = nIi + nΓi. Choosing the entries in positions nIi + 1, . . . , ni of the405

diagonal of Di to be zero, as in (3.4), results in the subspace of ker(C̃ii) caused406

by the rank deficiency of AIΓ,i to lie within ker(DiCiiDi), reducing the size of the407

space Z given by (2.8). In other words, if AIΓ,iu = 0, we have C̃iiv = 0, where408

v> = (0, u>), i.e., v ∈ ker(C̃ii) and because by construction Div = 0, we have409

v ∈ ker(C̃ii) ∩ ker(DiCiiDi), therefore, v need not be included in Zi.410

3.3.2. The eigenvalue problem. The generalized eigenvalue problem411

presented in Lemma 2.4 is critical in the construction of the two-level preconditioner.412

Although the definition of Zi from (2.7) suggests it is necessary to compute the null413
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space of C̃ii and that of DiCiiDi and their intersection, in practice, this can be414

avoided. Consider the generalized eigenvalue problem415

(3.6) DiCiiDiv = λC̃iiv,416

where, by convention, we set λ = 0 if v ∈ ker(C̃ii) ∩ ker(DiCiiDi) and λ = ∞ if417

v ∈ ker(C̃ii) \ ker(DiCiiDi). The subspace Zi defined in (2.7) can then be written as418

span

{
v | DiCiiDiv = λC̃iiv and λ >

1

τ

}
.419

Consider also the shifted generalized eigenvalue problem420

(3.7) DiCiiDiv = λ(C̃ii + sIni
)v,421

where 0 < s � 1. Note that if s is such that C̃ii + sIni is numerically of full rank,422

(3.7) can be solved using any off-the-shelf generalized eigenproblem solver. Let (v, λ)423

be an eigenpair of (3.7). Then, we can only have one of the following situations:424

• v ∈ range(C̃ii) ∩ ker(DiCiiDi) or v ∈ ker(C̃ii) ∩ ker(DiCiiDi). In which425

case, (v, 0) is an eigenpair of (3.6).426

• v ∈ range(C̃ii) ∩ range(DiCiiDi). Then,427

‖DiCiiDiv − λC̃iiv‖2
λ‖v‖2

= s,428

and, as s is small, (v, λ) is a good approximation of an eigenpair of (3.6)429

corresponding to a finite eigenvalue.430

• v ∈ ker(C̃ii) ∩ range(DiCiiDi). Then, DiCiiDiv = λsv, i.e., λs is a nonzero431

eigenvalue of DiCiiDi. Because Di is defined such that the diagonal values432

corresponding to the boundary nodes are zero, the nonzero eigenvalues of433

DiCiiDi correspond to the squared singular values of A(:,ΩIi). Hence, all434

the eigenpairs of (3.6) corresponding to an infinite eigenvalue are included in435

the set of eigenpairs (v, λ) of (3.7) such that436

(3.8) σ2
min (A(:,ΩIi)) ≤ λs ≤ σ2

max (A(:,ΩIi)) ,437

where σmin (A(:,ΩIi)) and σmax (A(:,ΩIi)) are the smallest and largest438

singular values of A(:,ΩIi), respectively.439

Therefore, choosing
s = O(‖C̃ii‖2ε),

where ε is the machine precision, ensures C̃ii + sIni
is numerically invertible and440

s� 1. Setting s = ‖C̃ii‖2ε in (3.8), we obtain441

σ2
min (A(:,ΩIi)) ≤ λ‖C̃ii‖2ε ≤ σ2

max (A(:,ΩIi)) .442

By (3.5), we have

‖C̃ii‖2 ≤ ‖Cii‖2,

and because ΩIi ⊂ Ωi, it follows that

‖C−1
ii ‖2 = ‖

(
A(:,Ωi)

>A(:,Ωi)
)−1 ‖2 ≤ σ2

min (A(:,ΩIi)) .
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Hence, if (v, λ) is an eigenpair of (3.7) with v ∈ ker(C̃ii) ∩ range(DiCiiDi), then443

(κ(Cii)ε)
−1 ≤ λ,444

where κ(Cii) is the condition number of Cii and Zi can be defined to be445

(3.9) span

{
v | DiCiiDiv = λ(C̃ii + ε‖C̃ii‖2Ini)v and λ ≥ min

(
1

τ
, (κ(Cii)ε)

