
Backpropagation neural tree
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 and
Nicosia, G. (2022) Backpropagation neural tree. Neural
Networks, 149. ISSN 0893-6080 doi:
10.1016/j.neunet.2022.02.003 Available at
https://centaur.reading.ac.uk/102926/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1016/j.neunet.2022.02.003

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Neural Networks 149 (2022) 66–83

f
a
r
b
h
a

t
i
K
b

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Backpropagation Neural Tree
Varun Ojha a,∗, Giuseppe Nicosia b,c

a Department of Computer Science, University of Reading, Reading, UK
b Center of System Biology, University of Cambridge, Cambridge, UK
c Department of Biomedical & Biotechnological Sciences, University of Catania, Catania, Italy

a r t i c l e i n f o

Article history:
Received 28 March 2021
Received in revised form 22 August 2021
Accepted 3 February 2022
Available online 10 February 2022

Keywords:
Stochastic gradient descent
RMSprop
Backpropagation
Minimal architecture
Neural networks
Neural trees

a b s t r a c t

We propose a novel algorithm called Backpropagation Neural Tree (BNeuralT), which is a stochastic
computational dendritic tree. BNeuralT takes random repeated inputs through its leaves and imposes
dendritic nonlinearities through its internal connections like a biological dendritic tree would do.
Considering the dendritic-tree like plausible biological properties, BNeuralT is a single neuron neural
tree model with its internal sub-trees resembling dendritic nonlinearities. BNeuralT algorithm produces
an ad hoc neural tree which is trained using a stochastic gradient descent optimizer like gradient
descent (GD), momentum GD, Nesterov accelerated GD, Adagrad, RMSprop, or Adam. BNeuralT training
has two phases, each computed in a depth-first search manner: the forward pass computes neural
tree’s output in a post-order traversal, while the error backpropagation during the backward pass is
performed recursively in a pre-order traversal. A BNeuralT model can be considered a minimal subset
of a neural network (NN), meaning it is a ‘‘thinned’’ NN whose complexity is lower than an ordinary
NN. Our algorithm produces high-performing and parsimonious models balancing the complexity with
descriptive ability on a wide variety of machine learning problems: classification, regression, and
pattern recognition.

© 2022 Elsevier Ltd. All rights reserved.
i,

g
m
e
&
r
H
&

i
e
n
b
&
s

1. Introduction

Data-driven learning is a hypothesis (trained model) search
rom a hypothesis-space that fits input data to its target output
s good as possible (a low error on test data). A learning algo-
ithm like neural networks (NNs) parameter optimization via
ackpropagation is the effort to find such a hypothesis (Rumel-
art, Hinton, & Williams, 1986). We propose a new study of
d hoc neural trees generation and their optimization via our

recursive backpropagation algorithm to find such a hypothesis.
Hence, we propose a new algorithm called Backpropagation Neural
Tree (BNeuralT).

A tree of BNeuralT is like a biological dendritic tree (Mel,
2016; Travis, Ford, & Jacobs, 2005) that processes repeated inputs
connected to a single neuron (Beniaguev, Segev, & London, 2020;
Jones & Kording, 2021) through dendritic nonlinearities (London
& Häusser, 2005). Structurally, BNeuralT model is a stochastic
computational dendritic tree that takes random repeated inputs
hrough its leaves and imposes dendritic nonlinearities through its
nternal nodes like a biological dendritic tree would do (Jones &
ording, 2021; Travis et al., 2005). Hence, considering the plausi-
le dendritic-tree-like biological properties, BNeuralT is a single

∗ Corresponding author.
E-mail address: v.k.ojha@reading.ac.uk (V. Ojha).
 h

ttps://doi.org/10.1016/j.neunet.2022.02.003
893-6080/© 2022 Elsevier Ltd. All rights reserved.
neuron neural tree model with its internal nodes resembling
dendritic nonlinearities.

Structurally, BNeuralT, being a tree, is a minimal subset of a
(highly sparse) NN whose complexity is comparatively low (Poiraz
Brannon, & Mel, 2003b). This means that a NN with a very high
dropout [a network regularization technique (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014)] prior to its train-
ing can be similar to BNeuralT, except BNeuralT has dedicated
paths from input to output as opposed to sparse NN that has
shared connections between nodes. Hence, we aim to gauge
the performance of ad hoc neural trees trained using stochastic
radient descent (SGD) optimizers like gradient descent (GD),
omentum gradient descent (MGD) (Qian, 1999), Nesterov accel-
rated gradient descent (NAG) (Bengio, Boulanger-Lewandowski,
Pascanu, 2013), adaptive gradient (Adagrad) (Dean et al., 2012),

oot-mean-square gradient propagation (RMSprop) (Tieleman &
inton, 2012), and adaptive moment estimation (Adam) (Kingma
Ba, 2015).
Operationally, an expression-tree with its operator (node) be-

ng neural nodes (i.e., an operator is an activation function),
dges being neural weights, and leaves being inputs make a
eural tree architecture, where the tree’s architecture itself can
e optimized (Chen, Yang, Dong, & Abraham, 2005; Schmidt
Lipson, 2009). The tree’s edges (parameters) optimization is

traightforward using a gradient-free method (Kennedy & Eber-

art, 1995; Rios & Sahinidis, 2013) where the tree is assumed

https://doi.org/10.1016/j.neunet.2022.02.003
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.02.003&domain=pdf
mailto:v.k.ojha@reading.ac.uk
https://doi.org/10.1016/j.neunet.2022.02.003

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

a
g
e
c
t
m
p
b

b
p
c
r
t
o
n

t
g
i
(
a
F
2
f
o
c
(
&
&
o
p
a

N

r
t
a
c
i
o
h

2

t
i

s
B
v
T
u
t
n
B
a

a
o
s
a
t
(
i

target function (Ojha, Abraham, & Snášel, 2017). However, its
radient-based optimization is non-trivial, especially because the
rror-backpropagation through the tree data structure is re-
ursive to traverse. Our proposed BNeuralT algorithm does a
wo-phase computation of a neural tree in a depth-first search
anner: the forward pass computes neural tree’s outputs in a
ost-order traversal, while the error backpropagation during the
ackward pass is performed recursively in a pre-order traversal.
We trained ad hoc neural trees in an online mode (example-

y-example) and a mini-batch mode on a variety of learning
roblems: classification, regression, and pattern recognition. For
lassification and pattern recognition problems, BNeuralT has its
oot node’s children (nodes at tree depth one) strictly dedicated
o each target class, and the root node decides the winner class
n receiving input data. BNeuralT dedicates its root as the output
ode for a regression problem.
We evaluated BNeuralT’s convergence process on six SGD op-

imizers and analyzed BNeuralT’s complexity against its conver-
ence accuracy. Each training version was compared with a sim-
lar training version of a multi-layer perceptron (MLP) algorithm
i.e., an input-hidden-output NN architecture) and classification
nd regression algorithms such as decision tree (DT) (Breiman,
riedman, Stone, & Olshen, 1984), random forest (RF) (Breiman,
001), single and multi-objective versions of a heterogeneous
lexible neural tree (HFNTS and HFNTM) (Ojha et al., 2017), multi-
utput neural tree (MONT) (Ojha & Nicosia, 2020), Gaussian pro-
ess (GP) (Rasmussen & Williams, 2006), naïve Bayes classifier
NBC) (Mitchell, 1997), and support vector machine (SVM) (Chang
Lin, 2011; Cortes & Vapnik, 1995; Fan, Chang, Hsieh, Wang,
Lin, 2008). The results on all problems indicate the success

f our BNeuralT algorithm that produces high-performing and
arsimonious models balancing the complexity and descriptive
bility with a minimal training hyperparameters setup.
Our contribution is an innovative Recursive Backpropagation

eural Tree algorithm that

• takes inspiration from biological dendritic trees to solve a
wide class of machine learning problems through a single
neuron tree-like model performing dendritic nonlinearities
through its internal nodes and resembling a highly sparse
neural network.
• generates low complexity and high accuracy models. There-

fore, we have designed a learning system capable of produc-
ing minimal and sustainable neural trees that have fewer
parameters to produce more compact and, therefore, sus-
tainable neural models able to reduce CPU time and, conse-
quently, CO2 emissions for machine learning applications.
• shows that the sigmoidal dendritic nonlinearity of any

stochastic ad hoc neural tree structure can solve machine
learning problems with high accuracy, and any such struc-
ture excels to genetically optimized neural tree structures,
NNs, and other learning algorithms.

This paper presents relevant related work in Section 2. BNeu-
alT model’s architecture and properties are described in Sec-
ion 3. Sections 4.1 and 4.2 outline the hyperparameter settings
nd experiment versions. The performance of BNeuralT on ma-
hine learning problems is summarized in Section 5 and discussed
n Section 6, followed by conclusions in Section 7. Source code
f BNeuralT algorithm and pre-trained models are available at
ttps://github.com/vojha-code/BNeuralT.

. Related works

We review the works defining neural tree architectures and
raining processes. The early definition of neural trees appeared
n Sakar and Mammone (1993) and Sirat and Nadal (1990), where
67
the tree’s ‘‘root-to-leaf’’ path is represented as a neural network
(NN). Such a tree makes its decision through leaf nodes, and
its internal nodes are NNs (or neural nodes). Jordan and Jacobs
(1994) proposed a hierarchical mixture expert model that per-
forms construction of a binary tree structure where the model
hierarchically combines the outputs of expert networks (feed-
forward NNs at the terminal) though getting networks (feed-
forward NNs at non-terminal) and propagates computation from
‘‘leaf-to-root’’ and where each NN uses the whole input features
set.

In contrast, our model is purely a single network (tree) struc-
ture representation, whereas a hierarchical mixture expert model
is a hierarchical combination of several (preferably small) net-
works. Therefore, unlike the hierarchical mixture expert model,
our model is a subset of a NN where ‘‘leaf-to-root’’ has a specific
information processing path. In fact, considering plausible inspi-
ration from biological computational dendritic tree (Mel, 2016;
Poirazi et al., 2003b; Travis et al., 2005), our model behaves as a
single neuron model (Jones & Kording, 2021).

Our proposed BNeuralT algorithm generates an m-ary tree
tructure stochastically and assigns edge weights randomly.
NeuralT’s each leaf node (terminal node) takes a single input
ariable from a set of all available variables (data features).
herefore, in a generated tree, some features could remain un-
sed by the model leading to only select features responsible for
he prediction. Moreover, tree’s each neural node (non-terminal
ode) takes a weighted summation of its child’s output. Hence, a
NeuralT model potentially performs an input dimension reduction
nd propagates the computation from leaf to root.
A recent work of Tanno, Arulkumaran, Alexander, Criminisi,

nd Nori (2019) demonstrates a neural tree as an arrangement
f convolution layers and linear classifier as a learning model re-
embling a decision tree-like classifier where the incoming inputs
t the nodes are inferred through the so-called router, processed
hrough tree edges (transformers), and classified through leaf
solver) nodes. In contrast, our model takes image pixels as its
nputs. A leaf-to-root as a neural tree definition appeared in Chen
et al. (2005) and Zhang, Ohm, and Mühlenbein (1997), where
the tree’s leaf nodes are designated inputs, internal nodes are
neural nodes, and edges are weights. Such types of neural trees
have been subjected to structure optimization (Chen et al., 2005;
Ojha et al., 2017) and parameter optimization via gradient-free
optimization techniques like particle swarm optimization (Chen,
Yang, & Abraham, 2007) and differential evolution (Ojha et al.,
2017).

