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Few doubt that the mid-fourteenth-century Afro-Eurasian 
plague pandemic, the Black Death, killed tens of millions of peo-
ple. In western Asia and Europe, where its spread and mortality 

are best understood, upwards of 50% of the population is thought to 
have died within approximately 5 years1–4. Whole-genome sequenc-
ing confirms the pandemic as a novel introduction of the zoonotic 
bacterium Yersinia pestis5,6. Yet, despite advances in palaeogenetics 
and generations of written-source-based research on the cultural 
and economic transformations plague is credited with accelerat-
ing, from the Renaissance to the ‘Great Divergence’7,8, much about 
the Black Death’s spread and demographic impact remains poorly 
understood. The regionality of the plague’s mortality is particularly 
underexplored, owing to the availability of written sources and the 
limits of traditional historical methods. Here we pioneer a new 
approach, big data palaeoecology (BDP), that leverages the field of 
palynology to evaluate the demographic impact of the Black Death 
on a regional scale across Europe, independent of written sources 

and traditional archaeological material. Our analysis of 1,634 pol-
len samples from 261 sites, reflecting landscape change and agricul-
tural activities, demonstrates Black Death mortality was far more 
spatially heterogeneous than previously recognized. Strikingly, BDP 
provides independent confirmation of the devastating toll of the 
Black Death reflected in written sources in some European regions, 
while establishing conclusively that the Black Death did not affect 
all regions equally. We attribute this mortality variation to cultural, 
ecological, economic, societal and climatic factors, which influ-
enced Y. pestis dissemination and prevalence, generating regionally 
unique outcomes.

Estimating Black Death mortality
Multidisciplinary studies are redefining the Black Death. In recent 
years, palaeogeneticists have confirmed the pandemic’s Y. pestis 
identity and established that the outbreak seeded novel plague res-
ervoirs in Europe5,6. Archaeologists and historians meanwhile have 
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The Black Death (1347–1352 ce) is the most renowned pandemic in human history, believed by many to have killed half of 
Europe’s population. However, despite advances in ancient DNA research that conclusively identified the pandemic’s causative 
agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in 
medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneer-
ing new approach, ‘big data palaeoecology’, which, starting from palynological data, evaluates the scale of the Black Death’s 
mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring 
sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis 
to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large 
portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm 
that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These 
inter-regional differences in the Black Death’s mortality across Europe demonstrate the significance of cultural, ecological, eco-
nomic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these 
factors, along with the historical ecology of plague, should be a focus of future research on historical pandemics.
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begun to put sub-Saharan Africa on the Black Death map9, to fill 
in lacunae in our understanding of the pandemic’s Mediterranean 
and European spread10,11, and to explore the pandemic’s origins in 
central Asia and dissemination in east Asia, drawing on evolution-
ary biology and palaeogenetics12. But while multiple disciplines 
have reassessed the pandemic’s spatiotemporality, its mortality—
estimates of which have drawn attention to the Black Death for 
centuries—remains underexplored and limited almost entirely to 
unidisciplinary, written-source-based approaches.

Medieval mortality data are scarce and highly fragmentary. 
Nineteenth-century historians of the Black Death based their 
assertion that the pandemic claimed 25% or more of European 
lives on assessments of qualitative narrative sources13. Since the 
mid-twentieth century, historians have painstakingly built-up mul-
tiple instructive case studies of Black Death mortality for regions 
comparatively well-endowed with administrative sources allowing 
for statistical analysis (for example, regions of England, France, Italy 
and the Netherlands)14–16. Some of these case studies have argued for 
a death toll in the range of 50% or more. These numbers have been 
increasingly considered representative of the Black Death’s broader 
mortality1–4,9,12,14. Although it has been suggested that regional varia-
tion characterized the demographic crisis the Black Death caused, 
little evidence—historical, archaeological or environmental—has 
been employed to substantiate such thinking8,17,18. As a result, case 
studies from better documented regions have been employed as 
proxies for Black Death mortality in European regions where direct 
evidence for the pandemic is nonexistent (for example Bohemia and 
Finland), slight (single sentences or vague passages; for example 
Moravia, Hungary and Scotland) or available but neither detailed 
nor quantitative (most regions, including areas of England, France, 
Italy and the Netherlands)1.

