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1. Introduction
Land surface models (LSM) parameterize energy exchanges between the surface and the atmosphere, providing 
the lower boundary conditions (e.g., radiative and turbulent heat fluxes) to atmospheric models (Stensrud, 2007). 
For urban areas, ULSMs (urban LSMs) are currently employed in some operational numerical weather prediction 
(e.g., Bengtsson et al., 2017; Seity et al., 2011) and global climate models (e.g., Hertwig et al., 2021; Oleson 
et al., 2011) at the higher spatial resolution end, but there is a growing need for broader adoption as they are funda-
mental to the delivery of integrated urban services (Baklanov et al., 2018; Grimmond et al., 2020). The complex-
ity of ULSMs varies from simple assumptions (e.g., characterizing an impervious slab) to models that consider 
the 3D geometry of buildings with varying heights and material characteristics (Grimmond et al., 2009, 2010). 
This higher complexity, however, often comes at the cost of a greater number of site-specific input parameters and 
increased computational cost, which does not necessarily translate into improved results (Grimmond et al., 2011).

In recent years, machine learning (ML) techniques have shown potential in several areas of meteorology (e.g., 
Bolton & Zanna, 2019; Krasnopolsky et al., 2013; Nowack et al., 2018; Rasp & Lerch, 2018; Rasp et al., 2018). 
A key limitation of these techniques, however, is the need for large amounts of training data which, in urban 
meteorology, are often scarce.

One alternative to this is the creation of ML emulators (i.e., statistical surrogates of their physical counterparts) 
to improve the computational performance for a trade-off in accuracy (Meyer et al., 2021). Although emulators 
seek to improve the computational performance of current physical parameterizations, they offer no improvement 
in accuracy as surrogate models are, at best, as good as the data they are trained on. In urban land surface mode-
ling, speed is, however, not such a limitation; unlike processes such as radiative transfer where the fundamental 
processes are well understood but computational cost is the primary limiting factor (Meyer et al., 2022), most 
current ULSMs are reasonably fast but require several input parameters. Furthermore, previous comparisons 
(Grimmond et al., 2010, 2011) found that no individual ULSM is best at predicting all the main surface fluxes 
such as short- and longwave radiation, and turbulent sensible and latent heat fluxes. Although an obvious solu-
tion to this issue may be mitigated by running an ensemble of ULSMs coupled to a weather (or climate) model 

Abstract Can we improve the modeling of urban land surface processes with machine learning (ML)? A 
prior comparison of urban land surface models (ULSMs) found that no single model is “best” at predicting all 
common surface fluxes. Here, we develop an urban neural network (UNN) trained on the mean predicted fluxes 
from 22 ULSMs at one site. The UNN emulates the mean output of ULSMs accurately. When compared to a 
reference ULSM (Town Energy Balance; TEB), the UNN has greater accuracy relative to flux observations, 
less computational cost, and requires fewer input parameters. When coupled to the Weather Research 
Forecasting (WRF) model using TensorFlow bindings, WRF-UNN is stable and more accurate than the 
reference WRF-TEB. Although the application is currently constrained by the training data (1 site), we show a 
novel approach to improve the modeling of surface fluxes by combining the strengths of several ULSMs into 
one using ML.

Plain Language Summary Climate change and densely populated cities make the task of urban 
weather and climate prediction more and more critical to our society. In this study, we use machine learning to 
improve the accuracy and efficiency of models predicting urban weather. We find great potential to use these 
types of machine learning models both as standalone tools and integrated into complex weather models.

MEYER ET AL.

© 2022 The Authors. Journal of 
Advances in Modeling Earth Systems 
published by Wiley Periodicals LLC on 
behalf of American Geophysical Union.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Machine Learning Emulation of Urban Land Surface 
Processes
David Meyer1,2 , Sue Grimmond1 , Peter Dueben3 , Robin Hogan1,3 , and 
Maarten van Reeuwijk2 

1Department of Meteorology, University of Reading, Reading, UK, 2Department of Civil and Environmental Engineering, 
Imperial College London, London, UK, 3European Centre for Medium-Range Weather Forecasts, Reading, UKKey Points:

•  Ensemble mean of several urban land 
surface models is accurately emulated 
using a neural network emulator

•  The emulator reduces computational 
time and complexity compared to a 
typical urban land surface model