Zhang et al. (1997) demonstrated that a neural tree could
be evolved as a subset of an MLP. Their effort was to evolve a
neural tree using genetic programming and optimize parameters
using a genetic algorithm. Lee, Gallagher, and Tu (2016) focused
on implementing pooling layers within a convolutional NN as a
tree structure. However, our approach is to generate and train ad
hoc neural trees using our proposed recursive backpropagation
algorithm. To the best of our knowledge and review, this is the
first and novel attempt to generate and train ad hoc neural trees
using our recursive error-backpropagation algorithm. Our motiva-
tion is to avoid any prior assumptions on network architecture
and complicated hyperparameter settings.

Srivastava et al. (2014) proposed a dropout technique that
suggests randomly dropping neurons from a large NN. This
creates ‘‘thinned’’ NN instances during training and prevents a
NN from overfitting. Our proposed BNeuralT randomly generates
a tree architecture, which can be considered a sparse NN in a
similar sense with rather a higher dropout. Also, the branching
and pruning of the tree branches in BNeuralT are performed at the
tree generation stage, where a branch is probabilistically pruned
by generating a leaf node at a depth lower than terminals.

https://github.com/vojha-code/BNeuralT

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

r
E
e

3

3

a
i
p
c
p
l
a
R
p
a
1

3

c
i
d
r
t
t
a
l
n
w
i
r

n
m
H
n
n
a

w
i
a

(
n

Fig. 1. Neural trees: (a) A neural tree example of a three-class classification learning problem. The root node v3
0 takes three immediate children: v1, v3 , and v4 , each

espectively designated to a class c1, c2 , and c3 . The internal nodes (shaded in gray) are neural nodes and take an activation function ϕ(·) and leaf nodes are inputs.
ach designated output class has its subtree. This tree takes its input from the set {x1, x2, . . . , x5}. The link w

vj
i between nodes are neural weights. (b) A neural tree

xample for a regression problem has one output node v0 .
a
s
ϕ
o
o
a
o
(
t

p
o
a
i
i
a
2
g
T

B
i
P
p
S
i
n
1
H
d
b
S
i
d
s
m
[

t
o
e
m
f
o
b
r
t

. Backpropagation neural tree

.1. Problem statement

Let X ∈ Rd be an instance-space and Y = {c1, . . . , cr} be
set of r labels such that a label y ∈ Y is assigned to an

nstance x ∈ X . Therefore, for a training set of N instance-label
airs S = (xi, yi)Ni=1, we induce a classifier G(X ,w) that reduces
lassification cost LError(G) = 1/N

∑N
i=1(ŷi ̸= yi), where ŷi is a

redicted output class on an input instance xi =
⟨
xi1, x

i
2, . . . , x

i
d

⟩
abeled with the target class yi ∈ {c1, . . . , cr}. Additionally, when
n instance x ∈ X is associated with a continuous variable y ∈
rather than a set of discrete class labels, then G(X ,w) is a

redictor that for a training set of instance-output pairs S reduces
prediction cost like mean squared error (MSE) LMSE(G) =

/N
∑N

i=1(ŷ− yi)2.

.2. Backpropagation neural tree algorithm

Backpropagation neural tree (BNeuralT) takes a tree-like ar-
hitecture whose root node is a decision node, and leaf nodes are
nputs. For classification learning problems, BNeuralT has strictly
edicated nodes at level-1 (child nodes of the root) of the tree to
epresent classes. Fig. 1(a) is an example of a classification neural
ree where root’s each immediate child is a sub-tree dedicated
o a class, and the root node only decides a winner class ŷ =
rgmax{c1, . . . , cr} for an instance-label pair (x, y). For regression
earning problems, BNeuralT is a regression neural treewhose root
ode decides the tree’s predicted output ŷ = ϕ(

∑child
i=1 wivi+ bv0),

here ϕ(·) is an activation function yielding a value in [0, 1], wi
s a edge weight, vi is the activation of ith child, and bv0 is the
oot’s bias (cf. Fig. 1(b)).

BNeuralT, denoted as G is an m–ary rooted tree with its one
ode designated as the root node, and each node takes at least
≥ 2 child nodes except for a leaf node that takes no child node.
ence, for a tree depth p, BNeuralT takes n ≤ [(mp+1

−1)/(m−1)]
odes (including the number of internal nodes |V | and the leaf
odes |T |). Thus, BNeuralT can be defined as a union of internal
nd leaf nodes G = V ∪ T =

{
v
j
1, v

j
2, . . . , v

j
K

}
∪ {t1, t2, . . . , tL}

here kth node v
j
k ∈ V is an internal node and receives 2 ≤ j ≤ m

nputs from its child nodes. The kth leaf node tk ∈ T has no child,
nd it has a designated input xi ∈ {x1, x2, . . . , xd}.
Fig. 1 is an example of classification (left) and regression

right) trees. All internal nodes (shaded in gray) of the tree are

eural nodes and may behave like the nodes of a NN. That is, p

68
neural node computes a weighted summation z of inputs and
quashes that using an activation function ϕ(z), e.g., sigmoid:
(z) = 1/(1+ez) or ReLU: ϕ(z) = max(0, z). We installed sigmoid
r ReLU functions as BNeuralT’s neural nodes, which can be any
ther activation function like tanh. The trainable parameters w
re the edges and the bias weights of the nodes. The number
f nodes n in a tree grows as per O(mp). The number of edges
n − 1) is proportional to the growth of n, so is the number of
ree’s trainable parameters w.

Complexity of BNeuralT. A BNeuralT model resembles an ex-
ression tree, and its computation is a depth-first-search post-
rder or pre-order traversal where each node needs to be visited
t least once. Hence, the worst-case time complexity of BNeuralT
s O(n), n being the number of nodes. In a BNeuralT model, each
nternal node has a bias, each leaf has an input, and each edge has
weight. Therefore, the space requirement of a BNeuralT model is
|V |+|T |, i.e., two times internal nodes plus leaf nodes, which will
row proportional to the growth of tree’s total nodes n = |V |+|T |.
hus, BNeuralT’s worst-case space complexity is O(n).

iologically plausible neural computation of BNeuralT. A typ-
cal NN uses neurons inspired by the work of McCulloch and
itts (1943). Such a neuron operates on a weighted sum of in-
uts and processes the sum via a nonlinear threshold function.
uch neural computation considers that the dendrites (synaptic
nputs) of a neuron are summed at ‘‘soma’’, thereby exciting a
euron, i.e., providing it a firing strength (Hodgkin & Huxley,
952; McCulloch & Pitts, 1943; Poirazi, Brannon, & Mel, 2003a).
owever, the biological behavior of dendrites shows that den-
rites themselves impose nonlinearity on their synaptic inputs
efore summing at ‘‘soma’’ (Hay, Hill, Schürmann, Markram, &
egev, 2011; London & Häusser, 2005). This dendritic nonlinearity
s possibly a sigmoidal nonlinearity (Poirazi et al., 2003b). Ad-
itionally, the synaptic connections in a fully connected NN are
ymmetric, whereas biological dendritic connections are asym-
etric (Farhoodi & Kording, 2018; Mel, 2016; Travis et al., 2005)

cf. Fig. 2(a)].
Poirazi et al. (2003b) using a sparse two-layer NN analogous

o a binary tree-like dendritic NN has shown the possibility
f modeling a single neuron as a NN. The work of Beniaguev
t al. (2020) demonstrated a proof of concept single neuron
odel as a synaptic integration and fire model capable of per-

orming classification of two types of classes with a high degree
f temporal accuracy. Jones and Kording (2021) considered the
iologically asymmetric morphology of ‘‘dendritic tree’’ and its
epeated synaptic inputs to a neuron to show the computa-
ional capability of a single neuron for solving machine learning

roblems.

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

i

c
t
m
2
d
a
n
i
T
n
i
m

S
p
d
r

w
1
M
d

e
t

T
(
a

Fig. 2. Biologically plausible neural computation using dendritic trees. Red circle represents a neuron (soma), black lines are dendrites, and the numbers indicate
nputs.
Fig. 2(b) shows Jones and Kording (2021)’s a single neuron
omputational model with repeated inputs as a binary tree struc-
ure. Unlike the work of Poirazi et al. (2003b), BNeuralT has asym-
etric dendritic connections to a ‘‘single’’ neuron (Beniaguev et al.,
020; Jones & Kording, 2021). Jones and Kording (2021)’s den-
ritic tree has a systematic and regular binary-tree-like structure
nd solves a binary classification problem. Whereas BNeuralT’s
euron is like the neuron of Travis et al. (2005) (cf. Fig. 2(a)), and
t has a stochastic m-ary rooted tree-like structure (cf. Fig. 2(c)).
hus, Through BNeuralT, we investigate the ability of a single
euron with sigmoidal nonlinearity (and linear when using ReLU)
n its dendritic connections on three machine-learning problems:
ulti-class classification, regression, and pattern recognition.

tochastic gradient descent (SGD) training. BNeuralT’s trainable
arameters w are iteratively optimized by a stochastic gradient
escent (SGD) method (cf. Algorithm 1) that at an iteration j
equires gradient ∇wj ← Gradient∇wL(xj, Gwj) computation (cf.
Algorithm 2) and weight update as per wj ← wj−1 + η∇wj. The
eight update wj ← wj−1+ η∇wj in line number 7 of Algorithm
is a simple GD method, where other similar optimizers like
GD, NAG, Adagrad, RMSprop, or Adam can also be used. Table 1
etails the expressions of weight updates for these optimizers.

Algorithm 1 Stochastic gradient descent (SGD)

1: procedure SGD(Gw, S) ▷ SGD (·, ·) takes a neural tree Gw and
training data S

2: w0 ← Gw ▷ initial weights
3: for epochi < epochmax do
4: S ← Shuffle(S) ▷ function Shuffle returns a

randomly shuffle dataset
5: for an instance xj ∈ S do
6: ∆wj ← Gradient ∇wL(xj, Gwj) ▷ computed as per

Algorithm 2
7: wj ← wj−1 + η∆wj ▷ GD weights update on an

input instance xj
8: end for
9: end for

10: end procedure

Error-backpropagation in BNeuralT. Our proposed recursive
rror-backpropagation in BNeuralT algorithm has two computa-
ion phases: forward pass and backward pass (cf. Fig. 3). Both
work in a depth-first search manner. Since a tree data structure
is algorithmically recursive to traverse through, both forward
pass and backward (error-backpropagation) pass take place in a
recursive manner. The forward pass computation produces the
output for a tree in a post-order traversal manner (cf. Fig. 3(left)).
hat is, each leaf node propagates its input through dendrite
edge) to its parent node, and subsequently, each internal node,
fter computing received inputs from its child nodes, propagates
69
Fig. 3. Forward pass (left) and backward pass (right) computation. The arrows
show the direction of computation.

activation to their respective parent node. Finally, the root node
computes the tree’s output.

