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1. Introduction
The expansion of computational resources and numerical methodologies has allowed global weather forecasting 
and experimental climate models to run with horizontal grid-spacings of 10s of kilometers or less. But this oppor-
tunity comes with the requirement to re-examine the treatment of subgrid convection processes. Traditionally 
climate models, which typically run at a grid spacing of 100 km or more, relied on cumulus parameterizations, 
which implicitly or explicitly assume a “quasi-equilibrium” (QE) balance between large-scale (resolved) forcing 
and convection. Under the QE assumption, low-level heating and moistening along with upper-level radiative 
cooling and other processes that destabilize the troposphere are assumed to be in balance with the net large-scale 
effects of unresolved, convective cloud processes, including upper-level warming and boundary-layer drying 
(Arakawa & Schubert, 1974; Emanuel, 1994). These assumptions, while reasonable for coarse grid-spacing and 
under slowly varying conditions, fail for high-frequency variability from forcings such as the diurnal cycle and for 
the organized convection that covers areas comparable to the grid cell size such as MCSs (Jones & Randall, 2011; 
Xu et al., 1992). At grid spacings of order 1 km, convection-permitting simulations have proved valuable, typically 
for local or regional scales (Clark et al., 2016; Poujol et al., 2020). However, neither traditional parameterization 
nor explicit modeling is optimal for the intermediate grid-spacing models (Arakawa & Wu, 2013; Gerard, 2015).

Several approaches have been proposed to address the issue of representation of variability associated with life-
cycles of the convection and interactions among clouds. Reviews are provided by Rio et al. (2019), Goswami 
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et al.  (2017), S. Hagos et al.  (2018), and S. Hagos et al.  (2020), and only 
a summary of relevant points is given here. One approach is to introduce 
stochasticity into parameterizations with a prescribed distribution of the 
mass flux or the convective area (Khouider et al., 2003; Plant & Craig, 2008; 
Teixeira & Reynolds, 2008; Wang et al., 2016, 2021). Alternatively, noise 
has been introduced to the heating/moistening tendencies or to state varia-
bles in GCM vertical columns (Davini et  al., 2017) in some schemes. Yet 
another approach put forward by Majda and Khouider (2002) and Khouider 
et al. (2010) is a stochastic multicloud representation based on the Markov 
process on a subgrid lattice.

In our recent paper, S. Hagos et al. (2018), a stochastic prognostic model for 
the population dynamics of convective clouds was proposed. The model takes 
a nonequilibrium statistical mechanical approach to represent the evolution 
of the size distribution of convective cells and their associated cloud-base 
mass flux. At the core of the model is a transition function that relates the 
size distribution of convective cells at a given time to a previous state and to 
a given change in the total convective area in the box. The transition function 
was derived from physical and probabilistic arguments. In a follow-up study, 
S. Hagos et al. (2020), it was shown that such a transition function can also 

be directly derived from C-band radar observations of precipitating clouds via machine learning. In that study, the 
use of the transition function was extended to construct a simple model for describing the interactions between 
convective and stratiform clouds. The present study explores the potential applications of the ideas developed by 
S. Hagos et al. (2018, 2020) for the development of stochastic cloud population model-based cumulus parameter-
izations that can represent precipitation statistics in a regional mesoscale model at grid spacings between 25 and 
1 km. The next section presents a description of the cloud population model (Sections 2.1–2.3) and its coupling to 
the mesoscale model (Section 2.4). Section 3 examines the impacts on precipitation statistics, the spatial distribu-
tion and diurnal cycle of precipitation, and precipitation propagation as part of Madden-Julian Oscillation events. 
The implications of the study are discussed in Section 4.

2. Development
2.1. Design

The overarching design of the cloud population model and its coupling to the host model is depicted in the sche-
matic in Figure 1. The forcing to the cloud population model is provided by the resolved cloud-base mass flux 
(Mcb_res) in a grid box of the host model. Specifically, we will use the Weather Research and Forecasting (WRF; 
Skamarock et al., 2008) version 4.0 model for the tests below but the method could straightforwardly be applied 
to other host models with appropriate modification to the closure depending on the grid spacing of interest. The 
cloud population model applies a closure assumption to calculate in turn the change in the total convective area 
ΔAc in the grid box. The closure is presented in Section 2.4.

The cloud population is divided into N bins of the cloud-base mass flux, with a subscript i being used hence-
forth to denote a bin label. In the practical implementation for this study, we choose N = 30 bins, with the mean 
cloud-base mass flux in each bin exponentially increasing from a minimum of mcb(1) = 0.2 kgm −2s −1 to mcb(30) = 
1.4 kgm −2s −1. These values correspond to the minimum mcb used to define a mass flux object in the WRF-CPM 
training simulation (Section 2.3) and to the maximum value obtained from the simulation. Precipitation from 
objects within this range accounts for almost all of the precipitation in the WRF-CPM domain.

c is a vector whose i th  element is the total convective area associated with convective cells in the bin with a mean 
cloud-base mass flux of mcb(i) . Therefore, the total convective area in a grid box is given by 𝐴𝐴 𝐴𝐴𝑐𝑐 =

∑𝑁𝑁

𝑖𝑖=1
𝑐𝑐𝑖𝑖 . The 

mean cell area for the ith bin, denoted as ai, is constant and obtained by taking the average of the sizes of all cells 
in the mass flux bin mcb(i). Thus, ci = niai where ni is the number of distinct cells in the bin.

