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Abstract. In this study we evaluate simulated surface SO2 and sulfate (SO2−
4 ) concentrations from the United

Kingdom Earth System Model (UKESM1) against observations from ground-based measurement networks in
the USA and Europe for the period 1987–2014. We find that UKESM1 captures the historical trend for decreasing
concentrations of atmospheric SO2 and SO2−

4 in both Europe and the USA over the period 1987–2014. However,
in the polluted regions of the eastern USA and Europe, UKESM1 over-predicts surface SO2 concentrations by
a factor of 3 while under-predicting surface SO2−

4 concentrations by 25 %–35 %. In the cleaner western USA,
the model over-predicts both surface SO2 and SO2−

4 concentrations by factors of 12 and 1.5 respectively. We
find that UKESM1’s bias in surface SO2 and SO2−

4 concentrations is variable according to region and season.
We also evaluate UKESM1 against total column SO2 from the Ozone Monitoring Instrument (OMI) using an
updated data product. This comparison provides information about the model’s global performance, finding that
UKESM1 over-predicts total column SO2 over much of the globe, including the large source regions of India,
China, the USA, and Europe as well as over outflow regions. Finally, we assess the impact of a more realistic
treatment of the model’s SO2 dry deposition parameterization. This change increases SO2 dry deposition to
the land and ocean surfaces, thus reducing the atmospheric loading of SO2 and SO2−

4 . In comparison with the
ground-based and satellite observations, we find that the modified parameterization reduces the model’s over-
prediction of surface SO2 concentrations and total column SO2. Relative to the ground-based observations, the
simulated surface SO2−

4 concentrations are also reduced, while the simulated SO2 dry deposition fluxes increase.

Published by Copernicus Publications on behalf of the European Geosciences Union.



18466 C. Hardacre et al.: Evaluation of SO2, SO4
2− and SO2 dry deposition in UKESM1

1 Introduction

Anthropogenic sulfur dioxide (SO2) emissions have been the
main driver of the historical aerosol effective radiative forc-
ing (ERF) since the mid-20th century (Boucher et al., 2013).
SO2 is emitted into the atmosphere from a number of anthro-
pogenic (and natural) sources, and once in the atmosphere
SO2 can be oxidized to form sulfate (SO2−

4 ) aerosol, which
plays a key role in acid deposition, atmospheric aerosol load-
ing, and cloud properties, thereby directly influencing the
Earth’s radiative balance. For Earth system models (ESMs)
to have a good representation of the historical climate and
thereby give us confidence in their future projections, it is ex-
tremely important that they can capture the sulfur cycle. The
United Kingdom Earth System Model (UKESM1), in com-
mon with other ESMs, has a cold bias in the mid-20th cen-
tury which looks to be associated with an excessively nega-
tive aerosol ERF (Sellar et al., 2019; Seland et al., 2020). A
key component of the analysis and development of UKESM1
focuses on the model’s sulfur cycle and its link to historical
aerosol forcing. Mulcahy et al. (2020) conducted an in-depth
evaluation of the aerosol species in UKESM1 and its physical
model component, HadGEM3-GC3.1, including SO2−

4 , and
uncovered some interesting differences in the sulfur budget
between these two models, including differences in the SO2
lifetimes and oxidant loading. We aim to extend their work
by conducting a detailed evaluation of SO2 and by probing
deeper into the process-level uncertainty of the sulfur cycle.

Sources of SO2 include industry, energy, land-based trans-
port, shipping, volcanoes, biomass burning, and marine
dimethyl sulfide (DMS) (Feng et al., 2020; Fioletov et al.,
2016; Liu et al., 2018; Janssens-Maenhout et al., 2015;
Crippa et al., 2018). Total global emissions of SO2 increased
to a peak value of approximately 180 Tg SOx (as SO2) yr−1

in the 1970s, but following emission reduction policies to im-
prove air quality and reduce acid deposition that were imple-
mented in the 1980s (Hoesly et al., 2018), total global emis-
sions had decreased to approximately 120 Tg SOx yr−1 by
2015 (Aas et al., 2019). This trend is captured in global mod-
els, but there is substantial temporal variation at the regional
scale (Aas et al., 2019). Legislation has driven reductions in
SO2 emissions and subsequently SO2−

4 aerosol across Eu-
rope (Tørseth et al., 2012) and North America (Sickles and
Shadwick, 2015; Holland et al., 1998). In these regions re-
ductions in SO2 emissions have had important environmen-
tal and health benefits as well as climate impacts. Turnock
et al. (2015) found that between 1970 and 2010 surface SO2−

4
aerosol decreased by about 70 % in the observations and also
in the simulations. For the same period, top of atmosphere
(TOA) aerosol radiative forcing over this region increased by
> 3 W m−2 in response to these changes in anthropogenic
emissions. Similarly, Leibensperger et al. (2012) reported
that over the USA aerosol radiative forcing decreased by
1.0 W m−2 in the period from 1990 to 2010. Emission reduc-
tion policies in China have been implemented since 2013,

which has reduced anthropogenic SO2 emissions (Aas et al.,
2019; Zheng et al., 2018; Hoesly et al., 2018; Liu et al., 2018;
Krotkov et al., 2016) and subsequently driven decreases in
aerosol optical depth (AOD) (Zhao et al., 2017). However,
SO2 emissions from India continue to increase (Aas et al.,
2019; Liu et al., 2018; Krotkov et al., 2016).

Good representation of the sulfur cycle in models is es-
sential for constraining uncertainties associated with the im-
pacts of aerosols on the Earth system and thus understand-
ing the global climate. The global atmospheric loading of
SO2 is controlled by the emissions (sources) into the atmo-
sphere and the loss processes, which are oxidation to SO2−

4 ,
dry deposition, and wet deposition. Global-scale SO2 emis-
sions are represented in ESMs using emission inventories
such as HTAP (Janssens-Maenhout et al., 2015), OMI-HTAP
(Liu et al., 2018), EDGAR (Crippa et al., 2018), and CMIP6
(Feng et al., 2020), the latter being developed for use by
models participating in the CMIP6 project (Eyring et al.,
2016). Although uncertainty in SO2 emissions is relatively
low (Hoesly et al., 2018), in bottom-up inventories such as
HTAP and EDGAR there may be uncertainty in the emission
and activity factors and in the conversion from country scale
to grid scale, and the input data may be incomplete or sub-
ject to rapidly changing economic and/or policy conditions
(Janssens-Maenhout et al., 2015). In satellite-derived data
sets there is uncertainty associated with the retrieval meth-
ods and the signal-to-noise ratio, which can make smaller
sources and background concentrations more difficult to de-
tect (Fioletov et al., 2016). Yang et al. (2019) have also found
that injection height is a larger source of uncertainty in model
representation of SO2 emissions than inventory uncertainty,
affecting surface concentrations by 70 %–130 % depending
on sector and region, compared with 8 %–14 % from inven-
tory uncertainty. The impact of injection height in UKESM1
was demonstrated by Mulcahy et al. (2020), who found that
emitting SO2 higher into the atmosphere rather than into the
lowest model level increased the burden from 0.53 to 0.61 Tg
and the lifetime from 2.08 to 2.21 d, although SO2−

4 was not
significantly affected.

Anthropogenic emissions of SO2 are generally from point
sources such as power stations or smelters. Once emitted,
SO2 has a lifetime of approximately 2 d, although this can
vary from 15 to 65 h in summer and winter respectively
(Lee et al., 2011). The lifetime of SO2 depends on both wet
and dry deposition of the molecule and the oxidation rate to
SO2−

4 . The∼ 2 d lifetime is such that much of the loss via ox-
idation and deposition occurs locally. SO2 loss near sources
and the impact of environmental conditions on loss processes
have been investigated in a number of studies.

SO2 deposition is highly dependent on the surface type,
soil pH, solar radiation level, near-surface relative humidity,
and, in particular, whether the underlying surface is wet or
dry, with deposition increasing significantly for a wet sur-
face. Wys et al. (1978) calculated diurnal averaged deposition
of emitted SO2 onto an agricultural field of ∼ 35 % within
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300 km of the emission source, with daytime deposition sig-
nificantly higher than at night. The same study found that
∼ 15 % of emitted SO2 was dry deposited onto an arid desert
surface within 300 km of the source. Studies over Europe in-
dicate similar rates of deposition and sensitivity to surface
type. For example, using flight observations off the eastern
coast of the UK, Smith and Jeffrey (1975) estimated that
∼ 50 % of the SO2 emitted from UK sources was removed
from the atmosphere or converted to SO2−

4 by the time it
was observed in air parcels over the North Sea. This amounts
to a loss or conversion of 50 % emitted SO2 within ∼ 200–
300 km of the emission source. Smith and Jeffrey (1975) fur-
ther partitioned this loss into ∼ 30 %–35 % due to dry de-
position and ∼ 10 %–15 % oxidation to SO2−

4 , with wet de-
position making only a minor contribution to the total loss.
Similar rates of SO2 loss have been observed in a number
of other observational studies of dry deposition (e.g. Payris-
sat and Beilke, 1975; Garland, 1977; Garland and Branson,
1977; Fowler, 1978; Erisman and Baldocchi, 1994). Studies
analysing SO2 dispersion around US power stations found
that fractional oxidation rates to SO2−

4 are sensitive to the
amount of solar radiation, with rates ranging from a winter
low of 1×10−3 h−1 to a summer high of 1.5×10−2 h−1 (Alt-
shuller, 1979; Meagher et al., 1983). Representing the SO2
loss processes is challenging for ESMs because 200–300 km
is represented by one to two grid cells, meaning that deposi-
tion and oxidation are parameterized on the model grid scale
and may not capture temporal and spatial variation. In addi-
tion, there is uncertainty associated with the oxidation and
deposition processes.

In the atmosphere SO2 can be oxidized in the gas phase
by hydroxyl (OH) radicals and in the aqueous phase by re-
actions in cloud water and rainwater involving hydrogen per-
oxide (H2O2), ozone (O3), O2 catalyzed by transition metal
ions, and other oxidants to form SO2−

4 (see Turnock et al.,
2019, and references within). The oxidation chemistry is nec-
essarily simplified in many models due to the computational
cost of detailed chemistry schemes, but studies have shown
that oxidant levels can impact the lifetime of aerosol precur-
sor species and ultimately global radiative forcing (Mulcahy
et al., 2020; Karset et al., 2018). Uncertainty in aerosol ra-
diative forcing also results from different values of cloud wa-
ter pH, which alters SO2−

4 formation by changing the rate of
aqueous-phase oxidation of SO2 by ozone (Turnock et al.,
2019). Observations have shown that cloud pH is both tem-
porally and spatially variable (Aleksic et al., 2009; Murray
et al., 2013; Schwab et al., 2016; Li et al., 2017), although
measurements are very sparse. Typically, this variation is not
accounted for in global chemistry climate models, includ-
ing UKESM1 and its predecessor HadGEM3-GC3.1, both of
which use a temporally and spatially constant cloud pH of
5.0. Turnock et al. (2019) found that increasing the cloud pH
by 1.0 in HadGEM3-GC3.1 reduced the total SO2 column
by up to 50 % over Europe, North America, and East Asia
for 1970–1974 and 2005–2009. The impact on SO2−

4 was

variable due to the different SO2 loadings over the different
regions and in the different time periods. Overall aerosol ra-
diative forcings varied by up to 4 W m−2, with larger changes
in some regions depending on whether cloud water pH was
assumed to have increased or decreased over recent decades.

Loss of SO2 and SO2−
4 to the Earth’s surface by deposi-

tion can be through dry or wet processes. Dry deposition de-
scribes the removal of a gas or particle through direct contact
of air with the Earth’s surface and wet deposition describes
the incorporation of gases or particles into rain droplets or
snow crystals and their subsequent removal through precipi-
tation. Globally, dry deposition removes around 45 % of SO2
from the atmosphere (Chin et al., 2000). The importance
of dry deposition in the global sulfur budget is the reason
why we target it for development in UKESM1. Dry depo-
sition of SO2 in ESMs is generally represented by a resis-
tance in series approach (e.g. Archibald et al., 2020; Wu
et al., 2020). Deposition of SO2−

4 is mainly via wet pro-
cesses (approximately 90 %, Chin et al., 2000), including nu-
cleation scavenging within the cloud (rain out) and impact
scavenging below the cloud (wash out), but dry deposition of
SO2−

4 does occur through gravitational settling. Deposition
processes are necessarily parameterized in global models be-
cause they occur at sub-grid scales, and this contributes to
model uncertainty. Further, observational flux data sets are
sparse and frequently temporally and spatially limited, hin-
dering model evaluation of deposition processes at regional
to global scales.