The backward pass computes the gradient of the error with
respect to edge weights. The backward pass computes gradient
δ for each internal node and propagates it back to each edge
depth-by-depth. Hence, the backward pass is a pre-order traversal
of the tree (cf. Fig. 3(right)). That is gradient δ computed at the
root node flow backward to its child node until it reaches leaf
nodes. Fig. 4 (left) shows the forward pass and backward pass
computation labeled with variables of neural tree computation.
Fig. 4 (right) shows the backpropagation of gradient from an out-
put node to the inputs (leaf nodes). Algorithm 2 is a summary of
error-backpropagation and Algorithm 3 shows recursive gradient
computation for BNeuralT that facilitates error-backpropagation.

4. Experiments

4.1. Hyperparameters settings

Datasets. We select a set of nine classification problems: Australia
(Aus), Heart (Hrt), Ionosphere (Ion), Pima (Pma), Wisconsin (Wis),
Iris (Irs), Wine (Win), Vehicle (Vhl), Glass (Gls), which respec-
tively have 14, 13, 33, 8, 30, 4, 13, 18, and 9 input attributes;
2, 2, 2, 2, 2, 3, 3, 4, and 7 target classes; and 690, 270, 351, 768,
569, 150, 178, 846, and 214 examples. For regression problems,
we select Baseball (Bas), Daily Electricity Energy (Dee), Diabetes
(Dia), Friedman (Frd), and Miles Per Gallon (Mpg), which respec-
tively have 16, 6, 10, 5, and 6 input attributes and 337, 365,
442, 1200, and 392 examples. Each regression dataset has one
target. These datasets are available at Bache and Lichman (2013)
and Keel (2011). These problems are significantly different not
only in terms of the number of classes and examples but also in
terms of their attribute types and range. This differing nature of
these problems poses significant variations in difficulty for one
algorithm to excel on all problems (Wolpert, 1996).

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

e
n
(

m
d
a
p
C
1
t
v

B
(
I
e
d
f
l
h
n
f

Table 1
Gradient descent versions to replace line number 7 in Algorithm 1. Symbols η, γ , β, β1 , and β2 are constants (hyperparameter) of
respective algorithms. Symbols vj and wj show previous momentum and weights, respectively, and ∇wL(xj,Gwj) shows gradient of
loss L over input xj and w of tree G.

Algorithm Expression

MGD (Qian, 1999) vj ← γ vj−1 + η∇wL(xj,Gwj)
wj ← wj−1 − vj

Nesterov accelerated GD (Bengio et al., 2013) vj ← γ vj−1 + η∇wL(xj,Gwj−wj−1)
wj ← wj−1 − vj

Adagrad (Dean et al., 2012) vj ← vj−1 +∇wL(xj,Gwj)
2

wj ← wj−1 − η/
√

vj+ϵ∇wL(xj,Gwj)

RMSprop (Tieleman & Hinton, 2012) vj ← (1− γ)vj−1 + γ∇wL(xj,Gwj)
2

wj ← wj−1 −
(
η/
√

vj+ϵ

)
∇wL(xj,Gwj)

Adam (Kingma & Ba, 2015) mj ← β1mj−1+(1−β1)∇wL(xj,Gwj)/
(
1−β

j
1

)
vj ← β2vj−1+(1−β2)∇wL(xj,Gwj)

2
/
(
1−β

j
2

)
wj ← wj−1 − η/

(√
vj+ϵ

)
mj
Fig. 4. Left. Backpropagation neural tree. Output node vk yields output y using forward pass upon receiving inputs xi from leaf nodes. Each node is linked with an
dge weight wij . The backward pass propagates error e = (y− ŷ) back to input nodes to compute weight change ∆w. Right. Backpropagation of error from an output
ode, k; to a hidden node, j; to an input node, i; and to bias inputs bk and bj . Dashed lines represent error backpropagation and computation δ and gradient ∇w

cf. Algorithm 2) to find weight change ∆w that help stochastic gradient descent (cf. Algorithm 1).
Both classification and regression learning datasets were nor-
alized using min–max normalization between 0 and 1. Each
ataset was randomly shuffled and partitioned into training (80%)
nd test (20%) sets for each instance of the experiment. For a
attern recognition problem, we select the MNIST dataset (LeCun,
ortes, & Burges, 2020), which has 60,000 training examples and
0,000 test examples labeled with a set of 10 handwritten charac-
ers, and this dataset was normalized by dividing gray-scale pixel
alue by 255.

NeuralT hyperparameters. We repeated experiments 30 times
independently) for each classification and regression problem.
n each run, we generated ad hoc BNeuralTs (stochastically gen-
rated tree structures) for each dataset with a maximum tree
epth p = 5; max child per node m = 5, and branch pruning
actor P[leafp < p] ∈ {0.4, 0.5} which is a probability of a
eaf node being generated at a depth lower than the tree
eight p. A higher leaf generation probability (e.g., 0.5) at internal
odes means that tree height terminates earlier than its prede-
ined depth, which means a tree will be generated with fewer
70
parameters. A lower leaf generation probability (e.g., 0.4) means
a deeper tree structure with more parameters.

For classification problems, BNeuralT’s output neural node was
argmax node (i.e., winner takes all node), whereas, for regression
problems, it was sigmoid activation function. Its internal nodes
were sigmoid activation (or ReLU for some trial experiment ver-
sions). For pattern recognition (MNIST dataset), BNeuralT models
were generated on an ad hoc basis via setting maximum tree
depth p ∈ {5, 10}, and max child per node m ∈ {10, 15} with
P[leafp < p] ∈ {0.4, 0.5} and a tree size threshold |G|≥MIN ∈

{1K, 20K}, where ‘‘K’’ is 1000.

Other algorithms hyperparameters. MLP architecture was a
fixed three-layer architecture [inputs–hidden (100 nodes)
–targets] for each dataset of classification and regression prob-
lems. A SoftMax layer acted as the MLP classifier’s output nodes,
and an MLP regression had a sigmoid activation as its output
node. The internal neural nodes in an MLP were sigmoid (or ReLU)
functions. Other algorithms HFNTS, HFNTM, MONT3, DT, RF, GP,
NBC, SVM, and CARTs had their default setups as they are in their

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

1
1

Algorithm 2 Backpropagation computation of neural tree G

1: procedure Gradient ∇wL(x, G)▷ x and w are the inputs and
trainable parameters

2: Gδ ←Compute δ (y, G(x), N0 ← G, G) ▷ Compute δ using
Algorithm 3 for target y and prediction G(x) at tree’s root N0

3: for all nodes N in Gδ do
4: if N → Type→ Output node then ▷ output node’s

bias weight update
5: N → ∇wbk = N → δk ▷ bias weight is set to

current node’s gradient δ

6: else if N → Type→ Internal (hidden) node then
7: hj = N → hj ▷ current node’s activation is the

incoming signal for weight wjk
8: δk = N → NParent → δ ▷ gradient back-propagated

from the parent node
9: N → ∇wjk = δkhj▷ wjk is the weight between node

Nj and its parent node Nk
10: N → ∇wbj = N → δj▷ bias weight is set to current

node’s gradient δ

11: else if N → Type→ Leaf node then
12: xi = N → x ▷ N → x ∈ {x1, x2, . . . , xd} is an input

attribute
13: δj = N → NParent → δ ▷ gradient back-propagated

from parent to child
14: N → ∇wij = δjxi ▷ wij is the weight between child

Ni and parent Nj
15: end if
16: end for
17: return ∇w
18: end procedure

Algorithm 3 Computation of δ for each neural node

1: procedure Compute δ (y, ŷ, N ← G, G) ▷ y is a target, ŷ is a
prediction, and N is the current (or entry) node of tree G

2: if N → Type→ Output node then ▷ compute gradient δk
for output node N in G

3: N → δk = (ŷ− y)ŷ(1− ŷ) ▷ gradient at sigmoid output
node

4: else ▷ compute gradient at an internal (hidden) neural
node

5: hj = N → hj ▷ activation (value) of an internal
(neural) node

6: δk = N → NParent → δk ▷ retrieve parent’s gradient δ

of the current node N
7: wjk = N → wjk ▷ edge (weight) between current node

Nj and parent node Nk
8: N → δj = hj(1− hj)δkwjk ▷ gradient at an internal

sigmoid node
9: end if

10: for all child (neural) node Nc of N in G do
11: Gδ ←Compute δ (∅, ∅, Nc ← G, G) ▷ call Compute δ, ∅

indicates unused argument
2: end for
3: end procedure

libraries (Pedregosa et al., 2011) or in the literature (Ojha et al.,
2017; Ojha & Nicosia, 2020; Zharmagambetov, Hada, Carreira-
Perpiñán, & Gabidolla, 2019). A detailed list of hyperparameters
of all algorithms is provided in Supplementary Table A1.

SGD hyperparameters. BNeuralT and MLP algorithms take opti-
mizers like GD, MGD, NAG, Adagrad, RMSprop, or Adam. The train-
ing parameters were learning rate η = 0.1, momentum rate γ =
71
0.9, β1 = 0.9, β2 = 0.9, ϵ = 1e−8, training mode was stochastic
(online), and training epochs were 500. Since the gradient descent
computation was stochastic, both BNeuralT and MLP do the same
number of forward-pass (function) evaluations, i.e., number train-
ing examples × epochs. All six optimizers were used for training
BNeuralT and MLP with an early-stopping restore-best strategy (or
without an early-stopping for some trail experiments), whereas
other algorithms take their own default optimizer (Pedregosa
et al., 2011). While BNeuralT and MLP were trained in online
mode (example-by-example training), other algorithms take only
offline mode (epoch-by-epoch) training.

For the pattern recognition problem (MNIST), we set a mini-
batch training with a batch size of 128 examples. RMSprop was
used as an optimizer, and BNeuralT was trained by varying learn-
ing rate η ∈ {0.1, 0.01} and the number of epochs ∈ {10, 25, 50,
70}. The results of other algorithms on MNIST were collected from
literature to compare performances.

Loss functions. The loss function for BNeuralT training for clas-
sification and pattern recognition problems was a miss-classif-
ication rate LError(G). MLP training on classification problems
was best with categorical cross-entropy loss (Bishop, 2006). The
training of other algorithms had default setups recommended in
their libraries (Pedregosa et al., 2011). For regression problems, all
algorithms were trained by reducing LMSE(·). The test metric for
classification problems for all algorithms was a miss-classification
rate LError(·) and for regression problems, it was a regression fit
Lr2 (·) = 1−

∑N
i=1(yi−ŷi)

2
/
∑N

i=1(yi−ȳ)
2 (Nash–Sutcliffe model efficiency

coefficient) which gives a value between [−∞, 1], where ȳ is the
mean of target y.

Forward pass computation time, τ . BNeuralT was implemented
in Java 11, and MLP was implemented using TensorFlow and
Keras libraries (Keras, 2020). Other algorithms were implemented
using scikit-learn library (Pedregosa et al., 2011) in Python 3.5.
The forward pass computation time, τ is a wall-clock time on
Windows 10 operating system with configuration x64 Intel i5-
2400 CPU, 3.1 GHz, 3101 MHz, 4 Cores, and 16 GB physical
memory.

4.2. BNeuralT and MLP experiment versions

We experimented with multiple versions of BNeuralT and
MLP settings to bring out the best of both. We tried sigmoid and
ReLU as the internal activation functions. We tried BNeuralT’s
branch pruning factor P[leafp < p] with 0.5 and 0.4.