For the given change in the total convective area (ΔAc), the change in c is assumed to be given by

Figure 1. The schematic of the coupling of the Learning-Assisted Model for 
Parameterization scheme with Weather Research and Forecasting. All symbols 
are explained in the main text.
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Δ𝒄𝒄 = 𝒇𝒇 (𝒄𝒄)Δ𝐴𝐴𝑐𝑐 (1)

where f(c) is the transition function that allocates the change in the convective area to the different mass flux 
bins. It is obtained from a 1-km grid-spacing simulation using machine learning as discussed in Section 2.2. 
Once c is advanced forward, and the new mass flux distribution is obtained, the frequency of the convection is 
regulated by a stochastic variable ε with a value of one or zero with a given probability p. If ε is 1, for a given 
nonzero ci, ai and mcb(i) are passed on to the cloud model, that is, the convection is activated. This results in a 
subsample m ≤ N cells being passed to the cloud model. This is motivated by the fact that the domain of the cloud 
population model is much larger than the actual model grid box. Thus, stochasticity is introduced as a natural 
representation of the movement of clouds into and out of the grid box of interest. Before continuing with the 
development, a brief discussion of the relationship of this model, specifically Equation 1 with the STOMP model 
discussed in S. Hagos et al. (2018) is warranted. The model presented here is a generalization of STOMP in that 
it includes nonlinear interactions among clouds of varying sizes. In STOMP, the diagonal of a transition matrix 
Tij was populated using simple physical arguments to relate the probabilities of growth of a cell to its current 
size.  In  the  current version of the cloud population model however, the transition function f(c) is a more complex 
nonlinear function such that the probability of growth of a cell depends not only on its previous size but also on 
the size distribution of all cells in the domain.

When the convection is activated within a bin, mcb(i) and ai are provided as inputs to an entraining plume model, 
which calculates the convective total water tendency 

(
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)

�
 and liquid water potential temperature tendency 
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where Agb is the area of the grid box.

In the next three subsections, the simulations performed as part of the development (Section 2.2), the machine 
learning algorithm (Section 2.3), and the closure (Section 2.4) are discussed. As it is not central to the work, 
the detailed description of the entraining plume model used to calculate the moisture, heating tendencies, and 
precipitation is provided in the Appendix A. Hereafter, the cloud population model being used as a cumulus 
parameterization will be referred to as the machine Learning-Assisted Model for Parameterization of convective 
cloud populations (LAMP).

2.2. Development Simulations

In the development of the scheme, five supporting WRF simulations are performed, and these are described here. 
For all the simulations, lateral boundary and surface conditions, including sea-surface temperature, are obtained 
from ERA5 (Copernicus Climate Change Service [C3S], 2017) and are updated every 6 hr. The first simulation 
has 1-km grid spacing and covers the month of January 2006, an active phase of the Australian monsoon season. 
The purpose of this simulation is to obtain the training data for the cloud-base mass flux. This simulation is here-
after referred to as WRF-CPM (1 km). Before describing the other simulations, the choice of 1-km grid-spacing 
simulation for training must be justified. It has been shown that to fully resolve mass flux fluctuations in the 
convection, grid spacings of 250 m or less are required (e.g., Bryan et al., 2003; Heinze et al., 2017). Since the 
objective of this work is to demonstrate the potential of this approach and its key feature is the representation 
of the evolution of a large population of convective clouds over water and land, the large domain and hence 
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relatively coarse grid-spacing is necessary due to computational resources 
constraints. In  our  previous work (S. Hagos et al., 2014), the performance of 
such kilometer-scale simulations in representing radar observed precipitating 
cloud population statistics is extensively documented. It was shown that the 
WRF model represents well the statistics of the convective area distribu-
tion, the relationship between echo-top height and cell area, and cold pool 
properties. Ideally, one would perform multiple training simulations to cover 
regions with diverse environmental conditions. In fact, one can even imagine 
using global convection permitting (km scale) simulations like those  under 
development in the DYAMOND project (Stevens et  al.,  2019) for training 
applications. As computational resources increase, one could also envision 
performing a development like that proposed here  based on such sub-km 
grid-spacing simulations over multiple regions. As will be discussed in the 
evaluation section, the use of convection permitting simulations as ground 
truth comes with its own challenges. One has to acknowledge the biases 
associated with the treatment of a microphysical and boundary layer and 
other  processes in  such  simulations.

The second and third simulations are similar but with larger domains and 
run at 8-km and 25-km grid spacings. They are referred to as WRF-CTL 
(8 km) and WRF-CTL (25 km), respectively. In all these three simulations, 
cumulus parameterization is turned off and the time steps for the three simu-
lations are 4, 30, and 100  s, respectively. The domains for these simula-
tions are shown in Figure 2. The 8 and 25-km grid-spacing simulations are 
also repeated with LAMP coupled with WRF and these are referred to as 
WRF-LAMP (8 km) and WRF-LAMP (25 km), respectively. All the simula-
tions are centered at Darwin, Australia (12.46°S and 130.85°E) and include 
both tropical ocean and land conditions. The last four simulations at coarser 
resolutions (WRF-CTL [8 km], WRF-CTL [25 km], WRF-LAMP [8 km], 
and WRF-LAMP [25  km]) are run for two months from 1 January to 28 
February 2006. The model configuration choices that are common to all the 
simulations are listed on Table 1.

2.3. Determination of the Transition Function Using Machine Learning

As a first step in determining f(c), the cloud-base mass flux was calculated at 
every grid point of the WRF-CPM (1 km) simulation at the 10-min frequency. 
The cloud-base height was defined as the lowest level zcb for which the cloud 
liquid water content ql(z) is both larger than a threshold value of 10 −5 kg kg −1 
and was below the level of peak ql(z). Then, the cloud-base mass flux at each 
grid point was calculated as

𝑚𝑚𝑐𝑐𝑐𝑐 = 𝜌𝜌 (𝑧𝑧𝑐𝑐𝑐𝑐)𝑤𝑤 (𝑧𝑧𝑐𝑐𝑐𝑐) (5)

where ρ is the density of air in kg m −3 and w the vertical velocity in m s −1.