Sulfur species are relatively well observed compared with
many atmospheric components as their role in air pollution
is well established. In the 1970s and 1980s the increasingly
detrimental impacts of rising SO2 emissions on acid depo-
sition, air quality, and human health in Europe and North
America led to monitoring networks being set up in these re-
gions (Tørseth et al., 2012; MACTEC-Engineering and Con-
sulting, 2005). Rising pollution in Asia also led to the es-
tablishment of the Acid Deposition Monitoring Network in
East Asia (EANET) in 2001 (e.g. Wang et al., 2008). How-
ever, even with these data sets it is only possible to eval-
uate model simulations of the recent historical period, and
similar data sets are not available for other large source re-
gions such as India, the Middle East, or remote regions. Fur-
ther, the lack of a range of measurements, including flux ob-
servations, hinders detailed process studies at large scales.
Since the early 2000s satellite observations of near-surface
SO2 have also become available. Of these, the satellite data
sets with the best temporal resolution and spatial coverage
for SO2 are from the Ozone Monitoring Instrument aboard
the NASA Earth-observing system Aura spacecraft (Fioletov
et al., 2016). Although biases in the SO2 retrieval from OMI
limit its use at high and low latitudes in winter and over ar-
eas with low atmospheric SO2 loading, they do provide valu-
able information over regions where there are no long-term
or even any ground-based observations (Li et al., 2020; Lev-
elt et al., 2018).

https://doi.org/10.5194/acp-21-18465-2021 Atmos. Chem. Phys., 21, 18465–18497, 2021
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This paper is configured as follows: the model
(UKESM1), the model simulations, observation data
sets, and modifications to UKESM1’s SO2 dry deposition
parameterization are described in Sect. 2. In Sect. 3 we
evaluate UKESM1 against observations of surface SO2
and SO2−

4 and total column SO2. In Sect. 4 we assess
the impact of the modifications to UKESM1’s SO2 dry
deposition parameterization. The discussion and conclusions
are presented in Sects. 5 and 6.

2 Methods

2.1 UKESM1

UKESM1 is the latest-generation Earth system (ES) model
developed in the UK. UKESM1 has HadGEM3-GC3.1
(Kuhlbrodt et al., 2018; Williams et al., 2018) as its physical–
dynamical core. HadGEM3-GC3.1 is comprised of the
Global Atmosphere 7.1 (GA7.1) configuration of the Uni-
fied Model (UM) (Walters et al., 2019; Mulcahy et al.,
2018), the Nucleus for European Modelling of the Ocean
(NEMO) model (Storkey et al., 2018), the Los Alamos Sea
Ice Model (CICE, Ridley et al., 2018), and the Joint UK Land
Environment Simulator (JULES) land surface model (Best
et al., 2011). The additional ES process models include the
stratospheric–tropospheric (StratTrop) version of the United
Kingdom Chemistry and Aerosol (UKCA) model (Archibald
et al., 2020), the Model of Ecosystem Dynamics, nutri-
ent Utilisation, Sequestration and Acidification (MEDUSA,
Yool et al., 2013), and the terrestrial biogeochemistry com-
ponent of JULES (Clark et al., 2011). UKESM1 is described
in detail, along with its component models and the coupling
between them, by Sellar et al. (2019). The aerosol scheme
used in UKESM1 (GLOMAP-Mode, Mann et al., 2010), in-
cluding SO2 emissions and chemistry, is described in detail
by Mulcahy et al. (2020). In UKESM1 the land and atmo-
sphere share a regular latitude–longitude grid with a reso-
lution of 1.25◦× 1.875◦ (approximately 135 km at the mid
latitudes). There are 85 vertical levels on a terrain-following
hybrid height coordinate with a model lid at 85 km above sea
level and 50 of these levels below 18 km. The ocean has a
horizontal resolution of 1◦ and 75 vertical levels. While the
atmospheric time step of the model physics is 20 min, due to
the inherent computational cost of the chemistry and aerosol
components, both of these components are called once per
hour.

In UKESM1 the SO2 emissions including anthropogenic
sources are from the CMIP6 inventory (Feng et al., 2020).
Large explosive volcanic sources and biomass burning
sources are not interactively modelled but are prescribed
using the CMIP6 stratospheric aerosol climatology (Sellar
et al., 2019) and van Marle et al. (2017) emission inven-
tory respectively. Continuously degassing volcanic sources
are also included as present-day, three-dimensional, tempo-
rally fixed (i.e. no seasonal variation) fields (Dentener et al.,

Table 1. Summary of SO2 oxidation chemistry in UKESM1.

Gas-phase reactions

SO2+OH→ SO3+HO2
SO2+O3→ SO3
SO3+H2O→ H2SO4+H2O

Aqueous-phase reactions

HSO−3 +H2O2→ SO2−
4

HSO−3 +O3→ SO2−
4

SO2−
3 +O3→ SO2−

4

2006). Emissions from the energy and industrial sectors are
all emitted into the first model layer. We summarize how
loss of SO2 from the atmosphere via oxidation and wet
and dry deposition is modelled here, but for a detailed de-
scription of these processes in UKESM1 the reader is re-
ferred to Archibald et al. (2020) and Mulcahy et al. (2020).
Gas- and aqueous-phase oxidation of SO2 to SO2−

4 is repre-
sented by the reactions shown in Table 1 (Pham et al., 1996;
Sander et al., 2003; Kreidenweis et al., 2003). Dry deposi-
tion of SO2 is parameterized following the resistance in se-
ries approach originally developed by Wesely (1989) (see
Sect. 2.2.1). Loss via wet deposition is the SO2 that is scav-
enged and subsequently converted to SO2−

4 in rainwater. It is
parameterized as a first-order loss rate, calculated as a func-
tion of UKESM1’s three-dimensional convective and large-
scale precipitation (Archibald et al., 2020; O’Connor et al.,
2014). Sulfate aerosol is also removed from the atmosphere
by dry and wet deposition (Mulcahy et al., 2020). The aerosol
dry deposition and sedimentation are represented by a re-
sistance in series approach similar to that used for gaseous
species but which also accounts for aerosol size (Mann et al.,
2010). Wet deposition is parameterized in UKESM1 by an
in-cloud convective plume-scavenging scheme following the
approach described by Kipling et al. (2013) and by nucle-
ation scavenging (Mulcahy et al., 2020).

2.2 SO2 dry deposition parameterization

The UKESM1 parameterization of SO2 dry deposition fol-
lows that described in Wesely (1989). This scheme uses the
widely accepted approach of calculating the flux of a de-
positing gas as a function of a deposition velocity multiplied
by the concentration gradient of the gas between a reference
height (z, e.g. the lowest model level) and the receptor sur-
face (Eq. 1). The deposition velocity is calculated by anal-
ogy with electrical resistance and is inversely proportional to
three resistances to deposition, representing the three stages
of gaseous transport to a receptor surface. These are (i) aero-
dynamic resistance (Ra) to gas transport through the near-
surface turbulent layer, (ii) viscous resistance to gas transfer
across a quasi-laminar layer surrounding the receptor surface

Atmos. Chem. Phys., 21, 18465–18497, 2021 https://doi.org/10.5194/acp-21-18465-2021
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(Rb), and (iii) structural resistance to deposition of the recep-
tor surface itself (Rc). For a detailed description of this ap-
proach, see Wesely (1989), Erisman and Baldocchi (1994),
and Zhang et al. (2003). The deposition velocity is calculated
for each fractional surface type in a given model grid box, as
is a resulting loss rate (flux) of SO2 from the atmosphere. The
loss rates to each fractional surface are combined, resulting
in the total loss of SO2 from the model atmosphere due to
dry deposition. The deposition velocity is given by Eq. (2).
If the surface is covered by vegetation, Ra is generally cal-
culated at a zero-plane displacement height z= z−d , where
d is usually 0.6–0.8 times the vegetation height in metres.
The UKESM1 calculations of Ra and Rb follow standard ap-
proaches (see Eqs. 3 and 4). The aerodynamic resistance, Ra,
is calculated from the wind profile taking into account atmo-
spheric stability and the surface roughness, where z0 is the
roughness length, ψ is the Businger dimensionless stability
function, κ is von Karman’s constant, and u∗ is the friction
velocity. The quasi-laminar sub-layer resistance,Rb, is calcu-
lated with Sc the Schmidt number and Pr the Prandtl number.

The surface or canopy resistance to deposition, Rc, is the
most difficult of the three resistances to parameterize as it
is sensitive to biochemical details of the individual receptor
surfaces. Rc is typically a function of the following receptor-
specific resistances: (i) canopy stomatal resistance (Rstom)
combined with the mesophyll resistance (Rm) of a given
plant, (ii) canopy cuticle or external leaf resistance (Rcut),
and (iii) soil resistance (Rsoil), combined with an in-canopy
resistance (Rinc), describing the turbulent transport of a gas
through the plant foliage to the ground. The stomatal resis-
tance, leaf cuticle resistance, and soil resistance are assumed
to operate in parallel. For surfaces not covered with vegeta-
tion (e.g. open water, bare soil, or snow-covered surfaces),Rc
is made equal to one ofRwater,Rsoil, andRsnow. The receptor-
specific resistances are combined as shown in Eq. (5) to cal-
culate Rc. In UKESM1, Rstom follows the approach outlined
in Wesely (1989), based on the original work of Baldocchi
et al. (1987). Rstom is first calculated for water vapour for
each vegetation type, and Rstom for other gases is then de-
rived by scaling Rstom for water vapour by the ratio of the
diffusion coefficient for the gas in question and that of wa-
ter vapour. Due to a general lack of knowledge, Rm values
are assumed to be zero for all gases. In UKESM1, Rinc and
Rsoil are combined into a single value (referred to hereafter
as Rsoil). In UKESM1, Rc for SO2 for the 13 fractional land
cover types is initially set to the standard surface resistance
(Rsurf) values given in Table A2.

F = Vd ×C (1)

Vd =
1

Ra+Rb+Rc
(2)

Ra =

(
ln

(
z

z0

)
−ψ

)/
(κu∗) (3)

Rb = (Sc/Pr)
2
3 /(κu∗) (4)

Rc =

[
1

Rstom+Rm
+

1
Rinc+Rsoil

+
1
Rcut

]−1

(5)

2.2.1 Modifications to UKESM1’s SO2 dry deposition
parameterization

In this study we investigate two changes to the SO2 dry de-
position parameterization in UKESM1. Firstly, we account
for a key omission in UKESM1 in that for Rcut and Rsoil no
account is taken as to whether the receptor surface is wet or
dry nor of the near-surface relative humidity. Observational
studies suggest that SO2 dry deposition (through a decrease
in Rc) is significantly more efficient over wet surfaces com-
pared with dry surfaces as well as for increasing values of
near-surface relative humidity due to the high solubility of
SO2 in water (e.g. Garland and Branson, 1977; Fowler, 1978;
Erisman and Baldocchi, 1994; Erisman et al., 1994). We ap-
ply the findings from these studies to extend the calculation
of Rcut for SO2 in UKESM1 to be a function both of whether
the model vegetation is wet or dry and of the near-surface rel-
ative humidity. This change allows a surface to remain wet
after rainfall for a period of 3 h, where previously it would
have been “dry” immediately after the rainfall event. Rsoil
for SO2 is also made a function of near-surface relative hu-
midity. These changes are referred to as Rsurf-mod and will
impact SO2 dry deposition over land surfaces. We include a
more detailed description of the modifications to UKESM1’s
SO2 parameterization in Appendix A. Secondly, we change
the surface resistance term for SO2 dry deposition to water
(Rwater) from an erroneously high value of 148 to 1 s m−1 to
better reflect the high solubility of SO2 in water. While lower
than the value of 20 s m−1 used by Zhang et al. (2003), it re-
flects the small, observed value of 0.004 s m−1 from Garland
(1977). This change is referred to as Rwater-mod and will im-
pact SO2 dry deposition predominantly over the ocean.