The learning rates of the optimizers had two sets: (i) A
flat learning rate η = 0.1 for all optimizers. (ii) The learning
rate recommended in the Keras library for respective optimizers,
i.e., RMSprop, Adam, and Adagrad had η = 0.001, and MGD, NAG,
and GD had η = 0.01. We call the library’s recommended η value
a default learning rate. In addition, the SGD learning was tried
‘‘with’’ and ‘‘without’’ early-stopping (ES) strategies.

These variations produced five BNeuralT settings: (i) ES train-
ing of BNeuralT having sigmoid nodes, 0.1 learning rate, and 0.5
leaf generation rate; (ii) ES training of BNeuralT having sigmoid
nodes, default learning rate, and 0.5 leaf generation rate; (iii)
ES training of BNeuralT having ReLU nodes, 0.1 learning rate,
and 0.5 leaf generation rate; (iv) ES training of BNeuralT having
sigmoid nodes, 0.1 learning rate, and 0.4 leaf generation rate; and
(v) without ES training of BNeuralT having sigmoid nodes, 0.1
learning rate, and 0.5 leaf generation rate.

Multiple MLP settings were tried. Out of which, some best
performing settings were: (i) ES training of MLP having sigmoid
nodes and 0.1 learning rate; (ii) ES training of MLP having sigmoid
nodes and default learning rate; (iii) ES training of MLP having

sigmoid nodes, 0.1 learning rate, and L2-norm regularization; (iv)

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

E
a
(
w
e

D
g
s
S
f
s

5

5

t
M
t
s
l
w
r
w

d
l
a
p
a
p
a
a
r
G
o

M
(
c
r
t
o
w
c
e
a

m
1
w
D
T
w
e
a
p
a
a
w
w

1
a
g
2
i
c
B

S training of MLP having sigmoid nodes, default learning rate,
nd L2-norm regularization; and (v) experiment setting same as
i) but without ES; and (vi) experiment setting same as (ii) but
ithout ES. Other trials were using dropout with and without
arly stopping.
For each algorithm (BNeuralT, MLP, HFNTS, HFNTM, MONT3,

T, RF GP, NBC, and SVM), each optimizer (GD, MGD, NAG, Ada-
rad, RMSprop, and Adam), and each variation of hyperparameter
etting, there were 110 experiments (cf. Tables A2 and A3 in
upplementary). We repeated each experiment for each dataset
or 30 independent runs, and their average performance on test
ets was evaluated.

. BNeuralT performance

.1. Selection of the best performing setting

We selected the best performing setting based on the average
est accuracy computed over 30 independent runs of BNeuralT,
LP, HFNTS, HFNTM, MONT3, DT, RF, GP, NBC, and SVM to report

hem in detail in this section. The best performing BNeuralT
etting was the ‘‘ES training of BNeuralT having sigmoid nodes, 0.1
earning rate, and 0.4 leaf generation rate’’. The best MLP setting
as ‘‘ES training of MLP having sigmoid nodes and default learning
ate’’. We found that HFNTS, HFNTM, DT, RF, GP, NBC, and SVM
orked best with their recommended setting.
We found that collectively on all classification and regression

atasets, BNeuralT with sigmoid nodes, 0.1 learning rate, and 0.4
eaf generation rate trained using RMSprop performed the best
mong all experiment versions of all algorithms. This setting
roduced an average accuracy of 83.2% across all datasets with
n average of 222 trainable parameters. This same setting also
erformed the best across all classification datasets among all
lgorithms, i.e., it produced an average accuracy of 89.1% with
n average of 261 trainable parameters. In fact, the top six best
esults over classification datasets were from BNeuralT settings.
P algorithm came 7th with an average classification accuracy
f 86.79%. MLP with sigmoid node and ES training using MGD

optimizer with default learning performed 8th with an average
accuracy of 86.78% with an average 1970 trainable parameters.

MLP, however, performed slightly better on regression prob-
lems than the other algorithms. MLP with sigmoid node and ES
training using NAG optimizer with default learning rate produced
an average regression fit value of 0.775. Whereas BNeuralT with
sigmoid nodes, 0.1 learning rate, and 0.4 leaf generation rate
trained using RMSprop optimizer produced an average regression
fit value of 0.727. It is important to note that this performance of
BNeuralT comes with a much lower average trainable parameter.
BNeuralT used only 152 trainable parameters compared to MLP
that used 1041 parameters. This means BNeuralT’s performance
comes with an order magnitude less parameter than MLP on both
classification and regression tasks.

Table 2 reports the details of each algorithm’s best-performing
settings. However, exhaustive lists of 110 experiments, from
which we selected these best performing settings, are provided
in Supplementary Tables A2 and A3.

5.2. BNeuralT models summary

BNeuralT classification models summary. Table 2 suggests that
BNeuralT performance on both classification and regression prob-
lems is highly competitive with MLP and other algorithms. For
example, the average performance of BNeuralT’s RMSprop on all
classification problems is 2.65% (average accuracy: 89.1%) higher
than the nearest best performing non-BNeuralT algorithm. The
best MLP model offered an average accuracy of 86.8%, and MLP
72
with a 0.4 dropout rate using Adam produced an 85.9% accuracy.
Other algorithms were as follows: HFNTS, 78.9%; HFNTM, 72.4%;
MONT3, 83.1%; DT, 81.3%; RF, 86.4%; GP, 86.8%; NBC, 78.2%; and
SVM, 84.1%. For this performance, BNeuralT uses only 13.25%
(w = 261) trainable parameters than MLP’s 1969 parameters.
The structures of some select best performing BNeuralT classi-
fication models are shown in Fig. 5, where black edges indicate
dendrites; and green, blue, red, and black nodes, respectively
indicate inputs, dendritic nonlinearities, root, and class nodes.

The average tree size of BNeuralT with P[leafp < p] = 0.5 and
RMSprop was 119 (89% accuracy). The average tree size of HFNTM,
ONT3, and HFNTS algorithms were 29 (72.4% accuracy), 36

83.1% accuracy), and 92 (78.9% accuracy), respectively. Since tree
onstruction and forward pass computation are similar for BNeu-
alT, HFNT, and MONT algorithms, there is a trade-off between
he model’s compactness and accuracy. In fact, this produces a set
f trade-off solutions (between accuracy and complexity). Along
ith this set of Pareto solutions, one can choose which is the best
andidate solution for the given machine learning problem under
xamination: more accurate but less sustainable or a little less
ccurate but more robust and sustainable.
The forward pass computation time on a single example (in

ultiple of 10−6 s) of BNeuralT was 11.2 s, whereas MLP took
288; DT, 3.1; RF, 485.4; GP, 455.6; NBC, 31.9; and SVM, 16.1 s. DT
as the fastest, and BNeuralT was the second-fastest. However,
T has a much lower accuracy (81.3%) than BNeuralT (89.1%).
he time computation is difficult to compare as the algorithms
ere implemented in different programming languages (Pereira
t al., 2017). BNeuralT was implemented in Java 11, and all other
lgorithms were implemented in Python 3.5. However, BNeuralT’s
erformance on classification problems was clearly better among
ll algorithms. This is further evident from BNeuralT’s collective
verage accuracy of all optimizers on all classification datasets
as 86.1%. Whereas on all optimizers, MLP’s average accuracy
as 83.8%, tree algorithms had 80.4%, and other algorithms had

83.6% accuracy.
We selected BNeuralT’s best optimizer RMSprop for the statis-

tical significance test. This test was designed to examine whether
the performance of BNeuralT’s RMSprop is statistically significant
than that of the other algorithms. Table 3 presents Kolmogorov–
Smirnov (KS) test results on two samples to examine the null
hypothesis that there is no difference between the performance
distributions of BNeuralT’s RMSprop and other algorithms. The
results show that for most datasets and most algorithms, the
classification results of BNeuralT’s RMSprop show statistical sig-
nificance over other algorithms’ performance as the null hypoth-
esis of no difference is rejected in most cases. This was the
case, despite using a restrictive Bonferroni correction to adjust
p-values. Wilcoxon signed-rank test and Independent T-test in
Supplementary Table A4 and Table A5 also favor BNeuralT’s
RMSprop.

BNeuralT regression models summary. MLP’s Adam performed
best for regression problems. MLP’s Adam produced an average
regression fit of 0.772 without dropout and 0.754 with dropout
on all datasets. BNeuralT’s RMSprop offered an average regression
fit of 0.727, which differs only by 5.8% with the best MLP result.
This performance of BNeuralT comes with the use of only 14.6%
trainable parameters than the parameters used by the MLP (w =
014). (Note that an MLP dropout model during its test phase uses
ll weights since dropout only regularizes weights by averaging
radient over epochs during the training phase (Srivastava et al.,
014).) This suggests that BNeuralT is highly capable of learn-
ng data with very low complexity with a faster forward pass
omputation time. The structure of some select best performing
NeuralT regression models is shown in Fig. 6.

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83
Fig. 5. Classification trees. (a)–(i) show test accuracy and tree size of select high performing trees of datasets. The black node in a tree is its root node, class output
nodes are in red, function nodes are in blue, and leaf nodes are in green. The link connecting nodes are neural weights. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
The average tree size of BNeuralT with P[leafp < p] = 0.5
and RMSprop for regression problems was 64 (Lr2 = 0.675).
The average tree size of HFNTS and HFNTM algorithms were
127 (Lr2 = 0.562) and 90 (Lr2 = 0.567) respectively. Here,
BNeuralT was able to perform accurately compared to genetically
optimized HFNT algorithms with less complex models.

The statistical tests in Table 3 also suggest that BNeuralT’s
RMSprop performance distribution on regression problems com-
pared with MLP’s Adam is statistically insignificant only on the
Friedman dataset. On all other regression datasets, BNeuralT’s
RMSprop performance is equally significant as other algorithms.

BNeuralT pattern recognition (MNIST) models summary. RM-
Sprop optimizer was found robust and converging fastest for
classification models (cf. Section 5.3). Hence, we train BNeu-
ralT on the MNIST character classification dataset (LeCun et al.,
2020) using RMSprop. We fed BNeuralT with pixels of MNIST
73
character images since we do not use convolution in BNeuralT.
We aimed at generating varied BNeuralT models with varied
trainable parameters length by varying tree size. We hoped that a
low complexity (few parameters) BNeuralT model would perform
competitively with a few reported state-of-the-art. Therefore, we
compared BNeuralT performance to gauge its robustness not only
on learning small-scale problems reported in Table 2 but on
large-scale learning problems like MNIST. Table 4 summarizes
BNeuralT models compared with the performances of tree-based
state-of-the-art classification algorithms.

Table 4 presents MNIST (pixels) results compared with clas-
sification trees. BNeuralT performs the best among the reported
trees that work on MNIST (pixels) for character classification.
However, convolution of images has been proven efficient for im-
age classification problems. For example, CapsNet (Sabour, Frosst,
& Hinton, 2017), a state-of-the-art algorithm on MNIST (convolu-

tion), has an error rate of 0.25, but it uses 8 million parameters.