−1

)}
.446

Zi is then taken to be the matrix whose columns are the vertical concatenation of447

corresponding eigenvectors.448

Remark 3.3. Note that solving the generalized eigenvalue problem (3.7) by an449

iterative method such as Krylov–Schur [43] does not require the explicit form of Cii450

and C̃ii. Rather, it requires solving linear systems of the form (C̃ii + sIni
)u = v,451

together with matrix–vector products of the form (C̃ii + sIni
)v and Ciiv. It is clear452

that these products do not require the matrices C̃ii and Cii to be formed. Regarding453

the solution of the linear system (C̃ii + sIni)u = v, Remark 3.1 also applies to the454

Cholesky factorization of C̃ii +sIni
= X>X, where X> =

(
A(Ξi,Ωi)

> √
sIni

)
, that455

can be computed by using a “thin” QR factorization of X.456

From Remarks 3.1 and 3.3, and applying the same technique therein to factor457

C00 = R0CR
>
0 = (AR>0 )>(AR>0 ), we observe that given the overlapping partitions458

of A, the proposed two-level preconditioner can be constructed without forming the459

normal equations matrix. Algorithm 3.1 gives an overview of the steps for constructing460

our two-level Schwarz preconditioner for the normal equations matrix. The actual461

implementation of our proposed preconditioner will be discussed in greater detail462

in subsection 4.1.

Algorithm 3.1 Two-level Schwarz preconditioner for the normal equations matrix.

Input: matrix A, number of subdomains N , threshold τ to bound the condition
number.

Output: two-level preconditioner M−1 for C = A>A.
1: (ΩI1, . . . ,ΩIN ) = Partition(A,N)
2: for i = 1 to N in parallel do
3: Ξi = FindNonzeroRows(A(:,ΩIi))
4: Ωi = [ΩIi,ΩΓi] = FindNonzeroColumns(A(Ξi, :))
5: Define Di as in subsection 3.3.1 and Ri as in section 2
6: Perform Cholesky factorization of Cii = A(:,Ωi)

>A(:,Ωi), see Remark 3.1

7: Perform Cholesky factorization of C̃ii = A(Ξi,Ωi)
>A(Ξi,Ωi), possibly using a

small shift s, see Remark 3.3
8: Compute Zi as defined in (3.9)
9: end for

10: Set R>0 =
[
R>1 D1Z1, . . . , R

>
NDNZN

]
11: Perform Cholesky factorization of C00 = (AR>0 )>(AR>0 )

12: Set M−1 = M−1
additive =

∑N
i=0R

>
i C
−1
ii Ri or M−1

balanced (2.10) or M−1
deflated (2.11)

463

4. Numerical experiments. In this section, we illustrate the effectiveness of464

the new two-level LS preconditioners M−1
balanced and M−1

deflated, their robustness with465

respect to the number of subdomains, and their efficiency in tackling large-scale sparse466
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Table 1
Test matrices taken from the SuiteSparse Matrix Collection.

Identifier m n nnz(A) nnz(C) condest(C)
mesh deform 234,023 9,393 853,829 117,117 2.7 · 106

EternityII E 262,144 11,077 1,503,732 1,109,181 5.1 · 1019

lp stocfor3 23,541 16,675 72,721 223,395 4.0 · 1010

deltaX 68,600 21,961 247,424 2,623,073 3.7 · 1020

sc205-2r 62,423 35,213 123,239 12,984,043 1.7 · 107

stormg2-125 172,431 65,935 433,256 1,953,519 ∞
Rucci1 1,977,885 109,900 7,791,168 9,747,744 2.0 · 108

image interp 232,485 120,000 711,683 1,555,994 4.7 · 107

mk13-b5 270,270 135,135 810,810 1,756,755 ∞
pds-100 514,577 156,016 1,096,002 1,470,688 ∞
fome21 267,596 216,350 465,294 640,240 ∞
sgpf5y6 312,540 246,077 831,976 2,761,021 6.0 · 106

Hardesty2 929,901 303,645 4,020,731 3,936,209 1.2 · 1010

Delor338K 450,807 343,236 4,211,599 44,723,076 1.5 · 107

watson 2 677,224 352,013 1,846,391 3,390,279 1.0 · 107

LargeRegFile 2,111,154 801,374 4,944,201 6,378,592 3.0 · 108

cont11 l 1,961,394 1,468,599 5,382,999 18,064,261 2.0 · 1010

and ill-conditioned LS problems selected from the SuiteSparse Matrix Collection [13].467

