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A B S T R A C T

Floods are among the most devastating natural hazards in the world. With climate change and growing
urbanisation, floods are expected to become more frequent and severe in the future. Hydrodynamic models are
powerful tools for flood hazard assessment but face numerous challenges, especially when operating at a large
scale. The downside of discretising an area using a fine mesh yielding more accurate results, is the expensive
computational cost of simulations. Moreover, critical input information such as bathymetry (i.e, riverbed
geometry) are required but cannot be easily collected by field measurements or remote sensing observations.
During the past few years, the development of sub grid models has gained a growing interest as these enable
faster simulations by using coarser cells and, at the same time, preserve small-scale topography variations
within the cell. In this study, we propose and evaluate a modelling framework based on the shallow water
2D model with depth-dependent porosity enabling to represent floodplain and riverbed topography through
porosity functions. To enable a careful and meaningful evaluation of the model, we set up a 2D classical model
and use it as a benchmark. We also exploit ground truth data and remote sensing derived flood inundation
maps to evaluate the proposed modelling framework and use as test cases the 2007 and 2012 flood events
of the river Severn. Our empirical results demonstrate a high performance and low computational cost of the
proposed model for fast flood simulations at a large scale.
1. Introduction

With the increasing risk of more frequent and severe floods (Arnell
and Gosling, 2016) due to climate change and growing urbanisation,
there is a crucial need to make more investments in flood management.
Impacts of floods include human, socio-economical and environmental
losses. Poorly conducted hazard assessments can lead to inefficient
risk management, from insufficient protective mitigation measures to
expensive rebuilding of devastated areas (Baan and Klijn, 2004; Meyer
et al., 2009). Instead, well-conducted flood risk assessments provide
a valuable support for decision making related to urban planning and
emergency response preparedness. Therefore, it is essential to improve
flood management systems to better anticipate and further reduce
potential flood risk (Pradhan et al., 2014; Tehrany et al., 2014). In this
context, hydrological and hydraulic models play a central role in flood
forecasting as they provide predictions of water streamflows and levels
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across various temporal and spatial scales (Revilla-Romero et al., 2016;
Hostache et al., 2018).

The most common flood inundation (hydraulic) models are based
on the depth-averaged Navier Stokes equations, also called de Saint-
Venant or Shallow Water Equations (SWE). The resolution of these
equations can be carried out in one (1D) or two dimensions (2D). 1D
models solve the 1D formulation of the SWE (Bates and De Roo, 2000)
where the flow is assumed to be unidirectional and water levels are
assumed to be constant across sections. Although they are relatively
easy to setup and fast to run (Cunge, 1980), these models fail to provide
accurate predictions of overbanking flow and in presence of complex
topographies, especially because the momentum transfers between the
channel and the floodplain are neglected. 1D-storage area models (also
often referred to as 1D+ or quasi-2D) are sometimes preferred as they
vailable online 9 February 2022
309-1708/© 2022 Luxembourg Institute of Science and Technology. Published
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.advwatres.2022.104141
Received 20 July 2021; Received in revised form 19 January 2022; Accepted 24 Ja
by Elsevier Ltd. This is an open access article under the CC BY license

nuary 2022

http://www.elsevier.com/locate/advwatres
http://www.elsevier.com/locate/advwatres
mailto:vitaayoub@outlook.com
https://doi.org/10.1016/j.advwatres.2022.104141
https://doi.org/10.1016/j.advwatres.2022.104141
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2022.104141&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Advances in Water Resources 162 (2022) 104141V. Ayoub et al.
include a representation of floodplain storage using a series of user-
defined polygonal compartments into which overbank flows can spill.
The flow between the main channel and the floodplain storage cells is
modelled using stage-discharge equations, such as weir, gate or orifice
laws. These can also be used to link storage cells to one another,
and the water level is then computed using volume conservation in
each storage cell. However, these models also neglect the momen-
tum conservation between storage areas in floodplains. To tackle the
previously described issues, 2D approaches are adopted. In 2D flood
modelling, a fine discretisation of the area of interest (including main
channel and floodplains) is required to accurately represent topogra-
phy. Consequently, the main limitation of accurate modelling of large
scale floods is associated with a very expensive computational cost.
An alternative approach relies on the coupling of 1D and 2D models.
This approach is not completely satisfying as it only accounts for mass
transfers between the two models. The actual key for this approach to
be reliable is correctly representing edges of the 1D and 2D models
making it possible to keep the spatial and temporal correlations of 1D
and 2D models consistent (Zhang et al., 2020). For instance, Willems
et al. (2002) represents the floodplain by fictitious river-branches for
which the calibration of friction coefficients is required to account
for momentum. A precise mapping of these branches is necessary to
accurately delineate the flood extent that is otherwise often overes-
timated. Finaud-Guyot et al. (2011) proposed a shallow water based
model for river-floodplain interactions using 1D and 2D elements in the
main channel and floodplain, respectively. This allowed to improve the
portraying head loss phenomena that can happen due to channel bends
or meander shortcuts, thanks to the inclusion of lateral momentum
transfer between the river and the floodplain.