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

t
r

Fig. 6. Regression trees. (a)–(e) show best performing tree structure of the respective dataset, their accuracy and tree size shown in brackets. The red node in a
ree is the root node (output node), function nodes are blue, and leaf nodes are green. The link connecting nodes are neural weights. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
BNeuralT and other algorithms performance as per average (avg.) accuracy (1−LError(·)) and avg. regression fit (Lr2 (·)) on the test sets of 30 independent runs for
nine classification and five regression learning problems. Both accuracy and regression fit take 1.0 as the best value. Trainable parameters (w) of BNeuralT and MLP
are neural weights. The best accuracy among all algorithms is marked in bold. Both BNeuralT and MLP are trained on an online mode, whereas other algorithms
take offline mode training. Average forward pass (single example prediction time) wall-clack time is τ ×e−6 s (a lower value is better), where τ J and τ P respectively
indicate time for Java 11 and Python 3.7. Symbol M0.4 indicates MLP with a dropout rate of 0.4, (Avg.) indicates the average performance of an optimizer over
datasets, and [Avg.] indicates the average performance of optimizers on a dataset. The classifier results of models MONT3 and HFNTM are from Ojha and Nicosia
(2020). RF† indicates random forest which is an ensemble model.

Algorithm Avg. classification accuracy [1− LError(·)] Avg. regression fit Lr2 (·)

Aus Hrt Ion Pma Wis Irs Win Vhl Gls (Avg.) Bas Dee Dia Frd Mpg (Avg.)

BNeuralT (G)

GD .862 .848 .874 .789 .968 .947 .953 .671 .580 .832 .485 .748 .323 .653 .803 .602
MGD .886 .879 .935 .806 .980 .988 .980 .726 .687 .874 .585 .804 .434 .763 .849 .687
NAG .886 .878 .938 .808 .980 .987 .978 .731 .688 .875 .585 .804 .434 .757 .851 .686
Adagrad .872 .852 .907 .780 .974 .966 .981 .697 .638 .852 .621 .819 .432 .820 .851 .708
RMSprop .895 .897 .952 .822 .986 .992 .991 .750 .732 .891 .665 .837 .492 .776 .867 .727
Adam .875 .866 .870 .791 .982 .978 .974 .599 .657 .843 .579 .765 .360 .587 .825 .623
[Avg.] .880 .870 .913 .799 .978 .976 .976 .696 .663 .861 .587 .796 .412 .726 .841 .672

MLP (M)

GD .870 .831 .880 .763 .979 .968 .973 .806 .614 .854 .697 .821 .481 .736 .844 .716
MGD .874 .831 .907 .774 .981 .977 .985 .853 .629 .868 .718 .826 .486 .804 .852 .737
NAG .873 .828 .902 .772 .980 .976 .984 .852 .640 .868 .718 .826 .485 .786 .851 .733
Adagrad .870 .827 .723 .670 .944 .736 .877 .462 .362 .719 .407 .584 .221 .571 .630 .482
RMSprop .874 .832 .872 .758 .980 .969 .991 .804 .605 .854 .718 .826 .486 .866 .866 .752
Adam .876 .833 .882 .774 .984 .972 .991 .826 .635 .863 .721 .829 .490 .943 .874 .772
[Avg.] .873 .830 .861 .752 .975 .933 .967 .767 .581 .838 .663 .785 .442 .784 .820 .699
M0.4Adam .871 .815 .912 .774 .971 .960 .973 .806 .645 .859 .707 .828 .491 .884 .862 .754

Trees

HFNTS .824 .825 .871 .754 .973 .912 .918 .481 .544 .789 .576 .794 -0.062 .728 .775 .562
HFNTM .826 .77 .822 .716 .935 .811 .824 .409 .399 .724 .608 .803 -0.13 .715 .838 .567
MONT3 .889 .809 .898 .799 .962 .989 .952 .55 .629 .831
DT .801 .744 .890 .705 .932 .943 .897 .708 .698 .813 .431 .656 -0.12 .689 .756 .484
RF† .868 .809 .930 .752 .962 .959 .981 .745 .768 .864 .663 .829 .442 .871 .871 .735
[Avg.] .842 .791 .882 .745 .953 .923 .914 .579 .608 .804 .458 .605 .081 .601 .633 .476

Others

GP .861 .820 .916 .769 .970 .960 .983 .843 .689 .868 .648 .820 .484 .724 .801 .695
NBC .797 .833 .882 .758 .930 .953 .969 .455 .457 .782
SVM .861 .841 .880 .769 .977 .926 .978 .762 .575 .841 .647 .838 .405 .912 .861 .733
[Avg.] .840 .831 .893 .765 .959 .946 .977 .687 .574 .830 .648 .829 .445 .818 .831 .714

Parameter and time

wG 204 560 185 157 268 180 358 249 190 261 140 163 140 141 178 152
wM|wM0.4 1702 1606 1602 3602 803 1102 2304 1703 3302 1969 1801 801 1201 701 701 1041

τ
J
G 8.5 8.5 6.7 9.6 7.2 15.4 9.3 11.3 24.2 11.2 5.1 5.4 5.2 4.7 6.5 5.4

τ P
M 1173 802 628 860 410 1452 1206 412 4648 1288 1931 2031 1409 163 1074 1322

τ P
DT 1.0 4.2 1.9 1.1 1.5 6.4 5.6 1.2 4.5 3.1 2.0 2.6 1.8 0.6 2.0 1.8

τ P
RF 278.8 547.8 425.6 253.5 277.5 890.6 743.5 257.1 694.1 485.4 195.5 178.0 155.7 91.7 175.0 159.2

τ P
GP 187.2 58.6 108.7 195.8 197.6 226.1 253.7 2180 692.1 455.6 12.3 13.2 21.7 73.8 18.8 28.0

τ P
NBC 8.7 42.6 21.1 6.7 9.9 38.9 75.9 11.2 72.1 31.9

τ P
SVM 5.8 20.4 15.5 4.5 5.0 36.7 25.9 5.3 25.6 16.1 17.6 15.5 30.7 9.2 12.2 17.1
Compared to that, a BNeuralT on MNIST (pixels) used 23,835
trainable parameters for an error rate of 6.08, and another model
used 241,999 trainable parameters for an error rate of 5.19. Ob-
viously, there is a trade-off between the model’s parameters
size and accuracy. The performances of a varied range of other
algorithms on MNIST dataset are available at LeCun et al. (2020).
Our goal is to use as much compact model as we can for high
accuracy.
74
In our few trials, BNeuralT does perform competitively with
many state-of-the-art (cf. Table 4). The performance of BNeu-
ralT is better than tree-alternating optimization (TAO) (Carreira-
Perpinan & Tavallali, 2018), CART (Breiman et al., 1984), C5.0
(Quinlan, 1993), oblique classifier 1 (OC1) (Murthy, Kasif, Salzberg,
& Beigel, 1993), and generalized unbiased interaction detection
and estimation (GUIDE) (Loh, 2014) algorithms that worked on
MNIST raw pixels inputs (Zharmagambetov et al., 2019) like
BNeuralT (cf. Table 4).

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

J
o
a
s
(
d
a
6

(
s
m

t
B
t
s

Table 3
Kolmogorov–Smirnov (KS) test on two samples: BNeuralT’s RMSprop against all other algorithms for each data. The stat, pval, and post respectively indicate KS
statistic, two-tailed p-value, and Bonferroni correction post-hoc adjusted p-value. The values are marked in bold where the null hypothesis that BNeuralT’s RMSprop
and other algorithms come from the same distribution is rejected as per Bonferroni correction.
BNeuralT’s RMSprop vs. Classification Regression

Aus Hrt Ion Pma Wis Irs Win Vhl Gls Bas Dee Dia Frd Mpg

MLP

GD stat .43 .63 .73 .70 .47 .67 .60 .63 .70 .27 .30 .23 .73 .43
pval .01 0 0 0 0 0 0 0 0 .24 .14 .39 0 .01
post .07 0 0 0 .03 0 0 0 0 1 1 1 0 .06

MGD stat .40 .63 .53 .60 .43 .47 .30 .87 .60 .30 .20 .20 .20 .37
pval .02 0 0 0 .01 0 .14 0 0 .14 .59 .59 .59 .03
post .16 0 0 0 .07 .03 1 0 0 1 1 1 1 .31

NAG stat .43 .63 .63 .57 .43 .47 .33 .87 .53 .30 .20 .17 .33 .33
pval .01 0 0 0 .01 0 .07 0 0 .14 .59 .81 .07 .07
post .07 0 0 0 .07 .03 .71 0 0 1 1 1 .64 .64

Adagrad stat .43 .67 1 1 .87 1 .83 1 1 .83 1 .93 .93 1
pval .01 0 0 0 0 0 0 0 0 0 0 0 0 0
post .07 0 0 0 0 0 0 0 0 0 0 0 0 0

RMSprop stat .33 .60 .77 .67 .40 .50 .23 .60 .73 .30 .23 .20 .57 .20
pval .07 0 0 0 .02 0 .39 0 0 .14 .39 .59 0 .59
post .71 0 0 0 .16 .01 1 0 0 1 1 1 0 1

Adam stat .30 .63 .67 .63 .47 .50 .17 .70 .63 .30 .17 .17 1 .20
pval .14 0 0 0 0 0 .81 0 0 .14 .81 .81 0 .59
post 1 0 0 0 .03 .01 1 0 0 1 1 1 0 1

M0.4Adam stat .37 .50 .53 .57 .40 .77 .30 .63 .70 .30 .40 .17 .50 .17
pval .03 0 0 0 .02 0 .14 0 0 .14 .02 .81 0 .81
post .45 .01 0 0 .20 0 1 0 0 1 .19 1 .01 1

Trees

HFNTS stat .67 .70 .87 .70 .53 .53 .73 .93 .73 .47 .37 .40 .40
pval 0 0 0 0 0 0 0 0 0 0 .03 .02 .02
post 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HFNTM stat .67 .87 .83 .87 .63 .53 .77 1 .87 .43 .40 .63 .43
pval 0 0 0 0 0 0 0 0 0 .01 .02 0 .01
post 0 0 0 0 0 0 0 0 0 1 1 1 .85 .85

DT stat .90 .87 .70 .93 .87 .67 .90 .53 .33 .67 .90 .93 .77 .87
pval 0 0 0 0 0 0 0 0 .07 0 0 0 0 0
post 0 0 0 0 0 0 0 0 .71 0 0 0 0 0

RF stat .43 .73 .40 .90 .80 .57 .47 .30 .33 .30 .20 .37 .77 .20
pval .01 0 .02 0 0 0 0 .14 .07 .14 .59 .03 0 .59
post .09 0 .20 0 0 0 .03 1 .92 1 1 .41 0 1

Other

GP stat .43 .63 .57 .67 .43 .50 .33 .83 .30 .40 .37 .17 .73 .90
pval .01 0 0 0 .01 0 .07 0 .14 .02 .03 .81 0 0
post .07 0 0 0 .07 .01 .71 0 1 .14 .31 1 0 0

NBC stat .93 .57 .77 .77 .93 .57 .50 1 .97
pval 0 0 0 0 0 0 0 0 0
post 0 0 0 0 0 0 .01 0 0

SVM stat .50 .53 .70 .67 .30 .70 .47 .20 .77 .37 .13 .50 .90 .20
pval 0 0 0 0 .14 0 0 .59 0 .03 .96 0 0 .59
post .01 0 0 0 1 0 .03 1 0 .31 1 .01 0 1
p
O
o
c