•  Coupled to a numerical weather 
model, the emulator produces accurate 
and stable forecasts

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
D. Meyer,
d.meyer@pgr.reading.ac.uk

Citation:
Meyer, D., Grimmond, S., Dueben, P., 
Hogan, R., & van Reeuwijk, M. (2022). 
Machine learning emulation of urban 
land surface processes. Journal of 
Advances in Modeling Earth Systems, 
14, e2021MS002744. https://doi.
org/10.1029/2021MS002744

Received 29 JUL 2021
Accepted 7 FEB 2022

Author Contributions:
Conceptualization: David Meyer
Data curation: David Meyer
Formal analysis: David Meyer
Investigation: David Meyer
Methodology: David Meyer
Resources: David Meyer
Software: David Meyer
Validation: David Meyer
Visualization: David Meyer
Writing – original draft: David Meyer

10.1029/2021MS002744

Special Section:
Machine learning application to 
Earth system modeling

RESEARCH ARTICLE

1 of 19

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7071-7547
https://orcid.org/0000-0002-3166-9415
https://orcid.org/0000-0002-4610-3326
https://orcid.org/0000-0002-3180-5157
https://orcid.org/0000-0003-4840-5050
https://doi.org/10.1029/2021MS002744
https://doi.org/10.1029/2021MS002744
https://doi.org/10.1029/2021MS002744
https://doi.org/10.1029/2021MS002744
https://doi.org/10.1029/2021MS002744
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1942-2466.MLAMODEL1
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1942-2466.MLAMODEL1
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021MS002744&domain=pdf&date_stamp=2022-03-11


Journal of Advances in Modeling Earth Systems

MEYER ET AL.

10.1029/2021MS002744

2 of 19

and use it to improve predictions, this is technically challenging to implement and hard to defend given the 
multi-fold increase in the computational cost resulting from running multiple ULSMs at once. Moreover, given 
the complexity of ULSMs, their availability, and the number of specific parameters needed to make realistic 
simulations, ULSMs often need a specialized team of people while an ML emulator may learn the behavior of an 
ensemble mean and be a cheaper and easier alternative to run.

Here, we seek to develop an emulator of urban land surface processes and evaluate whether the strengths of 
multiple ULSMs can be combined to improve both accuracy and computational performance. The specific goals 
of this paper are:

1.  To develop an ML emulator of urban land surface processes trained on the outputs of several ULSMs
2.  To evaluate the emulator's accuracy and computational performance
3.  To couple the developed ML emulator to a numerical weather model and to evaluate its accuracy and stability

To our knowledge, this is the first attempt to emulate a ULSM. In the following sections, we introduce the 
general problem of urban land surface modeling with details about data and methods used to develop the emula-
tor (Section 2) and analyze the results (Section 3) before concluding with a summary and ideas for further work 
(Section 4).

2. Methods
2.1. General Problem

At the core of ULSMs is the concept of surface energy balance (SEB), a general statement of energy conservation 
with applications to surfaces and volumes of all temporal scales (Oke et al., 2017). Physically, it describes the 
heating (or cooling) of a surface (Figure 1). Mathematically, it can be stated as:

𝑑𝑑𝑑𝑑𝑆𝑆

𝑑𝑑𝑑𝑑
= 𝑑𝑑⋆

−𝑑𝑑𝐻𝐻 −𝑑𝑑𝐸𝐸, (1)

where dQS/dt is rate of change in thermal energy stored in a surface by conduction with QS the heat storage; 
Q ⋆ = (S ↓−S ↑) + (L ↓−L ↑) is the surface net all-wave radiation flux density from downwelling (↓) and upwelling 
(↑) shortwave (S) and longwave (L) radiation; the convective heat flux densities are QH the turbulent sensible 
and QE the turbulent latent (or evaporative). Anthropogenic heat fluxes, the additional energy fluxes associated 
with human activities, if not simulated or prescribed, may be assumed to be zero or minimal in ULSMs (e.g., in 
low-density residential areas). The horizontal advection of heat and moisture is generally ignored or parameter-
ized by ULSMs but implicitly included when coupled to weather models. ULSMs generally solve a prognostic 
equation in the form of Equation  1 to predict the evolution of upwelling short- and longwave radiation flux 
density, sensible and latent heat flux density, forced by downwelling short- and longwave radiation flux density, 
air temperature and humidity, atmospheric pressure, wind speed and direction and liquid (or solid) precipitation.