To correctly capture flood dynamics there is a need to further reduce
the computational time while ensuring precise representation of river-
floodplain connections. Sub-grid modelling approaches have tackled
this challenge and gained a growing interest as they are a good com-
promise between accuracy and high computational efficiency. Indeed,
they enable faster simulations as they use coarser computation cells
while accounting for small-scale topography variations within the cells.
For example, Lisflood-FP is a fast-running and relatively easy-to-set-up
model and its standard version was introduced by Bates and De Roo
(2000). It was further developed by Neal et al. (2012) who proposed
a version enabling subgrid capability in the channel. This assumes
a simplified channel shape and uses a 1D approach for the channel
flow simulation and a 2D approach for the floodplain. The adopted
subgrid channel approach allows representing any river channel size,
even below the grid resolution. However, the subgrid approach only
applies to the river and the resolution in the floodplain has to be rather
high to accurately represent floodplain flows and inundation extent.

Other modelling techniques rely on two dimensional shallow water
models including the porosity concept as a way to upscale the tra-
ditional shallow water equations. Porosity is defined as the fraction
of a computational cell/edge available to the flow. Porosity-based
models have evolved over the past twenty years. First, Defina et al.
(1994) introduces the shallow water model with isotropic porosity.
The formulation for partially wet/dry areas over irregular domains is
later improved by Defina (2000), Casulli (2015) and Hervouet et al.
(2002). In the single porosity model (Guinot and Soares-Frazão, 2006) a
differential formulation is derived using a finite volume scheme, which
is further evaluated by Soares-Frazão et al. (2008). Later, Sanders et al.
(2008) shifts the focus from isotropic to anisotropic porosity by propos-
ing the Integral Porosity model, where connective porosity (through
edges) is distinguished from storage porosity (within cells). Guinot
(2012) then merges the isotropic and anisotropic models and introduces
a multiple porosity approach for applications in urban areas. Kim et al.
(2015) investigates the porosity-based model errors and show that they
are lower for anisotropic models than for isotropic approaches. This
approach is further extended by introducing a Dual Integral Porosity
2

(DIP) model (Guinot et al., 2017). The SW2D-DDP model was presented
and evaluated in Guinot et al. (2018). In this article, synthetic test cases
(a series of dam-break configurations and a meandering channel) and
an experimental test case were used to evaluate and validate the model
results. Two closure laws (Integral Porosity and the depth-dependent
Dual Integral Porosity) were compared to a fine 2D model that solves
the classical shallow water equations with the second-order MUSCL-
EVR scheme. Results show the superiority of the proposed DIP closure
model on the IP model. Moreover, the paper presented a shallow water
model based on the DIP approach, with depth-variable porosity fields:
SW2D-DDP, and it has been found that although porosity approach
cannot represent details within the cells, it shows good agreement with
the average values of the fine 2D model. Moreover, the CPU ratio
between DDP and fine 2D models ranges from 310 to 2900. In this
paper, we apply and validate the SW2D-DDP model on a real large
scale test case, since it was already evaluated on synthetic test cases
in Guinot et al. (2018).

The provision of accurate bathymetric data is critical in hydrody-
namic modelling, yet obtaining this information where in situ measure-
ments are lacking is not always possible. In this context, Hostache et al.
(2015) proposes a method for retrieving effective riverbed bathymetry
based on the assimilation of water level measurements acquired by a
drifting GPS buoy into a 1D hydraulic model and many bathymetry
retrieval methods have been recently developed in the framework of
SWOT satellite mission preparation (e.g. Oubanas et al. (2018), Yoon
et al. (2012), Durand et al. (2014)). In the perspective of retrieving
bathymetry that is often unknown (Larnier et al., 2021; Delenne et al.,
2021), we propose here to represent it via depth-dependent porosity
functions. We therefore hypothesise that bathymetry can be effectively
represented through depth-dependent porosity parameters.

In this context, the main objective of this study is to develop and
evaluate a modelling framework based on SW2D-DDP enabling fast
flood inundation simulations at a large scale, while representing for
the first time both bathymetry and small-scale floodplain topography
using depth-dependent porosity within comparatively large compu-
tational cells. To evaluate the proposed modelling framework with
scrutiny, we compare the SW2D-DDP simulation result with a standard
2D shallow water model on one hand. Moreover, we evaluate both
model results using ground truth data (in situ measured and remote
sensing-derived). Benchmarking the SW2D-DDP model against a high-
resolution 2D model enables the evaluation of our approach across
space and time. It also helps to explore strengths and limitations of
the proposed approach in comparison with state of the art approaches.
Our study site is a 1500 km2 floodplain located at the confluence of the
Severn and Avon rivers in the United Kingdom, which has frequently
experienced flooding especially in the last decades. The 2007 and 2012
flood events are used as test cases.

The remainder of this paper is organised as follows. In Section 2,
we present the proposed modelling framework enabling the simplified
representation of bathymetry and topography via porosity, and then the
design of the experiment to evaluate the model performance. Next, the
study site and available data, as well as the models set up are described
in Section 3. In Section 4, we evaluate the simulated flood extent and
water level maps. Finally, Section 5 discusses the main outcomes of the
study.