In addition to the primary changes to the SO2 dry depo-
sition parameterization (Rwater-mod and Rsurf-mod), we also
include two secondary modifications. These are (1) an update
in the calculation of the stability parameter (z/L) to better
describe dry deposition under very stable atmospheric con-
ditions and (2) a bug fix in the DMS chemistry. The stability
parameter (z/L) describes the flux profile relationship and is
important for calculating Ra in Eq. (3). Note that the Monin–
Obukhov length (L) is derived locally in the UKCA code
using local values of air density, temperature, and friction ve-
locity, where the friction velocity is computed in the UM tur-
bulence scheme and so is consistent across subroutines. Here
we update the calculation of the stability parameter from that
given by Dyer (1974) to that described by Holtslag and Bruin
(1988). We also reduce the reference height for dry deposi-
tion (z) from 50 to 10 m. The reference height is the height
below which there is no turbulence under very stable con-
ditions and is also important for calculating Ra. Following
Ganzeveld and Lelieveld (1995), the reference height should
be half the average height of the lowest model layer, which

https://doi.org/10.5194/acp-21-18465-2021 Atmos. Chem. Phys., 21, 18465–18497, 2021
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in UKESM1 is 20 m. The changes to z/L and z act to re-
duce the rate at which the deposition velocity decreases un-
der very stable conditions, although we note that there is also
an impact on the calculation of aerodynamic resistance under
unstable conditions. The DMSO bug fix corrects the equa-
tion for DMS oxidation by OH (see Reaction R1) in UKCA’s
StratTrop mechanism, where the products incorrectly con-
tain more sulfur atoms than the reactants. We substitute Re-
action R1 with Reactions R2 and R3. This reduces the SO2
yield to a maximum of 0.84, which may be further reduced as
DMSO deposits to the Earth’s surface. However, the changes
in simulated SO2 are actually only of the order of 1 % be-
cause anthropogenic sources are not affected by this change.
Although the secondary changes incorporate important up-
dates into the model, their impact on the atmospheric SO2
loading in UKESM1 is small in comparison to that driven by
Rwater-mod and Rsurf-mod, and we do not discuss it here.

C2H6S+OH→ SO2+CH3SO2OH (R1)
C2H6S+OH→ 0.6SO2+ 0.4C2H6SO2+CH3O2 (R2)
C2H6SO2+OH→ 0.6SO2+ 0.4CH3SO2OH. (R3)

2.3 Model simulations

For this evaluation we initially use four simulations from the
19-member ensemble of historical simulations that were con-
ducted for UKESM1’s contribution to CMIP6 (Sellar et al.,
2019; Tang et al., 2019). The historical simulations cover the
period from 1850 to the end of 2014, thus modelling the evo-
lution of climate and composition since the pre-industrial era.
These simulations are forced by transient external forcings of
solar variability, land use, well-mixed greenhouse gases, and
other trace gas emissions and aerosols. The volcanic forcing
due to the stratospheric injection of SO2 from volcanic erup-
tions is prescribed as a zonal mean climatology of the strato-
spheric aerosol optical properties over the historical period.
All forcings and how they are implemented in UKESM1 are
described fully in Sellar et al. (2019). Each historical en-
semble member was initialized from a different date in the
pre-industrial control simulation (Yool et al., 2020). We use
monthly mean output for surface SO2 and SO2−

4 concentra-
tions and SO2 dry deposition flux. We use a second four-
member ensemble of historical simulations to evaluate the
impact of the changes to the SO2 dry deposition parameter-
ization described in Sect. 2.2.1; hereafter, this ensemble is
referred to as UKESM1-SO2. The UKESM1-SO2 historical
simulations are set up and run as for the UKESM1 histor-
ical simulations. To calculate the detailed SO2 budget, we
utilize the atmosphere-only configuration of UKESM1 and
UKESM1-SO2. This is referred to as the Atmospheric Model
Intercomparison Project (AMIP) configuration and allows us
to generate the diagnostics required for the budget analy-
sis that were not output in the historical simulations at a
reduced computational cost. The UKESM1 AMIP configu-
ration is driven by observed sea surface temperature (SST)

Table 2. Summary of model configurations used in this study.

UKESM1 UKESM1-SO2

Configuration Historical Historical
No. of members 4 4
Modifications – (1) Rwater-mod and Rsurf-mod

(2) Update to z/L and z= 10 m
(3) DMSO chemistry bug fix

Configuration AMIP AMIP
No. of members 1 1
Modifications – (1) Rwater-mod and Rsurf-mod

(2) Update to z/L and z= 10 m
(3) DMSO chemistry bug fix

and sea ice. It does not include the additional dynamic ocean
and land surface components (Eyring et al., 2016). Instead,
the required vegetation (vegetation fractions, leaf area in-
dex, canopy height) and surface ocean biology fields (DMS
and chlorophyll) are taken from a single UKESM1 historical
member and are prescribed as ancillary data, thereby main-
taining traceability to the fully coupled model. For the SO2
budget calculations AMIP simulations were run from 1979
to the end of 1983.

2.4 Ground-based observations

We compare the modelled surface SO2 and SO2−
4 concentra-

tions to observations from the Clean Air Status and Trends
Network (CASTNet, https://www.epa.gov/castnet, last ac-
cess: 14 December 2021, Finkelstein et al., 2000) and the
European Monitoring and Evaluation Program (EMEP, http:
//ebas.nilu.no/, last access: 14 December 2021; Tørseth et al.,
2012). CASTNet provides surface observations of mean
seasonal SO2 and SO2−

4 concentrations which are avail-
able from 1987 to the present at 97 sites situated in the
USA. In this study we used observations from the CAST-
Net sites designated as “western reference” or “eastern ref-
erence”. The reference sites have been reporting measure-
ments since at least 1990 and are used for determining long-
term trends (e.g. Clarke et al., 1997; Holland et al., 1998;
MACTEC-Engineering and Consulting, 2005; Baumgardner
et al., 2002). There are 16 western reference sites and 33
eastern reference sites which are located in the continental
USA to the west and east of 100◦W respectively (MACTEC-
Engineering and Consulting, 2005). The eastern region is
significantly more polluted than the western region due to
the larger number of SO2 sources there. We therefore keep
the western and eastern data sets separate to assess how
UKESM1 performs in the two regions. Hereafter, we refer to
the eastern and western USA regions as USA–E and USA–
W respectively. For this evaluation we used the mean sea-
sonal surface concentrations for SO2 and SO2−

4 , which are
measured with filter pack samplers at weekly sampling in-
tervals. Details of the quality control procedures and of how
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Figure 1. Map of the locations of the CASTNet and EMEP mea-
surement sites used in this study.

the mean seasonal concentrations are calculated are given in
Baumgardner et al. (2002).

We also evaluate simulated SO2 dry deposition flux from
UKESM1 against observations from CASTNet, using the
same eastern and western reference sites that were used to
evaluate surface SO2 and SO2−

4 concentrations. The CAST-
Net deposition fluxes are derived using modelled deposition
velocities rather than directly measured fluxes, which are dif-
ficult to obtain due to the requirement for extensive instru-
mentation and technical resources. Direct measurements of
SO2 dry deposition flux are therefore temporally and spa-
tially limited and not suitable for evaluating long-term trends.
To derive the SO2 dry deposition fluxes, measurements of
SO2 concentration are combined with routine meteorolog-
ical measurements, information on the land use type, and
LAI at the measurement site. These data are then combined
with modelled deposition velocities from the Multi Layer
Model (MLM, Meyers et al., 1998; Saylor et al., 2014). The
methodology used to derive the SO2 dry deposition fluxes
for CASTNet is described in Clarke et al. (1997) and Baum-
gardner et al. (2002). While the modelled SO2 dry deposi-
tion fluxes can be under-predicted by approximately 30 %
(Clarke et al., 1997), it is considered to be the best avail-
able approach to regional-scale assessment of dry deposition
(Finkelstein et al., 2000; Baumgardner et al., 2002; Sickles
and Shadwick, 2007a, b). This approach has been used to de-
termine SO2 dry deposition fluxes for CASTNet since 1987
(e.g. Clarke et al., 1997; Baumgardner et al., 2002) and to as-
sess global- and regional-scale models (Vet et al., 2014; Tan
et al., 2018; Tang et al., 2018).

Surface SO2 and SO2−
4 concentrations have been moni-

tored at EMEP sites for the period 1972–present (Tørseth
et al., 2012). In this study we have used observations of sur-
face concentrations of SO2 and SO2−

4 from 48 and 42 sites
respectively. We have selected sites where there are at least
10 years of continuous measurements and with a few excep-
tions have used sites where SO2 and SO2−

4 were co-located.
We use monthly mean observations for both species. No SO2
dry deposition data were available from EMEP. The locations
of the CASTNet and EMEP sites used in this study are shown
in Fig. 1.

2.5 Data processing

For this evaluation we calculated seasonal averages for the
modelled surface SO2 and SO2−

4 concentrations and for the
EMEP observational data. The seasonal periods were defined
as December–January–February (DJF), March–April–May
(MAM), June–July–August (JJA), and September–October–
November (SON). The CASTNet data for all variables were
available as seasonal averages for these periods. Model grid
cell output was co-located with the CASTNet and EMEP
measurement sites. In some cases, this resulted in model data
from a particular grid cell being compared with more than
one measurement site. For the time series analysis, regional
means and standard deviations were calculated across the
sites in the USA–E, USA–W, and Europe regions. Although
there is spatial variation in the surface SO2 and SO2−

4 con-
centrations across Europe, for example concentrations are
relatively low in Scandinavia but are much higher in south-
eastern Europe, it is less easy to classify “clean” and “pol-
luted” regions at the global model scale. Therefore we clas-
sify Europe as a single region. For the spatial analysis and
calculation of time series statistics, we calculate mean val-
ues over the whole time series, i.e. 1987–2014 and for two
time slices at the start (1990–1995) and end of the time se-
ries (2009–2014). For the time slices we only used sites that
had at least 3 out of 5 years of data available. We investigate
the two time slices to assess the model’s performance during
the different pollution levels at the start and end of the time
series. We determine the rate of change (trend) in the surface
concentrations by calculating the linear regression for 1987–
2014, 1990–1995, and 2009–2014.

2.6 Satellite observations

Total column SO2 (TCSO2) measurements came from
the Ozone Monitoring Instrument (OMI) and were ob-
tained from the Goddard Earth Sciences Data and Informa-
tion Services Centre (https://aura.gesdisc.eosdis.nasa.gov/
data/Aura_OMI_Level2/OMSO2.003, last access: 14 De-
cember 2021) (Li et al., 2020). OMI is situated on board
NASA’s polar-orbiting Aura satellite launched in 2004 with
a local overpass time of approximately 13:45 local solar time
(LST). OMI has a nadir footprint of 13 km× 24 km and a
spectral viewing range of 270 to 500 nm (Levelt et al., 2018).
The TCSO2 product is quality controlled for cloud radia-
tion fraction > 0.0 and < 0.5, solar zenith angle < 65◦, the
South Atlantic Anomaly flag= 0, ice cover flag= 0, the air
mass factor (AMF) > 0.3, and TCSO2 >−1.0 Dobson unit
(DU). Background TCSO2 average values tend to be positive
near-zero quantities (i.e. just above 0.0), where some sound-
ings are slightly negative. If only positive TCSO2 were incor-
porated into the background averages, this would positively
skew the true value.

For a robust comparison between model simulations and
satellite data, both data sets typically require spatiotempo-
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ral co-location to reduce sampling (representation) errors. To
achieve this, high temporal resolution (e.g. 3-hourly or 6-
hourly) model outputs of three-dimensional tracer and pres-
sure fields are required over the analysis period to capture
e.g. diurnal variability (Pope et al., 2016; Monks et al., 2017).
However, this is difficult when using standard climate model
simulations, including those used in this study, which typi-
cally output monthly means due to their long-term climate
focus. In this comparison we performed tests to show that
using the monthly mean model output was suitable given
the relatively uniform diurnal cycle of SO2 emissions. For
these tests we made initial comparisons of model output and
satellite data using 6-hourly and monthly mean output from
the same UKESM1 simulation. We found that the temporal
sampling of the model was not overly critical for SO2, i.e.
that modelled SO2 has a sufficiently long lifetime to dampen
the influence of diurnal sampling of the model. Further de-
tails on the TCSO2 product, how it was processed to obtain
TCSO2 values, and the assessment of the temporal resolution
are given in Pope and Chipperfield (2021).

3 Evaluation of trends and biases in modelled SO2
and SO2−

4 concentrations

3.1 Time series analysis of surface concentrations of
SO2 and SO2−

4

UKESM1 simulations of surfaces of SO2 and SO2−
4 concen-

trations are compared with observations from the CASTNet
and EMEP networks for the period 1987–2014 in Fig. 2. The
statistics summarizing the model bias and trends over this pe-
riod as well as for the 1990–1995 and 2009–2014 time slices
are shown in Tables 3 and 4. We find that UKESM1 captures
the historical reduction in surface SO2 and SO2−

4 concentra-
tions. This is in agreement with Aas et al. (2019), who re-
ported that an ensemble of global aerosol models was gener-
ally able to capture the recent historical declines in these two
species over the USA and Europe. UKESM1 over-predicts
surface SO2 concentrations in all three regions, but the di-
rection of the model’s bias in surface SO2−

4 concentrations is
spatially variable.