We compare BNeuralT with biologically plausible models of
ones and Kording (2021) that performed binary classification
n MNIST’s two classes (class 3 and class 5). This is, however,
trivial comparison as BNeuralT works on all classes and uses

igmoidal dendritic nonlinearities, whereas Jones and Kording
2021)’s models work on binary class and use Leaky ReLU as den-
ritic nonlinearities. They obtained an error rate of 7.8%, 3.65%,
nd 8.89% respectively with 1-tree (w = 2047), 32-tree (w =
5,504), and A-32-tree (w = 65,504) models. In contrast to Jones

and Kording (2021)’s models, BNeuralT performs classification on
all ten classes of MNIST pixels. Obviously, some classes are easier
to learn than others (see Fig. 7), and training a binary classifier
presents an entirely different difficulty level than a multi-class
classification. However, although a one-to-one comparison is not
possible in such a scenario, it may be worth noting that BNeu-
ralT obtained an error rate of 7.74% (w = 11,987) and 6.08%
w = 23,835) on all ten classes. Therefore, the sparse stochastic
tructure of BNeuralT (e.g., Fig. 8) stands competitive with the
odels of Jones and Kording (2021).
Moreover, BNeuralT models show a linear relation between

rainable parameters and their accuracy (cf. Table 4). Hence,
NeuralT models with relatively higher parameters and exhaus-
ive hyperparameter tuning are able to produce efficient re-

ults. Fig. 7 shows an example BNeuralT (20K) model’s training

75
convergence and MNIST character classification performance on
a receiver operating characteristic curve plot, where BNeuralT
(20K) model for all classes produces a very high sensitivity (true-
ositive rate) and very low specificity (low false-positive rate).
f all classes, we may arrange classes on the scale of hardness
f learnability in the order of ‘‘easiest to hardest’’ to learn as
1, c6, c0, c7, c5, c4, c9, c2, c3, and c8 (cf. Fig. 7).

5.3. BNeuralT convergence analysis

We evaluated average asymptotic convergence profiles of
all six SGD optimizers for optimizing BNeuralT on classification
and regression problems (cf. Figs. 9, 10, and 11). For such an
analysis, we recorded training and test accuracies of each training
epoch. Since we ran algorithms for 30 independent instances,
we analyzed the average trajectory of all 30 runs. In each run,
an ad hoc BNeuralT architecture was generated, which could
vary in tree size between a minimum ‘‘outputs × 2’’ nodes to a
maximum (mp+1

−1)/(m−1) nodes. Hence, BNeuralT architecture
and trainable parameters varied stochastically at each instance
of the experiment. Such high entropy network architectures pose
difficulties for SGDs to perform well consistently. We, therefore,

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

t
a
Z

v
r
a
r
a
a
a
H
o
b
f
a
i
c
T
G
p

B
g
h
r
p
v
R
p

Fig. 7. BNeuralT-20K (23,835 trainable parameters w) model’s RMSprop training
and test error over 70 epochs on the MNIST dataset. Zoom-in for BNeuralT
performance on receiver operating characteristic curve plots on training (inner
top) and test (inner bottom) sets.

Table 4
Test error rate % of ad hoc BNeuralT (G) models with a varied number of
rainable parameters on the MNIST dataset. All models are trained for 70 epochs,
nd where denoted † is for 25 epochs. The decision tree models are reported in
harmagambetov et al. (2019).

Algorithms Error(%)

BNeuralTs

BNeuralT-10K (pixels) 7.74
BNeuralT-18K (pixels) 6.58
BNeuralT-20K (pixels) 6.08
BNeuralT-200K† (pixels) 5.19

Classification trees

GUIDE (pixels, oblique split) 26.21
OC1 (pixels, oblique split) 25.66
GUIDE (pixels) 21.48
CART-R (pixels) 11.97
CART-P (pixels) 11.95
C5.0 (pixels) 11.69
TAO (pixels) 11.48
TAO (pixels, oblique split) 5.26

investigated BNeuralT models’ accuracy against their architecture
(number of parameters) (cf. Fig. 12).

BNeuralT classification models convergence. Fig. 9 shows con-
ergence (training and test errors) profiles of ES training of BNeu-
alT having sigmoid nodes, 0.1 learning rate, and 0.4 leaf gener-
tion rate. With this BNeuralT’s setting, we observe that BNeu-
alT’s RMSprop converges the fastest among all SGDs. RMSprop
lso outperformed all other optimizers. NAG and MGD were
symptotically closer to RMSprop optimizer. Like RMSprop, NAG
nd MGD showed monotonically increasing training convergence.
owever, on the test sets, we observe that the models started
verfitting. This motivated us to use early-stopping with restore
est. Adagrad showed the most interesting convergence pro-
ile as initially, it had worse convergence among all optimizers,
nd while approaching higher epochs, it started rapidly improv-
ng its convergence. Thus, over an asymptotic behavior, Adagrad
onverged to a similar accuracy to that of RMSprop’s accuracy.
he optimizers NAG and MGD behave equivalently. Adam and
D were found sensitive to BNeuralT architecture (and trainable
arameters).

NeuralT regression models convergence. Fig. 10 shows conver-
ence (training and test errors) profiles of ES training of BNeuralT
aving sigmoid nodes, 0.1 learning rate, and 0.4 leaf generation
ate. The convergence profiles of optimizers on five regression
roblems suggest that RMSprop and Adagrad were better con-
erging optimizers. Similar to its classification problems profile,
MSprop converged faster than other optimizers for regression
roblems. Adagrad showed slower convergence than RMSprop.
76
However, unlike its performance on classification problems, Ada-
grad showed a more stable convergence profile for regression.
Contrary to classification problems, overfitting occurred only oc-
casionally for regression problems when comparing training and
test convergence profiles.

BNeuralT and MLP settings convergence. In Fig. 11, we compare
convergence of six optimizers for optimizing both BNeuralT and
MLP on various settings. We show this comparison on ‘‘glass’’
and ‘‘miles per gallon’’ datasets as an example. (Supplementary
shows convergence of all other datasets on various settings.) In
Fig. 11, we observe that the learning rate 0.1 produces stable
convergence for all optimizers. For learning rate 0.1, Adam does
not converge as good as other algorithms (cf. Figs. 11(a) and
11(d)). However, Adam does converge when learning rate is
0.001 (cf. Figs. 11(b), 11(e), 11(h), and 11(k)). For learning rate
0.001, Adagrad does not converge as good as others. It may
be observed that Adagrad’s adaptively decreasing learning rate
property made the convergence very slow and it may require
more epochs to converge (cf. Figs. 11(b), 11(e), 11(h), and 11(k)).

Convergence of optimizers on ReLU. For ReLU activation func-
tion, Adagrad and GD being the slowest converging optimizers
performed better than other faster converging optimizers like
RMSprop, Adam, and NAG (cf. Figs. 11(c), 11(f), 11(l) and 11(l)).
In fact, when using ReLU activation function for regression prob-
lems, BNeuralT suffered from exploding gradient issues when
using optimizers like GD, MGD, NAG, and Adam during some
instances of runs of some datasets. Adagrad, however, remained
unaffected by exploding gradient issue. This is due to its decreas-
ing convergence speed. BNeuralT’s performance with ReLU, due
to its high sparsity, was affected by exploding gradient effect
more than the MLP, which showed more tolerance to explod-
ing gradient effect due to its large number of parameters (cf.
Supplementary Fig. A3).

Convergence of accuracy against trainable parameters. BNeu-
ralT’s tree size (proportional to trainable parameter) and test
accuracy in Fig. 12 suggest that RMSprop compared to other
optimizers can optimize ad hoc structure better. We observed
that the accuracy of BNeuralT increases with increasing tree
size. However, accuracy dropped for some outliers in the con-
nected scatter plot in Fig. 12. This was because many points
were within a specific range. For classification problems, except
for RMSprop, NAG was another better optimizer. For regression
problems, along with RMSprop, Adagrad was another better per-
forming optimizer. BNeuralT’s RMSprop optimizer showed rather
more stable performance for stochastically varying architectures
compared to other optimizers. For the pattern recognition MNIST
dataset, RMSprop optimizer was used, and it showed a linear
increase in accuracy for increasing order of tree size.

6. Discussion

We designed and investigated a learning system called BNeu-
ralT capable of solving three classes of machine learning prob-
lems: classification, regression, and pattern recognition. We as-
sessed the capability of this neural tree algorithm as a single
neuron model approximating computational dendritic tree-like
behavior (cf. Figs. 2 and 4). This algorithm can also be con-
sidered a highly sparse NN trained using SGD optimizers. To
train BNeuralT using SGDs, we designed a recursive backpropa-
gation algorithm. Therefore, we broadly assessed three aspects
of a learning system, i.e., its performance on (i) stochastically
generated highly sparse models, (ii) sigmoid and ReLU functions
and their dendritic interactions with internal nodes, and (iii)
optimizers asymptotic convergence behavior. We had a diverse

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

w
i
s
r
p
f
c
r
d

a
a
h

Fig. 8. BNeuralT-20K (pixels) MNIST model (tree structure). This model has 3664 function nodes (blue nodes), 16,507 leaf nodes (green nodes), and ten class nodes
(red nodes in the inner circle), and the root node (in black) in the center. This model has 6738 edges (gray lines connecting nodes). These lines also represent neural
weights. Each blue node also has its bias. Edge weights and bias together make 23,835 tree’s trainable parameters. This model has a test accuracy of 94% (an error
rate of 6.08%). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
range of classification and regression problems and algorithms to
compare BNeuralT’s capabilities over these dimensions.

Since BNeuralT resembles a highly sparse NN, its performance
as assessed against a MLP (and a MLP with dropout rate sim-

lar to the probability of keeping nodes in BNeuralT) for their
imilar versions of SGD training. Six classification trees of BNeu-
alT, among all other algorithms and experiments, were top-
erforming models with a very low number of parameters. In
act, BNeuralT performed better against MLP dropout on classifi-
ation problems, and it statistically had a similar performance on
egression problems. This BNeuralT’s performance against MLP’s
ropout regularization technique confirms that

stochastic gradient descent training of any a priori arbitrarily
‘‘thinned’’ network has the potential to solve machine learning
tasks with equivalent or better degree of accuracy than a fully
connected symmetric and systematic NN architecture.

We used six different SGD optimizers for optimizing BNeuralT
nd MLP. Each optimizer behaved differently in terms of their
symptotic convergence depending on what problem they solve,
ow their learning rate behaved over the training epochs, and
77
what activation function was used (cf. Figs. 9, 10, and 11). For
example, with a 0.1 learning rate, RMSprop was the best among
others for BNeuralT optimization over classification problems. For
regression problems, both RMSprop and Adagrad performed well.
Adagrad, however, was slow on classification problems. Since
optimizers had to optimize the same architecture in an instance,
it may be the continuous-variable output in the case of regression
problems has helped Adagrad perform better than the discrete
variable output in classification problems.

The use of activation functions influenced the performances
of SGD optimizers. The sigmoid function proved to be more
efficient with RMSprop, NAG, and MGD. Whereas ReLU proved
to be efficient with Adagrad. This may be related to Adagrad’s
slow convergence speed that avoided weights to explode too
quickly compared to faster converging optimizers like RMSprop
(cf. Fig. 11(a–b), (d–e), (g–h)). This phenomenon of Adagrad may
be confirmed since GD being the slowest converging SGD, was
also found efficient when ReLU is used (cf. Fig. 11(c, f, and e)).
Additionally, Adagrad converged better with a learning rate of 0.1
than 0.001 (e.g. Fig. 11(a–b)). This is because Adagrad was too
slow at earlier epochs that prevented it from converging within
a fixed number of training epochs.