2. Methodology and experimental setup

This section first describes the proposed modelling approach based
on the shallow water 2D model with SW2D-DDP. Next, it presents
the experimental setup for evaluating the model performance using a
standard 2D shallow water (SW2D) model as a reference, as well as in

situ measured and remote sensing-derived data.
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Fig. 1. Porosity laws: (a) law type 0; (b) law type 3; (c) bathymetry representation using law type 3. 𝑧: elevation, 𝜙: porosity, 𝑠: abscissa along the river cross-section.
2.1. Modelling framework

SW2D1 is a modelling suite that has been progressively developed
and further improved since 2002. It solves the 2D shallow water
equations with a finite volume scheme on structured or unstructured
grids. The SW2D-DDP model (Guinot et al., 2018), introduces a Depth-
Dependent Porosity that accounts for small-scale effects of obstacles to
the flow in a macroscopic way without the need to detail their geometry
in the mesh. Although the whole domain is represented as flat in the
mesh, a bottom elevation 𝑧𝑏 is provided inside each cell via a porosity
distribution as a function of the water depth.

Within a domain , the model distinguishes storage (cell) porosity
𝜙𝛺 from edge (connective) porosity 𝜙𝛤 . The storage porosity for a given
cell is the adimensional area available for water at the elevation 𝑧𝑠. As
detailed in Guinot et al. (2018), the standard shallow water equations
are multiplied by the phase function 𝜀, defined as:

𝜀(𝑥, 𝑦, 𝑧) = 1 if 𝑧 > 𝑧𝑏, 0 otherwise (1)

where 𝜀(𝑥, 𝑦, 𝑧) is the phase indicator for the point coordinates (𝑥, 𝑦, 𝑧)
that is equal to 0 if the point is in the solid phase (i.e. lower than the
bottom elevation 𝑧𝑏). The porosities represent the amount of water that
can be stored per unit domain and boundary for a unit variation in the
free surface elevation 𝑧𝑠(𝑥, 𝑦), which is assumed to be known. Thus, the
porosities over cells (𝛺) and edges (𝛤 ) are defined as:

𝜙 (𝑧) = 1
 ∫

𝜀 (𝑥, 𝑦, 𝑧) d,  = 𝛺,𝛤 (2)

where  stands for either a cell (𝛺) or an edge (𝛤 ). This allows to
uniquely define the volume of water stored per unit area/length in the
sub-domain  between the ground and the elevation z as:

𝜃 (𝑧) = ∫

𝑧

−∞
𝜙 (𝜁 ) d𝜁 (3)

Small scale topography information is therefore taken into account
via porosity laws Guinot et al. (2018). In the SW2D-DDP software, four
law types are proposed. In this model setup, we have chosen to use
only two types of porosity law (0 and 3) for the sake of simplicity and
in order to show how porosity represents and preserves high resolution
topographic data.

Law 0 is used for defining storage porosity in the floodplain (Fig. 1).
The distribution of ground elevations 𝑧𝑏(𝑥, 𝑦) within each cell is first
retrieved from the digital elevation model (DEM). Next, it is discretised
using a piecewise constant function of 𝑁 segments with ‘‘equidis-
tant’’ porosity values associated to elevation values with the following
relation:

𝜙(𝑧𝑖) = 𝑖∕𝑁, 𝑖 = 1…𝑁 (4)

where 𝑧𝑖 is the subgrid water depth associated to a porosity 𝜙𝑖 and 𝑁
is the number of segments.

1 https://SW2D.inria.fr/.
3

Fig. 2. 0.25 km2 subset of: (a) the standard model mesh, (b) the porosity model mesh.

Law type 3 allows us to handle porosities inside riverbed cells. In
line with the objective of minimising the number of cells in the model
mesh and therefore reducing computational time, we propose to define
cells with dimensions larger than the riverbed width. Moreover, to
avoid elongated cells that can be responsible for model instabilities,
we maintain the length of the computational cells along the streamflow
direction at maximum twice its width (Fig. 2). Since bathymetric data
is rarely available, we propose to represent riverbed geometry using
a simplified trapezoidal shape assumption via the porosity law type 3
(Fig. 1).

First, storage porosities are computed. Then, the porosity law type
used for the edges is selected depending on the location of their
adjacent cells: law type 3 is used inside the riverbed (cross sections,
i.e. edges between two cells of type 3) and law type 0 is used in the
floodplain (between two cells of type 0) and on river banks (between
a riverbed and a floodplain cells). To accurately represent overbank
flows, the nodes of the river bed cells are positioned on the dikes in
both models. Indeed, when positioning interfaces upon constrictions
and obstacles, these latter are implicitly considered in the interface
flux calculation, while the same obstacles disappear from the numerical
representation when they are located inside the cells. Moreover, to
ensure that high points are correctly taken into account without too
much overloading the mesh design process, we choose to automatically
compute the edge porosity values as the minimum of the porosities
of their neighbouring cells. It is worth mentioning that the parameter
retrieval of the porosity law in each cell and edge is carried out
automatically using the available DEM and bathymetric information.

2.2. Experimental design

To the best of our knowledge, our modelling framework enables
for the first time to represent both riverbed and floodplain subgrid
topography using porosity laws. To evaluate its advantages and lim-
itations, we compare the SW2D-DDP model with a standard fine 2D

https://SW2D.inria.fr/
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model, namely SW2D (Inria Lemon Team, 2022), in terms of simulated
water depths and inundation extents. Moreover, to further assess our
modelling approach, we evaluate it against observed flood extents from
aerial photographs and satellite images, and against observed water
level time series from in situ measurements when available.

