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Abstract  
 

Electric aircraft offer the potential for emissions savings towards decarbonising air 

transport and reducing its contribution to climate change. However, the characteristics 

of these novel technologies pose questions about how they can be integrated with 

existing airport infrastructure. Key considerations relate to the time needed to recharge 

electric aircraft whilst on the ground without adversely affecting operational capacities, 

and the requirement for airport operators to install electric charging capabilities. The 

paper applies queuing theory and simulation modelling techniques to help identify 

potential battery charging regimes for electric aircraft based on potential forecasts of 

the future electric aircraft fleet. An initial prototype discrete event simulation model was 

developed to simulate impacts of short-haul electric aircraft on airport capacity to help 

determine future infrastructural requirements. Computational optimisation techniques 

were used to determine optimal configurations of single purpose and converted dual 

purpose aircraft parking stands under different scenarios and charging regimes. The 

model demonstrated that a future increase in electric aircraft equating to 25% of the 

global aircraft fleet required the conversion of only 13% of existing parking stands, 



while maintaining airside capacity and operational efficiency. The findings have 

important implications for air transport planners and decision makers in the transition 

to zero emissions and flight.  

Keywords: Electric aircraft; Zero emissions flight, Discrete event simulation; 
Optimization methods; Airport Infrastructure, Sustainability  

 

1. Introduction and context  

It is widely recognised that the established, deeply embedded reliance on the burning 

of fossil fuels for air travel is unsustainable. Notwithstanding the recent impacts of the 

COVID-19 pandemic and the reduction in air travel demand, up to 2050 it is forecast 

that greenhouse gas emissions from international aviation will increase by a factor of 

between 2 and 4 times over 2015 levels (Fleming and de Lépinay, 2019). The 

challenges associated with combatting climate change and the specific role of major 

polluting industries like aviation in meeting emission reductions targets were reiterated 

during the recent COP26 UN Climate Change Conference held in Glasgow in 2021.  

    Consequently, there is an increasing focus on the potential environmental benefits 

of transitioning to new sustainable forms of aircraft propulsion technology, including 

electrically powered and hydrogen powered aircraft. Of these technologies, electrical 

propulsion is arguably the more mature, with a number of test flights of both pure-

electric (powered solely by electrical motors using batteries) and hybrid-electric aircraft 

(powered by a combination of electricity from batteries and fuel burnt in an internal 

combustion engine) having taken place in recent years. Notable recent examples 

include the first test flight of a hydrogen fuel cell powered aircraft operated by the firm 

ZeroAvia at Cranfield Airport in September 2020. In August 2021, the US company 

Ampaire successfully completed a series of test flights of its hybrid electric EEL aircraft 



on a route between the Orkney Isles and John O’Groats in Scotland as part of research 

project examining the commercial viability of passenger routes served by electric 

aircraft.  

 

While electric aircraft have significant benefits over traditional systems in terms of 

environmental performance, their development and adoption has so far been limited 

by the vastly inferior energy density of batteries relative to kerosene, and the additional 

weight these bring to the airframe. As of 2019, the most advanced Li-Ion battery cells 

had energy densities of 250 Wh/kg, equating to 1.7% of the equivalent jet fuel energy 

content. By comparison, a short-range electric aircraft demands battery-pack energy 

densities of 750-2,000 Wh/kg, or 6-15% of the existing jet fuel energy content. While 

annual increases in the energy density of batteries has increased around 3-4% 

annually since 2000 (Schafer et al. 2019), there is still a need for significant progress 

in battery technology before electric aircraft could compete directly with traditional 

aircraft on these terms.   

    For these reasons, the short to medium term to 2030, the prospect for electric 

aircraft is focussed on their application for shorter range mission profiles (50-400km) 

in the small and regional (max 19 seats) aircraft market, as a well as for general 

aviation and pilot training.  By contrast, the prospect of medium and longer-range 

electric aircraft operating in the next 10 to 20 years is far more limited for narrow body 

aircraft, and almost entirely out of the question for wide body aircraft (Reimers, 2018).  

    Like electric road vehicles, batteries for electric aircraft are likely to be integrated or 

‘fixed’ within the airframe (known as Battery Charging Systems); requiring an aircraft 

to be ‘plugged in’ to a power source once the battery has been discharged. In 

comparison, for Battery Swapping Systems the batteries are removed from the 



airframe to be charged remotely, and then ‘dropped’ back into the airframe once fully 

charged. While Battery Swapping Systems may reduce the amount of time needed to 

recharge an aircraft, they are likely to require new specialist equipment for replacing 

and moving batteries around the airfield and add complexity to existing airport 

operational procedures. There are also potential safety concerns with these systems, 

where sparks from exposed electrical contacts may pose an added fire risk (Roland 

Berger, 2018).  

    While the key drivers for the development and adoption of electric aircraft focus on 

their environmental benefits over traditional systems (e. g. lower levels of emissions, 

reduced noise and lower energy consumption), there are important unanswered 

questions regarding their potential logistical and operational impacts for airports, as 

well as the associated infrastructural requirements. Principally, these questions relate 

to the amount of time required to charge the aircraft’s batteries while on the ground, 

and the need for specialist charging infrastructure on the aircraft parking stand. 

    As is well established in the air transport literature airline business models rely on 

high aircraft utilisation and efficient turnarounds (Lange et al. 2019). This is especially 

true in short-haul markets (<3 hours flight time), which is where electric aircraft are 

expected to operate when they first enter the market. This is also an important 

consideration for airport operators, especially at the busiest airports and/or those with 

limited stand capacity, where longer turnaround times can have knock-on impacts for 

overall capacity and the number of arriving aircraft that can be serviced on stands 

within a given timeframe (Schmidt, 2017). The effects of delays and airside congestion 

can have important knock-on impacts for the logistical operation of an airport, given 

the need to coordinate flows of passenger, baggage and cargo, as well as the various 

equipment and service vehicles needed to service an aircraft while it is on the ground. 



Hence, the ability to ‘turn around’ an electric aircraft in a timeframe that does not 

compromise either the airline or airport operator will be a key determinant of their 

future adoption and success.  

The time required to charge the batteries of an electric aircraft depend on several 

factors, including the current state of charge of the battery, ambient conditions, and 

the charge/discharge rate of the battery (referred to as the battery ‘C-rating’). A battery 

with a C-rating of 1 can be charged in 1 hour, a rating of 2C can be charged in 20 

mins, and a battery with a rating of 5C can be charged in 12 minutes (Buchmann, 

2017). The automotive industry is targeting fast charging as high as 10C, which could 

result in a charge to 80%-90% state of charge in just 5 minutes (Reimers, 2018).  

    While increasingly rapid charging of batteries may be technically possible, 

consistently fast charging batteries in this way will degrade the battery and reduces its 

longevity (referred to as the battery ‘cycle life’) much quicker than if it were charged 

more slowly. This could mean batteries would need to be replaced relatively 

frequently, with associated financial implications for battery purchasing, maintenance, 

and the time the aircraft would need to be out of service whilst this procedure took 

place. While slow charging is the most efficient way to charge a battery and leads to 

the slowest rate of battery degradation, a charge time of several hours (for example) 

is unlikely to be a commercially viable or operationally feasible proposition for either 

airlines or airport operators.  

    Consequently, there is a need to better understand the balance of operational, 

logistical and commercial implications associated with charging electric aircraft linked 

to the amount time needed to recharge these aircraft. Additionally, as electric aircraft 

will require the provision of new specialist charging infrastructure, there is a need to 

determine the rate at which existing aircraft stands should be fitted with electrical 



charging capabilities while balancing financial and operational considerations for the 

airport operator. 