The test matrices are listed in Table 1. For each matrix, we report its dimensions,468

the number of entries in A and in the normal equations matrix C, and the condition469

number of C (estimated using the MATLAB function condest).470

In subsection 4.1, we discuss our implementation based on the parallel backend [7].471

In particular, we show that very little coding effort is needed to construct all the472

necessary algebraic tools, and that it is possible to take advantage of an existing473

package, such as HPDDM [27], to setup the new preconditioners efficiently. We474

then show in subsection 4.2 how M−1
balanced and M−1

deflated perform compared to other475

preconditioners when solving challenging LS problems. The preconditioners we476

consider are:477

• limited memory incomplete Cholesky (IC) factorization specialized for478

the normal equations matrix as implemented in HSL MI35 from the HSL479

library [25] (note that this package is written in Fortran and we run it using480

the supplied MATLAB interface with default parameter settings);481

• one-level overlapping Schwarz methods M−1
ASM and M−1

RAS as implemented in482

PETSc;483

• algebraic multigrid methods as implemented both in BoomerAMG from the484

HYPRE library [20] and in GAMG [1] from PETSc.485

Finally, in subsection 4.3, we study the strong scalability of M−1
balanced and its robustness486

with respect to the number of subdomains by using a fixed problem and increasing487

the number of subdomains.488

With the exception of the serial IC code HSL MI35, all the numerical experiments489

are performed on Irène, a system composed of 2,292 nodes with two 64-core AMD490

Rome processors clocked at 2.6 GHz and, unless stated otherwise, 256 MPI processes491

are used. For the domain decomposition methods, one subdomain is assigned per492

process. All computations are performed in double-precision arithmetic.493
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In all our experiments, the vector b in (1.1) is generated randomly and the494

initial guess for the iterative solver is zero. When constructing our new two-level495

preconditioners, with the exception of the results presented in Figure 1, at most 300496

eigenpairs are computed on each subdomain and the threshold parameter τ from (3.9)497

is set to 0.6. These parameters were found to provide good numerical performance498

after a very quick trial-and-error approach on a single problem. We did not want to499

adjust them for each problem from Table 1, but it will be shown next that they are500

fine overall without additional tuning.501

4.1. Implementation aspects. The new two-level preconditioners are502

implemented on top of the well-known distributed memory library PETSc. This503

section is not aimed at PETSc specialists. Rather, we want to briefly explain what504

was needed to provide an efficient yet concise implementation. Our new code is open-505

source, available at https://github.com/prj-/aldaas2021robust. It comprises fewer506

than 150 lines of code (including the initialization and error analysis). The main507

source files, written in Fortran, C, and Python, have three major phases, which we508

now outline.509

4.1.1. Loading and partitioning phase. First, PETSc is used to load the510

matrix A in parallel, following a contiguous one-dimensional row partitioning among511

MPI processes. We explicitly assemble the normal equations matrix using the routine512

MatTransposeMatMult [32]. The initial PETSc-enforced parallel decomposition of A513

among processes may not be appropriate for the normal equations, so ParMETIS is514

used by PETSc to repartition C. This also induces a permutation of the columns515

of A.516

4.1.2. Setup phase. To ensure that the normal equations matrix C is definite517

and its Cholesky factorization is breakdown free, C is shifted by 10−10‖C‖F In (here518

and elsewhere, ‖ · ‖F denotes the Frobenius norm). Note that this is only needed519

for the construction of the preconditioner; the preconditioner is used to solve the520

original LS problem. Given the indices of the columns owned by a MPI process,521

we call the routine MatIncreaseOverlap on the normal equations matrix to build an522

extended set of column indices ofA that will be used to define overlapping subdomains.523