By treating case studies of relatively well-documented regions as 
predictive of the pandemic’s death toll in all regions the pandemic 
touched, histories of the Black Death implicitly rest on the untested 
assumption that plague mortality was uniform across regions 
regardless of local cultural, ecological, economic and societal con-
texts, and therefore that the prevalence of Y. pestis, an ecologically 
and epidemiologically complex disease19, was comparable across 
Europe. This methodology has lent itself to estimates of an aggre-
gate European death toll upwards of around 50% (approximately  

50 million deaths)1,4, though studies accounting for regional 
source scarcities have estimated mortality to have fallen below that 
mark8,17,20. Problematically, many of the quantitative sources drawn 
upon to build cases studies of Black Death mortality relate to urban 
contexts, which owing to their crowding, generally poor sanitation 
and quite possibly heavier disease burdens, may have suffered higher 
plague mortality than rural areas21,22, and in the mid-fourteenth 
century upwards of 75–95% of the population of every European 
region was rural23. Although every pandemic, plague or not, is dis-
tinct, a Black Death mortality across Europe of approximately 50% 
vastly exceeds the demographic losses sustained during the third 
plague pandemic in the late nineteenth century—the plague pan-
demic for which the most mortality data exists—including in China 
and India, which were then severely affected24,25.

BDP and Black Death mortality
Here, we pioneer an alternative approach (discussed in detail in 
Methods). BDP allows us to evaluate the Black Death’s mortal-
ity across Europe using quantitative palaeoenvironmental data-
sets, which can be employed for spatial statistical comparisons 
(Fig. 1). Our dataset consists of fossil pollen counts from 261 
radiocarbon-dated sediment cores from 19 present-day European 
countries (Fig. 2; Supplementary Data 1). Pollen data can be used 
to assess past demographic dynamics as human pressure on the 
landscape in the pre-industrial period was directly dependent on 
the availability of rural labour. We focus on the period between 1250 
and 1450 ce (comparing 100 years before and after the Black Death; 
100 years representing roughly four generations, a time period 
during which pre-industrial populations could not recover from 
potentially high plague mortality23) for which 1,634 pollen-analysed 
sediment samples are available (Supplementary Data 2).

In order to compare trends between different European biocli-
matic zones, we assembled pollen types (taxa) representing different 
plants from species to family level into four standardized summary 
indicators, based on their subsistence value for human economy or 
their ecological needs as reflected in two major ecological indices, 
the Ellenberg light indicator and Niinemets and Valladares shade 
tolerance scale: (1) cereals; (2) herding (pasturelands); (3) fast forest 
secondary succession (pioneer shrubs and trees growing on former 
fields/pastures within 5–10 years of abandonment); (4) slow forest 

Fields under
cultivation

Fields left to rewild

Plants produce pollen

Fields become pasture

Pollen deposited in
lakes and wetlands

Palynologists
reconstruct landscape

High mortality
follows

Plague penetrates
a rural population

Low or no
mortality
follows

Fig. 1 | The BDP approach to verifying Black Death mortality levels. Credit: A.I., T.N., Hans Sell and Michelle O’Reilly.
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secondary succession (mature–late successional woodland on aban-
doned fields/pastures). We discuss the results of the Ellenberg-based 
indicators below, but the Niinemets-based indicators yielded the 
same results in 19 out of 21 regions and the differences do not bear 
on our discussion (Extended Data Figs. 1 and 2).

Results
Validity test using Sweden and Poland. We validated our BDP 
approach by examining two well-studied, but contrasting, regional 
case studies of the Black Death’s mortality, in Sweden and Poland. 
An earlier multidisciplinary analysis discovered significant contrac-
tion in cereal cultivation, as well as a more general economic and 
demographic decline, in the uplands of southern Sweden following 
the Black Death26. By contrast, historians have long demonstrated 
that central Europe, particularly Poland, experienced economic 
growth over the fourteenth century, related to the centralization of 
royal power following a period of partition, few wars in the central 
provinces of the country, large-scale colonization of uncultivated 
lands and the development of cities27. Our BDP approach indepen-
dently corroborates these trajectories. We validate the ability of our 
pollen datasets to reflect the extent of the Black Death’s mortality by 
comparing them to historical data of national tax payments made to 
the pope (Peter’s pence)28–30 (Fig. 3). This validity test lends further 
support to our primary focus in this study on cereal cultivation, as 
argued in the Methods.