    To this end, the paper uses Discrete Event Simulation (DES) models formalised 

through queuing theory to help assess battery charging regimes for electric aircraft 

and their impacts on airside stand capacities under different simulation scenarios. 

Specifically, the analysis sought to determine to what extent longer recharging (and 

hence, turnaround times) could be accommodated for electric aircraft without 

compromising overall airport capacity, and the rate at which an airport would need to 

convert existing aircraft stands to accommodate charging infrastructure for electric 

aircraft as demand for these aircraft grows. While the analysis uses London’s 

Heathrow Airport as a basis for the study, the findings and recommendations are 

broadly applicable to other airports, given many are at a similar early stage in planning 

for the introduction of electric aircraft.  

    The following sections of the paper are structured as follows. In Section 2 a succinct 

literature review of computation simulation modelling approaches for airport 

operations is provided. In Section 3, the formal modelling methodology based on the 

application of queuing theory is presented; In section 4 a description of the prototype 

simulation model is supplied. An analysis of the model in understanding the impact of 

different battery charging times potential infrastructural requirements scenarios 

regarding the optimum configuration of stand infrastructure under various scenarios is 

provided in Section 5; In Section 6 optimal stand capacities are determined for different 

scenarios and charging regimes through the application of computational optimisation 

strategies. A discussion and recommendations for policy and practice on the projected 

impact on electric aircraft on airport capacity management and planning is provided in 



Section 7. Finally, concluding remarks and areas for future research are provided in 

in Section 8. 

2. Literature Review- Airport Simulation Modelling  

Computational models have been widely used to simulate various aspects of airport 

operations. A multi-fidelity modelling approach to managing airline disruptions 

combining integer programming and simulation optimisation is proposed in (Rhodes-

Leader et al. 2018). In (Adacher et al 2018) the routing and scheduling of aircraft 

ground movement operations based on real data is modelled and optimised to 

minimise total routing taxiing delays and reduce pollution emission by optimising 

waiting time during which the engines are turned on.  

    Agent Based Models (ABMs) have also been used widely in this context. These 

models are typically decentralised systems with ‘intelligent’ decision-making software 

agents representing primitive behaviors and interactions of people, organization and 

other real-world entities. For example, Bouarfa et al. (2012) use ABMs to model airside 

operations with a view to model and optimize behaviour against multiple Key Process 

Areas, including safety, capacity, economy, and sustainability. In Chen el al. (2018) 

an ABM is used to investigate the relationship between terminal design and retail 

performance through different simulated scenarios. Finally, in Noortman. (2018) ABMs 

are used in the modelling of an airport’s ground surface movement operations. 

    Another commonly used modelling paradigm is Discrete Event Simulations (DESs), 

which model the operation of a system as a discrete sequence of events occurring 

over time. In DESs each event occurs at a given instant in time and marks a change 

in the state of the system (Robinson, 2004). Researchers have applied DES to 

estimate the potential effects of changes in airport infrastructure, operating 



procedures, and traffic intensity upon system performance using multivariate statistical 

analysis. Here the influence of design capacity, airline scheduling practices and 

uncontrollable events on flight delays as well as the impact of selectively removing 

airport assets for maintenance is assessed (Douglas-Smith et al 2015). In Malandri 

(2018) a detailed DES model of inbound baggage handling at a large regional airport 

is used to identify bottlenecks and critical operations. The model is validated by 

comparing the simulation results with real data. Both ABMs and DESs are compared 

and applied to model passengers flows in (Metzner, 2019). The simulation models can 

be used to explore correlations between terminal resilience indicators and terminal 

configurations in order assess their overall efficiency.  

    A third type of simulation model available in the repertoire of tools is System 

Dynamics (SD). This is an abstract modelling methodology used to understand 

the nonlinear behaviour of complex systems over time, based on states of objects at 

a given moment in time, the rates at which entities in the model change, and feedback 

of information over time. In (Biesslich et al, 2014) SD has been used to combine airport 

operational parameters such as aircraft movements, passenger flows with economic 

features such as cash flows. There are also examples in the research where hybrid 

models have been developed that combine the advantages of these various 

paradigms for different application domains (for example, Brailsford et al, 2019).  

    There are also some limited examples of simulation modelling being used in the 

context of infrastructure planning requirements for novel aircraft technologies. Notably, 

(Salucci et al, 2019) developed an optimisation model based on sizing requirements 

for Athens International Airport to investigate the infrastructural needs to support 

hybrid-electric aircraft operations. The paper focussed on issues around the number 

and type of charging points, as well as related electrical consumption and the number 



of spare batteries needed to ensure smooth operations in the case a battery swapping 

system is employed. A similar study was conducted by Bigoni et al (2018), examining 

infrastructure requirements needed to support small general aviation (GA) hybrid-

electric aircraft operations at Milan’s Bresso Airport. Both these studies where later 

consolidated as part of Airport Recharging Equipment Sizing (ARES) which is a 

mathematical model that combines knowledge about the airport flight schedules 

together with the composition and specifications of the aircraft fleet, to determine 

number of batteries, chargers, and aircraft required for operations. The proposed 

optimisation algorithm provides battery infrastructure sizing solution with the 

scheduling of charging operations according to the predetermined flight schedules at 

an airport, while minimizing procurement and operational costs. The method further 

allows consideration of plug-in charging and battery swapping, either together or as 

alternatives (Trainelli et al, 2021). 

   In (Justin, et al, 2020) the authors develop algorithms based in scheduling theory for 

power optimized and power-investment optimized strategies for electric aircraft battery 

swaps and recharge. The approach enables the estimation of peak power demand, 

energy expenditures, and capital expenditures used for implementing the strategies 

and is applied to the operations of two commuter airlines in comparison with a 

benchmark non-optimized power-as-needed strategy. 

    This paper seeks to build on this research by exploring the use of simulation models 

for modelling and investigating the impact of electric aircraft (incorporating both pure 

and hybrid-electric aircraft) at a major hub airport. We further use the generated 

simulations to determine the optimal numbers of stands required under different 

charging regimes using computational metaheuristic-based optimisation strategies.  



    Up until the COVID-19 pandemic, Heathrow Airport was one of the largest airports 

in the World in terms of passenger numbers, handling around 80 million passengers 

annually. The airport also traditionally operated constantly at near 100% operational 

capacity under an imposed upper limit of 480,000 air traffic movements per year 

(roughly 650 arrivals and 650 departures per day) (Heathrow Airport, 2019). By means 

of comparison, in 2019 the second largest airport in the UK, London Gatwick Airport, 

handled around 285,000 aircraft movements and 46.6 million passengers, compared 

with 478,000 movements and 80.9 million passengers at Heathrow. Globally, in 2019 

Heathrow ranked as the 7th busiest airport in terms of passenger numbers (Hartsfield- 

Jackson Atlanta International Airport in the US was the first with 110,530,000 

passengers) and 15th in terms of aircraft movements (Chicago O’Hare in the US with 

920,000 movements was first) (Airports Council International, 2020). For the purposes 

of this study, it made sense to ‘stress test’ the model at an airport where capacity (and 

thus sensitivity to alterations in aircraft turnaround times) was already an acute issue. 

By comparison, this is generally less of an issue at smaller, less congested airports 

with spare capacity, where alterations can typically be accommodated more easily. In 

effect, if the paper can show that recharging of electric aircraft can be accommodated 

at a busy, congested airport like Heathrow, then it figures that other airports would 

also be able to accommodate these aircraft with little detriment to their current 

operation. Consequently, in this paper the simulation model baseline was adapted to 

represent the existing passenger serving aircraft parking stand capacity at Heathrow 

Airport (197 in total, of which 133 contact stands and 64 remote stands).  

    In the following sections, a description of the formal and simulation methodologies 

used to develop the prototype model is provided.  