Figure 2a–c show that in both Europe and USA–E the
model over-predicts surface SO2 concentrations, particu-
larly at the start of the time series, which then decrease
too rapidly. Over Europe, the observed surface SO2 con-
centrations decrease at a rate of 0.72 µg m−3 yr−1 in the pe-
riod 1990–1995 which slows to 0.38 µg m−3 yr−1 by 2009–
2014. However, the modelled surface SO2 concentrations de-
crease by 2.52 µg m−3 yr−1 for 1990–1995, slowing to only
1.31 µg m−3 yr−1 by 2009–2014. Over USA–E the observed
surface SO2 concentrations decrease at similar rates at the
start and end of the time series. UKESM1 is better able to
capture the trend at the start of the time series but simulates
an overly rapid reduction in surface SO2 concentrations af-
ter 2005 (see Fig. 2b). Over USA–E UKESM1 simulates the

sharp drop in surface SO2 concentrations that occurred in
1995 following the implementation of Phase 1 of the USA’s
Clean Air Act Amendments (McHale et al., 2021). How-
ever, the model then simulates relatively high surface SO2
concentrations for the period 1996–1999 rather than the sus-
tained lower surface SO2 concentrations that are observed
after 1995. Over USA–W the observed surface SO2 concen-
trations remain steady from 1987 to 2014 due to there being
fewer sources in this region. Figure 2a shows that UKESM1
simulates the steady surface SO2 concentrations at the start
of the time series, albeit with a positive bias. However, after
1995 UKESM1 simulates decreasing surface SO2 concen-
trations in USA–W, which brings the modelled values into
better agreement with the observations but introduces an ar-
tificial trend into the modelled time series.

UKESM1 over-predicts the annual mean surface SO2 con-
centrations in the polluted regions of Europe and USA–E
by a factor of 3.2 to 3.4 over the period 1987–2014, al-
though the absolute bias is higher USA–E (see Table 3).
While the absolute magnitude of the bias in mean annual
surface SO2 concentration is less in USA–W compared with
the polluted regions, proportionally it is much larger, with
the model simulating surface SO2 concentrations by more
than 10 times the observed values. The absolute magnitude of
the bias in mean annual surface SO2 concentration decreased
from 1990–1995 to 2009–2014 in all three regions (see Ta-
ble 3), reflecting the model’s more rapid decrease in surface
SO2 concentrations relative to the observations. However, the
normalized mean bias (NMB) values were slightly higher in
2009–2014 compared with 1990–1995.

Figures 2e–f show that UKESM1 captures both the mag-
nitude and trends in surface SO2−

4 concentrations better than
the surface SO2 concentrations. The model simulated surface
SO2−

4 concentrations decreasing at a rate of 0.13 µg m−3 yr−1

(USA–E) and 0.09 µg m−3 yr−1 (Europe) compared with
the observed trend of ≈ 0.10 µg m−3 yr−1 (see Table 4).
UKESM1 does under-predict mean annual surface SO2−

4
concentrations in the polluted regions of USA–E and Europe,
but the model bias is relatively small compared with the large
over-prediction of mean annual surface SO2 concentration
(see Tables 3 and 4). We also find that there is a large range
associated with the modelled and observed data and that the
mean surface SO2−

4 concentrations lie within these ranges.
The model bias remained relatively constant over the period
from 1987 to 2014, ranging from −0.96 to −0.80 µg m−3

for the periods 1990–1995 and 2009–2014 over USA–E and
from −0.91 to −0.69 µg m−3 for the same periods over Eu-
rope (see Table 4). The picture is different in USA–W, where,
in contrast to USA–E and Europe, UKESM1 over-predicts
mean annual surface SO2−

4 concentration by an average of
150 % for 1987–2014. Both the absolute model bias and the
NMB are worse in 1990–1995 than in 2009–2014, which
may be attributed to the model simulating a much faster de-
crease in mean annual surface SO2−

4 concentrations com-
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Figure 2. Time series of observed and modelled mean annual surface SO2 (a–c) and SO2−
4 (d–f) concentrations for USA–W (a, d; N

sites= 16), USA–E (b, e; N sites= 33), and Europe (c, f; N sites= 48 for SO2 and 42 for SO2−
4 ). Each point in the time series represents

the mean across the measurement sites in the region. Note that the vertical scale for SO2 (a–c) is a factor of 6 larger than that for SO2−
4 (d–f).

Table 3. Statistics for mean annual surface SO2 concentrations at USA–W, USA–E, and Europe. The mean and trend values are in µg m−3

and µg m−3 yr−1 respectively.

1987–2014 1990–1995 2009–2014

USA–W Mean (obs) 0.48 0.67 0.29
Mean (model) 6.48 6.67 3.19
Bias 6.00 6.00 2.90
NMB 12.54 9.00 10.04
R 0.20 0.89 0.93
Trend (obs) −7.13× 10−3

−1.46× 10−2
−2.05× 10−3

Trend (model) −4.58× 10−2
−5.74× 10−2

−0.36
N sites 16 6 16

USA–E Mean (obs) 6.34 9.09 1.87
Mean (model) 20.05 28.89 7.28
Bias 14.20 19.90 5.41
NMB 2.41 2.20 2.92
R 0.97 0.89 0.94
Trend (obs) −0.37 −0.36 −0.25
Trend (model) −1.00 −0.53 −1.04
N sites 33 33 33

Europe Mean (obs) 2.94 4.96 1.27
Mean (model) 10.20 15.80 4.38
Bias 7.26 10.90 3.12
NMB 2.61 2.27 2.47
R 0.93 0.99 0.97
Trend (obs) −0.20 −0.42 −0.02
Trend (model) −0.66 −1.35 −0.27
N sites 48 43 47
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Table 4. Statistics for mean annual surface SO2−
4 concentrations at USA–W, USA–E, and Europe. The mean and trend values are in µg m−3

and µg m−3 yr−1 respectively.

1987–2014 1990–1995 2009–2014

USA–W Mean (obs) 0.74 0.73 0.62
Mean (model) 1.15 1.27 0.73
Bias 0.44 0.54 0.11
NMB 0.72 0.73 0.18
R 0.14 0.7 0.90
Trend (obs) −1.01× 10−2

−3.41× 10−3
−9.45× 10−3

Trend (model) −5.83× 10−3
−1.41× 10−2

−3.97× 10−2

N sites 16 6 16

USA–E Mean (obs) 3.82 5.17 2.18
Mean (model) 3.14 4.21 1.38
Bias −0.67 −0.96 −0.80
NMB −0.19 −0.19 −0.37
R 0.98 0.87 0.94
Trend (obs) −0.10 −0.13 −0.2
Trend (model) −0.13 −0.07 −0.14
N sites 33 33 33

Europe Mean (obs) 2.76 3.81 1.75
Mean (model) 1.91 2.86 1.06
Bias −0.85 −0.94 −0.69
NMB −0.31 −0.24 −0.39
R 0.97 0.91 0.74
Trend (obs) −0.12 −0.29 0.09
Trend (model) −0.09 −0.09 0.03
N sites 42 41 34

pared with the observed trend for the later period (see Ta-
ble 4).

3.2 Spatial evaluation of surface SO2 and SO2−
4

concentrations

Figures 3 and 4 show the spatial distribution of modelled and
observed mean annual surface SO2 and SO2−

4 concentrations
for the periods 1990–1995 and 2009–2014 for the USA and
Europe. We find that UKESM1 captures the spatial distri-
bution of surface SO2 and SO2−

4 concentrations over each
region, simulating higher concentrations in USA–E, central
Europe, and eastern Europe, where there are numerous large
sources, and lower concentrations in USA–W and northern
Europe, which have far fewer sources (see Fig. B1). These
figures also show the localized versus dispersed nature of
the surface SO2 and SO2−

4 concentrations, with high SO2
concentrations located within two to three grid boxes (200–
400 km) of the emission sources (see Fig. B1), while SO2−

4
is distributed more widely. Figure 3 shows that modelled and
observed surface SO2 and SO2−

4 concentrations across the
USA are lower in 2009–2014 compared with 1990–1995,
demonstrating the widespread impact of emission reduction
policies. However, the disparity between higher concentra-

tions in USA–E and lower concentrations in USA–W is still
apparent for both species in the later period.

In Europe the highest mean annual surface SO2 and SO2−
4

concentrations were observed in central and eastern Europe
and the south-east (SE) of England (see Fig. 4). Lower con-
centrations of both species were observed in northern and
western regions, e.g. Scandinavia and the western coast of
Ireland. Figure 4c shows that mean annual surface SO2 con-
centrations were generally lower in 2009–2014 compared
with 1990–1995, especially in central and eastern Europe,
due to the impact of air quality legislation. However, for
2009–2014 modelled and observed levels of SO2 remain high
in the south-eastern region (see Fig. 4c). UKESM1 repro-
duces the spatial distribution of mean annual SO2 concentra-
tions across Europe but has large positive biases over most
of the region. The largest model biases were in eastern and
south-eastern Europe during the period 1990–1995, where
UKESM1 simulates mean annual surface SO2 concentrations
of up to 100 µg m−3 compared with observed values of 10–
30 µg m−3. Figure 4b shows that UKESM1 captures the spa-
tial distribution between low mean annual surface SO2−

4 con-
centrations in northern and western regions of Europe and
high mean annual surface SO2−

4 concentrations in central Eu-
rope. However, the model under-predicts mean annual sur-
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Figure 3. Mean annual surface SO2 concentration (a, c) and surface SO2−
4 concentration (b, d) for 1990–1995 (a, b) and 2009–2014 (c, d)

for modelled output. Observations from 49 CASTNet measurement sites are plotted as black-edged circles on the same colour scale.

Figure 4. Mean annual surface SO2 concentration (a, c) and surface SO2−
4 concentration (b, d) for 1990–1995 (a, b) and 2009–2014 (c, d)

for modelled output. Observations from EMEP measurement sites (N sites= 48 for SO2 and 42 for SO2−
4 ) are plotted as black-edged circles

on the same colour scale.
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face SO2−
4 concentrations at many locations across Europe,

with the largest biases occurring across Denmark and the re-
gions surrounding the Baltic Sea.

3.3 Spatial distribution of model bias in surface SO2
and SO2−

4
concentrations

Figures 5 and 6 show that the direction of the model biases,
whether positive or negative, is generally consistent across
a region. UKESM1 over-predicts mean annual surface SO2
concentration for all sites in both the USA–E and USA–W
regions and, with the exception of some Scandinavian sites,
across Europe. Figures 5 and 6 also show that mean annual
surface SO2−

4 concentrations are generally under-predicted
across the USA–E and European sites while being over-
predicted at the USA–W sites.

The model’s over-prediction of mean annual surface SO2
concentration is largest close to the sources. For example,
UKESM1 over-predicts surface SO2 concentrations by up to
50 µg m−3 in the central USA–E area but only by around
10 µg m−3 at the surrounding sites, whilst in Europe the
largest biases of around 10–20 µg m−3 tend to be in cen-
tral and eastern areas. The model’s tendency to over-predict
SO2 concentrations to a greater extent close to the sources is
also shown in the plots of NMB (see Figs. 5c and 6c) and is
likely why there is a larger range in the modelled mean an-
nual surface SO2 concentrations averaged across the USA–
E and European measurement sites compared with the ob-
servational values (see Fig. 2b and c). Figures 5b and 6b
show that UKESM1 generally under-predicts surface SO2−

4
concentration across the USA–E and European sites, with
model biases of −1 to −3 µg m−3. We find that in USA–
E the largest negative biases in surface SO2−

4 concentra-
tions are not necessarily co-located with the largest posi-
tive biases in SO2, instead occurring at sites several hun-
dred kilometres from the large point sources. Similarly, in
Europe the largest biases in surface SO2−

4 concentrations oc-
cur further north than the large biases in surface SO2 con-
centration, and at certain sites located near large sources,
UKESM1 over-predicts surface SO2−

4 concentrations. The
plots of NMB show that there is less spatial variation in
the model bias for surface SO2−

4 concentrations, reflecting
UKESM1’s ability to capture the more distributed nature of
atmospheric SO2−

4 . In USA–W UKESM1 over-predicts both
SO2 and SO2−

4 concentrations at almost all of the sites (see
Fig. 5). For SO2 this is a consequence of the sparsely dis-
tributed measurement sites being located in rural regions re-
mote from any of the sources in USA–W (Clarke et al., 1997;
MACTEC-Engineering and Consulting, 2005; Baumgardner
et al., 2002) (see also Fig. B1). This results in some very large
NMB values in USA–W (see Fig. 5a).