Four major scenarios of landscape and demographic change. 
Having validated our approach, we analysed the pollen dataset for 
all of Europe. We focused on contrasting the four summary pol-
len indicator values on a regional scale for subperiods of 100 years 
before and after the Black Death. While we discuss the results of 
this analysis here (Fig. 4), our complimentary data presents 50-year 
(1301–1350 to 1351–1400) and 25-year (1325–1350 to 1351–1375) 
period analyses (Supplementary Figs. 1 and 2). For cereals, they 
returned the same results in terms of direction of change for 20 
out of 21 regions for 50-year and 16 out of 19 regions for 25-year 
analyses, confirming the robustness of our conclusions (Extended 

Data Fig. 3); the results for other indicators are also highly similar 
between different periods of analysis (Extended Data Figs. 4 and 5).

BDP employs bootstrapping to evaluate statistical significance 
of the differences between the pre- and post-Black Death subpe-
riods on a regional level. In this way, we identified four scenarios 
of post-Black Death agricultural change based on the cereal pol-
len indicator (Fig. 4): (1) substantial and statistically significant 
increase, reflecting arable expansion and limited Black Death mor-
tality (top panel); (2) modest and statistically insignificant increase, 
suggesting stability or slow-paced agrarian growth (upper middle 
panel); (3) modest and statistically insignificant decrease, suggest-
ing stagnation or some contraction of agrarian activities, possibly 
stemming from more limited demographic losses or economic dis-
ruption caused by the plague (lower middle panel); (4) substantial 
and statistically significant decrease, reflecting arable contraction 
and pronounced Black Death mortality (bottom panel). Scenarios 
1 and 2 falsify the theory that Black Death mortality was significant 
everywhere. Scenario 3 and 4 demonstrate Black Death mortality 
was devastating in some regions.

Changes in the herding indicator reveal trajectories similar to 
those of cereals in most cases or no change. We discovered only one 
region (southwest Germany) where there occurred a statistically 
significant decline in cultivation in parallel with a statistically sig-
nificant increase in herding (some indication of this is also appar-
ent in Greece), suggesting a shift to livestock production related to 
agrarian labour shortages and less demand for grain31. The fast for-
est succession indicator increases in a statistically significant way 
in central Italy and central France, confirming field abandonment. 
In central Italy, this is accompanied by discernible reforestation  
(statistically significant increase in the slow forest succession indi-
cator), attesting to significant regional Black Death mortality and 
slow demographic and economic recovery.

To confirm the robustness of our results, BDP combines sta-
tistical with independent spatial approaches (Fig. 5). The latter 
yielded results identical for all four BDP indicators to our statistical 
approach in our 100-year period analysis as well as in our 50-year 
(1301–1350 ce to 1351–1400 ce) and 25-year (1325–1350 ce to 
1351–1375 ce) period analyses (Supplementary Figs. 4–7).

Discussion
The Black Death was a diverse and entangled phenomenon. 
Figure 6 visualizes the spatial distribution of the four trajectories 
of post-Black Death landscape change from Fig. 4, demonstrat-
ing that the Black Death’s mortality varied significantly between 
European regions. The pandemic was immensely destructive in 
some areas, but in others it had a far lighter touch. Strikingly, BDP 
identifies a sharp agricultural decline in several regions of Europe, 
independently corroborating analyses of historical sources that 
suggest high mortality in regions of Scandinavia, France, western 
Germany, Greece and central Italy1, and lending further valida-
tion to our approach. At the same time, there is much evidence for 
continuity and uninterrupted agricultural growth in central and 
eastern Europe, and several regions of western Europe, particularly 
in Ireland and Iberia. In this way, BDP invalidates histories of the 
Black Death that assume Y. pestis was uniformly prevalent, or nearly 
so, across Europe and that the pandemic had a devastating demo-
graphic impact everywhere.