2.2. Urban Neural Network

The urban neural network (UNN) developed here is based on the multilayer perceptron (MLP; Bishop, 2006; 
Goodfellow et al., 2016), one of the simplest types of neural networks (NNs). The MLP-based UNN (Figure 2) 
is set up to predict upwelling short- and longwave radiation flux density and turbulent sensible and latent heat 
flux density (Table 1) at time t + 1 from inputs at time t of common meteorological variables such as dry-bulb air 
temperature and humidity, as well as the cosine of solar zenith angle μ0 and model timestep length Δt (Table 1). 
Both μ0 and Δt are used to allow the UNN to run over different grid points at different spatial and temporal reso-
lutions when coupled to the weather model (Section 2.4). Specifically, μ0 is used instead of latitude, longitude, 
and local time to reduce the number of features required by the UNN, and Δt to dynamically vary the timestep 
length, matching that used by the weather model. The surface temperature Ts is used rather than the upwelling 
longwave radiation L ↑ to mimic a physical system whereby Ts is used as a state between different timesteps and 
thus provide the initial condition at each new inference timestep (Figure 2). The UNN is implemented in Tensor-
Flow (Abadi et al., 2015) version 2.6.2 (TensorFlow Developers, 2021c) and configured with two hidden layers, 
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each having 256 neurons, rectified linear unit (ReLU) activation function, 
and Adam optimizer (Kingma & Ba, 2015) with mean squared error as its 
optimization function. This configuration is deemed optimal after conduct-
ing a hyperparameter optimization of several configurations (Table S1 in 
Supporting Information S2) and visually inspecting the results.

2.3. Town Energy Balance

To compare the UNN to a baseline, here we use the Town Energy Balance 
(TEB; Masson, 2000) model, a single-layer ULSM characterizing city areas 
based on building roofs, walls, roads, and vegetation, and assuming build-
ings create an infinite street canyon (Masson, 2000). TEB is chosen as it is a 
mature, widely used ULSM, extensively evaluated (e.g., Lemonsu et al., 2004; 
Masson et al., 2002; Pigeon et al., 2008), and available both offline (Meyer, 
Schoetter, Masson, & Grimmond, 2020) and online (i.e., coupled to weather 
models; e.g., Hamdi et al., 2012; Lemonsu & Masson, 2002; Meyer, Schoet-
ter, Riechert, et al., 2020). Here we use the TEB software (Meyer, Schoetter, 
Masson, & Grimmond, 2020) version 4.1.2 (Masson et al., 2021) and refer 
to it as TEB. Similar to the UNN, TEB inputs include typical meteorological 
variables at time t, such as dry-bulb air temperature and humidity (Table 1), 
to predict common surface energy balance variables at time t + 1 (Table 1).

2.4. Weather Research and Forecasting (WRF) Coupling

Both TEB and the UNN are coupled to the weather model WRF (Skamarock et  al.,  2019) in WRF-CMake 
(Riechert & Meyer, 2019b) version 4.2.2 (Riechert & Meyer, 2021) as it simplifies WRF-related development, 
configuration, and build-processes. Implementation details of WRF-TEB are provided in Meyer, Schoetter, 
Riechert, et al. (2020). Variables used in the WRF-UNN and WRF-TEB coupling are similar; however, as fric-
tion velocity u∗ data are not provided in either observations or most ULSMs (Figure S1 in Supporting Informa-
tion S1), it is not part of the UNN (Section 2.2) and thus ignored in WRF-UNN.

Porting the UNN to WRF is made seamless by relying on the available C application programming interface 
(API) provided with TensorFlow (TensorFlow Developers, 2021a). We choose the lightweight version of Tensor-

Flow, TensorFlow Lite (TensorFlow Developers, 2021b) as: (a) it has CMake 
support, which makes the integration in WRF-CMake straightforward and 
allows sharing of project build options in WRF-CMake, and (b) it has a very 
succinct and accessible API (compared to TensorFlow library C API), that 
makes the Fortran binding used in the coupling easy to write. To perform 
the actual coupling, the UNN is exported to a TensorFlow Lite file from 
Python. To enable the UNN in WRF, the TFLite Fortran binding (tflite.f90; 
Figure 3a) and the UNN surface module (module_sf_unn.F; Figure 3) are 
written. The former is used to interface with the TFLite C API and the latter 
to initialize inputs (Table 1) and run the UNN to generate outputs (Table 1) 
which are passed to WRF for the next timestep.

