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Abstract

Satellite remote sensing data are important to the study of environment problems at a global scale.
The GloboLakes project aimed to use satellite remote sensing data to investigate the response of
the major lakes on Earth to environmental conditions and change. The main challenge to statistical
modelling is the identification of the spatial structure in global lake ecological processes from a large
number of time series subject to incomplete data and varying uncertainty. This paper introduces a
comprehensive modelling procedure, combining adaptive smoothing and functional data analysis, to
estimate the smooth curves representing the trend and seasonal patterns in the time series and to
cluster the curves over space. Two approaches, based on an irregular basis and an adaptive penalty
matrix, are developed to account for the varying uncertainty induced by missing observations and
specific constraints (e.g. substantive periods of measurement values of zero in winter). In particular,
the adaptive penalty matrix applies a heavier penalty to smooth curve estimates where there is higher
uncertainty to prevent over-fitting the noisy/biased data. The modelling procedure was applied to
the lake surface water temperature (LSWT) time series from 732 largest lakes globally and the lake
chlorophyll-a time series from 535 largest lakes globally. The procedure enabled the identification
of nine global lake thermal regions based on the temporal dynamics of LSWT, and the extraction
of eight global lake clusters based on the interannual variation in chlorophyll-a and ten clusters to
differentiate the seasonal signals.

1 Introduction

Satellite remote sensing data are important to the understanding and management of the environmental
problems facing the world today. The advancement of satellite remote sensing technology enables the reg-
ular monitoring of remote or even inaccessible places on Earth. The research project GloboLakes (http:
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//www.GloboLakes.ac.uk/) aimed to investigate the response of lakes to environmental change at a global
scale through satellite remote sensing data. The project explored several key ecological variables associated
with lake health, two of which are the lake surface water temperature (LSWT) time series, obtained from the
Along-Track Spectrum Radiometer 2 and the Advanced Along-Track Spectrum Radiometer ((A)ATSRs), and
the chlorophyll-a (Chl-a) time series, obtained from the MEdium Resolution Imaging Spectrometer (MERIS).
Data from 932 largest lakes on Earth were retrieved. Using these data, scientists on the project were interested
in investigating the temporal dynamics (e.g. seasonal and trend signals) of the lake ecological variables over the
monitoring period and identifying the spatial patterns with respect to the temporal dynamics among the 932
lakes.

The LSWT data and the chlorophyll-a data are available as time series observed at the pixels covering the
area of the lakes. The LSWT time series are available bi-monthly from summer 1995 to spring 2012, and the
chlorophyll-a time series are available monthly from July 2003 to November 2011. In order to investigate the
temporal dynamics and the spatial patterns in the LSWT and chlorophyll-a data from the 932 lakes, the spa-
tially averaged time series (referred to as the “mean time series” hereafter) were created. Due to cloud cover, ice
cover and satellite orbits, observations are not always available at an individual pixel over the observing period
(MacCallum & Merchant, 2013). As a result, the number of pixel observations involved in the spatial average
varies. In poorly observed months, such as the rainy seasons and the winter periods, only a small proportion
of the lake may be observed, giving spatial averages with higher uncertainty. There may be a few continuous
time points with no observation available at all, leaving a gap in the mean time series. This is common for
the chlorophyll-a observations from lakes in cold climates, since the lakes freeze over the winter. Consequently,
the mean time series are incomplete and are subject to varying uncertainty both within and between individual
time series. This brings challenges to the statistical analysis that aims to investigate the temporal and spatial
patterns in the data.

As a motivating example, two monthly mean chlorophyll-a time series from Lake Tanganyika in Congo and Lake
Chany in Russia are presented in the top panels of Figure 1. The time series were log transformed to reduce
the skewness. The bottom panels of Figure 1 show the time series of the proportion of pixels that have no ob-
servation out of all pixels covering the lake area. These time series, referred to as the “missing proportion time
series”, reflect the uncertainty of the spatial average to some extent. In general, the spatial average computed
from incomplete observations tends to have higher uncertainty than the spatial average computed from complete
observations in an satellite remote sensing image. The former may even be biased if the available observations
are clustered in a particular area of the image which has consistently higher or lower measurement values. Here
the mean chlorophyll-a time series of Lake Tanganyika (top left) is almost complete, but the proportion of
missing observations varies over time (bottom left), resulting in changing uncertainty throughout the mean time
series. The mean chlorophyll-a time series of Lake Chany (top right) displays distinctive seasonal gaps. The
corresponding missing proportion time series (bottom right) reaches 1 (i.e. all pixels were unobserved) over the
winter months.

Another modelling challenge is related to the specific constraints on the values of the observations. Consider
the LSWT time series. By the law of physics, the LSWT is 0◦C when ice forms during the winter period.
Therefore, even if the pixels are unobserved and flagged as “ice cover”, the uncertainty associated with the
spatially averaged LSWT is low. Figure 2 shows the bi-monthly mean LSWT time series from Chamo Lake in
Ethiopia (left) and Lac des Bois in northwest Canada (right), from 2000 to 2010. Whereas the uncertainty of
the mean LSWT of the Chamo Lake can be affected by data availability, the confidence around the zero values
over the winter period in the mean LSWT of Lac des Bois is high regardless of data availability due to its high
latitude location. This again creates varying uncertainty within and between individual time series.

These features require a modelling approach that can account for the varying uncertainty in the time series to
ensure the data from different lakes are comparable. At the same time, the approach needs to be interpretable
so scientists can draw conclusion from the result, transferable so that it can be implemented on similar types
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Figure 1: The monthly averaged log(Chl-a) time series of Lake Tanganyika (top left) and Lake Chany (top right). The
corresponding missing proportion time series of Lake Tanganyika (bottom left) and Lake Chany (bottom right).
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Figure 2: The bi-monthly averaged LSWT time series of Chamo Lake (left) and Lac des Bois (right).

of time series, and computationally efficient. Based on these considerations, this paper proposes a comprehen-
sive modelling procedure, consisting of adaptive smoothing and functional data analysis, to tackle the challenges.