 



3. Airport Stand Modelling Methodology 

The airport stand simulation problem can be formally expressed though queuing 

theory, an operational research methodology used to study the impacts of queuing 

scenarios (Yang, 2014) (Jaroslav, 2015). This can be applied to the servicing of 

arriving units (aircraft) requesting for services (stands). Queueing theory is used to 

determine the formal foundations of the proposed simulation model for defining 

interdependence between arriving aircraft, their wait for a stand, on-stand processing 

time, and departure (Krpan, 2017). The methodology comprises of the following 

elements: 

 

3.1 Distribution of Arrivals 

The distribution of arriving aircraft determining the request for stands is defined by the 

time interval between two successive arrivals of aircraft to the airport. In this simulator 

the arrival of each aircraft 𝛼! is based on a fixed rate 𝜆! defining the number of aircraft 

received by the simulation in each unit of time where 𝑣	𝜖	{𝑘𝑟, 𝑒𝑐}, 𝑘𝑟 represent kerosine 

fuelled aircraft and 𝑒𝑐 represent electric aircraft respectively. The interarrival times 

𝑡"##! between successive arrivals of each aircraft type is however stochastic so 𝑡"##! 

represents a mean interval between arrivals within the rate 𝜆! . 

    The proposed simulation problem is assumed to be an open system where 𝜆! is not 

dependent on any other state of the system. Furthermore, the arrival of aircraft over a 

particular period of time does not depend on the number of aircraft that previously 

arrived. Therefore, for our simulation problem the arrivals of aircraft are considered 

flows without consequences (Krpan, 2017). 

 

 



3.2 Distribution of Service Times 

The distribution of serving times of aircraft on a stand 𝜏! is defined by the length of 

time it takes for one aircraft to be turned around at an occupied stand. The stand 

turnaround times in the proposed simulation problem will be modelled as 𝑇$%#! for each 

aircraft type. The time duration for carrying out a service can be a constant or a random 

value determine from a probability distribution. Using 𝑇$%#! the average number of 

aircraft served in a unit of time termed 𝜇 can be calculated based on equation 1: 

 

                                                          𝜇&" =	
'

(#$%!
                                                        (1) 

 

where 𝑛	 ∈ {𝑠𝑛, 𝑑𝑢}, 𝑠𝑛 represent single purpose stands serving only kerosine fuelled 

aircraft and 𝑑𝑢 represent retrofitted dual purpose serving both kerosine and electric 

aircraft types respectively. Here 𝑖 is the stand index where 𝑖 = 1,… ,𝑚 and 𝑚 is the 

total number of stands.  

    A stand has a capacity that can be expressed by 𝜇&" which can also be depicted as 

the stand’s intensity of service. As our model assumes multiple stands for serving 

aircraft and we can determine capacity for the total number of stands from equation 2. 

 

                                              𝜇 = 	∑ 𝜇$&"		 + ∑ 𝜇)*"		
+
,-.

/
,-. 										                                     (2) 

 

where 𝑧 and 𝑦 are the numbers of single and dual purpose stands respectively such 

that 𝑧 + 	𝑦 = 𝑚. 



Using the parameters 𝜆! and 𝜇 the load on the airport can be calculated based on 𝜌 

which is the quotient of the intensity of the flow of arrivals and the intensity of serving 

over all the stands as derived from equation 3. 

 

                                                               𝜌 = 0'%($)
1

                                                           (3) 

 

If 𝜌 < 1, arriving aircraft will be serviced sooner or later, depending on the availability 

of stands. However, if 𝜌 ≥ 1 the load on the airport will increase over time leading to 

congestion from queuing aircraft. Therefore 𝜌 should not be greater than or equal to 

1, which implies that 𝜆!	should be smaller than 𝜇. If this is not the case, the number of 

stands should be increased to satisfy the condition for maintaining system stability 

(Krpan, 2017).  

 

3.3 illustrative Example for Calculating Load 𝜌 

As an example, to illustrate how to calculate 𝜌 assume a regional airport has a stand 

capacity of 20 single purpose stands where 𝑇$%#'%	 is 45 minutes and the rate 𝜆! of 

inbound aircraft is 20 per hour. The model assumes equal 𝑡"##! between consecutive 

aircraft, no variability on turnaround times or other stochasticity. 𝜌 can then be derived 

as follows based on equations 1, 2 and 3: 

 

                                                     𝜌 = 	0.75 = 	 2.

3 *
+, -.⁄ 42.

                                                           

 

Though deriving 𝜌 provides a mathematical basis for determining stand capacities, a 

simple formalism of it does not fully account for model stochasticity from variability in 



𝑡"##! between arriving aircraft, variability in taxing times and variability in turnaround 

durations for kerosine aircraft. Additionally, 𝜌 values are based on separately 

calculating the collective capacities for single and dual stands for their respective 

aircraft types with respect to 𝜆!. However, kerosine aircraft can access dual purpose 

stands leading to a reduced capacity for electric aircraft. Equally, if electric aircraft 

have occupied dual purpose stands for longer durations of changing times, this 

removes capacity of these stands for kerosine aircraft to use. These dynamics are 

harder to fully define requiring more data on stand occupancy behaviour of the model 

from which probability distributions can be defined affecting shared stand capacities. 

They therefore lead themselves to be modelled through simulation studies. However, 

𝜌 can be used to provide initial comparisons with respect to distribution of arrivals and 

capacities with other airports. 

 

3.4 Number of Service Elements 

In the proposed simulation problem, the number of 𝑠𝑛 and 𝑑𝑢 stands are predefined 

and used to simulate the effects on congestion and the throughputs of aircraft define 

here as the number of arriving aircraft that have landed, been (turned around) and 

departed the airport within a given period of time. 

 

3.5 System Capacity, Serving Order and Discipline 

The capacity of the service system is the maximum number of aircraft that are waiting 

in line to be served and that are being serviced on stands. When all stands are 

occupied an inbound aircraft 𝛼! that arrived will enter a queue. For our simulation 

problem we defined specific queues 𝑞! for each aircraft type. This was done for 

purposes of simplifying the design and implementation of the simulator as our focus 



was on determining the optimum number of single and dual-purpose stands for 

minimising queuing rather than focusing on analysing the queuing regimes being 

employed. The way in which aircraft from each queue access the stands is based on 

a First-In-First-Out (FIFO) order which accounts for the order of arriving aircraft. Hence 

when a stand 𝜏!	becomes vacant it will be allocated to the compatible aircraft 𝛼! that 

was the first to arrive irrespective of which queue it joined. 

 

4. Proposed DES based Airport Stand Simulation Model 

DES is a modelling methodology widely used in logistics and supply chain 

management. DES models comprise of entities, attributes, events (modules), 

resources and queues where time is an essential component for describing the order 

in which modelled events take place. Entities interact to simulate the operational 

workflow being modelled. As the system evolves over time, changes of its state 

variables occur at separate points in time corresponding to the behaviour of the entities 

(Padilha, 2016). These state variables can be used to capture data from simulated 

runs of the model. Queues may be used to manage the interaction of entities emulating 

real word process flows and associated delays. Shared resources can also be used 

in combination with queues and delay modules to represent assets which are used, 

periodically held, or consumed by entities. Constructing DSE models involve 

identifying and representing the resources, entities, logic and flow of the entities. 

Stochasticity of processes involved in the model and the relationship between 

modelled variables are further characteristics of this technique (Padilha, 2016). 