While we have centred our study on estimating the impact of the 
Black Death on the landscape, plague recurred in several regions 
within the 100-, 50- and 25-year periods of our analyses. It is not 
implausible that some recurrences, notably the so-called pestis 
secunda of the late 1350s and early 1360s32, could have been more 
devastating in a few regions we studied than the Black Death and 
that some of the arable contraction we detect may be attributable 
to both the Black Death and early second-pandemic recurrences. 
That the results of our 100-, 50- and 25-year period analyses were 
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Fig. 2 | Location of pollen-analysed sediment cores used in this study. 
Circle size reflects the number of samples per site for the period of 1250–
1450 ce, different colours reflect division of sites into regional clusters for 
the purpose of the analysis presented in Fig. 3.
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largely uniform, strongly suggests that if early plague recurrences 
contributed considerably to the landscape change, the earliest of 
those recurrences, occurring within the first 25 years, were the most 
significant. Of course, if the pestis secunda partially accounts for 
the arable contraction and forest succession shown here for parts of 
Europe, our results would further call into question the demographic 
toll of the Black Death, even where we have discerned significant 
arable contraction, as in parts of France, Italy and Scandinavia. At 
the same time, if we are to include the earliest recurrences, where 
we have discerned little change or arable expansion, the significance 
of both the Black Death and those earliest recurrences is limited. 
These remarks aside, our approach has shown conclusively that 
the Black Death did not significantly alter land use everywhere or 
affect all regions equally. The significant variability in mortality that 
our BDP approach identifies remains to be explained, but local cul-
tural, demographic, economic, environmental and societal contexts 
would have influenced Y. pestis prevalence, morbidity and mortal-
ity. Ongoing transformations of rural economy in many European 
regions would have also modified the plague mortality, or—to an 
extent—the amplified impact it had on the landscape. Importantly, 
regional population densities cannot explain the complex landscape 
dynamics we discern (as visualized in Supplementary Fig. 8), nor 
the geographical location of the 261 coring sites (see Supplementary 
Fig. 9, showing the averaged elevation of our sites). The spread of 
the pandemic depended on numerous factors, which would have 
generated compound effects, feedback loops and regionally unique 
outcomes. Plague is an ecologically and epidemiologically complex 
zoonotic disease, maintained by sylvatic rodents and their fleas, and 
transmittable to and between people via multiple pathways, includ-
ing commensal and sylvatic rodent flea bites, respiratory secretions, 
direct contact with infected animals, human ectoparasites (fleas and 
lice) and fomites19. The behaviour of Y. pestis hosts and vectors, and 

their capacity to efficiently transmit the pathogen, is partly con-
strained by complex interactions with seasonal climate variability 
and local ecological conditions, both in anthropogenic and rural 
environments (cities, villages and fields versus mountains, forests 
or wetlands32). Regional variation in population density and dis-
tribution, ectoparasite burdens, living conditions, and commensal 
rodent populations and their fleas, undoubtedly mattered.

Local climatic contexts were also shown to have strongly deter-
mined third plague pandemic dynamics in Asia33,34. In Europe, 
where the Black Death spread over several years (1347–1352 for the 
regions considered here), different seasons and annually variable 
climatic conditions may have influenced Y. pestis prevalence and 
the pandemic’s mortality. Furthermore, while hypothesized links 
between early-fourteenth-century famines and the Black Death 
remain to be substantiated, and while Y. pestis is often lethal in lieu 
of antibiotics19, it has been shown that Black Death mortality was 
selective and the immunological and nutritional heterogeneity of 
the populations the pathogen interacted with would have ensured 
uneven toll35,36.