2.5. Data and Model Setup

Grimmond et al. (2011)’s urban comparison study evaluated the accuracy of 
32 ULSMs (or different configurations) from a wide range of international 
modeling groups (Table S2 in Supporting Information  S2) using directly 
observed fluxes in Preston, a suburban area of Melbourne (Australia). Site 
information to configure ULSMs, released to participants in four Stages, 
gives increasing detail (Table S3 in Supporting Information S2). For each 

Figure 1. Conceptual sketch of surface energy balance exchanges (ignoring 
advection, vegetation, and anthropogenic heat flux) for a clear-sky day with 
arrows indicating the direction of fluxes relative to the surface. The shortwave 
flux is zero at night as the Sun's rays are below the horizon. The heat transfer 
processes are (left to right) radiative and convective. Other terms are defined 
in the text and Table 1.

Figure 2. The trained urban neural network (UNN) is used to predict outputs 
y (Table 1) at time t + 1 from inputs x (Table 1) at time t using trained weights 
w. The surface temperature Ts from a previous timestep provides the initial 
condition at each new inference.
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Stage, groups returned their model computed surface energy balance fluxes. The main data sets, with local time 
stamps (UTC + 10, i.e., 10-h ahead of Coordinated Universal Time), are:

1.  Morphological parameters (MP): provided in the four Stages, characterizing the surface around the observa-
tion site (Grimmond et al., 2011 Table 2, and our Table S3 in Supporting Information S2).

2.  Meteorological Forcing (MF; Grimmond et al., 2021): continuous gap-filled 30-min averages with a period 
ending timestamp (i.e., 10:30 is 10:01–10:30) of meteorological variables at 40 m above ground level (agl) 
between 12 August 2003 13:30 and 28 November 2004 23:00 (Figure 4; Table 1).

3.  Multi-model output (MO; Grimmond et al., 2013): continuous outputs, from 32 models or model-configu-
rations between 13 August 2003 00:00 and 27 November 2004 23:30 reported in four separate Stages for 
upwelling short- and longwave radiation flux density, and turbulent sensible and latent heat flux density 
(Table 1).

Symbol Name Unit MEM TEB a WRF-TEB a UNN WRF-UNN Derived as

Inputs

 T Dry-bulb air temperature K ✓ ✓ ✓ ✓ ✓ -

 q Specific humidity kg kg −1 ✓ ✓ ✓ ✓ ✓ -

 p Atmospheric surface pressure Pa ✓ ✓ ✓ ✓ ✓ -

 S ↓ Downwelling shortwave radiation flux density W m −2 ✓ ✓ b ✓ b ✓ ✓ -

 L ↓ Downwelling longwave radiation flux density W m −2 ✓ ✓ ✓ ✓ ✓ -

 u Zonal component of wind velocity m s −1 ✓ c ✓ c ✓ ✓ ✓ -

 v Meridional component of wind velocity m s −1 ✓ c ✓ c ✓ ✓ ✓ -

 RR Rainfall rate kg m −2 s −1 ✓ ✓ ✓ ✓ ✓ -

 tlocal Local time s ✓ ✓ ✓ - - -

 φ Latitude deg ✓ ✓ ✓ - - -

 λ Longitude deg ✓ ✓ ✓ - - -

 μ0 Cosine of solar zenith angle rad - - - ✓ b ✓ -

 Δt Timestep length s ✓ ✓ ✓ ✓ ✓ -

Outputs

 S ↑ Upwelling shortwave radiation flux density W m −2 ✓ ✓ - ✓ ✓ -

 L ↑ Upwelling longwave radiation flux density W m −2 ✓ ✓ - - D 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 4