A convective cell is defined as a contiguous area of the cloud-base mass flux 
of greater than 0.2 kgm −2s −1. The domain is gridded into 100 by 100 km boxes 
as shown in the example frame in Figure 3a. Although the target grid-spacing 
for the LAMP parameterization is less or equal to 25 km, this larger box is 
selected to include a sufficient sampling of larger cells. The convective cells 
within the 100 km x 100 km boxes are placed into N = 30 bins according the 
mean cloud-base mass flux of their respective contiguous areas, as described 
in the last subsection. The bin average mass fluxes constitute the n-dimen-
sional mcb vector discussed above while the bin-average and bin-total cell 

Figure 2. The domains of the three simulations used in development 
along with the mean precipitation from a month long control (WRF-CTL) 
simulations; (a) the small domain 1.0-km grid-spacing simulation used for 
training, (b and c) large domain 8 and 25-km grid-spacing simulations. The 
red box in panel (c) indicates the domain of the training simulation relative to 
the large domain.
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areas are represented by the vectors a and c, respectively. Figure 3b shows the mean values of mcb(i) and ai for the 
30 bins. For a given 100 × 100 km box (Figure 3a), c (t), the corresponding Δc(t) = c(t + 1) − c(t) and ΔAc are 
calculated from the 1-km grid-spacing CPM simulation for training the machine learning algorithm and deter-
mining f(c) from Equation 1. The 10-min frequency of training data, motivated by the frequency of precipitation 
radar scans (S. Hagos et al., 2018, 2020), is found to be computationally reasonable to capture the convective 
variations of interest on the scale of the box. However, in the implementation of WRF-LAMP, c is evolved at the 
frequency of the model time-step, along with Ac.

In many ways, the machine learning algorithm developed here, shown in Figures 3c, is like that presented in S. 
Hagos et al. (2020). The key differences here are that (a) the bins are defined by mass flux values from the 1-km 
grid-spacing simulation instead of convective cell sizes from radar observations and (b) in the current implemen-
tation, the explicit prediction of the stratiform area is excluded for simplicity. A single-nonlinear-hidden layer 
machine learning algorithm is constructed. The hidden layer constitutes a rectified linear unit activation function 
that introduces the nonlinearity. A graphical depiction of the algorithm is provided in Figure 3c. The transition 
function is assumed to be completely defined by the pairs of weight arrays (w0 and w1) and bias vectors (b0 and 
b1) and given the constraint that the error (Error), defined as the sum of the squares of the difference between 
elements of predicted and true Δc arrays, is minimized. The code is written in TensorFlow and the Adaptive 
Moment Estimation optimizer (Kingma & Ba, 2015) is used in the minimization. As is standard in machine learn-
ing applications, one set of snapshots (40,000 pairs) is used for training while another set of the same size is  used 
for testing. The results are rather insensitive to the choice of the training and validation sets.

The weights and biases that define the transition function are optimized such that the error in the predicted 
changes in the convective area in the given mass flux bin is minimum as discussed above. Thus, in a statistical 
sense, given the evolution of the total convective area, the transition function should correctly predict the evolving 
frequency distributions of the mass flux. Figure 4 shows the frequency distribution of the mass flux as a function 
of the total convective area obtained from the CPM simulation and the corresponding distribution obtained from 
applying the transition function to the total convective area time series. The machine learning algorithm provides 
a reasonable description of the mass flux distribution. At smaller values of the total convective area, the distri-
bution is relatively broad with both weak and strong convective cells co-existing with a comparable frequency. 
As the total convective area becomes larger the mass flux distribution becomes narrower and has a peak at about 
0.8 kgm −2s −1. There are relatively few weak cells and the convection is dominated by strong cells, as one would 
expect from the increased organization.

2.4. Precipitation Data Set for the Evaluation

To evaluate the model simulated precipitation over various regions and seasons in a consistent manner, the Inte-
grated Multi-satellite Retrievals from Global Precipitation Measurement V06B (IMERG, Huffman et al., 2019) 
is obtained and processed. This data set has a horizontal grid-spacing of 0.1° and the frequency of half-hour 
with global coverage. Recent evaluations of the IMERG data set against ground-based observations have docu-
mented significant improvements over its predecessor, the Tropical Rainfall Measuring Mission (TRMM) as 
well as other satellite products especially over tropical land such as India (Murali Krishna et al., 2017), Africa 

Longwave radiation scheme The rapid radiative transfer model (Mlawer et al., 1997)

Shortwave radiation scheme The rapid radiative transfer model (Morcrette et al., 2008)

Microphysics scheme Thompson (Thompson et al., 2008)

Land surface model Unified Noah model (Ek et al., 2003)

Boundary layer scheme Mellor-Yamada Janjic scheme (Janjic, 2001)

Surface, initial and boundary condition data ERA5 (C3S, 2017) updated every 6 hr

Number of vertical levels 35

Model top 50 hPa

Table 1 
Model Configuration (Common to All Simulations)
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Figure 3. (a) An example frame of cloud-base mass fluxes along with 100 × 100 km grid boxes from which the distribution 
of convective areas in mass flux bins (ci) are obtained, and (b) the mean values of cloud-base mass fluxes (mcbi) and mean cell 
sizes (ai) for each of the 30 bins (see text). (c) The machine learning algorithm used to obtain the transition function from the 
1-km WRF-CPM simulation.
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(Dezfuli et  al.,  2017), Australia (Islam et  al.,  2020) and Taiwan (Hong et  al.,  2006). However, over Western 
Africa, it has been shown to overestimate the rainfall amount from frequently occurring weak convective events 
while underestimating that from rare but strong MCSs (Maranan et al., 2020). Over the continental US, on the 
other hand, IMERG was found to have a wet bias in total precipitation, an overestimation of the frequency of 
weak precipitation (<2 mm hr −1), and underestimation of the frequency of intense precipitation (>10 mm hr −1) 
in warm-season MCSs (Cui et al., 2020). The IMERG data set has been used to develop a global MCS tracking 
data set in a recent study (Feng et al., 2021), where it is found that maximum MCS rainfall intensity over the 
ocean is higher than that over land. The authors of that study cautioned that IMERG precipitation retrievals may 
be biased in intense convection, like those based on spaceborne radar/microwave platforms such as TRMM or 
GPM (Gingrey et al., 2018). While the IMERG data set is by no means perfect, it has been examined over a broad 