2.2.1. The standard 2D shallow water model
To enable a meaningful comparison between the two approaches,

the standard model has to use exactly the same input data as the
porosity model: topography, bathymetry, boundary and initial condi-
tions and parameters (e.g. friction coefficient, numerical scheme). The
two models differ only in the way they represent the floodplain and
riverbed topography. The standard model being based on a classical
finite volume scheme, the bottom elevation inside a computational
cell has a unique value, equal to the average elevation of the cell’s
nodes. As a consequence, topography can be smoothed out within
each cell, when flow obstructions, drains or structures (e.g. dikes,
roads, streams) are not intrinsically represented via cells smaller than
their dimensions. Indeed, adequately representing dikes, drains or river
channels, requires to include several mesh cells within each of these
structuring elements. Therefore, in the standard SW2D model, the mesh
needs to be designed in a way that entire cells are placed explicitly on
hydraulic structures or singularities. For instance when representing a
drain of 5 m width, cells have to be well-placed to capture its effect,
otherwise it would be transparent for the model. Having many of these
structures in large scale areas would require a long time to represent
them in a standard SW2D model.

2.2.2. Evaluation method
To evaluate the porosity model performance, we propose an ap-

proach composed of several successive steps detailed in the following
paragraphs: (i) post-process model results to derive flood extent and
water depth maps in the same format, (ii) compare flood extent and
water level maps extracted from both models, on a daily basis; (iii)
evaluate flood maps extracted from both models using remote sensing
derived data; and (iv) evaluate simulated water level time series against
in situ observation data. In this study we chose to evaluate the proposed
modelling approach in terms of simulated water levels first using
punctual in situ water level measurements. Next, as spatially distributed
water level cannot be derived from in situ observation, we also compare
the SW2D-DDP results with those obtained using the standard SW2D
model. Whether we use the SW2D model results or the measurements
provided by a camera or a gauging station to evaluate water levels, we
computed the root mean squared deviations (RMSD, Eq. (7)). When we
evaluate the model in terms of flood extents, two types of references
are used : (i) the flood extent maps simulated by SW2D and (ii) the
ones derived from a satellite imagery.

Post-processing of model results:. We aim to compare the results of
the porosity and the reference models in terms of flood extents and
water levels. By definition, the bottom elevation of the cells in the
porosity and standard model meshes are taken into account differently.
In the standard SW2D model, as previously mentioned, the bottom
elevation of a cell corresponds to the average elevation of its nodes.
In the porosity model, the subgrid elevation variability is accounted
for via the porosity. Since the edges of the fine and coarse grid cells
do not overlay, the flood extent maps derived from the two models
are resampled to the original DEM resolution (2 m), to enable a pixel-
to-pixel comparison. To do so, the cell is considered flooded when
the simulated water depth reaches a minimum value ℎmin i.e. when
𝑧𝑠 > 𝑧𝑏 + ℎmin where 𝑧𝑏 is the cell bottom elevation for the standard

odel and the DEM elevation for the porosity model. The ℎmin is set
to 0.1 m, which corresponds approximately to the vertical accuracy of
the LiDAR DEM.
4

Evaluation of simulated flood extent maps:. The simulated flood extents
evaluation is carried out twice, using as a reference either (i) the
standard model or (ii) the available Earth Observation data. Based on
a pixel-by-pixel comparison, we compute a confusion matrix composed
of four metrics: (1) the number of pixels that are unflooded in both
maps, i.e. TN: true negatives, (2) the number of pixels flooded only in
the standard model, i.e. FN: false negatives, (3) the number of pixels
flooded only in the porosity (SW2D-DDP) model, i.e. FP: false positives,
and (4) the number of pixels flooded in both maps, i.e. TP: true posi-
tives. To compare the simulated and the reference maps, we compute
contingency maps. As overall performance metrics we use the Critical
Success Index (CSI) (Schaefer, 1990) and the Overall Accuracy (OA)
that are both derived from the confusion matrix. CSI and OA quantify
the goodness of fit between the evaluated map and the reference maps
(see Eqs. (5) and (6)). The CSI represents the ratio of the number of
pixels correctly predicted as flooded (TP) over the number of all flooded
pixels:

CSI = TP
TP + FP + FN

(5)

The OA takes into account the agreement of non flooded areas and
is defined as follows:

OA = TP + TN
TP + FP + FN + TN

(6)

These scores vary between 0 and 1, with the highest value attained
when the predictions present a perfect fit with the reference.

Evaluation of simulated water level maps:. To quantitatively measure
discrepancies between the simulations and reference water level maps,
we use the root mean square deviations (RMSD, Eq. (7)) between the
porosity model predicted water levels 𝑧𝑖,sim and the reference water
levels 𝑧𝑖,ref (Eq. (7)), resampled at the DEM resolution (2 m), and for
each of the 𝑛 inundated pixels of the entire domain.