𝑠𝑠

 Ts Surface (skin) temperature K - ✓ ✓ S S [L ↑/(εσ)] 1/4

 QH Turbulent sensible heat flux density W m −2 ✓ ✓ ✓ ✓ ✓ -

 QE Turbulent latent heat flux density W m −2 ✓ ✓ ✓ ✓ ✓ -

 E Evaporation mass flux density kg m −2 s −1 - ✓ ✓ - D 𝐴𝐴 𝐴𝐴𝐸𝐸 ∕𝐿𝐿𝑣𝑣

 QS Heat Storage J m −2 - ✓ ✓ - D Equation 1

 α Surface albedo 1 C C C - D S ↑/S ↓

 ε  Surface emissivity 1 C C C - - -

 ws Mass mixing ratio of water vapor kg kg −1 - ✓ ✓ - U -

 u* Shear (friction) velocity m s −1 - ✓ ✓ - U -

Note. Multi-model Ensemble Mean (MEM). Depending on the model or data set used, data may be unavailable/not-applicable (-), available/outputted (✓), derived (D), 
constant (C), unmodified (U), state (S). For computations between upwelling longwave radiation flux density L ↑and surface temperature Ts a constant emissivity (ε) 
of 0.97 as reported in Coutts et al. (2007b) is used. The latent heat of vaporization 𝐴𝐴 𝑣𝑣 is assumed to be constant with a value of 2.464 MJ kg −1 which is applicable to 
15°C (Oke et al., 2017).  aAdditional inputs and outputs are given in namelists.  bTEB requires direct and diffuse; these are computed using pvlib (Holmgren et al., 2018) 
version 0.9.0 (Holmgren et al., 2021) but given directly as-is in WRF.  cWind speed and direction are used instead of, and derived from the zonal and meridional 
components of wind velocity using MetPy version 1.1.0 (May et al., 2021).

Table 1 
Inputs and Outputs From Data Sets and Models Used to Conduct the Simulations
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4.  Observations (OBS; Grimmond et al., 2021): 30-min average fluxes with period ending timestamp measured 
at 40 m agl between 13 August 2003 00:00 and 27 November 2004 23:30. Methods to obtain observed fluxes 
are given in Coutts et al. (2007a, 2007b). This data set has the same fluxes as the MO data set but with obser-
vational gaps (∼39% of MO; purple Figure 4a).

Here, a visual inspection of the MO data set for all Stages (Figure S2 in Supporting Information S1) is used to 
remove ULSMs not simulating the turbulent latent heat flux density (8 ULSMs) or showing outliers (2 ULSMs), 
leaving 22 ULSMs (Figure S3 in Supporting Information S1). The MO data set is used to compute the ensemble 
mean, hereafter referred to as the multi-model ensemble mean (MEM). To make evaluations consistent between 
MEM, UNN, and TEB, these are conducted for periods spanning 13 August 2003 00:00 and 27 November 2004 
23:30 as defined in MEM totaling 22,704 30-min samples. For any given data set, the test fraction is the peri-
ods with OBS available (i.e., 39% of MEM; number of samples N = 8,866; purple, Figure 4a) and the training 
fraction (used by the UNN; see point 2 below) for the remaining periods (i.e., 61% of MEM; N = 13,838; black, 
Figure 4a). Evaluation metrics (Section 2.6) are calculated for the test fraction, with results (Section 3) using all 
samples except for the upwelling shortwave radiation flux density as this is zero at nighttime (i.e., daytime: OBS 
>2 W m −2, N = 4,272).

Figure 3. Call to Tensorflow Lite (TFLite) C API from WRF as implemented for this study. (a) TFLite integration: the Fortran interface module tflite.f90 is used in 
WRF to bind to the TFLite C API, which is used by the UNN surface module module_sf_unn.F to initialize and run the neural network. (b) Example of TFLite Fortran 
binding (simplified from UNN surface module) use: first, a one-time initialization to load the TFLite model, configure its settings, and allocate input and output tensors 
is performed. Before each inference, input quantities (e.g., downwelling shortwave radiation) are stored in the input tensor in the expected order. Similarly, inference 
outputs are returned as output tensors from which individual quantities are accessed. Other pre- and post-processing steps such as normalization and error handling are 
omitted. See models/wrf-unn/phys/module_sf_unn.F and models/wrf-unn/phys/module_sf_unn.F in Meyer (2021) for actual code.
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Model-specific setups are as follows:

1.  TEB uses morphological parameters from MP for the four Stages (Table S3 in Supporting Information S2) 
forced with MF. TEB is run with 5-min (300-s) timesteps (from 13 August 2003 00:00 to 27 November 2004 
23:30) after linear interpolation of the 30-min MF data set (e.g., 00:00, 00:05, …) to predict the next 5-min (e.g., 
00:05, 00:10, …). The last 5-min sample of each 30-min period (e.g., 00:30) is used in analyses (Section 3). 
From the evaluation of TEB outputs at all Stages, Stage 4 is selected as it has the smallest errors (Appendix A).