Figure 4. The frequency distributions of cloud-base mass fluxes for a given total convective area (x-axis) from (a) the CPM 
simulation compared with that obtained from (b) the machine learned transition function in Learning-Assisted Model for 
Parameterization.
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range of environmental conditions. In this study, we use it as a benchmark for the development and evaluation of 
cloud-population-model-based parameterization. For the applications throughout this paper, the data set is regrid-
ded onto a 25-km grid and averaged to hourly, as are all of the precipitation data from the various simulations 
that it is compared to.

2.5. Coupling, Closure, and Optimization

Once the transition function is determined, the next step is coupling LAMP to the host model as shown in 
Figure 1. However, to do so the forcing, which is responsible for the variations in the convective area, ΔAc must be 
specified according to some physically justified closure assumption. The closure we propose is motivated by the 
continuum nature of the statistics of precipitating convective cells over the range of scales of interest (S. Hagos 
et al., 2014). This implies one can assume that the presence of the resolved convection makes the presence of the 
unresolved convection more likely than otherwise. In other words, as the choice of the grid spacing is arbitrary, 
we have no physical reason to believe the large-scale environment favorable for convective cells of a given size 
that is marginally resolved by the grid spacing is not also favorable for cells that happened to be not large enough 
to be resolved. Therefore, the unresolved convective area at a given time step and location is taken to be propor-
tional to the resolved cloud-base mass flux Mcb_res,

�� = �(Δ�)���_��� (6)

where Δx is the model grid-spacing and α is a grid spacing-dependent parameter to be optimized as will be 
discussed below. As discussed above, the expression rests on the idea that the resolved mass flux in the mesoscale 
model carries valuable information about the timing, location, and rate of the development of a convective activ-
ity but that the convection needs to be partitioned between the resolved and subgrid scales. Hence,  the  propor-
tionality factor can vary with the grid spacing (Δx). Thus, the parameterized convection varies similarly to 
that which is resolved, apart from the variability related to lifecycles of the convection and interactions among 
convective cells, which are represented through the transition function. In principle, the closure presented here, 
relating the convective area fraction to the resolved mass flux is not particularly new. Kuo  (1974) proposed 
the linking parameterized convection to resolved moisture convergence, which by continuity can be related to 
the resolved  mass  flux. In this case, moisture is indirectly included in the definition of the cloud-base height. 
To  assess the validity of this assumption, the relationship between convective area fraction and average cloud-
base mass flux over 25 and 8-km grid boxes obtained from the WRF-CPM simulation is examined (Figure 5a). 
The linear relationship is quite apparent albeit with a large variance, which provides a rationale for introducing 
the stochastic component.

Since the objective is for the model to seamlessly represent the convection between 25-km grid spacing and 
1-km grid spacing, we choose the partitioning by requiring that (a) the sum of the resolved and parameterized 
cloud-base mass fluxes should be insensitive to grid spacing (Δx) and (b) that the cumulus parameterization 
should smoothly turn itself off at the 1-km training grid-spacing. To understand how these requirements are 
met, consider the frequency distributions of cloud-base mass fluxes from the WRF-CTL (25 km), WRF-CTL 
(8 km), and WRF-CPM (1 km) simulations, as shown in Figure 5b. The important point to note is all three have 
approximately log-Gaussian distribution, with the distribution shifting to the right with increasing resolution as 
expected. To meet the above requirements, the parameterized part of the cloud-base mass flux should make up 
for the differences between the WRF-CTL and the WRF-CPM results, and hence must be “scale aware.” To that 
end, α(Δx) is set to

𝛼𝛼(Δ𝑥𝑥) = 𝛽𝛽

(

𝑒𝑒

(

Δ𝑥𝑥−1km

25km−1km

)

− 1

)

 (7)

Under these assumptions, for an optimized constant value of β, comparisons of the total mass flux (the sum 
of resolved and parameterized cloud-base mass fluxes) from the WRF-LAMP and the WRF-CPM simulations 
are shown in Figure 5c. As desired, the resolution dependence of the total cloud-base mass flux is signifi-
cantly reduced. As can be inferred from the equation, β and p, the stochasticity parameter discussed above, 
regulate the shift in the mean cloud-base mass flux and the total count of the distribution, respectively. Note 
that the total mass flux in LAMP is the sum of the resolved and parameterized convection; thus, the contribu-
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Figure 5. (a) The relationship between convective area fraction and average cloud-base mass flux over 25 and 8-km grid 
boxes obtained from WRF-CPM simulation, (b) comparison of the frequency distributions of resolved cloud-base mass flux 
from the WRF-CTL and WRF-CPM simulations, panel (c) as in panel (a), but for the total cloud-base mass-flux from the 
WRF-LAMP simulations.

 19422466, 2022, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021M

S002808 by U
niversity of R

eading, W
iley O

nline L
ibrary on [06/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

HAGOS ET AL.