 

 



4.1 DES Airport Stand Model Elements 

Using a DES modelling methodology, the modular workflow elements for modelling 

aircraft recharging/refuelling times based on the introduction of short-haul electric 

aircraft as a proportion of non-electric aircraft flight operations was determined. The 

DES modelled separate workflows for electric and kerosene aircraft entities where 

both workflows were dependent on the proportion of each aircraft type entering the 

model and on the shared number of aircraft parking stands. The workflow elements 

comprised of the following modules as depicted in figure 1: 

 

4.1.1. Entry Module – modelled the hourly rate of inbound flight arrivals of both electric 

and kerosene aircraft. For our model the short-haul electric aircraft type was modelled 

on an existing small twin engine, 50 seat aircraft (Bombardier CRJ 100 series). This 

aircraft type was selected purely indicatively and for the purpose of physical sizing and 

operational parameters for the simulations only. In the absence of a commercially 

operational electric aircraft, it was decided that an existing aircraft with a comparable 

sizing, operational and performance profile to potential future electric aircraft was 

selected. It was not the intention to select an aircraft type that would likely mirror the 

look or specifications of a future electric aircraft entering the market (for example, a 

CRJ-100 is a jet aircraft, whereas it is likely that the first electric aircraft entering the 

market will be propeller turbo-prop aircraft).  

 

Here the number of short-haul electric aircraft flights were modelled as a percentage 

of total hourly flight arrivals. These numbers were then adjusted to model different 

projected increases in electric aircraft in the market. The hourly rate of inbound flights 



was also adjustable to model airport specific flight volumes based on aircraft 

movements during a standard operating day. 

    Formally the model determines the number of inbound kerosene and electric aircraft 

to generate per hour of simulation time based on their percentages to be modelled 

using equations 4 and 5 as follows: 

 

                                        𝜆5# = 𝜆! ∗ F1 − H
%6,#7#"89:%#7%&9

'..
IJ	                                      (4) 

                                    										𝜆%7 = 𝜆! ∗ H
%6,#7#"89:%#7%&9

'..
I	                                                    (5) 

 

where  𝜆5# and  𝜆%7 refer to the fixed hourly rate of kerosene and electric aircraft 

respectively, 𝜆!	refers to the total fixed hourly rate of inbound flights as introduced in 

section 3, for the given airport and 𝑒𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑃𝑒𝑟𝑐𝑒𝑛𝑡 is the projected percentage of 

electric aircraft. 

    The time interval between each arriving aircraft is distributed based on an 

exponentially distributed interarrival times 𝑡"##! with a mean of 1/ 𝜆! (Cansiz, 2021). 

This distribution can be calculated based on equation 6. 

 

                                            𝑓(𝑥;	𝜆!) = 	 S𝜆!𝑒
;0!< 𝑥 ≥ 0
0 𝑥 < 0

V                                         (6) 

 

where 𝑓(𝑥;	𝜆!) is the probability density function and	 𝑥 is a random variable.  

    For example, if 𝜆! defines a rate of 20 aircraft arrivals per hour, the mean 𝑡"##! is 

1/20 x 60 = 3 minutes between arriving aircraft over the course of 1 hour.  

 



4.1.2 Taxiing Delays Module – Approximate aircraft taxiing times for movements from 

the runway to/from stands were also accounted for in the simulation. These were 

assumed to be in the range of 5- and 10-minutes reflecting estimates obtained from 

the airport.  

    For each aircraft the simulation randomly selects taxing times (measured in 

minutes) based on a continuous probability distribution. A triangular Probability 

Density Function (PDF) with a peak (mode = 7.5), minimum (min = 5) and	maximum 

(max = 10), end points were used due to limited sample data, defined in equation (6). 

 

                            𝑓(𝑥) = 	W
2(<;>,&)

(>"<;>,&)(>@)%;>,&)
2(>"<;<)

(>"<;>,&)(>"<;>@)%)

X	
𝑚𝑖𝑛 < 𝑥 ≤ 𝑚𝑜𝑑𝑒

𝑚𝑜𝑑𝑒 < 𝑥 ≤ 𝑚𝑎𝑥
                                 (6) 

 

where 𝑓(𝑥) is the probability a random variable falls into a certain range that may be 

less, greater than or between a pair of values defined by 𝑥. Each aircraft’s taxing delay 

time will be based on the simulation randomly selecting a value 𝑥 from the distribution. 

 

4.1.3 Stand Serving Module – modelled a variable number of single and converted 

dual purpose aircraft stands 𝜏! as a shared resource to which arriving aircraft would 

be assigned. The serving model comprised of two elements: 

 

4.1.3.1 Queuing Module – modelled FIFO aircraft queues 𝑞5# and 𝑞%7 	 with unlimited 

queue lengths. The queues provide an indicator of congestion which can be monitored 

based on the adjustment of other model parameters, namely: number of stands (single 

or dual purpose), turnaround times for electric aircraft and kerosene aircraft, hourly 



rates of aircraft arrivals and the proportion of short-haul electric aircraft as a 

percentage of total inbound flights.  

 

4.1.3.2 Stands Pool – modelled a variable number of m single and converted dual 

purpose aircraft stands as a shared resource to which aircraft would be assigned. The 

initial number of stands could be selected based on the known stand capacity of the 

airport in question (in this case, Heathrow). The number of dual-purpose stands could 

also be selected and altered to evaluate the impact of electric aircraft introduction on 

airside capacity (i.e., the total number of aircraft that can be serviced within a given 

timeframe) and operational efficiency (i.e. timely processing of arriving aircraft where 

congestion from queuing of aircraft waiting for a stand is minimised). Each aircraft 

would remain on stand for a duration of time, specified by the aircraft type (i.e. 

kerosene or electric) and take into account estimated times for passenger and 

baggage unloading, loading, cleaning refuelling or recharging in the case of electric 

aircraft. 

    The stand turnaround times for kerosene aircraft would be based on typical 

durations for short and long-haul aircraft and modelled in minutes as a triangular PDF. 

The stand turnaround times for electric aircraft was a fixed time duration in minutes 

comprising of battery charging times, which could be adjusted to evaluate the effect of 

longer or shorter charging durations. For the model, it was assumed that the recharge 

time for the electric aircraft reflected the overall turnaround time of that aircraft (i.e. we 

assumed that passenger disembarkation/embarkation, cleaning, and baggage 

unloading/loading processes could be conducted concurrently in the time it took to 

recharge the aircraft). Similarly, it was assumed that arriving electric aircraft would 

have fully discharged batteries that would need to be fully re-charged while on stand. 



While we recognise that in reality electric aircraft would arrive with varying degrees of 

remaining charge (much like residual fuel levels in traditional aircraft), this was not 

included in the model for brevity. However, this is acknowledged as a limitation of the 

approach. 

 
4.1.4 Exit Module - modelling the release and departure of aircraft (electric and 

kerosene) once their stand servicing time was complete. As each aircraft 𝛼! departs 

aircraft type specific counters are incremented and the status of these counters is 

recorded every hour to determine the hourly throughput. Individual aircraft can also be 

timestamped upon arrival and departure to record entry, exit and durations for further 

analysis. 

 

 

 

4.2 Simulation Modelling Software 

The AnyLogic software is a simulation modelling tool that supports agent-based, 

discrete event, and system dynamics simulation methodologies (AnyLogic). The tool 

is a cross platform tool built on the Java programming language and combines model 

optimisation capability based on the OptQuest optimization engine by OptTek 

Systems (OptQuest). AnyLogic was used to construct the DES stand models where 

Figure 2 shows the DES user interface to the model with a graphical representation of 

a single pier simulation. 

 



 

Figure 1 DES workflow for both electric and kerosene aircraft showing the model elements. 

 



 

Figure 2 Simulation user interfaces showing an airport single pier model with a number of dual-purpose 

stands. Based on various pre-set parameters the DES model simulates aircraft arriving (1), taxiing to 

stand (2), queueing for a free stand (3), refuelling/recharging (4), then taxiing (5) to the runway for 

departure (6). Data (e. g. aircraft throughput) is then recorded and presented graphically on plots (7) as 

the simulation progresses. 