These are the Ωi as defined in (3.1). Using the routine MatFindNonzeroRows, this524

extended set of indices is used to concurrently find on each subdomain the set of525

nonzero rows. These are the sets Ξi as illustrated in (3.2) and (3.3). The subdomain526

matrices Cii from (2.1) as well as the partition of unity Di as illustrated in (3.4) are527

automatically assembled by PETSc when using domain decomposition preconditioners528

such as PCASM or PCHPDDM. The right-hand side matrices of the generalized529

eigenvalue problems (3.6) are assembled using MatTransposeMatMult, but note that530

this product is this time performed concurrently on each subdomain. The small531

shift s from (3.7) is set to 10−8‖C̃ii‖F . These matrices and the sets of overlapping532

column indices are passed to PCHPDDM using routine PCHPDDMSetAuxiliaryMat.533

The rest of the setup is hidden from the user. It includes solving the generalized534

eigenvalue problems using SLEPc [24], followed by the assembly and redistribution of535

the second-level operator using a Galerkin product (2.2) (see [26] for more details on536

how this is performed efficiently in PCHPDDM).537

4.1.3. Solution phase. For the solution phase, users can choose between538

multiple Krylov methods, including LSQR [35] and GMRES. We use left-539

preconditioned LSQR (see, for example, [6, Algorithm 2]) and right-preconditioned540

GMRES. Each iteration of LSQR requires matrix–vector products with A and A>. For541
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Table 2
Preconditioner comparison when running LSQR. Iteration counts are reported. M−1

ASM and

M−1
balanced are the one- and two-level overlapping Schwarz preconditioners, respectively. † denotes

iteration count exceeds 1,000. ‡ denotes either a failure in computing the preconditioner because of
memory issues or a breakdown of LSQR.

Identifier M−1
balanced M−1

ASM BoomerAMG GAMG HSL MI35

mesh deform 13 27 ‡ 35 5
EternityII E 43 91 ‡ 63 199
lp stocfor3 34 136 ‡ 513 211
deltaX 23 98 ‡ 784 640
sc205-2r 54 61 ‡ 195 97
stormg2-125 42 174 ‡ † †
Rucci1 21 484 118 364 †
image interp 11 409 40 203 †
mk13-b5 19 21 11 ‡ 11
pds-100 18 202 16 35 110
fome21 20 104 16 20 41
sgpf5y6 224 264 ‡ 163 110
Hardesty2 30 913 88 404 †
Delor338K 10 11 ‡ † 829
watson 2 15 109 ‡ 64 73
LargeRegFile 41 109 19 ‡ 12
cont11 l 30 490 53 723 ‡

GMRES, instead of using the previously explicitly assembled normal equations matrix,542

we use an implicit representation of the operator that computes the matrix–vector543

product with A followed by the product with A>. The type of overlapping Schwarz544

method (additive or restricted additive) as well as the type of second-level correction545

(balanced or deflated) may be selected at runtime by the user. This flexibility is546

important because LSQR requires a symmetric preconditioner.547

4.2. Numerical validation. In this section, we validate the effectiveness of
the two-level method when compared to other preconditioners. Table 2 presents a
comparison between five preconditioners: two-level additive Schwarz with balanced
coarse correction M−1

balanced, one-level additive Schwarz M−1
ASM, BoomerAMG, GAMG,

and HSL MI35. The first level of the one- and two-level methods both use the additive
Schwarz formulation; the second level uses the balanced deflation formulation (2.10).
The results are for the iterative solver LSQR. If M denotes the preconditioner, LSQR
terminates when the LS residual satisfies

‖
(
AM−1

)>
(Ax− b)‖2

‖A‖M,F ‖Ax− b‖2
< 10−8,

where ‖A‖M,F =
∑n

i=1 λi(M
−1A>A) is the sum of the positive eigenvalues of548

M−1A>A that is approximated by LSQR itself. Note that if M−1 = W−1W−>,549

then ‖A‖M,F = ‖AW−1‖F .550

It is clear that both the one- and two-level Schwarz methods are more robust551

than the other preconditioners as they encounter no breakdowns and solve all the LS552

problems using fewer than 1,000 iterations. Because HSL MI35 is a sequential code that553

runs on a single core, there was not enough memory to compute the preconditioner554
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Table 3
Preconditioner comparison when running GMRES. Iteration counts are reported. M−1

RAS and

M−1
deflated are the one- and two-level overlapping Schwarz preconditioners, respectively. † denotes

iteration count exceeds 1,000. ‡ denotes either a failure in computing the preconditioner because of
memory issues or a breakdown of GMRES.