Functional data analysis (Ramsey & Silverman, 2005) is a natural choice to model time series data from a large
number of objects. It reduces the data dimension through the functional representations of the time series and
enables the simultaneous modelling of the data from all objects. The functional representations are typically
created via smoothing the data. Using the functional representations helps to reduce the impact from the noisy
observations and avoid the potential bias1 in the data. To create the functional representations and account for
the varying uncertainty associated with the mean time series of the LSWT and lake chlorophyll-a, this paper
proposes two modifications of the standard P-spline smoothing (Eilers & Marx, 1996), namely the irregular basis
and the adaptive penalty matrix. Together, the two methods address the problem of the changing uncertainty
due to data availability and specific constraints. The resulting smoothed time series are considered as more
appropriate functional representations of the underlying temporal patterns, suitable for clustering to explore
spatial structure.

1The bias in the mean time series can originate from various sources, e.g. missing observations and satellite retrieval errors.
The latter describe the deviations of the retrieved data from the truth. They are common in satellite remote sensing data retrievals
(Povey & Grainger, 2015; MacCallum & Merchant, 2013). Although they may not be available in some data sets.
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This rest of the paper is organized into three sections. Section 2 begins with a brief description of P-spline
smoothing and the challenges in relation to lake ecological time series data. It then introduces the two modi-
fications to the standard P-spline smoothing, with illustrations using the LSWT and chlorophyll-a time series.
Section 3 presents the application of the proposed modelling procedure to the LSWT and chlorophyll-a time
series to investigate the spatial patterns in the smoothed time series curves. Section 4 summarises the paper,
discusses other plausible choices of the uncertainty measure with respect to the spatial average, and proposes
some future extensions.

2 Adaptive smoothing

2.1 Standard P-spline smoothing and its problems

Initially, a standard P-spline approach was used to create the functional representations of the mean LSWT
and chlorophyll-a time series. Denote the time series as Yt, t = 1, · · · , n, and its functional representation as
Y (t) = Φ(t)β+ ε(t), where Φ(t) is a 3rd order saturated B-spline basis evaluated at t = 1, · · · , n. The standard
P-spline smoothing applies the 2nd order difference penalty, λ‖Dβ‖2 = λβ>D>Dβ, to control the smoothness
of Y (t) (Eilers & Marx, 1996). Specifically, let λ be the smoothing parameter and D be the 2nd difference
matrix of the identity matrix, i.e. D = 42I. The penalized least squares criterion of the standard P-spline
smoothing can be written as ∑

t

‖Yt − Φ(t)β‖2 + λβ>D>Dβ . (1)

In criterion (1), the penalty matrix S = D>D applies the same penalty to all the elements in the basis coeffi-
cient vector β = (β1, · · · , βK)>, where K (K = n+ 3 + 1) is the dimension of the B-spline basis, excluding the
boundary values. In other words, βk is penalized no more or no less than βj , for k, j ∈ {3, · · · ,K − 2}.

Although there is no technical problem in using the standard P-spline smoothing, it is not the most appropriate
approach to model time series in the presence of changing uncertainty. On the one hand, applying the same
penalty across all time points when some are subject to high uncertainty could result in a biased estimate. For
example, the spatially averaged LSWT or chlorophyll-a at some time points may come from a small number of
pixels in a particular area of the lake, where the measurement values are distinctively different from the rest
of the lake. Consequently, the spatial averages at these time points would not be a reliable estimate of the
condition of the lake. It is important to avoid over-fitting the data at these time points. On the other hand, the
estimation of the basis coefficients corresponding to the time points where there are no data or where there are
constraints on values can be problematic. To be precise, as the solution from the generalised least squares does
not always respect the physical or biological constraints, it could produce values that are physically invalid for
LSWT and chlorophyll-a.

Motivated by the problems above, this section proposes two adjustments to standard P-spline smoothing to
better reflect the changing uncertainties and the features of the time series. The first adjustment is the use of
an irregular basis. The idea is to remove the knots where there is no data or where there are specific constraints
on the values of the data. This gives an irregular basis, which helps to mitigate the influence from the missing
gaps and the constraints. The second adjustment is the use of an adaptive penalty matrix that accounts for the
varying uncertainty throughout the time series. There are various ways of constructing an adaptive penalty, as
described in Friedman (1991); Ruppert & Carroll (2000); Wood et al. (2002). This paper chooses to construct
the adaptive penalty matrix based on the uncertainty associated with the spatial averaging. In particular, the
adaptive penalty matrix places heavier penalties at the time points where there is higher uncertainty in the
spatial averaging and lighter penalties where there is more confidence that the spatial averaging is reflective of
the entire lake condition. The details of the two adjustments will be described in the next two sections.
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Before moving on, it is worthwhile noting that, as the aim is to produce smoothed functional representations
of a large number of time series in a computationally efficient manner, the methods presented in the following
sections are appropriate heuristics to estimate the multiple time series curves in the data set. It is possible to
improve the smoothing of a particular time series curve using a method tailored to it, but this is not the focus
of this paper.

2.2 The irregular basis

In theory, there is no restriction on the number of the basis functions used in the P-spline fitting (Eilers et
al., 2015). A saturated basis, which has the same number of knots as the number of observations, is often a
starting point. However, when there are gaps in the time series, or when there are specific constraints on the
observations (e.g. the LSWT observations should be 0◦C during the winter period), using a saturated basis can
sometimes create artefacts.
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Figure 3: (top) An example of the first 15 basis functions from the B-spline basis used in the smoothing of Lake Chany
log(Chl-a) time series. (bottom) An example of the irregular B-spline basis used in the smoothing of Lac des Bois LSWT
time series. The red triangles indicate the locations of the knots.