2.  The UNN is trained with MF as inputs and MEM from Stage 2 as outputs (Table 1) using the training frac-
tion. Stage 2 is selected as it offers the 'best' tradeoff between complexity (i.e., number of parameters used 
to configure the 22 ULSMs; Table S3 in Supporting Information S2) and accuracy (Appendix A). Prior to 
training, the surface temperature Ts is derived from the MEM upwelling longwave radiation flux density 
L ↑ assuming a constant emissivity (Table 1). To allow the UNN to be used with different timestep lengths, 
nine linearly interpolated copies of both inputs and outputs are made (with 1, 2, 5, 10, 20, 60, 120, 300, and 
600-s timesteps), each derived from the 30-min data, and concatenated together with the original. A random 
subset corresponding to the same number of samples included with the 30-min data (N = 13,838) is selected 
in each copy to keep the number of training samples across the linearly interpolated copies equal. Thus, the 
total number of samples used for training the UNN is 138,380 (i.e., ten times the original 30-min data). Of 
this, 25% are randomly reserved for the early stopping mechanism. For inference, the UNN is forced with 

Figure 4. Observed meteorological forcing data (30-min, Section 2.5): (a) downwelling shortwave radiation flux density with observed fluxes (i.e., test fraction) 
shown in purple, (b) downwelling longwave radiation flux density, (c) atmospheric surface pressure, (d) dry-bulb air temperature, (e) relative humidity, (f) wind speed 
and (g) wind direction, and (h) rainfall rate. The wind speed and direction are computed using MetPy version 1.1.0 (May et al., 2021) from the zonal and meridional 
components of wind velocity. The relative humidity is computed using PsychroLib (Meyer & Thevenard, 2019) version 2.5.0 (Meyer & Thevenard, 2020) from the 
dry-bulb air temperature, specific humidity, and atmospheric surface pressure. Local time is 10-hr ahead of Coordinated Universal Time (UTC + 10).
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5-min MF (12 August 2003 23:30 and 27 November 2004 23:30) derived 
by linearly interpolating the 30-min intervals to be consistent with TEB. As 
UNN outputs (Table 1) include Ts rather than L ↑ used in evaluations, UNN 
outputs are post-processed to derive L ↑ from Ts assuming a constant emissiv-
ity (Table 1). The stochastic nature of the multilayer perceptrons is assessed 
by repeating the training (and inference) 100 times, each with a different 
random seed. At each iteration (a) for each UNN output variable (S ↑, L ↑, QH, 
QE; Table 1), the normalized mean absolute error (nMAE; Section 2.6) is 
computed using the ‘true’ MEM and UNN-predicted samples for the whole 
period (i.e., both train and test fractions) and (b) the mean nMAE (nMAE ) is 
computed as 𝐴𝐴 0.25

(

nMAE𝑆𝑆↑ + nMAE𝐿𝐿↑ + nMAE𝑄𝑄𝐻𝐻
+ nMAE𝑄𝑄𝐸𝐸

)

 . The UNN 
with the median nMAE from the 100 iterations (Figure S4 in Supporting 
Information  S1) is taken as the representative UNN and used in analyses 
(Section 3). Thus, all UNN-relevant metrics (Section 2.6) are computed using 
results from the UNN with the median nMAE .
3.  The coupled WRF-TEB and WRF-UNN simulations are set up with 