10.1029/2021MS002808

10 of 22

tion of the smaller resolved mass flux is apparent in the secondary peak in the 25-km grid spacing at around 
1.0 × 10 −3 kg  m −1 s −2. While this is a limitation, as will be seen below, the impact of this secondary peak on 
precipitation statistics and mean precipitation is small. Once the new total convective area Ac is determined 
from Equation 6, the change ΔAc is inferred by subtracting that of the previous time step. Then, using Equa-
tion 1, the change in the convective area within a given mass flux bin is determined. At this step, the require-
ment that 𝐴𝐴 𝐴𝐴𝑐𝑐 =

∑𝑛𝑛

𝑖𝑖=1
𝑐𝑐𝑖𝑖 is enforced at every step by normalization. A subsample of mean cell size and the mean 

mass flux, determined using the given probability p, of the distribution (c) is passed as input to the entraining 
plume model (Appendix A) to calculate the heating and moistening tendencies associated with precipitation 
processes. p is a constant optimized to minimize the resolution sensitivity of the mass flux along with β. The 
number of nonzero bins would depend on the  total  convective area fraction. The entraining plume model is 
called for a given bin only if the randomly  selected ci is nonzero. The results for each subsampled bin are 
combined according to Equations 2–4 and provided to the host model. Before moving on to evaluation, we 
summarize the steps discussed above.

1.  Based on the closure the total convective area is determined.
2.  The distribution of the convective area c is updated.
3.  A random subsample of the convective activity, determined by p, is assumed to have taken place within the 

given grid box and
4.  That subsample is passed on to the entraining plume model.

Figure 6 provides a comparison of the resulting precipitation frequency distribution for WRF-LAMP with those 
for WRF-CTL and observations. The distribution represents the count of the number of grid points in one of 40 
precipitation intensity bins in each hour. The mean values in the 40 bins increase exponentially from 10 −2.0 to 
10 2.5 mm/hr. As the comparison between Figures 6a and 6b indicates, the WRF-LAMP produces precipitation 
statistics that are more in line with WRF-CPM (1 km) as well as IMERG and the sensitivity to grid-spacing is 

Figure 6. (a and b) Comparisons of frequency distribution of hourly precipitation from WRF-CTL and WRF-LAMP 
simulations with that from WRF-CPM and IMERG observations. Panels (c and d) like panels (a and b), but for the percentage 
contributions of the given precipitation intensity to the total.
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much reduced. While beyond the scope of this study, the discrepancy between the precipitation statistics from the 
WRF-CPM simulation and the IMERG observation is worth noting. Ultimately the success of this approach to 
parameterization hinges on continued improvements in the training simulations or perhaps even preferably using 
actual observations for training, the latter is a subject of an ongoing work, which will be reported elsewhere. 
The percentage contributions of various precipitation intensities to the total are also calculated by multiplying 
the frequency with the corresponding precipitation intensity (Figures 6c and 6d). The convergence toward the 
observations of the WRF-LAMP simulations in comparison to WRF-CTL is apparent.

The spatial distribution of mean precipitation is also considered. Figure 7 shows comparisons of the 2-month 
mean precipitation from the WRF-CTL and WRF-LAMP simulations, along with IMERG observations. The 
WRF-CTL simulations typically underestimate the precipitation over the waters surrounding the Maritime Conti-
nent region and the WRF LAMP simulation appear to somewhat reduce that bias. Although these improvements 
are encouraging, they are direct results of the development of WRF-LAMP focused over the Australian monsoon 
region specifically. To assess the potential value of this approach to parameterization, its impacts on precipitation 
over other regimes must be examined. This is the subject of the next section.

3. Evaluation of Impact on Precipitation
The present evaluation is meant to assess the potential value of developing this approach toward a more 
mature parameterization for the coming generations of climate models. Thus, one must keep in mind that the 
development of the cloud population model has several steps each with room for improvement. For example, 
one can imagine an increased resolution and fidelity of the training simulation or preferably even using obser-
vational data for training. One could also improve on the plume model, the closure, etc. With that in mind, a 
comprehensive evaluation of the full parameterization against multiple suites of observations and other more 
mature parameterizations is left as a future work. In this section, we provide a comparatively preliminary 
documentation of the performance of LAMP under various environmental conditions. Specifically, we focus 
on precipitation statistics, the diurnal cycle over the global tropics and continental US, and the propagation 
of precipitation associated with MJO events. To that end, in addition to those already described in Section 2, 

Figure 7. Two-month mean precipitation from (a) IMERG observations, (b and d) WRF-CTL and (c and e) WRF-LAMP simulations run at 25 and 8-km grid spacings.
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two additional pairs of simulations are performed. These simulations cover the tropical channel (hereafter 
TROPICS) and the continental US (hereafter CONUS) for periods of 1 October – 31 December 2011 (a period 
including a series of MJO events) and 1 April – 30 June 2016 (a rainy season with MCS-related precipita-
tion), respectively. As for the Australian monsoon simulations discussed in Section 2, for the control cases 
(WRF-CTL, hereafter), the cumulus parameterization is turned off and in companion simulations, the LAMP 
parameterization is turned on (WRF-LAMP). All the evaluation simulations are run at a 25-km grid spacing. 
All other parameterizations, and the data sources used for lateral and surface conditions follow the Australian 
Monsoon development case discussed above.

Figure 8 shows the simulation domains and spatial distributions of the seasonal mean precipitation over the trop-
ical channel (TROPICS) from the WRF-CTL and WRF-LAMP simulations compared with IMERG. While both 
simulations capture the main precipitation features (i.e., the ITCZ and continental precipitation over the various 
regions), WRF-LAMP has particularly high precipitation over the Western Pacific. This might be due  to the 
oversensitivity of the cloud model to moisture rather than due to the neglect of evaporation of rain as the region 
is particularly moist. Figure 9 shows the spatial distribution of mean precipitation in the CONUS simulations 
compared to IMERG observations. Both the WRF-CTL and WRF-LAMP simulations capture the spatial distri-
bution of precipitation well.