A practical way to overcome this problem is to discard the knots in a saturated basis corresponding to the
missing gaps in the time series and the time points where there are specific constraints. This gives an irregular
basis that better represents the features of the time series. The top panel of Figure 3 gives an example of such
an irregular basis. Here, the first 15 basis functions of the 3rd order B-spline basis created for the log(Chl-a)
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time series of Lake Chany is plotted. The red triangles on the horizontal axis indicates the locations of the
irregular spaced knots after removing the knots corresponding to the missing gaps. This construction can help
to reduce the edge effects induced by the observations at the two ends of the missing gaps. The bottom panel
of Figure 3 gives another example of the irregular 3rd order B-spline basis used in the smoothing of the LSWT
time series of Lac des Bois. Here the knots corresponding to the winter periods were removed as the LSWT
values were fixed at 0◦C.

In addition, to avoid boundary effects, the knot sequence may be extended beyond the original boundaries and
the boundary values Y1 and Yn are repeated multiple times. In this case, the splines at the two ends are the
same as defined in Eilers et al. (2015). For a 3rd order B-spline basis, three extension points are added to each
side of the original boundaries. By doing this, the period of interest (from time point 1 to n) would be free from
any boundary effects.

2.3 The adaptive penalty matrix

The construction of the adaptive penalty matrix is based on the 2nd difference penalty matrix, D = 42I, in the
standard P-spline smoothing. Whereas the standard 2nd difference penalty matrix applies the same penalty to
all time points, with the adaptive penalty matrix, different time points would receive different penalties. One way
to achieve this is to replace the I matrix with a diagonal matrixA whose diagonal entries reflect the relative high
or low uncertainties of the data at different time points. Denote the adjustment matrix A = diag{α1, · · · , αK},
where αk reflects the uncertainty of the datum associated with the k-th knot (which corresponds to time point k
in a saturated basis). The adaptive penalty matrix, denoted as Sα, is then constructed by taking 2nd differences
of matrix A. Using similar notation as in section 2.1, Sα can be written as

Sα = A>D>DA = D>αDα , (2)

and the adaptive penalty term can be written as

λβ>Sαβ = λβ>D>αDαβ . (3)

This is similar to the approach in Ruppert & Carroll (2000) for spatially adaptive splines, where a penalty of
the form

∑
k αk|βk|2 was used, with βk being the basis coefficient and αk being the penalty function evaluated

at knot k. Ruppert & Carroll (2000) referred to this as the “local penalty”, as opposed to the “global penalty”
which uses a constant α. Here a series of values αk, k = 1, · · · ,K is used to adjust for the uncertainties at
different time points, which can also be considered as a local property. What remains is to determine the values
of αk, k = 1, · · · ,K, given the application, which will be discussed in detail in the following paragraphs. For
convenience, the values of αk are restricted to the range of [0, 1], as the absolute scale of αk is indistinguish-
able from the smoothing parameter λ and only the relative scale difference among αk, k = 1, · · · ,K, is important.

Adaptive smoothing has long been used to create smooth representations of the data when the homogeneity of
smoothness cannot be assumed across the domain (Liu & Guo , 2010). Various ways of “adapting to the varying
smoothness” have been proposed over the years. Some approached the problem by placing knots and basis func-
tions adaptively (Friedman, 1991; Luo & Wahba, 1997), others by applying some versions of varying smoothing
parameters, such as the spans of the kernel (Muller & Stadtmuller, 1987), the parameters in a penalty matrix
(Ruppert & Carroll, 2000), the weights in a mixture of splines (Wood et al., 2002), etc. In the latter approach,
the adaptive smoothing parameters are sometimes constructed as a function of an independent variable. This
could be the variable used in the smoothing or an external variable which can inform the variability of the
smoothness of the data. The adaptive smoothing method proposed in this paper follows this approach and
chooses to construct the adjustment matrix A based on an independent variable that can reflect the uncertainty
of the data at each time point. This variable will be referred to as the “uncertainty variable” in the following
content.
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In practice, the adaptive penalty can be implemented through a two-stage method. The time series of the
uncertainty variable is smoothed first using standard P-spline smoothing. This is referred to as the “uncertainty
smooth”. Then the data time series (e.g. the mean chlorophyll-a time series) is smoothed using an adaptive
penalty matrix, constructed based on the basis coefficients of the uncertainty smooth. This is referred to as the
“value smooth”. Similar two-stage approaches using an additional smoothing step on auxiliary data to provide
information on the smoothness of the time series of interest can be found in Denis et al. (2020). In their paper,
the first smooth is used to determine the change point in the time series and the second smooth is applied taking
into account the change point.

Here the process of creating the adaptive penalty matrix is illustrated using the mean chlorophyll-a time series.
In this particular example, the uncertainty variable is chosen to be the proportion of data that are missing at
each time point. Denote Xt as the missing proportion at time t, and X(t) its functional form. A standard

P-spline smoothing is first applied to the logit transformed missing proportion time series X∗(t) = X(t)
1−X(t) , as

X∗(t) = Φ(t)α∗ + u(t) . (4)

where Φ(t) is a saturated basis and α∗ the basis coefficient vector. A back transformation is then applied to

get the smoothed missing proportions X̂(t), and a “change of basis”2 X̂(t) = Φ(t)α is applied to obtain the set
of coefficients αk, k = 1, · · · ,K that will be used to construct the adjustment matrix A. The main purpose of
the back transformation and the change of basis is to obtain a set of coefficients αk, k = 1, · · · ,K, that falls
within the interval of [0, 1]. Although the elements in the coefficient vector α∗ reflect the relative highs and
lows of the missing proportions, they often go beyond the [0, 1] interval. The elements in the coefficient vector
α̂, however, usually stay in the interval. Setting the sequence αk, k = 1, · · · ,K, to be the diagonal entries of
the adjustment matrix A gives the main building blocks of the adaptive penalty matrix.

In the rare cases where some elements in the estimated coefficient vector α go beyond the interval, one simply
replaces the values beyond 1 with 1 and the values below 0 with 0. Should the scale difference between the
elements of the estimated coefficient vector α becomes unrealistically large, further adjustment may be applied
to avoid over or under penalising certain parts of the time series. An example of this will be given in section
2.5.