four nested domains (Figure  5), generated with GIS4WRF (Meyer & 
Riechert, 2019) version 0.14.4 (Meyer & Riechert, 2020) and processed 
using WPS-CMake (WRF Preprocessing System) version 4.1.0 (Riechert 
& Meyer,  2019a). Both TEB and the UNN are run for the innermost 
domain (Figure 5b) with a 5-s timestep centered on the Preston measure-
ment tower. The innermost domain with 1 km horizontal grid spacing has 
a 66 m vertical grid spacing close to the surface, increasing with height. 
As model buildings are assumed to be within the ground (Meyer, Schoet-
ter, Riechert, et al., 2020), the flux tower sensors at 40 m agl is 33.6 m 
above the model surface (as mean building height = 6.4 m, Table S3 in 
Supporting Information S2). WPS MODIS land use data (UCAR, 2019) 
are used as one urban class with the same urban and vegetation frac-
tions (i.e., all grid cells) for consistency between TEB and UNN simu-
lations. Stage 4 parameters (Table S3 in Supporting Information S2) are 
used in both WRF-TEB, and TEB-offline runs. The European Centre 
for Medium-Range Weather Forecasts (ECMWF) Cycle 28r2 analysis 
(ECMWF, 2004) data are used to provide the initial and boundary condi-
tions. Other parameters used to configure WRF and WPS are given in 
Table S4 of Supporting Information S2. Simulations are run for summer 
(23 December 2003 10:00–27 December 2003 10:00) and winter (25 
June 2004 10:00–31 June 2004 04:00) periods, with evaluations using 
65 hr in summer (24 December 2003 14:30–27 December 2003 07:30) 
and 98.5 hr in winter (26 June 2004 21:00–30 June 2004 23:30) to allow 
some model spin-up; giving the longest continuous observation evalua-
tion periods in the two seasons. Instantaneous WRF fluxes at each 5-min 
interval (e.g., 00:00, 00:05, …) are averaged to 30-min time ending 
values for comparison with OBS.

2.6. Evaluation Metrics

To assess the simulations, statistics are computed between ‘true’ y t and predicted 𝐴𝐴 𝐴𝐴𝐴𝑡𝑡 samples at time t 
for 1…N timesteps. The metrics used are: mean bias (MB  = 𝐴𝐴 1∕𝑁𝑁

∑𝑁𝑁

𝑡𝑡=1
�̂�𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡 ), mean absolute error 

(MAE  = 𝐴𝐴 1∕𝑁𝑁
∑𝑁𝑁

𝑡𝑡=1
|�̂�𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡| ), mean absolute error normalized by mean absolute “true” flux |�|  (hereafter 

referred to as the normalized mean absolute error, nMAE = 100%
[

MAE∕|�|
]

 ) and standard deviation of the 

error (SDE = 

√

1
�

∑�
�=1

[

(�̂� − ��) − (�̂ − �)
]2

 ). Depending on the evaluation type, the ‘true’ samples y t are from 

either OBS or MEM and predicted samples 𝐴𝐴 𝐴𝐴𝐴𝑡𝑡 are from either MEM, UNN or TEB outputs (Section 2.5).

Figure 5. Study area (a) within Australia and the four nested domains (d1–d3 
and innermost, red) used in online simulations, and (b) innermost domain 
(1 km horizontal grid spacing) with WPS MODIS 30 arc-sec land cover/
use (UCAR, 2019). The UNN and TEB are run for “urban” (red) grid cells 
in WRF, assuming land cover fractions of 0.445 building, 0.38 vegetation, 
and remainder non-building impervious. Sources: map features by Natural 
Earth Vector (Kelso & Patterson, 2009) are in the public domain. Map tiles 
by Stamen Design (2021), under Creative Commons Attribution 3.0 license 
(CC BY 3.0). Data from OpenStreetMap (OpenStreetMap contributors, 2017), 
under Open Data Commons Open Database License (ODbL).
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3. Results and Discussion
3.1. Multi-Model Ensemble Mean

First, we assess the trained urban neutral network (UNN) using the test fraction (Section 2.5) of the multi-model 
ensemble mean (MEM) data set to determine if the UNN captures the main processes in predicting the surface 
energy balance. A perfect emulator would have all points on the line x = y (Figure 6). The UNN has the highest 
skill for the daytime upwelling shortwave radiation flux density (Figure 6a): mean bias (MB) is 3.0 W m −2, stand-
ard deviation of the error (SDE) 4.4 W m −2, mean absolute error (MAE) 4.2 W m −2, and normalized mean abso-
lute error (nMAE) 7.0%. The UNN-predicted longwave flux (Figure 6b) is slightly poorer (MB\SDE\MAE are 
−4.5\6.6\6.4 W m −2) but with a lower nMAE (1.6%) because of the larger fluxes. The turbulent latent (Figure 6d) 
heat flux density is more accurately predicted (MB\SDE\MAE are 5.9\13.7\8.6 W m −2 and nMAE is 32.7%) than 
the sensible (MB\SDE\MAE are −6.2\21.4\16.1 W m −2 and nMAE is 34.2%; Figure 6c) but with larger outliers. 
This relative ranking is consistent with the extensive ULSM evaluation literature.