3.4 Seasonal cycles

Figure 7 shows modelled and observed surface SO2 and
SO2−

4 concentrations averaged seasonally for the period
1987–2014. The comparison between the model and obser-
vations is summarized for DJF and JJA in Table 5. The higher
wintertime SO2 concentrations are driven by greater emis-
sions from coal-fired power plants and domestic heating and
less oxidation. Conversely, there are fewer emissions and
higher oxidant concentrations in summertime. These cycles
drive correspondingly low SO2−

4 concentrations in winter
and high SO2−

4 concentrations in summer. Overall, we find
that the model bias in surface SO2 and SO2−

4 concentrations
depends on the season as well as the region and pollution
levels.

The results presented in Sect. 3.1 and 3.2 show that
UKESM1 consistently over-predicts mean annual surface
SO2 concentrations in the USA and Europe. However,
Fig. 7a–c show that in the more polluted regions (USA–E
and Europe), the magnitude of the bias is seasonal although
still with a large positive bias. UKESM1 is able to capture
the seasonal cycle in surface SO2 concentrations over Eu-
rope, but the absolute model bias is larger in DJF compared
with JJA (see Table 5). In USA–E UKESM1 does not cap-
ture the seasonal cycle in surface SO2 concentrations due to
the relatively large model bias in JJA, where the modelled
SO2 concentrations are over 5 times the observed values. In
USA–W the modelled and observed surface SO2 concentra-
tions are slightly higher in DJF compared with JJA, but the
model bias is so large in this region that it is difficult to de-
termine whether there is any seasonality in this bias.

UKESM1 clearly captures the seasonal cycle in surface
SO2−

4 concentration over USA–E, simulating the highest val-
ues in summer and the lowest values in winter. The model
under-predicts surface SO2−

4 concentration by a factor of 0.7
to 0.8 reasonably consistently throughout the seasonal cy-
cle. In the cleaner USA–W region, UKESM1 is able to cap-
ture the seasonal cycle in surface SO2−

4 concentrations, with
the exception of DJF, where the model over-predicts surface
SO2−

4 concentrations by a factor of 2.5. In Europe the ob-
served seasonal cycle in surface SO2−

4 concentration has only
a small amplitude, with mean values of 2.81 and 2.85 µg m−3

in DJF and JJA respectively.

3.5 Evaluation of total column SO2 in UKESM1 against
satellite observations

Figure 8 shows total column SO2 (TCSO2) from UKESM1
and OMI and the difference between them for DJF and JJA.
Note that the quality control for solar zenith angle results in
no data availability above 65◦ N or below 65◦ S in the win-
ter months, and due to OMI’s weaker sensitivity to retriev-
ing SO2 in remote regions, we focus on comparing TCSO2
over source and outflow regions (Li et al., 2020). Figure 8a–
d show that UKESM1 and OMI broadly agree on the loca-
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Figure 5. Geographic distribution of mean bias (UKESM1 – obs) in mean annual surface SO2 and SO2−
4 concentration at 49 CASTNet

measurement sites. The mean annual surface concentrations are calculated over the period 1987 to 2014. Absolute mean bias (MB) is shown
in (a) and (b) and normalized mean bias (NMB) is shown in (c) and (d). Note that different scales are used for the SO2 model bias (a) and
normalized mean bias (c).

Table 5. Statistics for seasonal mean surface SO2 and SO2−
4 con-

centrations (µg m−3) at USA–W, USA–E, and Europe. The mean
seasonal values are averaged over the period 1987–2014.

USA–W USA–E Europe

DJF JJA DJF JJA DJF JJA

SO2 concentration

Mean (obs) 0.71 0.45 9.83 4.17 5.00 2.10
Mean (model) 7.39 6.32 22.18 22.93 15.34 8.08
Bias 6.69 5.87 12.34 18.76 10.34 5.99
NMB 12.16 12.85 1.37 5.01 2.64 3.09
N sites 16 16 33 33 48 48

SO2−
4 concentration

Mean (obs) 0.48 0.95 2.71 6.51 2.81 2.85
Mean (model) 1.23 1.21 1.88 5.15 1.72 2.50
Bias 0.75 0.25 −0.83 −1.35 −1.09 −0.35
NMB 1.63 0.26 −0.32 −0.22 −0.38 −0.13
N sites 16 16 33 33 42 42

tion of the main Northern Hemisphere (NH) source regions,
including China, India, Europe, and the USA. The model
and satellite data both show seasonal cycles in TCSO2 over
the large source regions, with higher values being modelled
and observed during the winter months. However, Fig. 8e
and f show that the UKESM1 TCSO2 values were generally
larger than the OMI TCSO2 values in these source regions by
0.6–1.0 DU. Over the background regions UKESM1 over-
predicts TCSO2 values by 0.2–0.5 DU. UKESM1 also has
larger volcanic sources and associated outflow, which can be
seen over central America, Sicily, Hawaii, and Papua New
Guinea, for example. This is likely due to the climatology
that UKESM1 uses for continuously degassing volcanoes.
In agreement with the ground-based observations, the satel-
lite data show an east–west divide in the USA, with greater
TCSO2 over USA–E compared with USA–W.

Figure 9 shows modelled and observed TCSO2 over the
period from 2005 to 2014 for three source regions, the
USA (60–30◦W, 25–50◦ N), Europe (15–40◦ E, 35–65◦ N),
and South to North-east (SNE) Asia (75–125◦ E, 20–45◦ N).
Overall, we find that the observed TCSO2 is reasonably sta-
ble over this period in all three regions and that there are clear
seasonal cycles showing peak TCSO2 during the NH winter
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Figure 6. Geographic distribution of mean bias (UKESM1 – obs) in mean annual surface SO2 and SO2−
4 concentration at EMEP measure-

ment sites (N sites= 48 for SO2 and 42 for SO2−
4 ). The mean annual surface concentrations are calculated over the period 1987 to 2014.

Absolute mean bias is shown in (a) and (b) and NMB is shown in (c) and (d). Note that different scales are used for the SO2 model bias (a)
and normalized mean bias (c).

Table 6. Statistics comparing model and OMI total column SO2 over three regions: USA (60–130◦W, 25–50◦ N), Europe (15◦W–40◦ E,
35–65◦ N), and South to North-east Asia (75–125◦W, 20–45◦ N) for the period 2005–2014. The metrics are mean bias (MB, DU), root mean
square error (RMSE, DU), percentage mean bias (MB %), and correlation (R).

USA Europe South to North-east Asia

Statistic UKESM1 UKESM1-SO2 UKESM1 UKESM1-SO2 UKESM1 UKESM1-SO2

MB 0.029 0.014 0.050 0.027 0.120 0.068
RMSE 0.032 0.018 0.061 0.040 0.122 0.070
MB % 117 56 110 59 402 228
R 0.26 0.19 0.54 0.53 0.64 0.48

Note that the median value is reported for each metric.

in the USA and Europe and slightly earlier ones in SNE Asia.
However, Fig. 9a and b show that modelled TCSO2 decreases
over the USA and Europe from 2005 to 2010, with UKESM1
over-predicting TCSO2 by up to 0.1 DU at the start of the
time series. After 2011, UKESM1 is in much better agree-
ment with the observed TCSO2 over both regions. Figure 9c
shows that UKESM1 consistently over-predicts TCSO2 over
SNE Asia by 1.5–2.0 DU during the period from 2005 to

2014. UKESM1 does simulate a seasonal cycle in TCSO2
in all three regions. In Europe, UKESM1 is able to predict
the peak wintertime TCSO2 values, although between 2005
and 2010 the model has a positive bias of up to 0.1 DU. How-
ever, in the USA and to a lesser extent in SNE Asia (Fig. 9a
and c respectively), UKESM1 mistimes the peak TCSO2 val-
ues. In the USA the model simulates the highest values in the
summer rather than in winter, and in SNE Asia the modelled
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Figure 7. Modelled and observed seasonal mean surface SO2 concentration (a–c) and surface SO2−
4 concentration (d–f) for the period

1987–2014. USA–W (a, d; N sites= 16); USA–E (b, e, N sites= 33), and EMEP (c, e; N sites (SO2)= 48 and N sites (SO2−
4 )= 42). The

blue-shaded region and the black error bars represent the standard deviation across the sites in the observational network.

peak TCSO2 values appear shifted by several months earlier
relative to the observations.

The observations of TCSO2 and surface SO2 concentra-
tions over Europe both show the impact of emission control
policies on keeping atmospheric SO2 levels low (Figs. 2c and
9b). However, for the USA, we investigate the surface SO2
concentrations separately over the USA–E and USA–W re-
gions, whereas the TCSO2 is averaged over the continental
USA as a whole. As a result, TCSO2 does not appear to de-
crease over the period 2005–2014 in the same way surface
SO2 concentrations are reduced in USA–E (Figs. 2b and 9a).
Using a mean TCSO2 for the continental USA as a whole
also results in lower values relative to Europe. This is in con-
trast to the ground-based observations, where surface SO2
concentrations over Europe are intermediate between USA–
E and USA–W for the period 2005–2014. The relatively high
TCSO2 over Europe is also due to the inclusion of a num-
ber of large eastern European sources which are not well
represented in the ground-based observations. We find that
the TCSO2 and surface SO2 concentration observations both
agree on the seasonal cycle, showing higher values in winter
compared with the summer.

UKESM1 over-predicts surface SO2 concentration to a
greater extent than TCSO2 for the USA and Europe. The
model over-predicts surface SO2 concentration by factors of
2.2–11.6 for USA–E and USA–W and 2.4 for Europe com-
pared with values of 1.2 (USA) and 1.1 (Europe) for mod-
elled TCSO2 (see Tables 3 and 6). However, the R values for

surface SO2 concentration (> 0.8) are much better than those
for TCSO2 (0.26–0.53), particularly over the USA. The low
R value for the USA reflects the poor seasonal agreement in
TCSO2 in this region. The comparison against both observa-
tional data sets shows that the modelled atmospheric SO2 is
too high, both at the surface and through the column. In addi-
tion, UKESM1 simulates larger trends in TCSO2 and surface
SO2, particularly prior to 2010, than are seen in the observa-
tions. Both observational data sets also show that UKESM1’s
over-prediction of atmospheric SO2 in the large source re-
gions is generally greater in the winter months compared
with the summer months (see Fig. 8e and f). Exceptions oc-
cur in USA–E, where UKESM1 fails to capture the seasonal
cycle in atmospheric SO2, over-predicting surface SO2 con-
centration and TCSO2 to a greater extent in JJA compared
with DJF. Notably, in the southern USA–E region and the
Iberian Peninsula, UKESM1 actually under-predicts TCSO2
by up to 0.1 DU in DJF, which does not occur in the com-
parison with surface SO2 concentrations, even if the model
and observations are compared at individual CASTNet and
EMEP sites.
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Figure 8. Total column SO2 for UKESM1 (a, b), OMI (c, d), and UKESM1 – OMI (e, f). DJF is shown in the left column and JJA is shown
in the right column. Median total column SO2 in Dobson units is calculated for the period 2005–2014.

4 Impact of changes to the SO2 dry deposition
parameterization in UKESM1

4.1 Global-scale impacts

Figure 10 shows SO2 dry deposition velocity simulated by
UKESM1 and how this is affected by changes to the SO2 dry
deposition parameterization. In UKESM1 the mean annual
deposition velocities range from approximately 0.5× 10−3

to 4.0×10−3 m s−1 (see Fig. 10a). Figure 10b, e, and h show
that SO2 dry deposition velocity increases over almost all
land and ocean regions in UKESM1-SO2 by approximately
0.02–0.08 m s−1. This represents an increase of a factor of
2–4 relative to UKESM1. The largest increase in SO2 dry
deposition velocity to the ocean is over the Southern Ocean
in winter, where it increases by more than a factor of 4
(see Fig. 10i). Over land surfaces the largest increases oc-
cur over South America, north-western America and Canada,
and north-eastern Europe/western Russia (see Fig. 10f and
i). The increased SO2 dry deposition velocities in UKESM1-
SO2 relative to UKESM1 indicate that the changes to the
SO2 dry deposition parameterization are behaving as ex-

pected. The reduction in Rc for SO2 dry deposition to wa-
ter increases the dry deposition velocity to oceans. Similarly,
when land surfaces are allowed to remain wet for a longer
period after rainfall events, Rcut and Rsoil are reduced for a
longer period of time in UKESM1-SO2 relative to UKESM1
and SO2 dry deposition velocity to the canopy (leaf or soil)
increases. In the summer months SO2 dry deposition veloci-
ties are larger over land surfaces compared with in the win-
ter months, while over oceans values are larger in the win-
ter compared with the summer. Although increased rainfall
in winter drives wetter surface conditions, the leaf canopy is
reduced or absent, and at high latitudes surfaces are likely
to have snow cover, which has a relatively high Rc (see Ta-
ble A1) compared with vegetated surfaces. The higher SO2
dry deposition velocities over the ocean during the winter
months are likely due to higher wind speeds.