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

c
1
−

o

Fig. 9. Early-stopping training of BNeuralT having sigmoid nodes, 0.1 learning rate, and 0.4 leaf generation rate. BNeuralT average convergence trajectory performance
omputed over 30 independent runs for six optimizers over nine classification problems. The x-axis, log10(epochs) has the range [0.0, 2.7] and is the training epochs
to 500. The y-axis, − log10(LError(G)) has the range [0, 10] and is the log scale of the training and test accuracies. An error of 0.01 (accuracy 99%) on the
log10(LError(G)) scale has a value of 2.0 and an accuracy of 90% has a value of 1.0. Thus, a higher value on the y-axis is better. Error bar is the standard deviation

f − log10(LError(G)) and it indicates stochasticity of the convergence that helps an optimizer escape local minima better. Thus, a larger length is better. For each
data, training and test convergence pair are plotted for 500 epochs (on the log scale, 2.7). RMSprop, MGD, NAG, Adagrad, GD, and Adam are respectively indicated
in blue, orange, green, red, purple, and brown colors, respectively, with symbols diamond, triangle, circle, downward triangle, and star. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
l
t

BNeuralT is operationally similar to HFNT and MONT algo-
rithms. The HFNT and MONT algorithms model structures were
genetically optimized as opposed to BNeuralT structure. The bet-
ter performance of BNeuralT compared to HFNT and MONT shows
that the stochastic structure of BNeuralT has a high potential
to solve machine learning problems (cf. Table 2). However, this
performance comparison also shows that BNeuralT models can be
further compacted because both HFNT and MONT on classifica-
tion problems had smaller average tree sizes than BNeuralT. This
78
confirms that optimization of structure made HFNT and MONT
more compact, although their accuracies were slightly compro-
mised. On regression problems, however, BNeuralT performed
better than HFNT both in terms of tree size and regression fit.

BNeuralT’s performance compared to MLP’s (with and with-
out dropout) models and genetically optimized HFNT and MONT
models confirms Occam’s razor principle of parsimony for machine
earning model selection that the simple models possess bet-
er generalization capability than the complex models (Blumer,

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

l

Fig. 10. BNeuralT average convergence trajectory performance computed over 30 independent runs for six optimizers over five regression problems. The x-axis,
og10(epochs) has the range [0.0, 2.7] and is the training epochs 1 to 500. The y-axis, log10(LMSE(G)) is the training and test sets mean square error (MSE) on the
log scale. An MSE 0.01 on the log scale has a value of −2.0. Thus, a lower value is better. Error bar is the standard deviation of log10(LMSE(G)) and it indicates
stochasticity of the convergence that helps an optimizer escape local minima better. Thus, a larger length is better. For each dataset, training and test convergence
pair are plotted for 500 epochs (on the log scale, 2.7). The optimizers RMSprop, MGD, NAG, Adagrad, GD, and Adam are respectively indicated in blue, orange, green,
red, purple, and brown colors with respective symbols diamond, triangle, circle, down triangle, and star. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Ehrenfeucht, Haussler, & Warmuth, 1987). Indeed, it is similar
to the sparsity of the biological brain that a sparse network gen-
eralizes better or as good as a dense network (Friston, 2008;
Herculano-Houzel, Mota, Wong, & Kaas, 2010; Hoefler, Alistarh,
Ben-Nun, Dryden, & Peste, 2021). Moreover, it has been argued
that a dense network is often overparameterized, and only a
minute fraction of it is required for generalization (Denil, Shakibi,
Dinh, Ranzato, & De Freitas, 2013). Our result is in a similar
line because BNeuralT, with only an average of 222 parameters,
which is only 13.5% of parameters than that of MLP’s average
1638 parameters, is able to generalize machine learning problems
better or with similar accuracy than MLP. Additionally, the spar-
sity and compactness of BNeuralT models reduce memory usage
and CO2 footprint as they require less memory and computational
resources than dense networks.

The decision tree algorithms DT and RF (ensemble of DTs)
computationally have dedicated paths from the root to leaves
(Breiman, 2001; Breiman et al., 1984). BNeuralT computationally
also has dedicated information processing paths but from leaves
to root. Although these algorithms differ in how nodes propagate
information, a performance comparison suggests that BNeuralT
has superior or competitive performances compared with DT
and RF (cf. Table 2). This performance is noticeable since RF
is an ensemble algorithm that, using bootstrapping, combines
100 DTs to construct a predictor (Breiman, 2001). Hence, the
better performance of a standalone randomly generated BNeuralT
model shows its high capabilities. Especially when RF being an
ensemble of many trees, is more complex than a small and com-
pact BNeuralT tree. Moreover, DTs are symbolic machine learning
algorithms whose models offer inference ability as opposed to the
black-box nature of NNs because of their ability to induce data
using dedicated paths from the root to leaves. Likewise, as shown

in Figs. 5 and 6,

79
BNeuralT has dedicated information processing paths from leaves
to root, and such paths related to particular subsets of inputs
may be analyzed, which potentially may offer inference ability
to BNeuralT.

Thus, BNeuralT models are potentially inferable as opposed to
NNs. However, this is a challenging task since BNeuralT’s nodes
combine inputs and perform a nonlinear or linear transformation.

We assessed BNeuralT performance against GP, NBC, and SVM.
These three algorithms take Gaussian kernels. That is, these algo-
rithms have a powerful approach towards prediction. GP and NBC
algorithms are robust and powerful algorithms if input data fol-
low a normal distribution. Similarly, SVM uses Gaussian kernels
to project input to high dimensions, increasing the separability
of data points to help to classify them (Cortes & Vapnik, 1995).
Better performance of BNeuralT compared to these algorithms
on classification and regression problems (cf. Table 2) suggests
that BNeuralT offers an efficient alternative to these algorithms as
BNeuralT does not make any assumption about data to generate
a hypothesis (model) when fitting or classifying data.

The biologically plausible design of BNeuralT comes from its
structural arrangement that takes random repeated input and has
a computational dendritic tree-like organization with sigmoidal
nonlinearities or ReLU linearity through its internal nodes (Lon-
don & Häusser, 2005). The biologically plausible computational
dendritic tree-like models 1-tree and 32-tree have a regular struc-
tural arrangement where repeated inputs are fed to a neuron
systematically to form a tree structure (Jones & Kording, 2021).
Whereas BNeuralT takes randomly generated inputs and takes
a non-systematic stochastic approach to its tree construction
(cf. Fig. 2). Moreover, BNeuralT works on multi-class classifica-
tion; and 1-tree, 32-tree, and A-32-tree models work on binary

classification (Jones & Kording, 2021).

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

f

Fig. 11. Comparison of convergence of optimizers for optimizing BNeuralT and MLP and optimizers convergence over varied learning rate settings and activation
unction usage. (a)–(f) Classification problem where y-axis is an error rate. (g)–(l) Regression problems where y-axis is an MSE. The x-axis, log10(epochs) has the range
[0.0, 2.7] and is the training epochs 1 to 500. For MLP, early-stopping method show values for optimizes only upto the epochs where training stopped. Learning
rate η value default indicates that RMSprop, Adam, and Adagrad has a value of 0.001 as their learning rate and GD, NAG, and MGD has a value of 0.01.
BNeuralT’s comparison with 1-tree, 32-tree, A-32-tree models,
although limited, presents a noticeable performance. The error
rate of BNeuralT on the MNIST dataset on all ten classes clas-
sification was 6.08% with 23 835 parameters. The error rates of
1-tree, 32-tree, A-32-tree models on the binary classification of
classes 3 and 5 of the MNIST dataset were reported as 7.8%, 3.65%,
and 8.89%, respectively, and they had 2047, 65 504, 65 504 pa-
rameters, respectively. This result confirms BNeuralT’s potential
to produce capable learning systems, especially when BNeuralT’s
structural randomness (cf. Fig. 2) is closer to the randomness
(if any) of biological computational dendritic-tree (Travis et al.,
2005).
80
7. Conclusions

We propose a new algorithm Backpropagation Neural Tree
(BNeuralT). Our BNeuralT algorithm plausibly has a biological
dendritic tree-like modeling capability. It has a single neuron-like
model with sigmoidal dendritic nonlinearities or rectified linear
unit (ReLU) based dendritic linearity. It uses random repeated
inputs at the leaves of subtrees attached to a single neuron, which
is the root of a tree. BNeuralT uses stochastic gradient descent
(SGD) optimizers to optimize stochastically generated sparse
tree structures that are potentially minimal subsets of neuron
networks (NNs). We propose a recursive error backpropagation

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

o
(
b
a
I
c
t
r

a
a
f

p
r
i
a
h
f
o
m

Fig. 12. BNeuralT model’s tree size |G| (x-axis) compared with its average (avg.) accuracy Lacc(G) = (1 − LError(G)) (y-axis has range [0, 1]) on the training sets
f nine classification problems, five regression problems, and one pattern recognition problem. For the pattern recognition problem, BNeuralT model’s tree size |G|
x-axis) is in the multiple of 1000. The optimizers RMSprop, MGD, NAG, Adagrad, GD, and Adam are respectively indicated in blue, orange, green, red, purple, and
rown colors, respectively, with symbols diamond, triangle, circle, downward triangle, and star. For a few cases, convergence is linear to tree size, however for
few, high accuracy is achieved with smaller trees. For MNIST, RMSprop has 10-epoch of stochastic online training and shows a linear relation with tree size.

n all tasks, the convergence of RMSprop (blue diamonds) is the best, followed by NAG (green squares) and MGD (yellow triangles). Adagrad (red circles) shows
ompetitive performance with RMSprop (blue diamonds) for regression problems. Classification datasets have green and blueish hues because NAG and RMSprop are
op optimizers, and for regression datasets, plots appear to be red and blueish hue because of RMSprop and Adagrad are top optimizers. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
B
l

lgorithm to apply SGDs to train trees that require pre-order
nd post-order traversal in a depth-first-search manner for their
orward pass and backward pass computations.

The results show that our stochastically generated biologically
lausibly tree structure and recursive error backpropagation algo-
ithm have the capacity to learn a wide variety of machine learn-
ng problems. Moreover, we show that any stochastically gener-
ted tree structures can learn machine learning problems with
igh accuracy, and structure optimization may only be required
or making models more compact. However, there is a trade-
ff for compacting models as we found that making the models
ore compact means compromising on accuracy. Additionally,
81
NeuralT’s strong performance compared to MLP’s dropout regu-
arization technique confirms that SGD training of any ‘‘a priori’’
arbitrarily ‘‘thinned network’’ (spares tree structures) has the po-
tential to solve machine learning tasks with equivalent or better
degree of accuracy.