 

5. Simulation and Analysis of Airport Stand Capacities and Charging Regimes 

5.1 Simulating Impact of Battery Charging Times 

To understand the impact of different battery charging times on airside capacity an 

initial model was configured comprising of a hypothetical scenario were the airport 

operated a dedicated pier for the sole use of all-electric aircraft with a finite number of 

stands. The DES model assumed a rate of 10 inbound electric only aircraft per hour 

with an initial on stand battery charging time of 30 minutes. The initial number of stands 

was assumed to be 10 and an operating baseline number of stands was then 



determined by increasing the number of stands until all arriving aircraft could be 

immediately allocated to a parking stand without having to wait or queue for a stand 

to become available. This situation reflects the desired outcome from an airport 

operations perspective (i.e. no aircraft has to wait for a stand to become available 

upon landing). However, in a real world environment it may be necessary for aircraft 

to wait for a parking stand due to unplanned delays to other aircraft, malfunctions with 

equipment, shortages of equipment or ground crew, or other unforeseen 

circumstances. Hence, the baseline number of stands was determined to be 11. Table 

1 shows the results after completing each simulation run in which electric aircraft 

charging times were increased by 30 minutes, up to a maximum of 180 minutes. The 

effect on total aircraft throughput is also shown, with increasing recharge times leading 

to a reduction in the number of aircraft being processed per hour.  

Table 1 Increase in electric aircraft on stand charging time vs aircraft throughput (assuming a rate of 

10 inbound electric only aircraft per hour and a baseline number of 11 electric charging stands) 

Electric Aircraft Charging Times Hourly throughput of aircraft 
30 min (baseline) 9.85 

60 min 9.77 
90 min 7.07 

120 min 5.33 
150 min 4.30 
180 min 3.61 

 

It should be noted here that the modelling and results shown in Table 1 do not make 

any assumptions about the possible capacity of the batteries on the aircraft, nor the 

ability of the recharging and grid infrastructure to support the charging times shown. 

In effect, we are assuming that the charging times indicated could be supported, 

regardless of the size of the battery. However, we fully acknowledge that this is an 

important consideration when planning for electric aircraft, but this was not considered 

here in light of the focus on airside capacity and operations. As a means for 

comparison, current leading commercial electric cars commonly have batteries in the 



size of around 100kWh, with charging speeds commonly available at 120-150kW. The 

Eviation Alice, a 9-seater pure electric aircraft currently in development, is reported to 

have an 820kWh battery (Eviation, 2021). To fully charge this battery in 60 mins (i.e. 

a rating of 1C), charging speeds of 820kW would be required. If current charger 

technologies were used, it would take around 5 hours (300 minutes to charge) the 

aircraft.   

    It was also important to understand the relationship between required electric 

charging stand capacities and different battery charging times for the modelled all-

electric aircraft pier. The DES simulation model was then used to dynamically increase 

the number of stands in response to increasing charging times to minimise congestion 

from queuing aircraft. This aimed to illustrate the extent to which the number of stands 

needed to be increased to maintain operational efficiency, assuming the volume of 

inbound aircraft was fixed at the same rate of 10 flights per hour. Table 2 shows the 

results after completing each simulation run in which electric aircraft charging times 

were increased up to a maximum of 180 minutes and their effect on the number of 

stands required for minimising congestion and maintaining throughput based on the 

number of inbound flights. Calculated 𝜌 values for each modelled scenario are also 

provided for comparison.  

 

Table 2 Increase in electric aircraft on stand charging time vs number of electric charging stands 

required to minimise congestions and maintain aircraft throughput (assuming an hourly rate of 10 

inbound electric only aircraft) with 𝜌 values based on aircraft and numbers of stands 

Electric aircraft Charging Times Number of electric charging stands 𝜌 values for inbound electric 
aircraft rates 𝜆!" and dual-purpose 

stand intensities ∑ 𝜇#$!		
%
&'(  

30 min (baseline) 11 (baseline) 0.45 
60 min 16 0.63 
90 min 24 0.63 

120 min 29 0.69 
150 min 32 0.78 
180 min 40 0.75 

 



The simulation evidence from Tables 1 and 2 show that an increase in battery charging 

times can have a significant impact on throughput and required stand capacities for 

an all-electric aircraft pier. For example, if the electric aircraft took 90 minutes to 

recharge, 24 stands would be required to maintain the rate of processed aircraft. The 

𝜌 values also correspondingly show a steady increase in load with charging time. 

These volumes and capacities would vary if a shared pier with dual purpose stands 

serving both electric and kerosene aircraft were modelled, which is discussed in the 

next section. 

 

5.2 Determining Stand Capacity using DES Model Parameters Representing a Single 

Pier  

To assess the number of single and dual-purpose stands required to maintain airside 

capacity (reduce congestion) under scenarios of increased introduction of electric 

aircraft, the simulation model made the following assumptions as shown in Table 3. 

 

Table 3 DES model parameters representing a single airport pier 

DES Modules Parameters  
Stand Serving Module: short haul Kerosene 
aircraft 

Turnaround time of between 30 to 60 minutes (mode = 45 
minutes), in line with current turnaround times for short-haul 
aircraft 
 

Stand Serving Module: short haul electric aircraft Recharging and turnaround time of 120 minutes. This time 
was chosen as a compromise between minimising the 
turnaround time and maximising battery cycle-life 
conservation 

Stands Pool Module Baseline stand capacity of 20 single purpose stands for 
kerosene aircraft 

Entry Module 20 aircraft per hour 
Taxing Delay Module 5 to 10 minutes (mode = 7.5 minutes)  

 

The aircraft turnaround times would combine the fuelling / charging times with typical 

unloading and loading times and the initial number of single and dual-purpose stands 

was not defined. A baseline stand capacity of 20 single purpose stands for kerosene 



aircraft was initially established by reducing congestion to a minimum, based on 

assuming an initial rate of 20 inbound kerosine aircraft per hour. This can be shown 

from the green plot in Figure 3 showing an increase, peak and decrease in queuing 

aircraft as the number of stands (shown in the blue plot) are increased from 8 to 20. 

The purple plot gives the throughput of processed aircraft every hour over the full 

simulation run for 75 hours. 

 

Figure 3. Hourly throughput of all aircraft, number of queueing aircraft recorded per hour, number of 

single purpose stands (y-axis - number of aircraft/stands, x-axis - time in hours) 

 

The DES simulation model was then used to determine the total number of single 

purpose stands (i. e. kerosene only) that would need to be converted to dual purpose 

stands (i. e. kerosene and electric charging) to maintain capacity and keep airside 

congestions levels to a minimum. To do this, the proportion of electric aircraft relative 

to kerosene aircraft was separately modelled for 5%, 10%, 15%, 20% and 25% of 

hourly inbound aircraft. These figures reflected indicative scenarios for low (5%) to 



very high (25%) scenarios for future uptake of electric aircraft in the market up to 2040, 

based on industry literature regarding the uptake of electric aircraft (ICAO, 2019, 

Reimers, 2018, Roland Bergher, 2018). Figure 4 below shows selected generated 

plots over an entire simulation run for a 10% increase in the proportion of electric 

aircraft movements and their effect on capacity and congestion, where the simulation 

was run for 375 hours. 

 

a) 

 

  



 

b) 

 

Figure 4 shows the following plots for a 10% increase in the proportion of electric aircraft movements: 

(a) plot showing: the hourly throughput of all aircraft, number of queueing aircraft recorded per hour, 

number of dual-purpose stands, number of single purpose stands (y-axis - number of aircraft/stands, x-

axis - time in hours); (b) plot showing: hourly queueing for kerosene vs electric aircraft, (y-axis - number 

of aircraft/arrival rates, x-axis - time in hours).