That climatic, cultural, ecological and economic factors shaped 
regional Black Death outcomes is well illustrated by the ini-
tial phases of the pandemic in Europe. Cereal trade is thought to 
have been instrumental for the introduction of the pandemic to 
Mediterranean Europe, and along established conduits of com-
merce and communication, ecological factors, associated contin-
gency effects and historical path dependency mattered from the 
outset. Before the pandemic arrived in the Crimea, the volume of 
cereal trade between Italy and the Black Sea was sizable, yet blocked 
by embargo11,37,38. High demand in southern Europe for Black Sea 
cereals from 1345 onwards was associated with a period of exces-
sive precipitation and cooling39,40 negatively affecting cereal supplies 
in Italy and beyond, 1345–478,37,41,42. Cereal imports from Black Sea 
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coasts resumed once the situation improved in 1347, and by early 
1348 Venetian merchants had filled many Italian granaries with 
Black Sea produce11,37,39,43 and introduced plague to Europe. Plague 
outbreaks disseminated from major cereal ports in southern and 
north-western Italy from January 13481,44. To the contrary, plague 
hardly spread in north-western Italy, which was independent from 
overseas cereal imports37,43,45. Local circumstances shaped the out-
come of the pandemic on regional scales from the outset.

In summary, our BDP approach shows Black Death mortality 
was far more spatially heterogeneous than previously thought. This 
significant variation in Black Death mortality may be explained 
by the pathogen’s entanglement with a dynamic nexus of cultural, 
ecological, economic, societal and climatic factors that determined 
its prevalence and the pandemic’s mortality in any given region. 
That the pandemic was immensely destructive in some regions, but 
not all, falsifies the practice, not uncommon in Black Death stud-
ies, of predicting one region’s experience on the basis of another’s. 
Regional mortality outcomes must be reconstructed using local 
sources, including BDP as proxies of changes in cultural land-
scapes. As a few well-documented case studies of the Black Death’s  

destructive mortality in Europe have informed estimates of the 
pandemic’s mortality not only in other European regions, but also 
in several regions of Africa and Asia, our findings have significant 
implications both for the wider history of the Black Death and for 
how historical disease outbreaks are reconstructed.

Methods
Pollen-inferred landscape change and pre-industrial demography. Recently, data 
derived from tree rings or ice cores have been employed to approximate changes 
in human economic activity related to past epidemics, as well as to warfare and 
climatic variability46,47. However, none of these proxies is directly related to human 
demography or provides a basis to estimate variation in the Black Death’s mortality 
on a regional scale across Europe (to date only a single archaeological study using 
pottery as a proxy for demographic change on the national level, focusing on just a 
single country—England—has appeared48).

In recent years, pollen data have been proven to be closely related to 
demographic variability. Most importantly, detailed comparisons of historical 
documentary data on population trends and landscape changes as revealed by 
pollen data have been carried out on a local scale and a close link between changes 
in European pollen data and changes in European local demography over the 
past millennium has been demonstrated on multiple occasions, that is, during 
the period and region of our concern here49,50. A strong link between long-term 
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demographic trends as visible in regional settlement numbers and macro-changes 
in land cover (deforestation/afforestation) have also been confirmed for ancient 
Greece51. Additionally, a recent publication successfully employed pollen data to 
test the extent of the mortality associated with the sixteenth-century Spanish and 
Portuguese empires’ colonization of tropical regions in the Americas and Asia52. 
However, as of now there is no method to quantify past demographic trends in 
absolute numbers based on palaeoecological data. Consequently, we also focus in 
this paper on relative changes in historical societies’ populations and test the now 
common idea that the Black Death caused enormous mortality across Europe (with 
many scholars now arguing for a mortality exceeding 30% and upwards of 50% of 
the population within a few years) (see also Fig. 1). Using our BDP approach, we 
conclude this hypothesis is not maintainable. Our evidence for demography-related 
landscape changes (or lack thereof) negates it.