RMSD =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑧𝑖,sim − 𝑧𝑖,ref
)2 (7)

Moreover, to further evaluate the distribution of the differences
between the simulated and reference water levels, we make use of
boxplots showing the deviation distribution based on statistical metrics:
(1) the lower bound; (2) the first quartile, Q1=25th percentile; (3) the
median, Q2=50th percentile; (4) the third quartile, Q3=75th percentile
and (5) the upper bound. The interquartile range (IQR) goes from
the 25th to the 75th percentile, and therefore represents 50% of the
data values. The maximum value of the boxplot is defined as Q3 +
1.5*IQR, and the minimum value Q1 −1.5*IQR. Outlier points are thus
eliminated from the plot for the sake of readability.

Evaluation of simulated water levels time series:. Water level time series
obtained from each of the porosity and standard models are evaluated
against in situ observation data. For visual comparison, these time
series are plotted. Then, to quantitatively measure the discrepancies,
we compute the root mean square deviations (RMSDs), as described in
the previous section.

3. Study area, experimental data and model setup

The Severn, the longest river in Great Britain, extends from its
source at Plynlimon in the Welsh hills to the mouth of the Bristol
channel. The overall catchment area covers approximately 11,000 km2

and is predominantly rural, apart from some urban settlements like
Worcester, Tewkesbury and Evesham. Fig. 3 shows the model domain
and river network with the location of the available gauging stations
and the camera location offering live imagery on the river Severn. The
study site is located at the confluence of rivers Severn and Avon around
the city of Tewkesbury and has been subject to frequent flooding
due to intense precipitation. The area of interest covers approximately
15 × 10 km2. Two flood events of different magnitude will be simulated
and analysed to better understand the model behaviour with changes in
boundary conditions: the July 2007 and November 2012 flood events.
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Fig. 3. Study site: model boundaries and location of the gauging stations and the river
camera. The background colours illustrate the classification of ground elevation. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Hydrometric data:. Two suitable gauging stations are located at Saxons
Lode (along the Severn River) and Evesham (along the Avon River)
upstream of the confluence. Due to the backwater effect observed
at Bredon, the streamflow time series is estimated there from that
recorded at Evesham gauging station (located upstream of Bredon)
and delayed in time based on an estimated wave travel time. Mythe
Bridge is situated upstream the confluence of the Severn-Avon rivers
and Deerhurst is situated downstream. Hydrometric data are provided
by the UK Environmental Agency (EA) at 15 min-intervals. Moreover,
the Tewkesbury stationary camera (Fig. 3) mounted on the wall of a
building in March 2011, provided a view on the Avon river, which
allowed taking hourly daylight images during the 2012 flood event.
This camera enabled the estimation of water levels in the river (Vetra-
Carvalho et al., 2020), which are used to evaluate the hydraulic model
performance inside the domain.

Earth observation data:. The flood event of July 2007 is particularly
interesting because an airborne campaign imaged the flood at a very
high resolution (50 cm) on July 24, close to the flood peak (Giustarini
et al., 2012). Flood extents were manually digitised on this imagery.
This extracted flood map allows evaluating the simulated flood extents
at the same date (24 July). The hierarchical split-based approach
proposed by Chini et al. (2017) is used to derive flood extent maps
from the Cosmos-SkyMed images acquired on the following dates: 27,
28, 29, 30 November and 01, 02, 04 December 2012. These flood maps
are considered for evaluating synchronous flood extent maps simulated
by the porosity and the standard models.

Topographic and bathymetric data:. A LiDAR DEM at 2m-spatial resolu-
tion with a vertical accuracy of 0.10 m provided by the UK Environmen-
tal Agency (EA) (Wood et al., 2016) is used to provide the model with
ground elevation. Bathymetric data is reconstructed using three river
cross section measurements at the upstream (Saxons Lode and Bredon)
and downstream (Deerhurst) boundaries of the model. To do so, first,
we approximate the observed cross sections using a trapezoidal shape.
The bank lines are manually digitised along the Avon and Severn river
5

streams and river stream bottom lines are automatically generated as
parallels to the bank lines (using a distance estimated based on the
observed cross sections). Next, the bank elevations are estimated by
extracting ground elevation (provided by the Lidar DEM) along the
bank lines. Then, the river bottom elevation is linearly interpolated
between the three trapezoidal cross sections along the Avon and Severn
bottom lines. Based on the river banks and bottom lines (with asso-
ciated elevation values) we interpolate river bathymetry. Finally, the
interpolated bathymetric data is merged with topographic data to form
a single model input.

3.1. Model setup

While the standard model mesh is composed of 29,772 cells, the
porosity model mesh contains only 1042 cells. Concerning the mesh
design in the SW2D-DDP model, just like in any other hydraulic model,
the cell including the river should not be too large as the porosity law
used in river cells considers the flood plain as horizontal (rectangular
above trapezoidal shape). For other cells, no brutal variations in terms
of surface should be found between adjacent cells. The influence of the
number of tabulations 𝑁 inside a cell has been investigated in Guinot
et al. (2018). Since the spatial information is lost within a coarse
grid cell, it is essential to ensure that obstacles are captured by the 5
tabulation levels.