 

Table 4 below shows the required increase in single and dual-purpose stand 

capacities required (as both exact numbers and percentage increases) to meet the 

demand for the higher proportions of electric aircraft movements based on the values 

obtained at the end of each respective simulation run. Note that these capacity 

increases are based on starting with 20 single purpose stands, representing a typical 

airport pier. The number of single and dual-purpose stands can be seen from the blue 

and orange plots in Figure 4 (a). The increase in stand capacity still resulted in some 

congestion from queuing of predominantly electric aircraft, which on average was 

reduced to 5 aircraft or less per hour as the simulation was run. This can be seen in 

the green plot for all aircraft in Figure 4 (a) and more specifically in the yellow plot for 



e-aircraft in Figure 4 (b). This could be reduced or eliminated by increasing the stand 

capacity further, although the purpose here was to try and determine the minimum 

increases in stand capacity from the baseline model.  

 

Table 4 Single and dual-purpose stand capacity vs % increase in electric aircraft for a single pier of 

20 stands or more with 𝜌 values based on aircraft and numbers of stands 

% increase of electric 
aircraft 

Number of single purpose 
stands / % increase from 

baseline 

Number of dual-purpose 
stands / % of single 

purpose stands 

𝜌 values for inbound 
aircraft rates 𝜆) and total 

stand intensities 𝜇 
0% (baseline) 20 0 0.76 

5% 20 4 (20%) 0.85 
10% 23 (+15%) 7 (30%) 0.80 
15% 25 (+25%) 10 (40%) 0.80 
20% 29 (+45%) 14 (48%) 0.74 
25% 30 (+50%) 15 (50%) 0.72 

 

The results in Table 4 suggest that in the single pier case, there has to be a 50% 

increase in stand capacity, and where 50% of those stands have to be converted to 

dual purpose in order to meet the capacity demands for a 25% increase in electric 

aircraft movements. This is because given the relatively small number of stands to 

start with, both kerosene and electric aircraft compete for limited resources. Increasing 

the number of dual-purpose stands means kerosene aircraft have to share more 

stands with electric aircraft that require longer turnaround times. Consequently, there 

needs to be an increase in the number of single purpose stands to maintain capacity 

of the remaining higher proportion of kerosene aircraft. This can also be seen from the 

red plot in Figure 4 (b) which shows some congestion for queuing kerosene aircraft 

requiring the number of single purpose stands (blue plot Figure 4 (a)) to also be 

increased by 3 stands as is shown in Table 4 for a 10% increase in electric aircraft. 

Table 4 also provides calculated 𝜌 values for each modelled scenario that in part follow 

the required stand increases to satisfy load for initial increments and conversions from 

the baseline. However, for higher percentage increases in electric aircraft, 𝜌 diverges 



slightly from the required stand increases possibly due to model variabilities 

encountered in the simulation runs. 

 

5.3 Determining Stand Capacity using DES Representing Airport Level Parameters 

Having demonstrated the efficacy of the model for a single pier operation, the model 

was then developed further to assess the number of single and dual-purpose stands 

required to maintain capacity (reduce congestion) increases in electric aircraft 

operation for the entire airport. Assuming the simulation based on Heathrow Airport, 

the new model made the following assumptions as shown in table 5. 

 

Table 5 DES model parameters representing a single airport pier 

DES Modules Parameters  
Stand Serving Module: short and long haul Kerosene 
aircraft 

Turnaround time of between 45 to 120 minutes (mode 
= 82.5 minutes), (considering a mix of short haul and 
long-haul flights). 
 

Stand Serving Module: short haul electric aircraft Recharging and turnaround time 120 minutes  
Stands Pool Module Baseline stand capacity of 197 single purpose stands 

for kerosene aircraft 
Entry Module 38 aircraft per hour This figure is based on averaging 

out variations (peaks and troughs) in daily aircraft 
activity 

Taxing Delay Module 5 to 10 minutes (mode = 7.5 minutes). 
 

The aircraft turnaround times would combine the fuelling / charging times with the 

unloading and loading times for the aircraft type. The rate of aircraft landing per hour 

was based on the average taken over a 17.5 hour operating day at Heathrow, using 

figures obtained from Eurocontrol: 

https://ext.eurocontrol.int/airport_corner_public/EGLL#trafficforecast. 

    DES Simulation models where then used to determine the optimal number of single 

purpose stands, and of those stands, the number of converted dual purpose stands 

that would be required to minimise congestion levels as the share of electric aircraft 

rose (from 5%, 10%, 15%, 20% and 25%). Figures 5 and 6 shows selected generated 



plots over an entire simulation run for 10%, and 25% increase in the proportion of 

electric aircraft movements where each simulation was run to 325 and 800 hours 

respectively. This variation is simulation running times was to ascertain selected stand 

numbers reflected minimum congestion for each modelled scenario. 

    

a)                                                                               

 

 

b) 



Figure 5 shows the following plots for a 10% increase in the proportion of electric aircraft movements: 

(a) plot showing: the hourly throughput of all aircraft, number of queueing aircraft recorded per hour, 

number of dual-purpose stands, number of single purpose stands (y-axis – number of aircraft/stands, 

x-axis – time in hours); (b) plot showing: hourly queueing for kerosene vs electric aircraft (y-axis – 

number of aircraft/arrival rates, x-axis – time in hours). 

 

 

a) 

 



 

b) 

Figure 6 shows the following plots for a 25% increase in the proportion of electric aircraft movements: 

(a) plot showing: the hourly throughput of all aircraft, number of queueing aircraft recorded per hour, 

number of dual-purpose stands, number of single purpose stands (y-axis – number of aircraft/stands, 

x-axis – time in hours); (b) plot showing: hourly queueing for kerosene vs electric aircraft (y-axis – 

number of aircraft/arrival rates, x-axis – time in hours).

 

Table 6 below shows the increase in dual-purpose stand capacities required (as both 

exact numbers and percentage increases) to meet the demand for higher proportions 

of electric aircraft movements based on the values obtained at the end of each 

respective simulation run. 

 

Table 6 Single and dual-purpose stand capacity vs % increase in electric aircraft for all stands at 

Heathrow with 𝜌 values based on electric only aircraft and numbers of dual-purpose stands 

% increase of electric 
aircraft 

Number of single purpose 
stands / % increase from 

baseline 

Number of dual-purpose 
stands / % of single 

purpose stands 

𝜌 values for inbound 
electric aircraft rates 𝜆!" 
and dual-purpose stand 

intensities ∑ 𝜇#$!		
%
&'(  

0% (baseline) 197 / 0% 0  
5% 197 / 0% 8 (4%) 0.48 

10% 197 / 0% 14 (7%) 0.54 
15% 197 / 0% 19 (10%) 0.60 
20% 197 / 0% 23 (11%) 0.66 
25% 197 / 0% 29 (15%) 0.65 



 

From the results in Table 6 an increase in the proportion of electric aircraft does not 

require provision of additional stands to maintain capacity of the remaining kerosene-

based flights. This can be clearly seen from the red plots in Figures 5 (b) and 6(b) 

which show no congestion of queuing kerosene aircraft for 10% and 25% increases in 

electric aircraft. However, we see a steady increase in the number of stands that need 

to be converted to dual purpose to meet traffic demands as shown from the orange 

plots in Figures 5 (a) and 6(a). These increases still resulted in minor occurrences of 

congestion from queuing electric aircraft, which on average was 1 aircraft or less per 

hour as shown from the yellow plots in Figures 5 (b), and 6 (b), and reflected overall 

in the green plots in Figures 5 (a), and 6 (a). While this delay could theoretically be 

eliminated entirely by increasing stand capacity still further, this would represent only 

a marginal gain in operational efficiency. Table 6 also provides the theoretical 𝜌 values 

based on inbound electric aircraft rates and the corresponding dual stand capacities 

given that the baseline number of single stands was sufficiently large to accommodate 

the load of inbound kerosine aircraft rates. 𝜌 values are shown to follow the necessary 

stand increases to satisfy load from increases in electric aircraft volume. 