2.4 The selection of degrees of smoothness

The final step before one can implement the adaptive smoothing method is to determine the degrees of smooth-
ness of the time series curve. This is usually controlled by the smoothing parameter λ in the penalty term (3).
Depending on the application background, the degrees of smoothness may be determined through a combina-
tion of automatic selection methods, such as the generalized cross validation (GCV), and background knowledge.

For the smoothing of a time series from a particular lake, the generalized cross validation (Ramsey & Silverman,
2005) is applied. However, since the construction of the penalty matrix Dα in the adaptive penalty (3) depends
on the result of smoothing the uncertainty time series, which itself depends on another smoothing parameter,
the computation of the GCV scores becomes less straightforward. To be precise, the penalised least squares
problem for adaptive smoothing is actually∑

t

‖Yt − Φ(t)β‖2 + λβ>Sα(λ0)β , (5)

where λ0 comes from the P-spline smoothing of the uncertainty time series Xt, with the minimization criterion,∑
t

‖Xt − Φ(t)α‖2 + λ0α
>Sα .

2This is the smoothing where the curve Φ(t)α is required to interpolate X̂(t), which is a smoothed version of X(t). No
smoothness penalty is used.
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In addition, there may not be a simple expression for Sα(λ0) as a function of λ0. For example, in the illustration
in section 2.3, the uncertainty variable Xt was transformed before the P-spline smoothing was applied, which
was then followed by a change of basis. In fact, a transformation may be a common practice to ensure that the
entries of matrix A lie in the interval of [0, 1]. Therefore, there is usually no explicit expression for Sα(λ0) as a
function of λ0 and hence no explicit expression for the GCV score as a function of λ and λ0.

One possible solution is to carry out a grid search to find the appropriate combination of λ and λ0. However,
this could be computationally intensive. As a practical approach, in terms of the LSWT and the chlorophyll-a
time series, this paper proposes to combine a coarse grid of λ0 and a fine grid of λ. That is, a search on a coarse
grid of λ0 values is carried out first. Then for each candidate value of λ0, the GCV scores

GCVλ0(λ) =
‖ [I −Hλ0(λ)]Y ‖2

T−1trace{I −Hλ0
(λ)}2

, (6)

are computed, where Hλ0
(λ) = Φ[Φ>Φ + λSα(λ0)]−1Φ> is the “hat matrix”, for a sequence of λ on a much

finer grid. The combination of λ0 and λ that produce the smallest GCV score would usually be considered
as an appropriate choice. This approach breaks the selection problem into two steps. It makes sense for the
application in this paper because there are different priorities in terms of the uncertainty smooth and the value
smooth. To some extent, the purpose of uncertainty smooth is only to extract some general information on
the varying uncertainty of the data. Therefore, the selection of λ0 is less crucial than the selection of λ and
it is preferable to have a relatively large value for λ0. In situations where over-fitting is to a concern, double
cross validation, which aims to obtain the closest match between the predicted value of a time point when its
observation is excluded and included in the fitting (Wood, 2017), may be used.

For the smoothing of a large number of time series, this paper proposes to select the effective degrees of free-
dom (EDF) of the smoothed time series directly, instead of tuning the smoothing parameters λ0 and λ. This
is based on the following consideration. Whenever the irregular basis is used, the number of basis functions
used in the smoothing would be different from one lake to another. As a result, using the same smoothing
parameters λ0 and λ across all the time series would result in different degrees of smoothness. This could be
problematic when the smoothed time series are used in the functional data analysis, as they are not directly
comparable. A more sensible option is to choose the effective degrees of freedom that is appropriate for the ma-
jority of the time series using some (automatic) selection procedure. Then apply the same EDF to all time series.

According to Cantoni & Hastie (2002), there is a strictly monotone relationship between the smoothing param-

eter λ and the effective degrees of freedom dfλ in the type of smoothing problem Ŷ = (I + λQ)−1Y . This
relationship can be written as dfλ =

∑
t

1
1+λdt

, where dt is the t-th diagonal element of matrix Q. It can be
shown that a similar result holds for the adaptive smoothing approach proposed in this paper. The 1 to 1
mapping can be written as

dfλ =
∑
t

ct
1 + λdt

,

where ct is the t-th diagonal element of another matrix associated with the penalty matrix (see Appendix A for
more details). Therefore, following Cantoni & Hastie (2002), the problem of selecting the smoothing parameter
λ can be converted to the problem of selecting the effective degrees of freedom dfλ.

Based on the above result, this paper proposes to investigate the GCV score as a function of the effective degrees
of freedom dfλ, rather than a function of the smoothing parameter λ. The problem remains to compute the
GCV score for all the time series. This is different from the smoothing of one time series, as different smoothing
parameters are required for different time series in order to reach the same EDF. The basis matrix also differs
if the irregular basis is used. Considering these aspects, this paper proposed to compute the GCV scores of
an augmented penalised least squares problem, where all time series are column stacked into a long vector,
Ỹ = (Y >1 , · · · ,Y >N )>, all basis matrices are constructed into a block diagonal matrix Φ̃ = diag{Φ>1 , · · · ,Φ>N}
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and all basis coefficient vectors are column stacked into a long vector β̃ = (β>1 , · · · ,β>N )>. The associated
penalised least squares problem can be written as

‖Ỹ − Φ̃β̃‖2 + β̃>S̃df β̃ , (7)

where S̃df is

S̃df =

 λ1D
>
1 D1 · · · 0
...

. . .
...

0 · · · λND
>
NDN

 ,

and λ1, · · · , λN are chosen such that the effective degrees of freedom of all N smoothed time series are the
same. Since all matrices involved in the calculation of this GCV score are block diagonal, it is relatively easy
to compute its value using the sum of squared errors from the smoothing of individual time series.

Finally, the standard errors of the smoothed time series can be computed as Cov[Ŷ ] = Hλ0
(λ)ΣYHλ0

(λ)>,
where ΣY is the estimated covariance matrix of Y . Hence, the standard errors of the smoothed time series can
be obtained from the diagonal elements of the covariance matrix. Note that in the adaptive smoothing of a
large number of time series, each time series may have its own smoothing parameters λ0 and λ for the selected
effective degrees of freedom as shown in problem (7).