The sigmoidal dendritic nonlinearities (sigmoid function used
at tree’s root and internal nodes) performed obviously better
than a linear dendritic tree (sigmoid function used at tree’s root
and ReLU at internal nodes). However, the linear dendritic tree
differed from the best performing nonlinear dendritic tree by
only about 10% accuracy. Nevertheless, it was comparable with a
few nonlinear dendritic tree models, especially with those trained
with gradient descent (GD), momentum GD, and Adam. This

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

s
c

w
s
o
f
r
b
s
f
r
w
a
m

D

c
t

A

l
t
t

R

B

B

B

B

C

C

O

O

P

P

P

P

Q

Q

hows that purely single node BNeuralT models might solve ma-
hine learning problems efficiently.
On MNIST (pixels) character classification dataset, BNeuralT,

hen loosely compared with 1-tree and 32-tree biologically plau-
ible dendritic tree algorithms, was found competitive. More-
ver, BNeuralT performed best among select tree-based classifiers
or the classification of MNIST characters. On classification and
egression problems, the overall performance of BNeuralT was
etter than some varied types of well-known algorithms: deci-
ion tree, random forest, Gaussian process, naïve Bayes classi-
ier, and support vector machine. Such a performance of BNeu-
alT came from a minimal hyperparameter setup. Therefore, this
ork shows that our newly designed learning algorithm gener-
tes high-performing and parsimonious (therefore sustainable)
odels balancing the complexity with descriptive ability.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ppendix A. Supplementary data

Supplementary material related to this article can be found on-
ine at https://doi.org/10.1016/j.neunet.2022.02.003. Supplemen-
ary provides additional plots, statistical tests, hyperparameters
able, data, and source code links.

eferences

ache, K., & Lichman, M. (2013). UCI machine learning repository. https://archive.
ics.uci.edu/ml/index.php (Accessed on: 01 Apr 2020).

engio, Y., Boulanger-Lewandowski, N., & Pascanu, R. (2013). Advances in
optimizing recurrent networks. In IEEE international conference on acoustics,
speech and signal processing (pp. 8624–8628). IEEE.

eniaguev, D., Segev, I., & London, M. (2020). Single cortical neurons as deep
artificial neural networks. BioRxiv, Article 613141.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1987). Occam’s

razor. Information Processing Letters, 24(6), 377–380.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
reiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and

regression trees. CRC Press.
arreira-Perpinan, M. A., & Tavallali, P. (2018). Alternating optimization of

decision trees, with application to learning sparse oblique trees. In Advances
in neural information processing systems, Vol. 31 (pp. 1211–1221). Curran
Associates, Inc..

hang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1–27.

Chen, Y., Yang, B., & Abraham, A. (2007). Flexible neural trees ensemble for stock
index modeling. Neurocomputing, 70(4–6), 697–703.

Chen, Y., Yang, B., Dong, J., & Abraham, A. (2005). Time-series forecasting using
flexible neural tree model. Information Sciences, 174(3), 219–235.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),
273–297.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., et al. (2012). Large
scale distributed deep networks. In Advances in neural information processing
systems (pp. 1223–1231).

Denil, M., Shakibi, B., Dinh, L., Ranzato, M., & De Freitas, N. (2013). Predicting
parameters in deep learning. In Advances in neural information processing
systems.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR:
A library for large linear classification. Journal of Machine Learning Research,
9, 1871–1874.

Farhoodi, R., & Kording, K. P. (2018). Sampling neuron morphologies. BioRxiv,
Article 248385.

Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology,
4(11), Article e1000211.

Hay, E., Hill, S., Schürmann, F., Markram, H., & Segev, I. (2011). Models of
neocortical layer 5b pyramidal cells capturing a wide range of dendritic
and perisomatic active properties. PLoS Computational Biology, 7(7), Article
e1002107.
82
Herculano-Houzel, S., Mota, B., Wong, P., & Kaas, J. H. (2010). Connectivity-driven
white matter scaling and folding in primate cerebral cortex. Proceedings of
the National Academy of Sciences, 107(44), 19008–19013.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal
of Physiology, 117(4), 500–544.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., & Peste, A. (2021). Sparsity in
deep learning: Pruning and growth for efficient inference and training in
neural networks. arXiv:2102.00554.

Jones, I. S., & Kording, K. P. (2021). Might a single neuron solve interesting
machine learning problems through successive computations on its dendritic
tree? Neural Computation, 33(6), 1554–1571.

Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and the EM
algorithm. Neural Computation, 6(2), 181–214.

Keel (2011). KEEL dataset repository. https://sci2s.ugr.es/keel/datasets.php
(Accessed on: 01 Apr 2020).

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proc. of
ICNN’95-International conference on neural networks, Vol. 4 (pp. 1942–1948).
IEEE.

Keras (2020). Keras the sequential model. https://keras.io/guides/sequential_
model/ (Accessed on: 01 Apr 2020).

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In
3rd international conference for learning representations (ICLR).

LeCun, Y., Cortes, C., & Burges, C. J. (2020). The MNIST database of handwritten
digits. http://yann.lecun.com/exdb/mnist/ (Accessed on: 01 Apr 2020).

Lee, C.-Y., Gallagher, P. W., & Tu, Z. (2016). Generalizing pooling functions in
convolutional neural networks: Mixed, gated, and tree. In Artificial intelligence
and statistics (pp. 464–472).

Loh, W.-Y. (2014). Fifty years of classification and regression trees. International
Statistical Review, 82(3), 329–348.

London, M., & Häusser, M. (2005). Dendritic computation. Annual Review of
Neuroscience, 28, 503–532.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

Mel, B. W. (2016). Toward a simplified model of an active dendritic tree. In
G. Stuart, N. Spruston, & M. Häusser (Eds.), Dendrites (pp. 405–486). chapter
16.

Mitchell, T. M. (1997). Machine learning. McGraw-Hill.
Murthy, S., Kasif, S., Salzberg, S., & Beigel, R. (1993). OC1: A randomized

induction of oblique decision trees. In Proc. 11th national conference on
artificial intelligence (AAAI), Vol. 93 (pp. 322–327).

jha, V. K., Abraham, A., & Snášel, V. (2017). Ensemble of heterogeneous
flexible neural trees using multiobjective genetic programming. Applied Soft
Computing, 52, 909–924.

jha, V., & Nicosia, G. (2020). Multi-objective optimisation of multi-output neural
trees. In IEEE congress on evolutionary computation (CEC) (pp. 1–8). IEEE.

edregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.

ereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J. P., et al. (2017).
Energy efficiency across programming languages: how do energy, time,
and memory relate? In Proceedings of the 10th ACM SIGPLAN international
conference on software language engineering (pp. 256–267).

oirazi, P., Brannon, T., & Mel, B. W. (2003a). Arithmetic of subthreshold synaptic
summation in a model CA1 pyramidal cell. Neuron, 37(6), 977–987.

oirazi, P., Brannon, T., & Mel, B. W. (2003b). Pyramidal neuron as two-layer
neural network. Neuron, 37(6), 989–999.

ian, N. (1999). On the momentum term in gradient descent learning algorithms.
Neural Networks, 12(1), 145–151.

uinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann.
Rasmussen, C. E., & Williams, C. (2006). Gaussian processes for machine learning.

MIT Press.
Rios, L. M., & Sahinidis, N. V. (2013). Derivative-free optimization: a review of

algorithms and comparison of software implementations. Journal of Global
Optimization, 56(3), 1247–1293.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323.

Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules.
In Advances in neural information processing systems (pp. 3856–3866).

Sakar, A., & Mammone, R. J. (1993). Growing and pruning neural tree networks.
IEEE Transactions on Computers, 42(3), 291–299.

Schmidt, M. D., & Lipson, H. (2009). Solving iterated functions using genetic
programming. In Proc. 11th annual conference companion on genetic and
evolutionary computation conference: Late breaking papers (pp. 2149–2154).
ACM.

Sirat, J., & Nadal, J. (1990). Neural trees: a new tool for classification. Network.
Computation in Neural Systems, 1(4), 423–438.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(56), 1929–1958.

https://doi.org/10.1016/j.neunet.2022.02.003
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb3
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb3
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb3
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb4
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb6
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb7
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb7
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb7
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb9
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb9
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb9
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb10
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb10
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb10
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb11
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb11
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb11
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb12
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb12
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb12
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb15
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb15
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb15
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb15
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb15
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb16
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb16
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb16
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb17
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb17
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb17
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb20
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb20
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb20
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb20
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb20
http://arxiv.org/abs/2102.00554
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb22
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb22
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb22
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb22
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb22
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb23
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb23
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb23
https://sci2s.ugr.es/keel/datasets.php
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb25
https://keras.io/guides/sequential_model/
https://keras.io/guides/sequential_model/
https://keras.io/guides/sequential_model/
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb27
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb27
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb27
http://yann.lecun.com/exdb/mnist/
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb29
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb29
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb29
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb29
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb29
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb30
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb30
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb30
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb31
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb31
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb31
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb32
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb32
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb32
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb33
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb33
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb33
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb33
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb33
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb34
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb36
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb36
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb36
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb36
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb36
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb37
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb37
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb37
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb38
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb38
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb38
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb38
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb38
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb40
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb40
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb40
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb41
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb41
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb41
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb42
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb42
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb42
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb43
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb44
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb44
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb44
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb45
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb45
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb45
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb45
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb45
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb46
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb46
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb46
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb47
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb47
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb47
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb48
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb48
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb48
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb49
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb49
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb49
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb49
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb49
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb49
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb49
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb50
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb50
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb50
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb51
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb51
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb51
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb51
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb51

V. Ojha and G. Nicosia Neural Networks 149 (2022) 66–83

T

T

Z

anno, R., Arulkumaran, K., Alexander, D., Criminisi, A., & Nori, A. (2019).
Adaptive neural trees. In Proc. 36th international conference on machine
learning (ICML) (pp. 6166–6175).

ieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude. Coursera: Neural Networks for
Machine Learning, 4(2), 26–31.

Travis, K., Ford, K., & Jacobs, B. (2005). Regional dendritic variation in neonatal
human cortex: a quantitative Golgi study. Developmental Neuroscience, 27(5),
277–287.
83
Wolpert, D. H. (1996). The lack of a priori distinctions between learning
algorithms. Neural Computation, 8(7), 1341–1390.

Zhang, B.-T., Ohm, P., & Mühlenbein, H. (1997). Evolutionary induction of sparse
neural trees. Evolutionary Computation, 5(2), 213–236.

harmagambetov, A., Hada, S. S., Carreira-Perpiñán, M. A., & Gabidolla, M. (2019).
An experimental comparison of old and new decision tree algorithms. arXiv:
1911.03054.

http://refhub.elsevier.com/S0893-6080(22)00036-3/sb53
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb53
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb53
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb53
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb53
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb54
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb54
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb54
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb54
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb54
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb55
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb55
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb55
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb56
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb56
http://refhub.elsevier.com/S0893-6080(22)00036-3/sb56
http://arxiv.org/abs/1911.03054
http://arxiv.org/abs/1911.03054
http://arxiv.org/abs/1911.03054

	Backpropagation Neural Tree
	Introduction
	Related works
	Backpropagation neural tree
	Problem statement
	Backpropagation neural tree algorithm

	Experiments
	Hyperparameters settings
	BNeuralT and MLP experiment versions

	BNeuralT performance
	Selection of the best performing setting
	BNeuralT models summary
	BNeuralT convergence analysis

	Discussion
	Conclusions
	Declaration of competing interest
	Appendix A. Supplementary data
	References