The model-simulated precipitation statistics over the five regions marked by the red boxes in Figure 8a, and over 
the CONUS region are calculated in a like manner to those shown in Figure 6, and they are compared with statis-
tics from IMERG in Figure 10. The precipitation statistics in WRF-LAMP simulations (green) generally improve 
over the control to a varying degree, particularly for medium or high rain rates. In general, the underestimated 

Figure 8. Three-month mean precipitation from (a) IMERG observations, (b) WRF-CTL, and (c) WRF-LAMP simulations 
over the tropical channel extending between 30°S and 30°N.
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frequencies of weak-to-moderate rain rates (0.1–10 mm/hr) in WRF-CTL are 
improved with LAMP. The frequencies of intense rain rates (>10  mm/hr) 
are generally reduced with WRF-LAMP compared to WRF-CTL, which is 
also mostly an improvement. Similar conclusions can also be drawn from 
the percentage contributions of various precipitation intensities (Figure 11). 
Specifically, over the land, the excessive amounts of rain produced by intense 
rain rates (>10 mm/hr) in WRF-CTL are reduced in WRF-LAMP, and the 
underestimated amounts from moderate rain rates (2–10  mm/hr) are also 
improved. While over the ocean, the reduction in the contribution from 
intense rain rates is excessive in LAMP, but the improvements in low and 
moderate rain rates are nonetheless apparent.

The diurnal cycles over these regions are represented well in both the 
WRF-CTL and WRF-LAMP simulations (Figure 12). Although many simu-
lations with explicit convection are known to be able to produce reasona-
ble representations of the diurnal cycle (e.g., Keat et  al.,  2019; Marsham 
et al., 2013), by contrast, many simulations with the parameterized convec-
tion struggle to produce good results (C. Zhang et  al.,  2020; Dirmeyer 
et al., 2012), despite some recent improvements (e.g., Baba, 2020; Bechtold 
et  al.,  2014; Xie et  al.,  2019). There is a bias of excess precipitation over 
the western Pacific with WRF-LAMP (Figure 12f). This excess precipitation 
over the western Pacific indicates that the convective activity in WRF-LAMP 
is overly sensitive to moisture, which may be related to the choice of entrain-
ment rate in the entraining plume model. The relatively good diurnal cycle 
arises from the treatment of the WRF-LAMP closure, in that a convective 
area fraction is set to be proportional to the resolved cloud-base mass flux, as 
compared to many common closures that link the parameterized convection 
to measures of instability that peak at noon.

Finally, the propagation of MJO precipitation signals in WRF simulations is 
examined using MJO events observed in the winter of 2011. Figure 13 shows 
the Hovmöller diagrams of precipitation averaged between 5°S and 5°N, and 
the eastward propagation of the precipitation signals associated with three 

MJO events is most apparent in IMERG and in WRF-LAMP. As is common in many traditional parameteriza-
tions, the control simulation has a persistent precipitation signal during an otherwise suppressed phase of the 
MJO (S. M. Hagos et al., 2016). WRF-LAMP reduces the contribution of the low-intensity precipitation that 
prevails in WRF-CTL during the suppressed phases of the MJO resulting in a better agreement with the obser-
vations. This contrasts with many quasi equilibrium-based cumulus parameterizations that typically degrade the 
propagation of precipitation signals (e.g., Jiang, 2017).

While this study demonstrates the utility of machine-learning-assisted stochastic cloud population model for 
parameterization, the actual application in a global modeling research and operation would require addressing a 
few issues. The first issue is related to the imperfection of the training data. This has two aspects. The first one 
is related to biases in the convection-permitting model simulation used for training. One possible way to address 
this is training the algorithms directly using observations such as data from radar scans and soundings. Granted 
such observations have their own limitations. The second is generalizability in the sense of regional depend-
ence of the relationship captured by the machine learning algorithm. Ideally, such a training would sample all 
major regions of the convective activity, which in theory could be obtained from global convection permitting 
model simulations like those from DYAMOND (Stevens et al., 2019) as discussed in Section 2.4. The third 
issue is related  to  closure. In this work, we argue that the resolved cloud-base mass flux contains information 
about a subgrid convective activity that could be exploited for closure. This is like moisture-convergence-based 
(Kuo, 1974) closures because the resolved mass flux at cloud base and the height of cloud base define the 
mass convergence while the effect of moisture is implicit in the height of the cloud base. This approach, while 
it has distinct advantages in that its accuracy improves with increasing resolution and scale-awareness can be 
introduced in a straightforward manner, could introduce large errors at courser resolutions as scale separation is 

Figure 9. Three-month mean precipitation from (a) IMERG observation, (b) 
WRF-CTL and WRF-LAMP simulations run at the 25-km grid spacing over 
the continental US (CONUS).
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the main rationale for parameterization in the first place. The fourth issue is related to the cloud model, which 
ultimately calculates the thermodynamic tendencies based on the predicted cloud-base mass flux and the envi-
ronment. An obvious limitation of the cloud model presented here is a lack of representation of evaporation of 
precipitation, which can potentially lead to excessive precipitation over regions with dry boundary layers. For 
more practical applications, coupling a complex cloud model that accounts for this and other processes would 
be necessary.

Figure 10. Comparisons of frequency distribution of precipitation from the WRF-CTL and WRF-LAMP simulations with that from IMERG observations over the 
regions marked by the red boxes in Figure 8 and the continental US. All the hourly precipitation data from the simulations and observations are on the 25-km grid 
spacing.