Discharge time series are imposed as upstream boundary conditions
of the hydraulic model (Severn at Saxons Lode and Avon at Bredon).
The streamflow time series in Saxons Lode are derived from water
surface elevation records using a rating curve. Water level time series
are used as downstream boundary condition at Deerhurst (Fig. 4).
The initial condition is a fixed water level equal to the downstream
condition. A uniform Strickler coefficient 𝐾𝑠 = 50 m1∕3 s−1 is used
for the riverbed and the floodplain. Spatially distributed parameters
could easily be prescribed but a sensitivity analysis (not shown in this
paper) showed that the influence of the friction coefficient was limited
for the studied flood event. The durations of 2007 and 2012 flood
event simulations are 17 days (18 July–04 August) and 15 days (21
November–06 December), respectively.

4. Results

4.1. Evaluation of simulated flood extent maps

Fig. 5 shows the CSI and OA time series computed on a daily
frequency for evaluating the SW2D-DDP simulated flood maps using
the SW2D simulated flood maps as reference. It can be seen that both
simulated flood extent maps are most of the time in agreement for
both flood events. At the flood peak, in Figs. 6b and 7b, there is a
very good agreement between the two models (accuracy of 95%). The
model agreement is slightly lower in the rising limb, and decreases
more in the falling limb. This implies that the draining dynamic in the
SW2D-DDP model is different from that in the SW2D model. Figs. 6
and 7 show a series of contingency maps obtained by comparing the
simulated flood extent maps (by the SW2D-DDP and SW2D models)
during the 2007 and 2012 flood events. During the rising limbs (Figs. 6a
and 7a) the porosity model exhibits a good agreement with the standard
model, while locally inundating slightly larger areas especially in the
upstream part as well as in little drains in the urban zone, at the Severn-
Avon confluence (see box in Fig. 6a). This indicates the porosity model
induces overbanking earlier than the standard model. Oppositely, a
smaller inundation extent is visible locally nearby the Avon river.
Figs 6c and 7c show a substantially larger flood extent simulated by
SW2D. This indicates that almost all floodplain water came back to
the stream in the SW2D-DDP simulation while a substantial volume
of water remains present in the floodplain in the SW2D simulation.
This effect is dominant in the eastern Severn floodplain and around the
urban settlements. Overall, Figs. 6c and 7c suggest that the porosity
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Fig. 4. Model boundary conditions for the 2007 (a) and the 2012 (b) flood events: Upstream streamflow (Saxons Lode and Bredon) and downstream water level (Deerhurst) time
series.
model fills in and drains floodplain water faster than the standard
model. To better understand and assess this aspect, we also compare
both model results to remote-sensing derived data.

For the 2007 event, the porosity and standard model-derived flood
maps were evaluated against the flood map extracted from aerial pho-
tography, and showed similar levels of agreement (CSI=0.92; OA=0.95
6

and CSI=0.9; OA=0.94 respectively for SW2D-DDP and SW2D). During
the 2012 flood simulation, both models are in good agreement, with
lower scores for the last satellite image (04 December, see Table 1). CSI
and OA are rather similar for the two models but it is worth highlight-
ing that the metrics of the porosity model are always exceeding those
of the standard model. Fig. 8 shows the contingency maps computed
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Fig. 5. CSI and OA scores time series showing agreement between simulated (porosity) and ‘‘reference’’ (standard) flood extent maps, CSI: Critical Success Index & OA: Overall
Accuracy.
Fig. 6. Contingency maps between porosity and fine models for simulation days 3, 7 and 16 of the 2007 flood event.
Fig. 7. Contingency maps between porosity and fine models for simulation days 1, 7 and 15 of the 2012 flood event.
by each of the models using as a reference the satellite flood map
acquired on December 04. The most important differences between the
two simulated flood extent maps are exhibited close to Tewkesbury
where SW2D-DDP drains water faster than SW2D. The flood extent
map derived from SW2D therefore exhibit in Fig. 8a a substantial
7

overestimation when compared to the flood extent map derived from
a Cosmo-SkyMed image. However, this overestimation has to be inter-
preted carefully as SAR backscatter images do not enable floodwater
detection in dense urban areas (Chini et al., 2019). Moreover, Giustarini
et al. (2012) showed for the same study area that part of the floodwater
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Table 1
Performance of the flood inundation extents simulated by the porosity (SW2D-DDP)
and standard (SW2D) models computed using as a reference the satellite flood extent
maps available for the 2007 and 2012 events. CSI: Critical Success Index; OA: Overall
Accuracy.

Year 2007 2012

Day 25–07 27–11 28–11 29–11 30–11 01–12 02–12 04–12

CSI (SW2D) 0.9 0.691 0.677 0.687 0.649 0.658 0.657 0.453
CSI (SW2D-DDP) 0.92 0.699 0.687 0.698 0.655 0.665 0.667 0.506

OA (SW2D) 0.94 0.852 0.847 0.855 0.843 0.848 0.853 0.866
OA (SW2D-DDP) 0.95 0.856 0.851 0.86 0.844 0.851 0.857 0.894

Fig. 8. Contingency maps computed from the satellite and each of the standard (a)
and porosity (b) model flood maps, on December 04, 2012.

was detectable during the 2007 flood event inside Tewkesbury using a
high resolution SAR backscatter image (i.e. a Terrassar-X image). As
a consequence, one can argue that the absence of floodwater within
Tewkesbury in the Cosmo-SkyMed images acquired in 2012 lends more
weight to the SW2D-DDP flood extent map reliability.