2.5 The impact of adaptive smoothing

To illustrate the impact of adaptive smoothing, this section presents an example using the complete recon-
struction of the lake surface water temperature of Lake Victoria in Africa. This data set is available from
http://www.laketemp.net/home_ARCLake/index.php. It contains monthly satellite images of the LSWT of
Lake Victoria from June 1995 to April 2012.

The area covering Lake Victoria consists of 2313 pixels, which is shown by the image in the left panel of Figure 4.
Initially, the mean LSWT time series was computed by taking the spatial average of the complete reconstruction
of the LSWT. It was then centered to have zero mean. To mimic the situation where averaging over a small
number of clustered pixels results in bias in the mean LSWT time series, four time points were selected and the
mean LSWT at these time points were replaced by the average of the observations in the northeast corner and
the southeast corner of the lake. The two corners are depicted by the black boxes in the left panel of Figure
4. For this particular lake, the northeast corner tends to have higher LSWT and the southeast corner tends to
have lower LSWT than the rest of the lake. The resulting mean LSWT time series with bias is shown in the
top right panel of Figure 4. The proportion of missing observations at each time point was used to create the
adaptive penalty matrix in this case. The missing proportion time series is shown in the middle right panel as
the black vertical lines. The elements αk, k = 1, · · · ,K of the adaptive penalty matrix, which were obtained
from the smoothing of the missing proportion time series, were shown as the black dots. The effective degrees
of freedom used in this stage is 34, corresponding to placing one knot every six months. The bottom right panel
shows the smoothed mean LSWT time series from the standard P-spline smoothing (blue curve) and that from
the adaptive smoothing (red curve), both with effective degrees of freedom 81, which corresponds to placing
one knot every 2.5 months. The mean LSWT from the complete reconstruction was also shown in the bottom
right panel as the grey curve with dots.

It can be seen from the bottom right panel of Figure 4 that the blue curve from standard P-spline smoothing
tracks the pattern throughout the time series in the same manner. It did not distinguish a datum with higher
accuracy (i.e. a spatial average from a complete image) from a datum with higher uncertainty (i.e. a spatial av-
erage from a few clustered pixels). Therefore, if the datum contains biased information, the resulting smoothed
time series is also likely to be biased. In this case, although the resulting smoothed time series reflects the
patterns in the time series in the top right panel, it under/over estimated the true mean LSWT (the grey curve
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Figure 4: (Left) A map showing the lake surface water temperature data (in ◦C) from Lake Victoria in July 1999
and the two areas (black boxes) used to created the biased mean LSWT. (Right) The centered LSWT time series from
Lake Victora with inserted biased data shown as red triangles (top), the missing proportion time series and the αk,
k = 1, · · · ,K series (middle), and the smoothed LSWT time series from standard P-spline smoothing (blue curve) and
adaptive smoothing (red curve) (bottom).

in the bottom right panel) around the time points where there are manually introduced bias. The red curve
from adaptive smoothing avoided this problem by penalising the datum with higher uncertainty. The resulting
smoothed value stays closer to the mean of the time series, which in this case reflect the patterns in the true
mean LSWT more appropriately.

It may happen that the spatial average from the clustered pixels in the two corners coincides with the true
mean. In such case, the adaptive smoothing would produce a seemingly worse result by not following the datum
with higher uncertainty closely. However, the truth is often unknown in practice. Hence an estimation closer
to the mean value of the time series and an estimation closer to the datum are equally likely to be biased, with
the latter having a higher chance of bringing in extreme values to the result. This is a situation that people try
to avoid in most applications, which is also where adaptive smoothing shows its advantage. Further examples
showing the impact of adaptive smoothing using the two lake Chl-a time series in Figure 1 can be found in
Appendix B.

The method for obtaining the adaptive penalty matrix may occasionally result in over adjustment due to the
large scale difference between α̂k, k = 1, · · · ,K. This may introduce artefacts to the smoothed time series. For
example, some parts of the smoothed time series may be pulled towards the mean of the time series by the
overly large penalties introduced by those large α̂k values. A motivating example can be found in Appendix B.
Different methods may be used to modify the sequence α̂1, · · · , α̂K (denoted as {α̂k} for convenience). Ideally,
the modified adjustment vector should have (i) all values in the range (0, 1), (ii) the scale differences smaller
than a specific threshold, (iii) elements with the same order (ties are allowed) as the original vector, i.e. for
α̂k > α̂j , it is required that f(α̂k) ≥ f(α̂j) after transformation. For example, a square root transformation
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with a lower cap may be used, i.e.
α∗k =

√
max{α̂k, δ2} . (8)

This operation reduces the scale difference between the elements in sequence {α̂k}. The lower cap δ2 further
ensures that the scale difference is less than 1/δ.

In summary, the adaptive smoothing method proposed in section 2 produces smoothed LSWT time series that
are less likely to over-fit the data produced through averaging a small number of lake pixels, which are often
associated with higher uncertainty. The smoothed time series curve displays less dramatic fluctuations than
that from the standard P-spline smoothing which uses a standard 2nd difference penalty matrix. This can be
an advantage in application as the outcomes are less likely to be affected by noise or biased information.

3 Investigating the spatial structure in lake ecological process

This section presents two applications of the proposed modelling procedure combining adaptive smoothing and
functional data analysis to the mean LSWT time series and the mean chlorophyll-a time series from 932 lakes
in the GloboLakes repository. The application to the mean LSWT time series aimed at identifying the spatial
structure at a global scale in the seasonal dynamics of LSWT from the major lakes on Earth. The application
to the mean chlorophyll-a time series sought to explore the potential spatial structure in the seasonal and trend
signals of lake chlorophyll-a from the major lakes on Earth.

3.1 Preparing the data via adaptive smoothing

The GloboLakes repository contains the satellite remote sensing lake surface water temperature and lake
chlorophyll-a data from 932 largest lakes on Earth. Based on data availability, 732 lakes were selected in
the analysis of the LSWT and 535 lakes were selected in the analysis of the lake chlorophyll-a.