Identifier M−1
deflated M−1

RAS BoomerAMG GAMG HSL MI35

mesh deform 6 27 21 50 5
EternityII E 5 93 † 97 186
lp stocfor3 21 † † † 198
deltaX 6 93 † † †
sc205-2r 12 125 † 490 69
stormg2-125 23 ‡ ‡ ‡ †
Rucci1 10 958 213 882 †
image interp 10 971 67 476 †
mk13-b5 14 18 21 ‡ 12
pds-100 10 84 23 51 115
fome21 10 55 22 29 41
sgpf5y6 116 † † 249 100
Hardesty2 26 † 155 † †
Delor338K 5 9 † † †
watson 2 7 134 252 96 73
LargeRegFile 6 21 23 ‡ 11
cont11 l 45 † 172 † ‡

for problem cont11 l. For many of the problems, the iteration count for HSL MI35555

can be reduced by increasing the parameters that determine the number of entries in556

the IC factor (the default values are rather small for the large test examples). LSQR557

preconditioned with BoomerAMG breaks down for several problems, as reported by558

PETSc error code KSP DIVERGED BREAKDOWN. GAMG is more robust but559

requires more iterations for problems where both algebraic multigrid solvers are560

successful. Note that even with more advanced options than the default ones set561

by PETSc, such as PMIS coarsening [14] with extended classical interpolation [15]562

for BoomerAMG or Schwarz smoothing for GAMG, these solvers do not perform563

considerably better numerically. We can also see that the two-level preconditioner564

outperforms the one-level preconditioner consistently.565

Table 3 presents a similar comparison, but using right-preconditioned GMRES566

applied directly to the normal equations (1.2). A restart parameter of 100 is used. The567

relative tolerance is again set to 10−8, but this now applies to the unpreconditioned568

residual. We switch from M−1
ASM to M−1

RAS (2.9), which is known to perform better569

numerically. For the two-level method, we switch from M−1
balanced to M−1

deflated (2.11).570

Switching from LSQR to GMRES can be beneficial for some preconditioners, e.g.,571

BoomerAMG now converges in 21 iterations instead of breaking down for problem572

mesh deform. But this is not always the case, e.g., HSL MI35 applied to problem573

deltaX does not converge within the 1,000 iteration limit. The two-level method574

is the most robust approach, while the restricted additive Schwarz preconditioner575

struggles to solve some problems, either because of a breakdown (problem stormg2-576

125) or because of slow convergence (problems lp stocfor3, sgpf5y6, Hardesty2, and577

cont11 l).578

Recall that for the results in Tables 2 and 3, the two-level preconditioner was579
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0.01275 2,400 49
0.02 2,683 39
0.05 3,049 30
0.1 3,337 24
0.4 8,979 15
0.6 30,246 14

Fig. 1. Influence of the threshold parameter τ on the convergence of preconditioned LSQR for
problem watson 2 (m = 677,224 and n = 352,013).

constructed using at most 300 eigenpairs and the threshold parameter τ was set580

to 0.6. Whilst this highlights that tuning τ for individual problems is not necessary581

to successfully solve a range of problems, it does not validate the ability of our582

preconditioner to concurrently select the most appropriate local eigenpairs to define583

an adaptive preconditioner. To that end, for problem watson 2, we consider the effect584

on the performance of our two-level preconditioner of varying τ . Results for LSQR585

with M−1
ASM and M−1

balanced are presented in Figure 1. Here, 512 MPI processes are586

used and the convergence tolerance is again 10−8. We observe that the two-level587

method consistently outperforms the one-level method. Furthermore, as we increase588

τ , the iteration count reduces and the size n0 of the second level increases. It is also589

interesting to highlight that the convergence is smooth even with a very small value590

τ = 0.01275, n0 = 2,400 compared to the dimension 3.52 ·105 of the normal equations591

matrix.592

4.3. Performance study. We next investigate the algorithmic cost of the two-593

level method. To do so, we perform a strong scaling analysis using a large problem594

not presented in Table 1 but still from the SuiteSparse Matrix Collection, Hardesty3.595

The matrix is of dimension 8,217,820× 7,591,564, and the number of nonzero entries596

in C is 98,634,426. In Table 4, we report the number of iterations as well as the597

eigensolve, setup, and solve times as the number N of subdomains ranges from 16 to598

4,096. The times are obtained using the PETSc -log view command line option. For599

different N , the reported times on each row of the table are the maximum among600

all processes. The setup time includes the numerical factorization of the first-level601

subdomain matrices, the assembly of the second-level operator and its factorization.602