The increased SO2 dry deposition velocities in UKESM1-
SO2 drive an increase in the SO2 dry deposition flux of
nearly 45 % (from 29.49 to 42.56 T g yr−1) and subsequently
reduce the SO2 lifetime by approximately 25 % (see Ta-
ble C1). Overall the global SO2 burden is reduced from 0.54
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Figure 9. Median total column SO2 calculated for 2005–2014 for USA (a), Europe (b), and South to North-east Asia (c). Total column SO2
is in Dobson units.

to 0.41 T g yr−1. The full budget breakdown for SO2 is given
in Appendix C (Table C1). The spatial distribution of these
changes is illustrated in Fig. 11, which shows that SO2 dry
deposition increases over most regions, with a corresponding
decrease in surface SO2 concentrations. The lower SO2 bur-
den then drives lower oxidation fluxes (Table C1), reducing
the surface SO2−

4 concentrations (Fig. 11g–i).
The largest absolute increases in SO2 dry deposition oc-

cur over the main source regions of USA–E, eastern China,
and central and eastern Europe (Fig. 11b). However, Fig. 11c
shows that the largest relative changes in dry deposition are
over the ocean. Although the absolute changes over the ocean
are small (< 1× 10−5 kg m−2 yr−1), the large global surface
area of the ocean means that this increase is important for the
global sulfur cycle. In UKESM1-SO2 Rsurf-mod increases
the length of time land surfaces remain wet after rainfall,
thus increasing SO2 dry deposition over most land surfaces
(as seen in Fig. 11b) due to the high solubility of SO2 in
water. Note that Rsurf-mod also makes SO2 dry deposition a
function of the soil moisture content, and this aspect of the
change drives decreases in SO2 dry deposition of 20 %–40 %
over desert regions, such as the Sahara and high northern lat-
itudes (see Fig. 11b and c). Conversely Rsurf-mod does not
impact ocean surfaces, and the increases in SO2 dry deposi-
tion over oceans are driven by Rwater-mod.

The largest absolute reductions in mean annual surface
SO2 and SO2−

4 concentrations are over the source regions,
corresponding to the locations of the largest increases in SO2
dry deposition. This is expected because dry deposition of
SO2 to the surface is directly proportional to the surface con-

centration (Eq. 1). Figure 11e shows that mean annual sur-
face SO2 concentration was reduced by up to 20 µg m−3 in
the eastern USA, eastern China, and central and eastern Eu-
rope, which corresponds to a percentage decrease of 30 %–
50 %. Note that this is similar to the percentage decrease
in mean annual surface SO2 concentration over remote and
ocean regions, although the absolute fluxes are much larger
over the source regions. With the exception of some areas
in the Sahara and the Middle East, we do not see increases
in mean annual surface SO2 concentration where dry depo-
sition fluxes decrease (albeit by very low amounts), such as
the Arctic. We suggest that this is because these areas are re-
mote and contain no SO2 sources, and by reducing SO2 in the
source regions, we reduce overall atmospheric SO2 loading,
and therefore less is transported to remote areas. Figure 11h
and i show that mean annual surface SO2−

4 concentrations are
also reduced over the main source regions, although the re-
ductions over the USA are relatively small compared with the
other large source regions (0.5 µg m−3 compared with up to
3 µg m−3 in central and eastern Europe and China). Propor-
tionally, the reduction in mean annual surface SO2−

4 concen-
tration is smaller than that for mean annual SO2 concentra-
tion, with decreases generally less than 5 % over most source
regions.

4.2 Evaluation of UKESM1-SO2 against ground-based
observations

In Fig. 12 and Table 7 we evaluate UKESM1-SO2 against
the ground-based observations of mean annual surface SO2
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Figure 10. SO2 dry deposition velocity for UKESM1 (a, d, g), absolute difference in SO2 dry deposition velocity for UKESM1-SO2 –
UKESM1 (b, e, h), and percentage difference in SO2 dry deposition velocity for UKESM1-SO2 – UKESM1 (c, f, i). Annual means are
shown in (a)–(c), the DJF mean is shown in (d)–(f), and the JJA mean is shown in (g)–(i). Each plot shows mean data for the period 1987–
2014. Deposition velocity is calculated from the simulated surface SO2 and dry deposition flux values and represents the “bulk” deposition
velocity for each model grid cell.

and SO2−
4 concentrations for the USA and European re-

gions over the period from 1987 to 2014. UKESM1-SO2 is
also evaluated against SO2 dry deposition flux from CAST-
Net over the same period. Figure 12a and b show that SO2
dry deposition flux is increased in UKESM1-SO2 relative to
UKESM1, with this increase being more pronounced over
USA–E compared with USA–W (see also Table 7). The in-
crease in SO2 dry deposition in UKESM1-SO2 does en-
hance the model’s over-prediction of this parameter rela-
tive to the CASTNet data, with NMB increasing from 1.15
in UKESM1 to 3.0 in UKESM1-SO2. Mean annual SO2
dry deposition fluxes are very low over USA–W due to the
much lower concentrations of SO2 in this region. UKESM1
does over-predict mean annual SO2 dry deposition flux in
this region too, but the absolute bias changes very little in
UKESM1-SO2 (see Table 7). Figure 12c–e show that model
bias in mean annual surface SO2 concentration is reduced
in UKESM1-SO2 compared with UKESM1 in all three re-
gions over the period 1987–2014. The largest absolute reduc-

tion is in USA–E, where mean annual surface SO2 concen-
tration decreases from 20.05 to 14.10 µg m−3; however, the
largest reduction in NMB is in USA–W, where it decreases
from 12.54 to 9.52 (see Table 7). The model’s over-prediction
of mean annual surface SO2−

4 concentration is reduced over
USA–W in UKESM1-SO2 compared with UKESM1, with
NMB decreasing from 0.72 to 0.41. However, the model’s
under-prediction of mean annual surface SO2−

4 concentra-
tion over USA–E and Europe increases, with NMB=−0.31
in UKESM1 and NMB=−0.47 in UKESM1-SO2 (see Ta-
ble 7). We find that the changes to the surface concentration
and dry deposition flux occur almost uniformly over the sea-
sonal cycle and so do not change the patterns in seasonal bias
that are described in Sect. 3.4 for surface SO2 and SO2−

4 con-
centrations.
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Figure 11. SO2 dry deposition (a–c), surface SO2 concentration (d–f), and surface SO2−
4 concentration (g–i) for UKESM1 (a, d, g), absolute

difference for UKESM1-SO2 – UKESM1 (b, e, h), and percentage difference for UKESM1-SO2 – UKESM1 (c, f, i). In the plots showing
absolute difference, areas where SO2 dry deposition is reduced in UKESM1-SO2 compared with UKESM1 are shown in blue (b), and areas
where surface SO2 and SO2−

4 concentrations are greater in UKESM1-SO2 compared with UKESM1 are shown in red (e, h). The blue
shading in (b) and the red shading in (e) and (h) is not to scale as the absolute differences are very small. Each plot shows mean data for the
period 1987–2014.

4.3 Evaluation of UKESM1-SO2 against TCSO2
observations

The impacts of the modifications to the SO2 dry deposition
parameterization on TCSO2 are shown in Fig. 13 and Ta-
ble 6. Figure 13a and b show that TCSO2 over the source re-
gions is lower in UKESM1-SO2 relative to UKESM1 by 0.1–
0.5 DU in DJF and JJA. This results in UKESM1-SO2 having
a smaller positive bias in TCSO2 of +0.3 to +0.5 DU com-
pared with that of +0.6 to +1.0 DU for UKESM1 (Fig. 13c
and d; Sect. 3.5 and Fig. 8). This represents a decrease in
the global TCSO2 model–OMI bias of 20 %–30 %. Over the
outflow regions (e.g. off the US eastern seaboard), TCSO2
has reduced by 30 %–50 % and, over the source regions, this
varies by 30 %–50 % for South to North-east Asia, 20 %–
30 % for Europe, and 10 %–30 % for the USA (see Table 6).
However, Fig. 13c and d also show that the inter-model dif-
ferences are smaller than the existing model–satellite differ-

ence; i.e. the hatched regions are sporadic with limited cov-
erage.

5 Discussion

The evaluation of UKESM1 against ground-based observa-
tions of SO2 and SO2−

4 concentrations from the USA and
Europe, as well as SO2 dry deposition fluxes from the USA,
shows that the model is able to represent recent historical
changes in these variables. UKESM1 is also able to capture
the spatial patterns in surface SO2 and SO2−

4 concentrations
and SO2 dry deposition, simulating larger values close to
the sources and lower values away from the sources. How-
ever, UKESM1 generally over-predicts surface SO2 concen-
trations and dry deposition fluxes while under-predicting sur-
face SO2−

4 concentrations for the period 1987–2014. Further,
we find that UKESM1 over-predicts the rate at which the sur-
face SO2 concentrations decrease over this period.
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Figure 12. Time series of observed and modelled mean annual SO2 dry deposition flux (a, b), surface SO2 concentration (c–e), and SO2−
4

concentration (f–h) for USA–W (a, c, f; N sites= 16), USA–E (b, d, g; N sites= 33), and Europe (e, h; N SO2 sites= 48 and N SO2−
4

sites= 42). No SO2 dry deposition flux observations are available for Europe.

We also make use of the updated TCSO2 product from
OMI to evaluate UKESM1, finding that the model cap-
tures spatial patterns in TCSO2 at the global scale. Impor-
tantly, this evaluation allows us to identify model bias in
regions without long-term ground-based networks, showing
that UKESM1 over-predicts TCSO2 over all source and out-
flow regions. We find that although the ground-based and
satellite observations are subject to different uncertainties,
UKESM1’s relative over-prediction of both surface SO2 con-
centration and TCSO2 is similar in the USA and Europe.
This suggests that our finding of positive bias in modelled
atmospheric SO2 is robust. We have also demonstrated that a
more realistic treatment of SO2 dry deposition in UKESM1
reduces the model’s atmospheric loading of SO2 and SO2−

4 .
However, we find that UKESM1’s under-prediction of sur-
face SO2−

4 concentrations and over-prediction of SO2 dry de-
position fluxes increases when the changes are included in
the model, suggesting that there are further uncertainties in
UKESM1’s representation of the complex sulfur cycle pro-

cesses. Additionally, the spatial and temporal differences in
the model bias suggest that the drivers of model bias are re-
gionally and seasonally dependent.

Broadly, a model’s over-prediction of atmospheric SO2
can be driven by too little removal of SO2 (via deposition
or oxidation) or overly high emissions. UKESM1 uses SO2
emissions from CMIP6 (Eyring et al., 2016). In comparing
these emissions with the HTAP-OMI (Liu et al., 2018) and
EDGAR (Crippa et al., 2018) data sets, Pope and Chipper-
field (2021) showed that the total SO2 emissions in CMIP6
(115 Tg yr−1) are moderately larger than the HTAP-OMI
(100 Tg yr−1) and EDGAR data sets (102 Tg yr−1). In gen-
eral the CMIP6 emissions are larger than the HTAP-OMI
and EDGAR emissions over all major source regions by up
to 1× 10−10 kg m−2 yr−1. Exceptions occur at a number of
point locations, which are likely from OMI rather than HTAP
(Liu et al., 2018). Additionally, Smith (2021) has reported
that SO2 emissions over the western USA are too high, pos-
sibly because the proxy data used to spatially distribute emis-

Atmos. Chem. Phys., 21, 18465–18497, 2021 https://doi.org/10.5194/acp-21-18465-2021



C. Hardacre et al.: Evaluation of SO2, SO4
2− and SO2 dry deposition in UKESM1 18485

Table 7. Statistics for mean annual surface SO2 and SO2−
4 concentrations and SO2 dry deposition flux for UKESM1 and UKESM1-SO2.

The mean seasonal values are averaged over the period 1987–2014. The units for SO2 and SO2−
4 concentrations are µg m−3 and the units

for SO2 dry deposition flux are kg m−2 yr−1 for SO2.