The bi-monthly lake surface water temperature time series consist of 398 time points, covering a period from
summer 1995 to spring 2012. After the spatial averaging within lakes, most of the lakes have (near) complete
time series and the data availability is usually high. Therefore, the use of an adaptive penalty matrix is not
necessary. However, the LSWT observations can be affected by ice cover. When ice was detected, the water
below the ice was set to 0◦C. To reflect this property, the irregular basis created using the method in sec-
tion 2.2 was adopted, which helped to ensure that the smoothed LSWT time series would respect the 0◦C
constraint. Figure 5 gives two examples of the smoothed LSWT time series. The smoothed time series (red
curve) in the top left panel represents Chamo Lake, a tropical lake with good data availability. The top right
panel represents Lac des Bois, which is a high latitude lake. An irregular basis was used here to account for the
0◦C constraint over the winter periods. Part of this irregular basis was presented in the bottom panel of Figure 3.

The spatially averaged monthly lake chlorophyll-a time series consist of 101 time points from July 2003 to
November 2011. To enable the analysis, the time series were log transformed and centered. The resulting time
series will be referred to as the “centered log(Chl-a)” time series. Two types of smoothed signals were consid-
ered, the smoothed trend series and the smoothed seasonal series. Depending on data availability and modelling
aims, either standard P-spline smoothing or adaptive smoothing was applied to the data. For the latter, the
adaptive penalty matrix was constructed from the coefficients of the smoothing of the missing proportion time
series as in (4). In some rare cases, further adjustment using the transformation (8) was made to the adaptive
penalty matrix to avoid over-penalising the data.

The degrees of freedom of the smoothed time series was selected using the method in section 2.4. In particular,
the EDF used in the uncertainty smooth was selected from a list of values, corresponding to placing a knot
every 2, 3, 4, 6 months. Double cross validation as described in Wood (2017) was used to prevent over-fitting.
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Figure 5: The observed (black dots) and the smoothed (red curve) mean LSWT time series of Chamo Lake (top left)
and Lac des Bois (top right), from 2000 to 2010. The centered log(Chl-a) time series and the smoothed trend signal
of Lake Tanganyika (bottom left). The de-trended log(Chl-a) time series and the smoothed seasonal signal of Lake
Tanganyika (bottom right).

The cross validation scores indicated that a degrees of freedom of 16.83 (i.e. one knot every six months) was
appropriate. The EDF used in creating the smoothed trend of the centered log(Chl-a) time series was set to 4
to capture the large scale temporal pattern over time. The EDF used in the smoothing of the time series after
removing the smoothed trend was selected from another list of values, corresponding to placing a knot every
2, 2.25, ..., 4.75, 5, 5.5, 6 months. The plot of GCV scores against the EDF values has a bend at around 28
(see Appendix C), which is equivalent to placing one knot every 3.5 months. Considering the interpretation of
the result in the real application, a final decision was made to use an effective degrees of freedom of 34, which
is equivalent to placing one knot every three months (i.e. one knot per season). Using the selected effective
degrees of freedom, the smoothed trend signals and the smoothed seasonal signals in the centered log(Chl-a)
time series were extracted. Examples of the smoothed trend and seasonal curves from the centered log(Chl-a)
time series of Lake Tanganyika are presented in the bottom left and bottom right panel of Figure 5.

3.2 Identifying the spatial structure via functional data analysis

After obtaining the smoothed representations of the LSWT time series and the smoothed trend and seasonal
signals of the lake chlorophyll-a time series, functional data analysis techniques were applied to the smoothed
time series respectively to explore the spatial structure in the temporal dynamics of the two ecological variables.

A novel investigation on global lake thermal region shift using the smoothed LSWT time series was conducted in
Maberly et al. (2020). In particular, nine lake thermal regions were identified through functional principal com-
ponent analysis (PCA) (Ramsay et al., 2021), followed by quadratic discriminant analysis on the functional prin-
cipal component scores. Figure 1 in Maberly et al. (2020) presents the cluster memberships on a map, along with
the curves representing the cluster centers. An R-shiny app was developed to help visualise the thermal regions.
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It can be found on GitHub through the link https://github.com/ruth-odonnell/LakeThermalRegions/.

In the analysis of the centered log(Chl-a) time series, functional PCA was first applied to the smoothed trend
and seasonal time series respectively. Then cluster analysis was applied to the subsets of the identified functional
principal components (PCs) which explain over 50% of the variation in the smoothed trend and seasonal time
series. In particular, 11 functional PCs were used in the clustering of the trend signals and 22 functional PCs
were used in the clustering of the seasonal signals. Various clustering methods were explored, including K-means
clustering (Hartigan & Wong, 1979) and model based clustering using mixture models (Fraley & Raftery, 2002).
The results from K-means clustering tend to be the most robust and they were presented in this section.

After removing four outlying curves, the number of clusters were selected considering both the gap statistics
(Tibshirani et al., 2001) and the ecological interpretation. The Rand index (Scrucca et al., 2016) was computed
and the functional ANOVA (Febrero-Bande & Fuente, 2012) was applied to the clustering result to examine
the similarities and differences between the identified clusters. As suggested by the gap statistics, both four
and eight clusters for the smoothed trend signals seem to be appropriate. Here the result from clustering the
smoothed trend signals into eight clusters is presented in Figure 6. The top of Figure 6 shows eight different
types of interannal variation identified from the smoothed trend signals. The bottom of Figure 6 shows the
locations of the lakes in each cluster on a map. The result from clustering the smoothed seasonal signals into ten
clusters is presented in Figure 7. There are some subtle spatial patterns in the Northern Hemisphere in terms of
the seasonal signals where the members in cluster 4, 7 and 8 appear to share common features in their latitude.
However, the majority of the clusters seem to consist of lakes from across the globe, which do not appear to
follow particular geographic patterns constrasting to the clustering result of the LSWT time series. More details
of the clustering are available in the R-Shiny app with the link https://github.com/GMY2018/ChlCluster. In
this app, individual maps of each cluster are presented, which provides more information on the spatial patterns.
Future work involves detailed interpretation of the clustering result for ecology and limnology.