4.2. Evaluation of simulated water level maps

Fig. 9 shows time series of root mean square deviations (RMSD)
calculated between the porosity and standard model-derived water lev-
els at a daily frequency, across the inundated areas. The corresponding
time-averaged RMSDs are equal to 12.32 cm and 6.3 cm for the 2007
and the 2012 flood events respectively. The highest deviations are
observed in the falling and rising limbs. During the flood, peaks are
reduced and vary between 3 and 9 cm. From a practical point of view,
depth deviations ranging from 10 to 15 cm in flood predictions can
arguably be considered as acceptable given the vertical accuracy of the
LiDAR used: ±10 cm (Sanders, 2007; Mason et al., 2003). Furthermore,
boxplots are used to assess the distribution of differences between water
levels simulated by the porosity and the standard models at a daily time
step (Fig. 10). At first sight, it is found that the model results present
a very good agreement at the flood peak since the boxplot height is
very small. Positive values in the boxplots refer to higher water levels
simulated by the porosity model. This is mainly observed during the
rising limb and at the flood peak. This indicates that the porosity model
simulates the overbanking earlier. This result is in agreement with
the larger water extent simulated by the porosity model (see Figs. 6a
and 7a). During the falling limb, lower values of water levels simulated
by the porosity model express a larger inundation extent computed by
the standard model, as obtained in (Figs. 6c and 7c).
8

Table 2
RMSDs computed between the water level time series simulated by the porosity (SW2D-
DDP) and standard (SW2D) models and Mythe Bridge gauge data for both flood
events and Tewkesbury camera data of the 2012 flood event; RMSD: root mean square
deviation.

Mythe Bridge Mythe Bridge Tewkesbury
(2007) (2012) (2012)

RMSD (SW2D) 0.388 0.255 0.444
RMSD (SW2D-DDP) 0.371 0.237 0.425

4.3. Evaluation of simulated water levels time series

Simulated (porosity and standard model) water level time series
are first evaluated using in situ observations at the Mythe Bridge
hydrometric station and second using water levels estimated from the
Tewkesbury camera images. When inter-comparing the two models,
the results present a very good agreement (Figs. 11a, 11b and 11c).
The highest discrepancies of simulated water levels compared to the
gauge observations (0.90 and 0.60 m) are reached just before the 2007
flood peak (Fig. 11a) and on the first day of the 2012 flood simulation
(Fig. 11b), respectively. The evaluation further shows reduced model
errors during the falling limb of the 2012 flood event where the
porosity model exhibit an error of less than 5 cm approximately. This
is probably related to the initial condition fixed in the simulation
that is set as uniform and fits the downstream level (Deerhurst). On
another note, RMSDs are slightly improved, albeit not significantly, in
the porosity model (Fig. 9). Both model results are also assessed using
the camera images at Tewkesbury (see location in Fig. 3). The highest
discrepancies with the gauge data are found in the rising limb. They
are reduced when approaching the flood peak and almost fit the model
results at the falling limb. Table 2 shows the porosity and standard
model scores, using the RMSD metrics computed on water level time
series. The considered reference is the data observed at Mythe Bridge
for the 2007 and 2012 events and at Tewkesbury for the 2012 event.

5. Discussion

As described in Section 4.2, the water depth deviations of the
porosity-based model with respect to the standard SW2D model, are
acceptable given the vertical accuracy of the LiDAR used (c.a. 10 cm).
The average flow depth in the rivers estimated over the entirety of the
flood event, is about 7 m. Generally speaking, the average errors (c.a.
6 to 12 cm) are not substantial. High errors – reaching a maximum
of 25 cm – are observed in the rising and the falling limb, where the
porosity model seems to fill in and evacuate faster than the standard
model. On the other hand, errors with respect to the gauge/camera
data reach a maximum of 60 to 90 cm respectively. Since the real
bathymetry and bed-shape of the river are unknown, this potentially
affects the simulation results in general, and can be further improved.

In Fig. 11, the simulated levels at Mythe Bridge are lower than the
observed ones, especially during the rising limb and the flood peak.
This is arguably due to the simplified representation of the bathymetry
in the models and to an underestimated upstream inflow for the Severn
River at Saxon’s Lode under high flow conditions. Indeed, as the river
burst its banks around Saxon’s Lode, the floodplain starts conveying a
part of the flow that is not accounted for in the corresponding model
boundary condition derived from the riverstream gauging station.