 19422466, 2022, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021M

S002808 by U
niversity of R

eading, W
iley O

nline L
ibrary on [06/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

HAGOS ET AL.

10.1029/2021MS002808

15 of 22

4. Discussion
Increased availability of computational resources is enabling climate model simulations of the order of 10s of 
kilometers of the grid spacing. These advances require rethinking the role and design of cumulus parameteriza-
tions since the use of traditional cumulus parameterizations developed for coarser grid spacings has been widely 
documented to contribute to biases in precipitation statistics as well as issues in simulating modes of variability 
such as the diurnal cycle, the propagation of the MJO, and associated tropical precipitation signals. Convec-
tion-resolving models of order km grid spacing have shown some successes in eliminating or reducing these 

Figure 11. Comparisons of percentage contributions of precipitation intensities from the WRF-CTL and WRF-LAMP simulations with that from IMERG observations 
over the regions marked by the red boxes in Figure 8 and over the continental US. All the hourly precipitation data from all the simulations and observations are on the 
25-km grid spacing.
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biases. The present study contributes to the development of parameterizations for grid spacings between 25 and 
1 km by exploiting high-resolution limited-area modeling and machine learning.

The WRF-LAMP parameterization aims to represent variability in the cloud-base mass flux that is associated 
with lifecycles of clouds and interactions among them using a cloud population model with a machine-learning 
derived transition function. Given the change in the total convective area in a grid box, the population model 
predicts a distribution of convective areas for given bins of the cloud-base mass flux and cell size statistics. As a 
closure, the total convective area in a grid box is assumed to be proportional to the resolved cloud-base mass flux 
obtained from the host model, WRF. Cloud-base mass fluxes and cell sizes are drawn randomly as a subset of the 

Figure 12. The mean diurnal cycles of precipitation from the WRF-CTL and WRF-LAMP simulations with that from 
IMERG observations over the six regions marked by the red boxes in Figure 8 and the continental US.
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predicted distribution and these are then fed to an entraining plume model that calculates heating and moistening 
tendencies as well as precipitation. The tendencies from each bin are combined and fed back to the host model.

The model performance is evaluated in terms of precipitation statistics, the diurnal cycle, the precipitation clima-
tology (over tropical and midlatitude regions), and the propagation of precipitation signals associated with the 
MJO. Precipitation statistics in coupled cloud-population-model simulations are significantly improved over 
those in control simulations with no cumulus parameterization over many regions. It is also shown that the 
proposed parameterization represents well the diurnal cycle over both land and ocean regions in the tropics and 
over the continental US. This is attributed to the closure that relates the subgrid convective area to the resolved-
scale cloud-base mass flux. This key assumption is based on the arbitrariness of the model grid-spacing and the 
need to do away with the “large-scale” and “convective-scale” separation. Similarly, unlike traditional quasi equi-
librium-based parameterizations, it improves the propagation of precipitation signals associated with the MJO by 
reducing excessive precipitation during suppressed phases.

It should be noted that the parameterization approach proposed here is in some ways similar to other stochastic 
representations of the convection. But unlike many approaches that prescribe the distribution from which the 
convective events are drawn, the cloud population model here predicts the distribution based on the machine-
learning-trained transition function. As such it has limitations that follow from the specificity of the training 
simulation, as is apparent, for example, in the wet bias over the western Pacific. Moreover, as a simple demon-
stration of the approach, several simplifying assumptions are made. Thus, the present study has to be considered 
as a step toward a more general class of approaches utilizing observations, high-resolution model simulations, 
and machine learning toward efficient representation of the convection in the next generation of global models. 
Some potential benefits from following this parameterization approach have been demonstrated in comparison to 
control simulations without a parameterization. Future work will include an examination of the performance of 
this approach in comparison to other approaches with comparable levels of complexity, of the scope for tuning as 
well as more extensive evaluations against observations from multiple platforms. Assessment of global applica-
bility of transition functions obtained from a given set of observations or model simulations is also of scientific 
interest as it can reveal previously unknown cloud transition processes specific to a regime.

Figure 13. Hovmöller diagram of propagation of precipitation associated with MJO events from the WRF-CTL and 
WRF-LAMP simulations compared with IMERG observations during winter of 2011. All are averaged between 5°N and 5°S.
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Appendix A: Entraining Plume Model
As in many mass-flux-based cumulus parameterizations, WRF-LAMP relies on an entraining plume model to 
calculate moistening and heating tendencies for the host model as well as the associated precipitation. In addition 
to the thermodynamic profile, the WRF-LAMP entraining plume model is provided with the subsample cloud-base 
mass fluxes mcb and the corresponding subsample cell sizes a. In this appendix, a description of the plume model 
is provided. It is based on that developed by Kim and Kang (2012) but with several differences detailed below.

The equations governing the updraft mass flux (Mu) and conserved scalar quantities ϕu are given by

𝑑𝑑𝑑𝑑𝑢𝑢

𝑑𝑑𝑑𝑑
= (𝜆𝜆𝑖𝑖 − 𝛿𝛿𝑖𝑖)𝑑𝑑𝑢𝑢 (A1)

𝑑𝑑𝑑𝑑𝑢𝑢

𝑑𝑑𝑑𝑑
= −𝜆𝜆𝑖𝑖 (𝑑𝑑𝑢𝑢 − 𝑑𝑑𝑒𝑒) + 𝑆𝑆𝑑𝑑𝑢𝑢 (A2)

where λi and δi are the fractional entrainment and detrainment rates, respectively, and Sϕu is a possible source 
term. ϕu is the updraft value of a scalar variable, including the total water mixing ratio (qt) and the liquid water 
potential temperature, the latter being given by

�� = �
(

��
�

)� (

1 −
����
����

)

 (A3)

where T is the temperature, ps and p are the pressure at the surface and at the given layer, respectively, and ql is 
the liquid water mixing ratio.