Table 6 is especially useful for demonstrating the possible phasing requirements of 

infrastructural development with respect to forecasted increases in the volume of 

electric aircraft. Notably, it shows that even under optimistic scenarios of electric 

aircraft adoption in the market, the requirement for the airport to convert stands to 

accommodate electric aircraft remains modest, at 15%.  

 

 

 



6. Optimisation of Airport Stand Capacities and Charging Regimes 

For both the airport level and single pier scenarios we further wanted to determine the 

optimum (minimum) number of single and dual-purpose stands required to maintain 

capacity (reduce congestion) over two different charging regimes for the maximum 

25% projected increase of electric aircraft operations.  

    Anylogic provides the additional feature of running optimisation experiments 

comprising of adjusting simulation parameters over multiple runs where optimisation 

algorithms are used to find the optimum parameters for minimising or maximising an 

objective function. The optimisation engine is based on using metaheuristic search 

driven optimisation techniques combining a single solution based Tabu search and a 

population based scatter search algorithms (Glover, 1996) (Duarte, 2009), solution 

feasibility analysis with neural networks to facilitate more efficient and accelerated 

exploration of the search space for viable solutions (Laguna, 2011). There are a 

number of other popular optimisation algorithms such as genetic algorithms, simulated 

annealing as well as other state-of-the-art approaches. However, the purpose here 

was to validate the observed simulations experiments carried out in section 5 rather 

than evaluate the effectiveness of different optimisation algorithms. Hence, using the 

above mentioned integrated optimisation techniques provide in Anylogic proved 

sufficient for this purpose. 

 

6.1 Optimisation Experiment Setup and Objective Function Definition  

The experiment assumed the fixed parameters and parameter ranges previously 

specified for the single pier and airport level scenario (based on Heathrow Airport) 

descried in sections 5.2 and 5.3. These were: The rate of aircraft landing per hour for 

both kerosene and electric inbound flights; on stand serving times of kerosene aircraft 



and aircraft taxiing times. Two distinct charging regimes of 60 and 120 minutes were 

evaluated for stand turnaround times of electric aircraft, representing a greater range 

within which battery charging times could vary due to future developments in battery 

charging efficiency or other forms of energy harvesting technologies. As mentioned 

previously, assumptions were not made regarding the prospective battery size of the 

aircraft in the model. However, as an indication, an 820 kWh battery charging for 60 

minutes (a rating of 1C) would require charging speeds of 820kW, while a 120 minute 

charge (0.5C) would require charging speeds of 410kW.  

    The experiment varied the number of single purpose stands and of these the 

number of converted dual purpose stands to determine their optimum number for each 

charging regime. The goal of the optimisation algorithm was to find the right 

combination of single and dual-purpose stands that would reduce congestion to a 

minimum over a specific simulated time horizon (selected for these experiments as 72 

hours representing a suitable timescale over which the simulation could be assessed). 

A secondary goal was to minimise the required number of converted dual purpose 

stands and also keep the number of single purpose stands as close as possible to 

their respective baselines determined in sections 5.2 and 5.3. Based on these criteria 

an objective function was defined where the algorithm would aim to minimise the 

objective value 𝑜𝑏𝑗𝑉𝑎𝑙𝑢𝑒 as depicted in equation (7): 

 

                              𝑜𝑏𝑗𝑉𝑎𝑙𝑢𝑒 = ((𝑎𝑐𝑐𝐻𝑜𝑢𝑟𝑙𝑦𝑄𝑢𝑒𝑢𝑒𝑑	 × 2) + (𝑧	 × 3) + (𝑦	 × 4))                                   (7) 

 

where, 𝑎𝑐𝑐𝐻𝑜𝑢𝑟𝑙𝑦𝑄𝑢𝑒𝑢𝑒𝑑 represents accumulated number of hourly queuing aircraft 

waiting for stands, 𝑧 and 𝑦 represent the number of single and dual-purpose stands, 

respectively (see section 3). The objective function was handcrafted through a process 

of trial and error to assign the greatest weight on reducing congestion followed by the 



number of dual and single purpose stands, respectively. The weights were selected to 

give solutions comparable or better than what was observed when running simulation 

experiments. In addition to the objective function a requirement was specified to check 

the feasibility of searched solutions whereby feasible ‘legal’ solutions were judged as 

ones where the total number of stands was always greater than or equal to the 

converted dual purpose stands.  

 

6.2 Optimisation Experiment Results 

Four optimisation experiments were carried out, one for each single pier and airport 

level scenario evaluating the selected charging regimes of 60 and 120 minutes. Each 

optimisation experiment ran up to a maximum of 500 simulation iterations where each 

simulation was also replicated 10 times to account for stochastic variability of the 

models due to certain fixed parameters being randomly selected from ranges 

described in sections 5.2 and 5.3. Figure 7 shows the AnyLogic Optimisation 

experiment GUI that includes the scatter search plot of simulation solutions on the 

right where the x-axis represents simulation runs, and the y-axis represents current 

solution, best feasible solution (blue plot) and best infeasible solution (red plot) found 

for each simulation based on their 𝑜𝑏𝑗𝑉𝑎𝑙𝑢𝑒 values. To the left of the GUI the optimal 

best-case simulation parameters including single / dual purpose stand numbers 

(boxed in red) are shown, these values were determined from the optimization 

experiment run for Heathrow Airport based on a charging regime of 120 minutes for a 

25% increase in electric aircraft operations. Table 7 shows the results for all four 

scenarios / charging regime-based optimisation experiments. 

 

 



 

 

Figure 7 shows the AnyLogic GUI containing the scatter search plot of simulation solutions (right). 

Here, the x-axis represents simulation runs, and the y-axis represents current solution, best feasible 

solution (blue plot) and best infeasible solution (red plot) found for each simulation based on their 

𝑜𝑏𝑗𝑉𝑎𝑙𝑢𝑒 values. The optimal best-case single / dual purpose stand numbers (boxed in red) generated 

during the optimisation experiment run for London Heathrow based on a charging regime of 120 minutes 

for a 25% increase in electric aircraft operations is shown to the left.

 

Table 7 Optimal single and dual-purpose stand capacities for 25% increase in electric aircraft for single 

pier and airport level scenarios assuming stand baselines established in sections 5.2 and 5.3 

Model 
Scenario 

Electric aircraft charging regimes (mins) Average electric aircraft 
charging time (mins)  

 60  120 90 
 Num single 

purpose stands 
/ % increase 

from baseline 

Num dual-
purpose stands 

/ % of single 
purpose stands 

Num single 
purpose stands 

/ % increase 
from baseline 

Num dual-
purpose stands / 

% of single 
purpose stands 

Avg % increase 
single purpose 

stands 

Avg % dual 
purpose 
stands 

Single 
Pier 

25(+25%) 14(56%) 31 (+55%) 20(65%) +28% 60.5% 

London 
Heathrow 

197(+0%) 20(10%) 197(+0%) 31(16%) +0% 13% 

 

 

The best-case results for the single pier scenario show a 5%, and 15% increase in the 

optimal number of single purpose and dual purpose stands respectively, as compared 

to the simulation results in Table 4, for a charging regime of 120 minutes. This is 



because the algorithm’s optimisation strategy was aimed and minimising or eliminating 

congestion. As such the best-case simulation solution resulted in a greater increase 

in the number of stands. For the same scenario, the best-case results for a charging 

time of 60 minutes showed a 25% decrease and 6% increase in the required number 

of single and dual purpose stands respectively, given the shorter turnaround times and 

higher aircraft throughputs impact on reducing queuing.  