USA–W USA–E Europe

UKESM1 UKESM1-SO2 UKESM1 UKESM1-SO2 UKESM1 UKESM1-SO2

SO2 dry deposition

Mean (obs) 6.11× 10−6 – 1.64× 10−4 – – –
Mean 8.16× 10−5 1.17× 10−4 3.50× 10−4 6.17× 10−4 – –
Bias 7.75× 10−5 1.03× 10−4 1.87× 10−4 4.53× 10−4 – –
NMB 12.41 16.96 1.27 2.98 – –
N sites 16 – 33 – – –

SO2 concentration

Mean (obs) 0.48 – 6.34 – 2.94 –
Mean (model) 6.48 5.02 20.50 14.10 10.20 6.60
Bias 6.00 4.54 14.20 7.72 7.26 3.67
NMB 12.54 9.52 2.41 1.34 2.61 1.36
N sites 16 – 33 – 48 –

SO2−
4 concentration

Mean (obs) 0.70 – 3.82 – 2.76 –
Mean 1.15 0.95 3.14 2.42 1.91 1.48
Bias 0.43 0.24 −0.67 −1.39 −0.85 −1.28
NMB 0.72 0.41 −0.19 −0.38 −0.31 −0.47
N sites 16 – 33 – 42 –

sions do not take into account lower sulfur coal used in power
plants and industry in this region.

Emission injection height is also an important constraint
on near-surface SO2 concentrations, as demonstrated by
Yang et al. (2019). This study found that uncertainty in in-
dustrial emission height resulted in modelled near-surface
SO2 concentrations varying between 70 % and 130 % over
most land regions, higher than the overall uncertainty of
8 %–14 % attributed to SO2 emission rates. The SO2 in-
jection height in UKESM1 was investigated by Mulcahy
et al. (2020), who used injection heights prescribed as for
HadGEM-GC3.1, where 50 % of energy and industry sec-
tor emissions are injected into the atmosphere at a height
of 500 m. Mulcahy et al. (2020) showed that the introduc-
tion of a vertical profile for SO2 emissions in UKESM1 had
negligible impact on surface SO2−

4 concentrations at mea-
surement sites in Europe and the USA, suggesting an impor-
tant role for the aerosol chemistry in these regions. Emitting
the SO2 at higher altitudes will act to reduce surface SO2
concentrations and therefore a model’s bias against surface
observations of both SO2 concentration and SO2 dry depo-
sition flux. However, Pope and Chipperfield (2021) showed
that UKESM1’s bias in TCSO2 increased when emission in-
jection heights were increased. This also suggests that the
CMIP6 emissions are too high and that using a vertical pro-
file for the emissions to some extent shifts the model’s bias

in SO2 to higher altitudes. However, we note that using vary-
ing emission heights for SO2 did not affect column densities
in the GEOS-5/GOCART model (Buchard et al., 2014). We
suggest undertaking model experiments with different emis-
sion inventories and injection height profiles to cast light on
the role of SO2 emissions in model bias in the sulfur cycle.

The two main removal pathways for SO2 are oxidation to
sulfate and dry deposition to the Earth’s surface. In this study
we have evaluated a more realistic treatment of SO2 dry de-
position in UKESM1 that accounts for the high solubility of
SO2 in water. We find that this reduces the dry deposition
lifetime and consequently reduces the overall SO2 burden
and lifetime. This reduces positive model bias in surface SO2
concentrations in the USA and Europe and in TCSO2 across
most of the globe. The changes have the largest impact over
source regions because dry deposition flux is directly propor-
tional to the atmospheric concentration of SO2. There is also
a reduction in the SO2 oxidation lifetime which likely drives
the reduced atmospheric loading of SO2−

4 . However, the true
impact of the changes to the dry deposition parameterization
are confounded by model uncertainty in other aspects of the
complex sulfur cycle as well as the inherent difficulties asso-
ciated with evaluating a global model against point observa-
tions.

Dry deposition is a highly parameterized process and often
poorly represented, particularly in global models. Similarly
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Figure 13. Difference in TCSO2 between UKESM1 and UKESM-SO2 for DJF (a) and JJA (b). Difference in TCSO2 between UKESM1-
SO2 and OMI for DJF (c) and JJA (d). Model and satellite data are averaged over the period 2005–2014. The hatched regions show where
the inter-model differences are smaller than the existing model–satellite difference.

to UKESM1, Vet et al. (2014) showed that SO2 dry deposi-
tion fluxes were over-predicted by the 23-member model en-
semble used for the TF-HTAP exercise relative to inferential
data sets from measurement networks (including CASTNet).
A key uncertainty highlighted in this study was that associ-
ated with the inferred dry deposition fluxes; from CASTNet
these could be up to 30 % lower than direct observations of
SO2 dry deposition flux (Baumgardner et al., 2002). How-
ever, the fluxes simulated by UKESM1 are a factor of 2 to
10 higher than the inferred data from USA–E and USA–
W, indicating that the modelled deposition fluxes are al-
most certainly too large. Additional sources of uncertainty
in model simulations of SO2 dry deposition may include
land surface cover, changes in the atmospheric SO2 : NH3 ra-
tio, and the ratio between wet and dry deposition of SO2.
Mulcahy et al. (2020) showed that wet deposition, and to a
lesser extent dry deposition, of SO2 was considerably lower
in UKESM1 compared with HadGEM-GC3.1. Paulot et al.
(2017) also report that poor representation of wet deposi-
tion likely contributed to bias in modelled surface SO2−

4
concentrations. Overly low wet deposition would also con-
tribute to the model’s over-prediction of surface SO2 con-
centration. Dry deposition is sensitive to land surface type,
which may not be well captured in global models. In this
study the UKESM1 configuration uses 13 land cover classes,
including 11 plant functional types (Archibald et al., 2020).
This is reasonable for a global model, but inevitably detail
is lost. Vet et al. (2014) also suggest that SO2 dry depo-

sition may depend on the atmospheric NH3 loading. Long-
term measurements at a UK site showed that SO2 dry depo-
sition velocity has increased with time, which was attributed
to changing ratios of SO2 : NH3 as SO2 concentrations have
decreased more quickly than NH3 concentrations (Vet et al.,
2014; Fowler et al., 2009). Currently nitrate chemistry is
not represented in UKESM1, although it is planned for fu-
ture model versions, and NH3 has not been evaluated in the
model, so it is unknown how these factors may contribute to
the model’s bias in SO2 dry deposition flux and SO2 concen-
trations.

The role of uncertainty in sulfur cycle chemistry be-
comes apparent when we consider UKESM1’s bias in surface
SO2−

4 concentrations in combination with the biases in SO2
concentrations and dry deposition. In Europe and USA–E,
UKESM1 under-predicts surface SO2−

4 concentrations, de-
spite the large positive biases in SO2 concentrations through
much of the period from 1987 to 2014. Note that there are
exceptions close to certain point sources, particularly in Eu-
rope. However, in the cleaner USA–W region, surface SO2−

4
concentrations are consistently over-predicted. We suggest
that in USA–W overly high SO2 emissions (Smith, 2021),
possibly in combination with overly low emission heights
and the associated biases in dry deposition, drive the model’s
over-prediction of surface SO2−

4 concentrations in this re-
gion. However, in the polluted regions of Europe and USA–
E, the under-prediction of surface SO2−

4 concentrations, de-
spite large over-predictions of surface SO2 concentrations,
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suggests that sulfur cycle chemistry is not correctly repre-
sented, and Mulcahy et al. (2020) showed that there are
global and regional differences in oxidant concentrations and
in the SO2 lifetime between UKESM1 and the HadGEM-
GC3.1 model, with the latter better able to capture surface
SO2−

4 concentrations. In reducing the SO2 burden, we fur-
ther reduce its overall lifetime and oxidation lifetime rela-
tive to HadGEM-GC3.1. This highlights the requirement for
a more detailed investigation of SO2 oxidation in UKESM1,
particularly in polluted regions.

Uncertainty in UKESM1’s sulfur chemistry also appears
to be seasonally dependent. In USA–E and Europe UKESM1
over-predicts SO2 (surface concentration and TCSO2) and
under-predicts surface SO2−

4 at all times of the year, but
there is seasonal variation in these biases. In Europe, the
model bias is largest in DJF, which drives a stronger sea-
sonal cycle relative to the observations. This is in agree-
ment with Turnock et al. (2015), who investigated SO2−

4 in
an earlier HadGEM3-UKCA configuration. The seasonality
in UKESM1’s bias over Europe may be due to the model
under-predicting in-cloud SO2 oxidation via O3 (Table 1).
In winter and at higher latitudes this reaction is likely to be
the dominant removal pathway due to lower availability of
H2O2 (Turnock et al., 2019). However, the picture is differ-
ent in USA–E, where UKESM1 over-predicts SO2 to a larger
extent in JJA compared with DJF, and there is little season-
ality in the model’s under-prediction SO2−

4 . In USA–E it is
likely that uncertainty in UKESM1’s representation of SO2
oxidation via both O3 and H2O2 (Table 1) contributes to bias
in SO2 and SO2−

4 . The lower average latitude of the USA–E
sites compared with the European sites means that the O3 ox-
idation pathway is more important in this region, and it has
been demonstrated that SO2−

4 concentrations are sensitive to
both pathways in winter (Paulot et al., 2017). From this study
it is not clear what is driving the relatively large positive bias
in SO2 in JJA over USA–E, and we stress the need for closer
examination of the sulfur chemistry in UKESM1.

Recent studies have also shown that cloud water pH may
be an important factor in the aqueous-phase oxidation of
SO2 to SO2−

4 (Turnock et al., 2019). While a temporally
and spatially uniform cloud pH of 5 is currently used in
UKESM1, observations of this quantity show that it varies
in space and time. Observations at an American site showed
that mean cloud pH increased from 4 to 4.8 between 1994
and 2014 (Schwab et al., 2016), cloud pH measured at Mt
Tai in North China from 2007 to 2008 was between 3.56 and
7.64, and measurement campaigns between 1985 and 2008
at various European, North American, and East Asian lo-
cations reported values between 3.34 and 5.29 (Guo et al.,
2012). Turnock et al. (2019) showed that varying this value
in the HadGEM3-UKCA model can have a large impact on
SO2 and SO2−

4 concentrations. Over source regions, includ-
ing Europe and North America, increasing the cloud water
pH by 1.0 reduced the annual mean global SO2 column bur-
den by approximately 50 %, as more SO2 was oxidized in

cloud droplets, and consequently there were small increases
in the annual mean sulfate column burden over these regions.
Conversely, outside of polluted regions, increasing the cloud
water pH reduced the sulfate column burden by 10 % to 40 %
globally. These results indicate that having a more realistic
treatment of cloud water pH could reduce UKESM1’s biases
in TCSO2 and potentially in SO2 and SO2−

4 concentrations
remote from source regions. However, it is unlikely to be a
dominant removal pathway at the surface, and any impact
on surface SO2 concentrations, especially close to sources,
would likely be minimal.

In an Earth system model such as UKESM1, there are in-
evitably some compromises in the complexity of the chem-
istry and aerosol schemes, as these are computationally
expensive. While the sulfur chemistry represented in the
UKCA-StratTrop model used in UKESM1 accounts for im-
portant SO2 and DMS oxidation reactions as well as simulat-
ing oxidants (rather than the offline oxidant scheme used in
HadGEM-GC3.1), it cannot be complete. In the recently de-
veloped CRI-Strat scheme the sulfur chemistry reactions are
as for UKCA-StratTrop, but there is a more comprehensive
treatment of non-methane volatile compounds (NMVOCs)
(Archer-Nicholls et al., 2020), resulting in higher surface
ozone concentrations, particularly over polluted areas in
summer, compared with UKCA-StratTrop. As demonstrated
by Mulcahy et al. (2020), the increased oxidants in UKESM1
relative to HadGEM-GC3.1 likely contribute to reducing the
SO2 lifetime from 4.29 to 3.86 d. CRI-Strat is compatible
with UKESM1, and the higher oxidant loading may reduce
SO2 oxidation lifetime further with a concurrent increase in
SO2−

4 . Model bias in remote ocean regions may also result
from the necessarily simplified DMS oxidation chemistry in
UKESM1. A more detailed representation of DMS chemistry
over the Southern Ocean was investigated by Revell et al.
(2019), who found that surface SO2 concentrations increased
over the Southern Ocean, possibly due to including reactions
between DMS and halogen species, while SO2−

4 concentra-
tions decreased, likely as a result of there being more DMS
oxidation reactions.