Our main indicator is cereal pollen. In pre-industrial economies, rural 
labour availability (hence rural population levels) and the spatial scale of cereal 
cultivation were directly related. An increase in the extent and intensity of 
cereal cultivation—as reflected in pollen data—would have required not only a 
predilection and demand for cereals, but also greater availability of labour and 
thus population growth or significant immigration. The maintenance of existing 
agricultural activity, in turn, would have required relatively stable population 
levels53–55. The uniform ~50% mortality postulated for the Black Death across 
Europe should have resulted in a large and significant decline of cereal cultivation 
and parallel forest regrowth across Europe, as previously demonstrated for 
mid-fourteenth-century Sweden26 and singular sites in some regions of western 
Europe56. This result agrees with the fact that Black Death mortality could be 
high among people at productive age, as illustrated for England57,58. Moreover, 
even in the case of England, a comparatively commercialized and adaptive rural 
economy in mid-fourteenth-century Europe, the loss of 50% of the population 
led to a significant decline in the total area under cultivation (as documented 
by heterogeneous written sources)59. In Italy, another well-developed economy 
at that time, the expansion of large estates following the Black Death also did 
not compensate for the general loss of cereal productivity60. This effect, high 
mortality driving arable contraction, must have been yet more pronounced in 
more subsistence-oriented and less adaptive economies, with limited surplus 
production, such as in regions of the Iberian Peninsula, Germany, Sweden and 
particularly east-central Europe. Importantly, palaeoecological evidence for arable 
contraction may be indicative, to some extent, of not only rural population decline 
but also urban population decline in the region, as there is evidence in some 
areas, following the pandemic, of rural-to-urban migration, of country-dwellers 
repopulating urban centres10. Possibly less common was intraregional rural 
migration, as marginal lands were abandoned for better quality soils, which were 
more likely to remain under cultivation26,61.

Therefore, cereal pollen remains our most potent pollen indicator related to 
demographic changes in pre-industrial European societies. Other pollen indicators, 
reflecting rewilding and reforestation (secondary ecological succession) of cereal 
fields abandoned as a result of significant mortality, or the transformation of cereal 
fields into pastures, which required less rural labour and thus also could have 
been a response to high plague mortality, play a secondary role in our analysis and 
provide further support for our conclusions.

BDP data collection. Existing online palynological databases (the European Pollen 
Database (EPD)62 www.europeanpollendatabase.net, and the Czech Quaternary 
Palynological Database (PALYCZ)63, https://botany.natur.cuni.cz/palycz/), as well 
as personal contacts of the study authors and a systematic publication search 
were employed to identify palynological sites in Europe reaching the required 
chronological and resolution quality for the study of the last millennium. In order 
to enable statistical analysis, we included only sites clustered in well-defined 
historical-geographical regions, excluding isolated sites even if the quality of a site’s 
data was very good. Data of sufficient quality and amount from regions for which 
the Black Death is well-studied, notably central and northern England and the Low 
Countries, is not presently available; to the best of our knowledge, for each of these 
regions there currently is not more than a single isolated site56, which does not 
allow for the application of statistical approaches.

In total, 261 pollen records with the average temporal resolution of 58 years 
and 14C-age control (or varve chronology), have been collected. The age–depth 
models of the sequences have been provided by authors in original publications, 
by the EPD or developed through the Clam package (version 2.3.4) of R software 
for the purpose of this study. The analytical protocol for pollen extraction and 
identification is reported in the original publications. The Pollen Sum includes all 
the terrestrial taxa with some exceptions based on the selection done in the original 
publications. The full list of sequences, exclusions from the Pollen Sum, age-depth 
models and full references are reported in Supplementary Data 1.

The taxa list has been normalized by applying the EPD nomenclature. In this 
respect, the general name Cichorioideae includes Asteraceae subf. Cichorioideae 
of the EPD and PALYCZ nomenclatures, which primarily refers to the fenestrate 
pollen of the Cichorieae tribe64. Ericaceae groups Arbutus unedo, Calluna  
vulgaris, Vaccinium and different Erica pollen types, whereas deciduous  
Quercus comprehends both Q. robur and Q. cerris pollen types65. Rosaceae  
refers to both tree and herb species of the family. Finally, Rumex includes R. acetosa 

type, R. acetosella, R. crispus type, Rumex/Oxyria and Urtica groups U. dioica type 
and U. pilulifera.