    The results for the airport level scenario based on Heathrow showed that for a 

charging regime of 120 minutes the best-case results are near equivalent to the 

simulation results shown in Table 6. Here, no increase from the baseline number of 

single purpose stands and only a 1% increase in the number of dual purpose stands 

were required for minimising congestion, when compared with the results shown in 

Table 6. For a charging regime of 60 minutes the required number of dual purpose 

stands decreased by 5%.  

    Taking the average over the results of both 60- and 120-minute charging regimes, 

for Heathrow the optimal number of single purpose stands required to be converted to 

dual purpose for accommodating a 25% increase in electric aircraft was shown to be 

13% with no need to increase overall stand capacity. These results would tend to 

support the projection that even under optimistic scenarios of electric aircraft 

development in the market, the requirement for airports to make infrastructural 

changes is likely to remain modest. In other words, even if the market uptake of electric 

aircraft was relatively high, this would likely still only equateto an airport needing to 

convert a small number of existing stands per year to accommodate electric aircraft 

and would not require overall stand capacity to be increased. 

 



7. Discussion 

Electric aircraft have significant benefits over traditional kerosene aircraft in terms of 

environmental performance, and it seems inevitable that the development and testing 

of electric aircraft will continue in the coming years, as well as other forms of 

sustainable propulsion. Over and above the technical aspects associated with the 

systems themselves, there remains considerable uncertainty around the operational 

and commercial viability of electric aircraft. The analysis in this paper seeks to 

contribute to this new area of research, seeking to develop an understanding of 

cooperative operational and infrastructural implications of electric aircraft. Certainly, a 

critical issue here relates to optimal charging times and the number of aircraft stands 

that need to be adapted for electric aircraft recharging. Interestingly, findings from the 

analysis here provides a source for conservative optimism, in so much that the results 

suggest that even a relatively high uptake of electric aircraft in the market could be 

accommodated without significantly affecting airport capacity or the need to rapidly 

convert large number of aircraft stands to accommodate electric aircraft, at least 

initially.  

    Of course, one should not lose sight of, or downplay, the other challenges and 

potential barriers to the wider adoption of electric aircraft technology. For example, 

this paper does not consider the likely utilities requirements in terms of electricity 

demand, nor the challenges of retrofitting legacy airports with widespread electric 

charging capabilities (for example, installation of high voltage cabling to aircraft 

stands). Nor does the analysis consider the outstanding and unresolved certification 

challenges around electric aircraft and its related infrastructure, or public attitudes and 

perceptions towards this technology. Equally, it is worth noting that electric aircraft 

technology is likely to form only part of the solution in terms of sustainable propulsion. 



For example, considerable progress has already been made in the development of 

Hydrogen powered aircraft and Sustainable Aviation Fuels (SAFS). These 

technologies will have a role to play alongside electrification, and future work needs to 

address specifically how these technologies may co-exist most effectively. If ever a 

reminder was needed, the COVID-19 pandemic has highlighted the dynamic and 

unpredictably nature of aviation and the challenges of planning in uncertainty. This 

situation is likely to persist beyond the current crisis, and it will be important that a 

collaborative, flexible and evidence-based approach is taken to planning for future 

aircraft propulsion technologies.  

8. Conclusions and Future Work 

In conclusion, the developed DES simulation models provide some novel insights on 

projected aircraft throughputs, capacities, and aircraft stand requirements for the 

possible future introduction of short haul electric aircraft operations. More specifically 

the models can be used to: 

• Evaluate the impact of different turnaround times for kerosene and electric 

aircraft reflecting different charging regimes for electric aircraft. 

• Determine the requirements for new and converted stand infrastructure to meet 

a market increase in uptake of electric aircraft while maintaining airside capacity 

and throughput. This in turn has important implications for future stand design 

and investment planning decision making.    

• Find the optimal stand infrastructure requirements for minimising operational 

impacts of electric aircraft introduction. 



The DES can also in part be formally explained through the application of queuing 

theory together with details provided for all model parameters making it reproducible 

through different programming and simulation tools. 

    For future work these simulations can be extended to include greater complexities 

with respect to representing the cooperation and interaction of more assets, 

operational entities, actors and external factors to make the simulation models more 

realistic and able to simulate more complex and holistic scenarios. These models 

could take the form of hybrid models (Ozturk et al. 2019) which could be based on 

ABMs for modelling aircraft movements between, say, Heathrow Airport and other 

airports. These hybrid models would likely combine sub models that use DES and SD 

models. Indeed, an important avenue for future work should include the investigation 

of requirements at a diverse range of airports, given their varying operational and 

infrastructural characteristics.  

    Here, a DES would model airport specific ground operations that include on-stand 

processing. In these more complex models, big data analytics (Iqbal, 2020) (Iqbal, 

2020) based on specific capacity, real traffic data for each destination airport and 

environmental factors could be used. This would allow the model to simulate 

contextually richer impacts of electric aircraft at both an airport specific level, as well 

as collectively across the entire network. These models could also consider the impact 

of flying time, weather and other factors on battery power consumption that could 

influence stand charging durations. For example, in the same way that a traditional 

aircraft will be fuelled according to the requirements of the particular route flown, an 

electric aircraft may not need to be fully charged before each flight, especially if it is a 

relatively short sector.  



    Equally, even busy airports experience uneven demand during a typical 24-hour 

period, with flight schedules typically concentrated into morning and evening ‘peak’ 

periods. Here it is possible that advanced modelling could be conducted to help 

account for prevailing real-world flight schedules at airports to help optimise the 

integration of electric aircraft in a way that minimises operational disruption. Further 

work could also include an SD or other integrated climate models to model the effects 

of weather and projected climate change on aircraft operations such as flying time, 

turbulence (Williams, 2016) (Storer, 2017) and take off / landing separation distances. 

These in turn could feedback to effect aircraft inflight and ground operational 

behaviours modelled by the ABM and DES respectively.  

    It is worth noting here that by only focussing on questions of the airside capacity 

aspects of electric aircraft, this paper does not consider important electrical sizing 

aspects, as well as the related supporting charging infrastructure and power demands 

of electric aircraft. However, it is hoped that by focussing on the operational and 

planning aspects of electric aircraft, the findings from the research will complement 

this important avenue for future research.  

    Future work could also more extensively apply computational machine learning and 

other forms of metaheuristic optimisation techniques such as evolutionary algorithms 

to identify optimal solutions for stand capacity and other complex resource scheduling 

and allocation issues for airport operations. This could include the consideration of 

energy storage infrastructure and distribution across different locations to provide 

intelligently orchestrated energy demand management across aircraft and airport 

assets. Additional approximate reasoning techniques such as probabilistic and fuzzy 

systems (Mendel, 2001) could be used to complement quantitative and sensor rich 



data with experiential knowledge models to handle sources of uncertainties present in 

modelling real world systems.  

    The combination of bottom-up computational methodologies such as cooperative 

multi-agent systems for representing the characteristics, and interaction behaviours of 

actors and assets with top-down machine learning and optimisation algorithms such 

as deep learning neural networks (Maniak, 2020), reinforcement learning, and 

optimisation algorithms can also be used to create high fidelity intelligent digital twins 

of airport operations for facilitating more effective planning and management decisions 

as have been recently applied in the context of complex transportation networks (Li, 

2019). The potential insights offered by such an approach presents an exciting avenue 

for future research in this area.  
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