In terms of flood extents, results show the porosity model fills in and
drains floodplain water faster than the standard model. To better assess
this behaviour, we compared both model results to a series of remote
sensing derived flood maps. It was shown that, during the falling limb,
the observed inundation extent is closer to the one simulated with
the porosity model, especially in the areas around Tewkesbury. This
faster flooding and receding dynamic in the porosity model is mainly
related to its ability to represent small scale topography and drains via
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Fig. 9. Root mean square deviations (RMSD) in metres, between SW2D-DDP and SW2D simulated water level maps (resampled at DTM resolution): (a) 2007 and (b) 2012 flood
events.
Fig. 10. Boxplots drawn from the simulated water level deviations using as a reference the standard model — orange line: median; triangle: mean; box: interquartile range;
whisker ends: the lower and upper bounds: (a) 2007 and (b) 2012 flood events. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
porosity. As mentioned in Section 2.2.1, representing small drains in
the standard model requires cells with dimensions smaller than that of
the drains. This means that drains should in theory be finely discretised
by very small cells (Fig. 12) in the SW2D model. These drains are visible
in the LiDAR topographic data (Fig. 3), but they are not captured by our
standard model mesh, because the mesh cells are comparatively large.
For example, the size of a cell capturing a drain would have dimensions
smaller than 5 m, which would increase the number of computational
cells along the drainage network. The standard mesh designed in this
study consists of 29,772 cells, representing approximately 28 times
more cells than that in the porosity mesh (1042 cells). Moreover, the
simulation run time in that case would escalate drastically with the
decrease of the simulation time step becoming inconvenient for large
scale applications. Table 3 summarises the CPU times necessary for the
standard and the porosity model simulations, carried out on a computer
with an i7-4770 CPU processor and a memory of 16 GB RAM. For an
area of 1500 km2 and in both test cases, the CPU time required for
the model simulation is 13 min vs. 3.2 days for the standard model
for a 17 days flood simulation, and 12 min vs. 2.9 days for a 15 flood
day event. The porosity model therefore offers the advantage of a fast
model setup, while preserving high resolution data by using coarse grid
cells, thus enabling reduced computational efforts. This paves the way
for real time applications and long terms simulations over large areas.

All singularities and types of cross-section can be taken into account
in the porosity laws as long as they are visible in the DTM. However,
9

the spatial localisation of the singularity inside a coarse grid cell is lost,
this is why it is preferable to place the interfaces on the singularities so
as not to create artificial links between the cells. Since cross-sections are
rarely available along the entire river and only punctual measurements
are provided, a riverbed shape approximation must be made, which
is facilitated by the use of porosity laws. The interpolation of river
bathymetry between observed cross sections certainly has an influence
on the model results, but it is the only available information. In this
study we compared both models using the same bathymetric data. The
linear interpolation of these profiles along the river appeared to be
reasonable since no brutal variations of the slopes were observed while
examining longitudinal profiles. However, further improvements are
expected when having more precise bathymetry data. In this study the
topography information is derived from a high resolution LiDar DTM
originally at 2 m resolution and resampled at 10 m. With increasing
availability of global DEMs (e.g.: SRTM 30 m at a global scale), the
modelling approach can be applied in poorly gauged areas. For the
specific case of urban areas, the building location map could be used
to improve the DEM, based on widely available databases such as
OpenStreetMap. The vegetation remains more complex to be accounted
for and for the moment we may consider vegetation effects through
an increased friction coefficient, as usually done in hydrodynamic
modelling. In the SW2D software (classical or DDP), all parameters such
as infiltration rates and friction, can be spatially distributed (e.g. based

on land use maps).
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Fig. 11. Water level time series evaluation using data at Mythe Bridge for the 2007
event (a), 2012 event (b) and at Tewkesbury for the 2012 event (c).

As discussed in Guinot et al. (2018), one main limitation of the
porosity modelling approach is the definition of a unique water level
per computational cell, which is equivalent to considering a horizontal
free surface elevation in each cell. Although the consequences of such
an assumption are limited when dealing with large-scale and slow
floods, they may not be negligible and should be assessed. The porosity-
based approach also leads to a loss of spatial information inside coarse
10
Fig. 12. Drains representation by computational cells in the SW2D (orange) and SW2D-
DDP (blue) models. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 3
Simulation run time for the porosity (SW2D-DDP) and standard (SW2D) models, with
the run time reduction factor.

Flood event Simulation period SW2D SW2D-DDP Reduction factor

2007 17 days 3.2 days 13 min 354 times
2012 15 days 2.9 days 12 min 348 times

grids. This can potentially create artificial links between cells unless
the edges are carefully placed upon local highest points. However,
one should keep in mind that this is also true for other hydrodynamic
models, such as classical 2D ones. Moreover as seen before, it is possible
to recover spatial information by resampling the results on the DTM as
proposed in this paper, therefore preserving the original DTM data at
its original resolution.

6. Conclusion

In this paper, we proposed an innovative modelling framework
based on porosity to rapidly simulate flood inundations. This frame-
work enables, for the first time, to represent both bathymetry and
small-scale floodplain topography using depth-dependent porosity
within comparatively large computational cells. Simulating two real
test case floods over a 1500 km2 area around the Severn and Avon
confluence, has shown the following:

1. The proposed modelling approach enable to simulate flood ex-
tent maps very similar to the one simulated by the standard
SW2D model with 90% agreement.

2. The evaluation based on in situ measurements indicates that the
porosity model is exhibiting levels of performance comparable
to and even higher than those of a standard model.

3. It is found that the porosity model is able to account for small
drains within comparatively very large cells. Representing these
small drains in a standard model would require very small cells,
therefore leading to a much higher number of cells and a large
computational demand.

4. Our experiment shows that the SW2D-DDP model simulations
are c.a. 350 times faster than that of the standard model, thereby
substantially reducing computational costs.
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In perspective, the proposed modelling framework facilitates the
retrieval of an effective bathymetry as this is represented via the
porosity parameters. This opens up new perspectives for large scale
applications over areas where bathymetric data are not available.
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