4 Conclusion and discussion

4.1 Conclusion

Motivated by the real application problem of the GloboLakes project, this paper introduced a modelling pro-
cedure that combines adaptive smoothing and functional data analysis to identify the spatial structure in the
temporal dynamics of lake ecological variables. To account for the varying uncertainty in the spatially averaged
satellite remote sensing LSWT time series and lake chlorophyll-a time series, the paper proposed two adjust-
ments to standard P-spline smoothing based on the idea of adaptive smoothing. Firstly, an irregular basis that
matches the missing patterns in the time series and respects the specific constraints on the observations was used
to mitigate the impact of these features. Secondly, an adaptive penalty matrix that assigns different penalties
to different time points was created to adjust the smoothness of the time series and to prevent over-fitting based
on the uncertainty associated with the proportion of data used in the estimation. The paper also presented a
GCV-based method to select the degrees of freedom for a large number of smoothed time series so that they
were comparable in the functional data analysis to investigate the spatial structure.

The proposed methods were applied to the mean LSWT time series from 732 lakes and the mean lake chlorophyll-
a time series from 535 lakes globally. In the case of the mean LSWT time series, the irregular basis was used to
handle the missing gaps and the measurement constraint on surface water temperature. In the case of the mean
lake chlorophyll-a time series, the adaptive penalty matrix was constructed based on the missing proportion time
series which reflect the uncertainty associated with the spatial average. This produced smoothed time series
that are less prone to bias or noise. Functional principal component analysis, coupled with quadratic discrimi-
nant analysis and K-means clustering, were then applied to the smoothed LSWT time series and the smoothed
lake chlorophyll-a trend and seasonal signals. The analysis of the smoothed LSWT time series identified nine
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Figure 6: (Top) The smoothed trend signals extracted from the centered log(Chl-a) from eight clusters (grey curves)
and the curves representing the cluster centers (colourful curves). (Bottom) The clustering result shown on a map, where
each dot represents a lake and the colour represents the cluster membership.

clusters representing the global lake thermal regions. The clustering of the smoothed lake chlorophyll-a data ex-
tracted eight global lake clusters describing the interannual variation and ten clusters differentiating the seasonal
signals. The two applications demonstrated the advantages of the proposed method in modelling a large num-
ber of lake ecological time series and the interesting information that can be extracted from the modelling result.

4.2 Potential choices of the uncertainty measure

Although some implementation details presented in the paper are problem specific, the method itself is flexible.
It can be generalised to other problems with appropriate choices of basis, uncertainty measure and functional
data analysis techniques. Here potential choices of the uncertainty measure of the spatial average in more
general settings are discussed.

Satellite remote sensing data product may contain uncertainty measurements and/or error measurements (i.e.
deviation from the truth) of the retrieved data at different resolutions (Povey & Grainger, 2015). These data
can provide valuable information to the implementation of the adaptive smoothing method. Summary statis-
tics, such as mean, standard deviations and quantiles, can be computed from the pixel level uncertainty/error
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Figure 7: (Top) The smoothed seasonal signals extracted from the centered log(Chl-a) from ten clusters (grey curves)
and the curves representing the cluster centers (colourful curves). (Bottom) The clustering result shown on a map, where
each dot represents a lake and the colour represents the cluster membership.

measurements to quantify the uncertainty of the spatial average. The summary statistics can then be used to
construct the adaptive penalty matrix. There have been extensive research on the uncertainties of the retrieved
data within the satellite remote sensing community, along with discussions on the appropriate communication
of the uncertainty (Povey & Grainger, 2015; von Clarmann et al., 2020). It can be expected that such data will
become increasingly accessible in the future.

Geostatistical methods may also be used to obtain the uncertainty measure. Aubry & Debouzie (2000) de-
scribed a problem of quantifying the uncertainty of the spatial average using geostatistics tools. They defined
the uncertainty measure as E[(ZR − Z∗R)2], where ZR is the spatial mean over region R and Z∗R is the spatial
average computed from the observations z1, · · · , zn in region R. They showed that this measure can be cal-
culated using the estimated variogram model γ(·, ·) as 2

∑n
i=1 λiγ(si, R) −

∑n
i=1

∑n
j=1 λiλjγ(si, sj) − γ(R,R),

where λi, i = 1, · · · , n, are the weights used in the spatial averaging, si represents the location of observation
zi, and γ(si, R) =

∫
R
γ(u − si)du/|R|, γ(R,R) =

∫
R

∫
R
γ(u − v)dudv/|R|2. The derivation of this expression

can be traced back to Matheron’s work in 1965. An estimation of the spatial averaging uncertainty may also
be obtained through the mean-squared prediction error (MSPE) from kriging or block kriging as described in
Chapter 3 of Cressie (1993). For example, one may obtain an prediction of the region R and its MSPE based
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on data from sub-regions R1, · · · , Rm, using simple (block) kriging with the variogram model, γ(·, ·), estimated
from the data. In particular, the MSPE can be calculated as σ2(R) = λ>(R)γ(R)− γ(R,R), where λ(R) is the
vector of kriging coefficients, γ(R) = (γ(R,R1), · · · , γ(R,Rm), 1)>, and γ(R,Ri) =

∫
R

∫
Ri
γ(u−si)dsidu/|Ri||R|

(Cressie, 1993).

Both measures require the inspection of the individual spatial images in order to estimate the variogram model
and carry out the kriging interpolation, which can be computationally expensive. Hence, they are not suitable
for the application in this paper, where computational efficiency was prioritised. The occasional high propor-
tion of missing data during winter periods presents another challenge. Nevertheless, when the conditions are
right, these measures will provide an appropriate uncertainty quantification for the spatially averaged time series.