BDP summary pollen indicators. In order to connect changes visible in the pollen 
data to human demographic trajectories, we assembled four summary pollen 
indicators that describe specific landscapes related to human activity. They reflect 
different degrees of demographic pressure on the landscape (cereal cultivation, 
pastoral activities, which are less-labour intensive than cereal cultivation, 
abandonment and rewilding) as well as different durations of land abandonment 
that might have occurred post-Black Death. Our indicators account for the fact 
that Europe is a continent rich in natural heritage, with a wide range of landscapes 
and habitats and a remarkable wealth of flora and fauna, shaped by climate, 
geomorphology and human activity. In order to ensure uniform interpretation of 
the indicators, we relied on criteria that can be applied to all European landscapes 
regardless of their local specificity. Cereals and herding are directly related to 
human activities and are barely influenced by spatial differences. More complex is 
the succession of natural plants with their ecological behaviour and inter-species 
competition. For this reason, we relied on existing quantitative indicators of  
plant ecology.

The Ellenberg L – light availability indicator66 provides a measure of sunlight 
availability in woodlands and consequently of tree-canopy thickness, reflecting the 
scale of the natural regeneration of woodland vegetation after cultivation or pasture 
activities61. Nonetheless, ecological studies have suggested that geographic and 
climatic variability between different European regions can influence the Ellenberg 
indicator system67–71. The original indicators were primarily designed for Central 
Europe58, but several studies developed Ellenberg indicators for other regions, 
reflecting the specific ecology of the selected taxa (British Isles;72 Czech Republic;73 
Greece;74 Italy;75 Sweden76). Plants with L values between 5 and 8 are listed in the 
fast succession indicator, the ones with L values ranging from 1 to 4 are included in 
the slow succession indicator. The result is the following list:

1) Cereals: only cultivated cereals have been included: Avena/Triticum type, 
Cerealia type, Hordeum type, Secale. 2) Herding includes pastoral indicators 
linked to the redistribution of human pressure: Artemisia, Cichorioideae, Plantago 
lanceolata type, Plantago major/media type, Polygonum aviculare type, Rumex, 
Trifolium type, Urtica, Vicia type. 3) Fast Succession comprises indicators of 
relatively recent reforestation of cultivated land after abandonment: Alnus, Betula, 
Corylus, Ericaceae, Fraxinus ornus, Juniperus, Picea, Pinus, Populus, deciduous 
Quercus, Rosaceae. 4) Slow Succession includes indicators of secondary succession 
established after several decades of abandonment: Abies, Carpinus betulus, Fagus, 
Fraxinus, Ostrya/Carpinus orientalis, Quercus ilex type.

In order to validate the indicators overcoming the regional limits of Ellenberg 
values, a different subdivision has been provided following the Niinemets and 
Valladares shade tolerance scale for woody species of the Northern Hemisphere77. 
The subdivision of taxa in the Fast and Slow succession indicators remains the 
same with only three changes: Fraxinus ornus and Picea move from Fast to Slow 
succession and Fraxinus from Slow to Fast succession. Extended Data Figs. 1 
and 2 show that the two groupings yield the same results, which confirms the 
reliability of our indicators. There is only one clear exception (Russia), with one 
more region where smaller-scale diversion occurs for only one indicator, Slow 
Succession (Norway). The different indicator behaviour results from the different 
attribution of Picea in our two sets of succession indicators: at high latitude, Picea 
characterizes the final stage of the ecological succession and hence its different 
attribution results in different summary indicator values in Russia for the two 
stages of ecological succession, fast and slow.

Please note our summary indicators are not designed to reflect the entirety of 
the landscape and reconstruct all of its different components. Rather, they are a 
means of approximating changes in the landscape related to the types of human 
activities, and their intensity, as much as they relate to demographic changes in 
human populations using and inhabiting these landscapes.

BDP analytical statistical and spatial methods. To control for local specificity, 
pollen percentages of every taxon from each pollen site were standardized. 
From the taxa percentage in a given year the arithmetic mean calculated for the 
observations from the period 1250–1450 was subtracted and the result divided by 
the standard deviation for the 1250–1450 period. Standardized taxa results were 
assembled for each site into four BDP summary indicators. Since each indicator 
has different numbers of taxa, the sum of standardized taxa values calculated for 
a given year and site was divided by the number of taxa in the indicator. For the 
purposes of replication, this standardized pollen dataset, comprising the four 
indicators for each sample from each site, is available as Supplementary Data 2.