Buoyancy is defined by the difference in the virtual potential temperature between the updraft parcel (subscript 
u) and the environment (subscript e) as

𝐵𝐵𝑢𝑢 = 𝑔𝑔 (𝜃𝜃𝜃𝜃𝑢𝑢 − 𝜃𝜃𝜃𝜃𝑒𝑒) ∕𝜃𝜃𝜃𝜃𝑒𝑒 − 𝑔𝑔𝑔𝑔𝑙𝑙𝑢𝑢 (A4)

where

�� = �
(

��
�

)�

(1 + 0.608�� − �� − ��) (A5)

For the height levels between cloud base zcb and the level of neutral buoyancy znb (where Bu = 0.0) and consistent 
with many other studies (e.g., Neggers, 2015; Wagner & Graf, 2010; Stirling & Stratton, 2012; and references 
therein), the entrainment rate is assumed to be inversely proportional to the convective cell radius. Furthermore, 
it is assumed to be inversely proportional with height, as is often assumed while the detrainment rate is assumed 
to be zero.

�� = ����

(

�1
��

)0.5
(���

�

)

 (A6)

Above the level of neutral buoyancy, the detrainment rate is set to be

�� = ����
(

�1
��

)0.5
(���

�

)

 (A7)

and δmax is assumed to be equal to λmax. This treatment of detrainment corresponds to an assumption that the 
detrainment in a bulk parameterization is dominated by the termination of plumes within the underlying cloud 
spectrum as opposed to the mixing detrainment at the edges of individual clouds (Derbyshire et  al.,  2011; 
Plant, 2010).

As the entraining plume rises from one level to the next, starting at cloud base, it entrains environmental air 
according to Equation A1. The cloud water is calculated at each level as

𝑞𝑞𝑙𝑙𝑙𝑙 = max (𝑞𝑞𝑣𝑣𝑙𝑙 − 𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 0) (A8)
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where the saturation mixing ratio in the updraft is approximated using the Clausius-Clapeyron equation

𝑞𝑞𝑣𝑣𝑣sat =
𝑞𝑞𝑣𝑣0𝑝𝑝0

𝑝𝑝
exp

(

−
𝐿𝐿𝑣𝑣

𝑅𝑅𝑣𝑣

(

1

𝑇𝑇𝑢𝑢

−
1

𝑇𝑇0

))

 (A9)

with the parcel temperature being given by

�� = ��
(

�
��

)�

 (A10)

and qv0 is a reference value of the saturation water vapor mixing ratio at the given reference temperature and pres-
sure, T0 and p0. Following Lord (1982) and G. J. Zhang and McFarlane (1995), the production of rain at a given 
level is assumed to be proportional to the vertical flux of cloud water in the updraft as

𝑅𝑅𝑟𝑟 = 𝑐𝑐0𝑞𝑞𝑙𝑙𝑙𝑙𝑀𝑀𝑙𝑙 (A11)

where c0 is a cloud to the rainwater autoconversion parameter. Above freezing level, the fraction of qlu that is 
converted to ice (qiu) is assumed to increase linearly with the decreasing parcel temperature.

𝑞𝑞𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑙𝑙𝑖𝑖max

(

(𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑓𝑓 )

(𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚 − 𝑇𝑇𝑓𝑓 )
, 0

)

 (A12)

where Tf is the freezing temperature and Tmin is a given minimum temperature. Once the condensation and freez-
ing have taken place, the θvu and qvu are updated.

𝜃𝜃𝑣𝑣𝑣𝑣 → 𝜃𝜃𝑣𝑣𝑣𝑣 +
𝜃𝜃𝑣𝑣

𝑐𝑐𝑝𝑝𝑇𝑇𝑣𝑣

(𝐿𝐿𝑣𝑣𝑞𝑞𝑙𝑙𝑣𝑣 + 𝐿𝐿𝑓𝑓𝑞𝑞𝑖𝑖𝑣𝑣) (A13)

𝑞𝑞𝑣𝑣𝑣𝑣 → 𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (A14)

The buoyancy is then updated and the plume calculations integrated up to the next model level until the model 
top is reached.

The precipitation is obtained from summing the rain production from the top of the atmosphere (zt) to the cloud 
base (zcb). The evaporation of rain is neglected in this simple model. But one can incorporate such evaporation, 
on its dependence and effect on precipitation and relative humidity (Gregory, 1995)

Parameter Value

c0 1.0e−4/m

ce 2.0e−3

R 287.05 J/(kg·K)

Rv 461.61 J/(kg·K)

Lv 2.5e6 KJ/Kg

Lf 3.35e5 J/Kg

Κ 0.622

p0 90,000.0 Pa

cp 1,005.0 J/(kg·K)

T0 288.15 K

Tmax 263.15 K

Tmin 233.15 K

qv0 0.006 kg/kg

λmax 0.001/m

Table A1 
Parameters for the Entraining Plume Model
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𝑃𝑃𝑐𝑐𝑐𝑐 == ∫
𝑧𝑧𝑡𝑡

𝑧𝑧𝑐𝑐𝑐𝑐

𝑅𝑅𝑟𝑟(𝑥𝑥)𝑑𝑑𝑥𝑥 (A15)

Finally, the tendencies of the total water mixing ratio and the liquid water potential temperature associated with 
the rain are calculated as follows.

���
��

|

|

|

|rain
= −�� (A16)

���
��

|

|

|

|rain
=
(

�����
����

)

�� (A17)

Table A1 shows the constants and parameter choices in the entraining plume model.

Data Availability Statement
The WRF-LAMP model and analysis codes and data are available at https://portal.nersc.gov/project/cpmmjo/
WRF-LAMP/.
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