Model resolution is also likely to be an important source
of model bias in this study. In evaluating UKESM1 against
the CASTNet and EMEP data sets we are comparing a sim-
ulated value generated from a model grid box at a scale
of ≈ 200–300 km with a point observation. This may be a
particular problem for the surface SO2 concentrations and
SO2 dry deposition fluxes because in reality a large fraction
(20 %–40 %) of SO2 emitted from point sources is lost in the
first 100 km, which is sub-grid scale relative to the model
grid boxes (Smith and Jeffrey, 1975; Wys et al., 1978). In
UKESM1 the sub-grid scale loss is not captured because SO2
is evenly emitted across the grid box and deposition is subse-
quently calculated. Potentially this drives overall large model
biases compared with ground-based observations that are not
necessarily close to the point sources. In addition, the model
resolution can not capture complex orography, meaning that
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transport of SO2 may not be well represented. This could
be problematic in mountainous areas of USA–W (VanCuren
and Gustin, 2015). High-resolution model studies would be
beneficial to address the both importance of orography and to
investigate the SO2 losses close to sources. We also suggest
that evaluating UKESM1 against chemical re-analysis fields
of SO2 could reduce some of the bias that occurs with us-
ing point observations, but there are uncertainties associated
with this approach too (Ukhov et al., 2020).

6 Conclusions

We evaluate UKESM1 against ground-based and satellite ob-
servations of selected sulfur species over the recent historical
period. We find that UKESM1 is able to capture the temporal
and spatial patterns in surface SO2, surface sulfate concentra-
tion, SO2 dry deposition, and TCSO2. However, compared
with observations, we find that the model is biased, depend-
ing on the variable, region, and species. We address one pos-
sible source of bias by introducing a more realistic treatment
of SO2 dry deposition, a key loss process for this species.
This change reduces model bias in surface SO2 concentra-
tions and TCSO2. However, it is apparent that other biases
exist within the complex sulfur cycle, and we highlight some
key areas for further investigation and development.

Our evaluation suggests that uncertainty in UKESM1’s
sulfur chemistry is also an important driver of the biases seen
in this study, particularly over polluted regions. Two prior-
ities for further investigation into the oxidation of SO2 in
UKESM1 are (i) an evaluation of the CRI-Strat scheme and
(ii) a more realistic treatment of cloud water pH. The model’s
necessarily limited DMS chemistry may also contribute to
bias in atmospheric sulfur loading over remote ocean areas.
The impact of the nitrate scheme currently in development
for UKESM1 will also be investigated in relation to the sulfur
cycle. Another aspect of UKESM1’s sulfur cycle that would
benefit from more detailed analysis is the ratio between wet
and dry deposition and how this compares with observations.
We also suggest that high-resolution studies to investigate
SO2 deposition close to sources would be beneficial for a bet-
ter understanding of these processes. Finally, we suggest that
the SO2 emissions may be too high through a possible com-
bination of overly high emissions in the CMIP6 inventory
and injection of the emissions into the surface layer only.

The sulfur cycle is a key area of analysis and development
for UKESM1 given its importance as a driver of historical
aerosol forcing. UKESM1 is relatively unique amongst mod-
els in CMIP6 in that it has a fully interactive atmospheric
chemistry scheme coupled to a two-moment (mass and num-
ber) aerosol scheme. Given the complexity of the model’s
chemistry-aerosol treatment within the ES framework, the
model’s performance here is encouraging and provides con-
fidence in UKESM1, particularly in regard to capturing the
historical trend. However, there is always space for improve-

ment, and to the more realistic treatment of SO2 dry depo-
sition will therefore be incorporated into the planned release
of UKESM1.1. This latest model version will be documented
in a forthcoming publication which will also address the im-
pact of the SO2 dry deposition changes on aerosol loading
and climate.

Appendix A

Here we describe in detail the changes to UKESM1’s param-
eterization of dry deposition of SO2 to the surface. These
modifications account for the impact of surface wetness due
to rainfall or humidity on SO2 dry deposition to vegetated or
soil surfaces. We first derive a parameter, zwet, which des-
ignates whether a model grid box at time step N is wet
or dry. We assume that on entering time step N the grid
box in question has a dry surface (zwet= 0). If, during time
step N , precipitation is greater than a threshold value (set
to 0.5 mm d−1), the grid box then becomes classed as wet
(zwet= 1). Once precipitation stops, the grid box is assumed
to dry out over a specified period. Assuming no precipitation
falls during this drying period, at the end of the period the
grid box will be classed as dry (zwet= 0). If, during the dry-
ing period, a new precipitation event occurs at the grid box
of intensity greater than 0.5 mm d−1, zwet is reset to 1. If the
precipitation event is less than 0.5 mm d−1 but greater than
0.0 mm d−1, zwet is not reset to 1, and neither is it decreased
in value (i.e. no drying is assumed to occur over that time
step). A grid box is classed as wet whenever zwet> 0. We
tested a range of time periods from 3 h to 1 d and found only
minor sensitivity to this parameter. For UKESM1-SO2 we
used a drying period of 3 h. In future work we will investi-
gate making this parameter a function of surface evaporation
and downwelling solar radiation.

If a grid box is classed as wet, then Rsoil and Rcut (for all
vegetation types) are set equal to 1 s m−1. Through Eq. (5),
Rc will then tend towards a value of 1 s m−1, equating to
minimal resistance to SO2 deposition. In these situations,
the amount of SO2 deposited will primarily be limited by
the efficiency of gas transport to the receptor surface, i.e.
by Ra and Rb in Eq. (2). If the grid box is classed as dry,
Rcut is calculated following Eq. (9) in Erisman et al. (1994),
whereby Rcut is a decreasing function of near-surface rela-
tive humidity. If a grid box surface temperature lies between
−1 and−5 ◦C, Rcut is reset to 200 s m−1 and below−5 ◦C to
500 s m−1, irrespective of the near-surface relative humidity.
For dry grid boxes, Rsoil uses a value of 213.5 s m−1 for all
surface temperatures (see Table A2). For dry surfaces, Rcut
also approaches a value of 1 s m−1 as near-surface relative
humidity approaches a value of 1. As for a wet surface, un-
der these conditions there is minimal resistance to SO2 de-
position, and Rc will tend towards 1 s m−1. Thus SO2 dry
deposition will primarily be limited by Ra and Rb.
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Table A1. Summary of the representation of Rcut and Rsoil in UKESM1 and UKESM1-SO2. Units for resistance values are s m−1.

Grid box Surface Near-surface relative UKESM1 UKESM1-SO2

condition temperature humidity (RH) Rsoil Rcut Rsoil Rcut

Wet n/a n/a 213.5 Rsurf
a 1.0 1.0

Dry >−1 ◦C RH< 0.813 213.5 Rsurf 213.5 Rcut = 2.5× 10−4

exp[−6.93 ·RH]b

>−1 ◦C RH> 0.813 213.5 Rsurf 213.5 Rcut = 0.58× 1012

exp[−27.8 ·RH]b

Dry >−5 and <−1 ◦C n/a 213.5 Rsurf 213.5 200.0c

Dry <−5 ◦C n/a 213.5 Rsurf 213.5 500.0c

a See values in Table A2. b Following Erisman et al. (1994). c Irrespective of near-surface relative humidity. n/a – not applicable.

Table A2. Standard surface resistance (Rsurf) values for SO2 for land use types in UKESM1. These values were calculated based on the data
published in Zhang et al. (2003) for SO2.

Land surface type Rsurf/s m−1

Broadleaf deciduous 137.0
Broadleaf evergreen tropical 111.1
Broadleaf evergreen temperate 111.9
Needleleaf deciduous 131.3
Needleleaf evergreen 130.4
C3 grass 209.8
C3 crop 30.0
C3 pasture 209.8
C4 grass 196.1
C4 crop 30.0
C4 pasture 196.1
Shrub deciduous 185.8
Shrub evergreen 196.1
Urban 180.7
Water 1.0
Soil 213.5
Ice 215.1
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Appendix B

Figure B1. Global emissions of SO2 used in UKESM1. Mean seasonal emissions are shown for the 1990–1995 time slice for DJF (a) and
JJA (b) and the 2009–2014 time slice for DJF (c) and JJA (d).
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Appendix C

Table C1. Global SO2 budget for UKESM1 and UKESM1-SO2. Units for production and loss fluxes are in Tg [S] yr−1, burdens are in Tg,
and lifetimes are in days. The values are calculated from a 2-year AMIP simulation covering the period 1981–1983 inclusive.

UKESM1 UKESM1-SO2

Emission sources

Surface emission 61.03 61.03
High-level emission 0 0
Natural emission 14.02 14.02

Sources from DMS oxidation

DMS+OH→ SO2 6.42 6.37
DMS+OH→ SO2+MSA 6.36 –
DMS+OH→ 0.6SO2+ 0.4DMSO – 3.83
DMS+NO3→ SO2 3.48 3.47
DMSO+OH→ 0.6SO2 – 1.53
DMS+O(3P)→ SO2 0.1708 0.1738

Sources from COS oxidation

COS+O(3P)→ CO+SO2 7.92× 10−3 7.87× 10−3

COS+OH→ CO2+SO2 0.105 0.106
COS+ hv→ CO+SO2 0.024 0.0235

Losses from gas-phase oxidation

SO2+OH→ SO2−
3 +HO2 18.66 14.86

SO2+O3→ SO2−
3 8.19× 10−4 6.54× 10−4

SO2−
3 +H2O→ H2SO4+H2O – –

SO2−
3 + hv→ SO2+O(3P) 4.07× 10−9 4.46× 10−9

Losses from aqueous-phase oxidation

HSO−3 +H2O2→ SO2−
4 20.52 16.46

HSO−3 +O3→ SO2−
4 0.2372 0.1625

SO2−
3 +O3→ SO2−

4 9.22 6.35

Dry deposition 29.49 42.56
Wet deposition 14.09 10.57
Total sources 91.62 90.56
Total losses 92.22 90.96
Burden 0.54 0.41
Lifetime 2.11 1.62
Oxidation lifetime 3.997 3.901
Dry deposition lifetime 6.59 3.47
Wet deposition lifetime 13.80 13.96
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Code availability. The UM is the source code for the atmosphere–
land–ocean–sea ice components of the UKESM1 physical model,
including the NEMO and CICE modules for oceans and sea
ice respectively. The UM source code base also houses the
GLOMAP-Mode and UKCA modules. JULES is the source code
for land and terrestrial biogeochemistry components. MEDUSA
is the source code for the ocean biogeochemistry. Due to intel-
lectual property rights restrictions, we cannot provide either the
source code or documentation papers for the UM or JULES.
Obtaining the UM. The Met Office Unified Model is available
for use under licence. A number of research organizations and
national meteorological services use the UM in collaboration
with the Met Office to undertake basic atmospheric process re-
search, produce forecasts, develop the UM code, and build and
evaluate Earth system models. For further information on how
to apply for a licence, see http://www.metoffice.gov.uk/research/
modelling-systems/unified-model (last access: 17 March 2021).
Obtaining JULES. JULES is available under licence, free of charge.
For further information on how to gain permission to use JULES
for research purposes, see https://jules-lsm.github.io/access_req/
JULES_access.html (last access: 14 December 2021). Information
about the UKESM1 release and its components and the prerequi-
sites for using it can be found here: http://cms.ncas.ac.uk/wiki/UM/
Configurations/UKESM (last access: 14 December 2021). Briefly,
UKESM1 is distributed and run as a Rose suite on the Archer2
and Monsoon computing platforms administered by UK Research
Innovation (UKRI) and the Met Office/Natural Environment Re-
search Council (NERC) respectively. Rose is a framework for de-
veloping and running meteorological applications and is described
in more detail here: http://cms.ncas.ac.uk/wiki/RoseCylc, last ac-
cess: 14 December 2021, (NCAS Computational Modelling Ser-
vices, 2018).

Data availability. The simulation data used in this study are
archived on the Earth System Grid Federation (ESGF) node
(https://esgf-node.llnl.gov/projects/cmip6/, last access: 14 De-
cember 2021, Earth System CoG sponsors and partners,
2019). The model source ID is UKESM1-0-LL for UKESM1.
UKESM1 historical simulations are identified by the follow-
ing variant labels: r1i1p1f2, r2i1p1f2, r8i1p1f2, and r9i1p1f2
(https://doi.org/10.22033/ESGF/CMIP6.6113; Tang et al., 2019).
We acknowledge the use of the CASTNet database (https://
www.epa.gov/castnet, last access: 14 December 2021, United
States Environmental Protection Agency, 2021). Information on
the EMEP network can be found in Tørseth et al. (2012,
https://doi.org/10.5194/acp-12-5447-2012), and the data are avail-
able from http://ebas.nilu.no/. OMI total column SO2 data were ob-
tained from NASA’s Goddard Earth Sciences Data and Information
Services Center (GES DISC, https://disc.gsfc.nasa.gov/, last access:
14 December 2021, NASA Goddard Earth Sciences , GES).
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