This dataset has been analysed in two ways, statistically and spatially.
For the statistical approach, standardized regional indices of landscape 

transformation were created for each region by calculating the average value for 
all sites within the region, for each of the subperiods analysed in the study (1250–
1350 and 1351–1450; 1301–1350 and 1351–1400; 1325–1350 and 1351–1375). 
Differences between means for each subperiod were measured by the use of the 
bootstrapping based on 10,000 resamples. The 90% and 95% confidence intervals 
were estimated with the bias-corrected and accelerated method (BCa)78. These 
results are visualized in Fig. 5 for the comparison of the subperiods of 1250–1350 
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versus 1351–1450, and in Supplementary Figs. 4 and 6 for the comparison of the 
subperiods of 1300–1350 versus 1351–1400 and 1325–1350 versus 1351–1375, 
respectively.

For the spatial approach, we employed the Bayesian model AverageR developed 
within the Pandora and IsoMemo initiatives (https://pandoraapp.earth/) to map 
the distribution of pollen indices across Europe. AverageR is a generalized additive 
model that has been described previously79. It relies on a thin-plate regression 
spline80 to predict new, unseen data using the following model:

Yi = g(longitude, latitude) + εi

Where Yi is the independent variable for site i; g(longitude, latitude) is the spline 
smoother; and εi ∼ N(0, σε) is the error term.

The spline smoother can be written as X × β where X is a fixed design matrix 
and β is the parameter vector. Surface smoothing is controlled by employing a 
Bayesian smoothing parameter estimated from the data and trades-off bias against 
variance to make the optimal prediction75. This parameter β is assumed to follow 
a normal distribution: β ~ N(0, 1 /δ × λ × P), where P is a so-called penalty matrix 
of the thin plate regression spline, which penalizes second derivatives81. The δ 
parameter is by default set to 1 but this can be adjusted to suit smoothing needs for 
each application. In our study δ was set at 0.9 to match the preferred spatial scale of 
analysis for our dataset (approx. 250 to 500 km).

AverageR was employed to generate smoothed surfaces for three sets of 
temporal bins (1250–1350 versus 1351–1450, as well as 1300–1350 versus 
1351–1400 and 1325–1350 versus 1351–1375) and for the four BDP indicators 
(Supplementary Figs. 3, 5 and 7). For the same indicator the difference between the 
two temporal bins was plotted (Fig. 5; Supplementary Figs. 4 and 6).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analysed during this study are included in this published 
article (as the Supplementary Data).
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Extended Data Fig. 1 | Region-by-region comparison of Ellenberg and Niinemets indicators.
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Extended Data Fig. 2 | Outlier analysis of Ellenberg and Niinemets indicators.
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Extended Data Fig. 3 | Differences and similarities in the changes in the cereal pollen indicator between 100-yr periods of analysis versus 50-yr and 
25-yr periods respectively. Points displayed in white areas represent regions where the direction of changes was the same over the longer versus shorter 
periods of time. Points displayed in grey areas represent regions where the direction of changes was different over the longer versus shorter periods of 
time. Regions showing such differences have been named. Based on Supplementary Figs. 1 and 2.
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Extended Data Fig. 4 | Differences and similarities in the changes in the BDP pollen indicators between 100-yr and 50-yr periods of analysis. Points 
displayed in white areas represent regions where the direction of changes was the same over the longer versus shorter periods of time. Points displayed in 
grey areas represent regions where the direction of changes was different over the longer versus shorter periods of time. Based on Supplementary Fig. 1. 
Please note: Norway and Russia were the only regions that showed significant differences between Ellenberg and Niinemets indicators, most strongly for 
the slow succession indicator. Based on Supplementary Fig. 1.
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Extended Data Fig. 5 | Differences and similarities in the changes in the BDP pollen indicators between 100-yr and 25-yr periods of analysis. Points 
displayed in white areas represent regions where the direction of changes was the same over the longer versus shorter periods of time. Points displayed in 
grey areas represent regions where the direction of changes was different over the longer versus shorter periods of time. Based on Supplementary Fig. 2.
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