4.3 Future extensions

Finally, potential extensions to the proposed methods are considered. As a result of the two-stage approach
when using the adaptive penalty, two smoothing parameters are required and each of them need to be selected
appropriately. Here the selection of smoothing parameters were guided by the application. The smoothing
parameters used in the uncertainty smooth was chosen from a coarser grid to capture a general pattern, and
the smoothing parameter of the value smooth was selected over a finer grid to find the optimal solution. For
smoothing problems where no prior or background knowledge is available, the grid search on a tensor could
be tedious and computationally expensive. Further investigation is needed to develop a method where the two
smoothing parameters can be determined in a computationally efficient way.

The appropriate levels of smoothness of the time series investigated in this paper are similar. Hence it is rela-
tively easy to describe them using smooth functions of the same degrees of freedom and apply functional data
analysis. When it comes to time series with distinctively different levels of smoothness, the methods developed
in this paper may not be appropriate. This is a more general problem that is worthy of investigation, but it
goes beyond the scope of this paper.
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A The relationship between λ and dfλ

The relationship between the smoothing parameter λ and the corresponding degrees of freedom dfλ in Cantoni &
Hastie (2002), dfλ =

∑
t

1
1+λdt

, is derived for smoothing splines and a particular smoothing problem with the hat

(or projection) matrix being (I+λQ)−1. Here a slightly different projection matrixH = Φ[V (I+λQ)−1V >]Φ>.
In case an orthogonal basis Φ is used, then the same relationship between λ and dfλ applies. For the rest of
the situations, start by rewriting the matrix inverse in the hat matrix H = Φ(Φ>Φ + λSα)−1Φ> using
the simplification method in Chapter 5 of Ramsey & Silverman (2005). This starts with the eigenproblem
SαV = Φ>WΦV Q, where Q is the eigenvalue matrix of Sα in the metric defined by Φ>WΦ with weight
matrix W (W = I in this paper), and V is the corresponding eigenvector matrix satisfying V >Φ>WΦV = I.
It then follows that V >Φ>WΦV = I and (Φ>Φ + λSα)−1 = V (I + λQ)−1V > as in Ramsey & Silverman
(2005), where the inverse is much easier to compute as the eigenvalue matrix Q is diagonal. The trace of the
hat matrix then follows as

dfλ = trace
{
Φ
[
V (I + λQ)−1V >

]
Φ>
}

= trace
{

(I + λQ)−1V >Φ>ΦV
}

=

T∑
t=1

ct
1 + λdt

,

where ct, t = 1, · · · , n, are diagonal elements of matrix V >Φ>ΦV and dt, t = 1, · · · , n, are diagonal elements
of matrix Q. This represents a strictly monotone relationship between λ and dfλ as both ct and dt come from
matrices that are determined by the basis matrix and the penalty matrix, and do not involve λ.

B Further information on the impact of adaptive smoothing

Figure 1 in the introduction shows the spatially averaged log(Chl-a) time series of Lake Tanganyika and Lake
Chany. To create the smoothed representations of the two time series, the irregular basis and the adaptive
penalty matrix introduced in section 2 were used. Both time series have length equals to 101, covering a period
from autumn 2003 to winter 2011. Uncertainty smooth was carried first. The effective degrees of freedom (EDF)
was set to 17, corresponding to one knot every 6 months. The estimated basis coefficients from uncertainty
smooth were then used to construct the adaptive penalty matrix. Finally, value smooth was applied to the
log(Chl-a) time series respectively. The EDF was set to 34, corresponding to one knot every 3 months. The
result is presented in Figure 8.

The log(Chl-a) time series of Lake Tanganyika is nearly complete. The missing data proportions are relatively
low for most of the time, apart from the few months between 2004 and 2005. It is straightforward to see the
impact from the higher penalties applied to the beginning of the time series from the bottom left panel. Whereas
the blue curve (from standard P-spline smoothing) follows the peaks and troughs in the time series; the red
curve (from adaptive smoothing) displays a more dampened signal in response to the higher uncertainty. The
log(Chl-a) time series of Lake Chany has clear seasonal missing pattern, which is typical to high latitude lakes.
Higher penalties were applied to the time points at the beginning of 2004, 2007 and 2008. Their impact was
reflected by the difference between the blue curve and the red curve in the bottom right panel. Using adaptive
smoothing prevented the smoothed time series from tracking the distinctively high value in the early spring of
2007, where the corresponding missing proportion is 0.932.

For an motivating example of the adjustment discussed in section 2.5, the log(Chl-a) time series of Lake Ngangze
in China and its adaptive smoothing outcome is presented in the right panel of Figure 9. In this case, the largest
of the α̂k is over 100 times larger than the smallest of α̂k. As a result, some parts of the smoothed time series
were dragged towards 0, as shown by the red curve in the bottom right panel of Figure 9. Therefore, a mod-
ification using the square root transformation was made. The result of this modification is shown as the blue
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Figure 8: The smoothed missing proportion time series (top), the adjustment sequence used to create the adaptive
penalty matrix (middle) and the smoothed log(Chl-a) time series from standard P-spline smoothing (blue curve) and
adaptive smoothing (red curve) (bottom) of Lake Tanganyika (left) and Lake Chany (right).

dots in the middle right panel of Figure 9, representing the adjusted {α̂k}, and the blue curve in the bottom
right panel of Figure 9, representing the smoothed time series. The threshold used in this illustration is δ = 0.01.

C GCV scores for selecting the degrees of freedom

The GCV scores for selecting the degrees of freedom for the lake chlorophyll-a time series was presented in
Figure 10.
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Figure 9: An example of the over adjustment using the log(Chl-a) time series of Lake Ngangze. The middle panel shows
the basis coefficients α̂k, k = 1, · · · ,K (black dots), and the square root adjusted version (blue dots). The bottom panel
shows the two smoothed curves using the usual adaptive penalty matrix (red curve) and the adjusted adaptive penalty
matrix (blue curve).
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Figure 10: (Left) The double cross validation score of the 535 smoothed missing proportion time series against different
degrees of freedom. (Right) The GCV scores of the 535 smoothed log(Chl-a) time series after removing the temporal
trend against different degrees of freedom.
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