Note that the symbolic factorization of the first-level subdomain is shared between603

the domain decomposition preconditioner and the eigensolver because we use the604

Krylov–Schur method as implemented in SLEPc, which requires the factorization of605

the right-hand side matrices from (3.7). The Cholesky factorizations of the subdomain606

matrices and of the second-level operator are performed using the sparse direct solver607

MUMPS [5]. For small numbers of subdomains (N < 128), the cost of the eigensolves608

are clearly prohibitive. By increasing the number of subdomains, thus reducing their609
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Table 4
Strong scaling for problem Hardesty3 (m = 8,217,820 and n = 7,591,564) for N ranging from 16

to 4,096 subdomains. All times are in seconds. Column 2 reports the LSQR iteration count. Column
4 reports the setup time minus the concurrent solution time of the generalized eigenproblems, which
is given in column 3.

N Iterations Eigensolve Setup Solve n0 Total Speedup
16 113 2,417.4 24.5 301.3 4,800 2,743.2 −
32 117 1,032.7 14.1 154.2 9,600 1,201.0 2.3
64 129 887.2 11.4 112.3 19,200 1,010.9 2.7

128 144 224.1 6.9 55.4 38,400 286.3 9.6
256 97 128.0 6.7 32.2 76,800 166.9 16.4
512 87 45.5 13.0 26.9 153,391 85.3 32.2

1,024 85 23.8 20.2 35.3 303,929 79.3 34.6
2,048 55 14.6 31.4 43.2 497,704 89.1 30.8
4,096 59 11.7 30.8 44.9 695,774 87.3 31.4

size, the time to construct the preconditioner becomes much more tractable and610

overall, our implementation yields good speedups on a wide range of process counts.611

Note that the threshold parameter τ = 0.6 is not attained on any of the subdomains612

for N ranging from 16 up to 256, so that n0 = 300 × N . For larger N , τ = 0.6 is613

attained, the preconditioner automatically selects the appropriate eigenmodes, and614

convergence improves (see column 2 of Table 4). When N is large (N ≥ 1,024),615

the setup and solve times are impacted by the high cost of factorizing and solving616

the second-level problems, which, as highlighted by the values of n0, become large.617

Multilevel variants [4] could be used to overcome this but goes beyond the scope of618

the current study.619

5. Concluding comments. Solving large-scale sparse linear least-squares620

problems is known to be challenging. Previously proposed preconditioners have621

generally been serial and have involved incomplete factorizations of A or C = A>A.622

In this paper, we have employed ideas that have been developed in the area of domain623

decomposition, which (as far as we are aware) have not previously been applied to624

least-squares problems. In particular, we have exploited recent work by Al Daas and625

Grigori [3] on algebraic domain decomposition preconditioners for SPD systems to626

propose a new two-level algebraic domain preconditioner for the normal equations627

matrix C. We have used the concept of an algebraic local SPSD splitting of an SPD628

matrix and we have shown that the structure of C as the product of A> and A can629

be used to efficiently perform the splitting. Furthermore, we have proved that using630

the two-level preconditioner, the spectral condition number of the preconditioned631

normal equations matrix is bounded from above independently of the number of the632

subdomains and the size of the problem. Moreover, this upper bound depends on a633

parameter τ that can be chosen by the user to decrease (resp. increase) the upper634

bound with the costs of setting up the preconditioner being larger (resp. smaller).635

The new two-level preconditioner has been implemented in parallel within PETSc.636

Numerical experiments on a range of problems from real applications have shown that637

whilst both one-level and two-level domain decomposition preconditioners are effective638

when used with LSQR to solve the normal equations, the latter consistently results639

in significantly faster convergence. It also outperforms other possible preconditioners,640

both in terms of robustness and iteration counts. Furthermore, our numerical641

experiments on a set of challenging least-squares problems show that the two-level642
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preconditioner is robust with respect to the parameter τ . Moreover, a strong643

scalability test of the two-level preconditioner assessed its robustness with respect644

to the number of subdomains.645

Future work includes extending the approach to develop preconditioners for646

solving large sparse–dense least-squares problems in which A contains a small number647

of rows that have many more entries than the other rows. These cause the normal648

equations matrix to be dense and so they need to be handled separately (see, for649

example, the recent work of Scott and Tůma [40] and references therein). As already650

observed, we also plan to consider multilevel variants to allow the use of a larger651

number of subdomains and processes.652
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