3.2. Offline Simulations

Second, we compare the UNN to observed fluxes (OBS) and a version of the widely used ULSM TEB 
(Section 2.3). Two evaluations are undertaken with each using different meteorological forcing data: (a) observed 
MF (offline) and (b) coupled to WRF (online). The offline results are analyzed for both the test fraction and the 
short summer and winter periods (Section 2.5; Table 2). Online simulations (Section 3.3) are only evaluated for 
the latter two periods.

S ↑ L ↑ QH QE S ↑ L ↑ QH QE S ↑ L ↑ QH QE

Observed Mean (W m −2)

 16 months 58 390 40 34 - - - - - - - -

 65.5 hr in summer 87 420 100 46 - - - - - - - -

 82 hr in winter 41 350 −3.9 22 - - - - - - - -

Simulated MB (W m −2) MAE (W m −2) nMAE (%)

16 months (13 August 2003 00:00–27 November 2004 23:30; N = 8,866, except S ↑ N = 4,272)

 MEM −4.7 −0.39 −0.67 1.3 5.3 4.0 20 19 9.2 1.0 33 51

 UNN −1.7 −4.9 −6.9 7.1 5.5 7.8 21 20 9.4 2.0 36 54

 TEB 3.0 −19 −18 −3.8 5.1 20 30 25 8.7 5.2 51 68

65.5 hr in summer (24 December 2003 14:30–27 December 2003 07:30; N = 131, except S ↑ N = 73)

 Offline: MEM −6.6 0.4 −18 0.53 7.8 4.6 29 24 9.0 1.1 27 46

 UNN −3.2 0.65 −9.8 9.3 6.3 5 24 25 7.2 1.2 23 47

 TEB 2.1 −28 −22 −11 6 31 38 30 6.9 7.3 35 57

 Online: WRF-UNN −5.8 14 15 −4.7 9.5 18 38 26 11 4.2 35 49

 WRF-TEB −2.1 −11 −41 −12 8.3 35 53 34 9.6 8.2 49 64

82 hr in winter (26 June 2004 21:00–30 June 2004 23:30; N = 164, except S ↑ N = 56)

 Offline: MEM −2.4 −4.3 7.9 6.8 4.2 4.3 13 9.7 10 1.2 27 43

 UNN −0.43 −7.9 −0.24 9.4 4.7 8.0 15 12 11 2.3 33 54

 TEB 6.7 −15 −19 10 7.3 15 21 14 17 4.2 45 60

 Online: WRF-UNN −3.3 −1.3 0.53 5.9 8.8 9.3 18 13 21 2.6 38 56

 WRF-TEB 3.0 −3.5 −21 8.8 11 16 27 18 28 4.4 59 81

Table 2 
Observed Flux Densities (Upwelling Shortwave S ↑ and Longwave L ↑ Radiation, and Turbulent Sensible QH and Latent QE 
Heat) and Modeled (UNN, MEM, and TEB) Evaluation Metrics (Section 2.6) for N 30-Min Periods With the Lowest nMAE 
(Bold) per Flux Indicated per Data Cohort
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Relative to OBS, MEM has the lowest biases and errors for all but the upwelling shortwave radiation flux density, 
where it is outperformed by TEB (Figure 7; Table 2). Similarly, as the UNN captures the main surface processes 
modeled by the MEM (Section 3.1), its predictions outperform TEB's for all but the upwelling shortwave radi-
ation. The MAE for the upwelling shortwave radiation (Figure 7a; Table 2) for all (MEM\UNN\TEB) is <6 W 
m −2 (Figures 7e–7g; Table 2). The MAE for the longwave (Figure 7b) is larger than for the shortwave, with TEB 
(20 W m −2) having the largest between both MEM and UNN (MEM 4 W m −2; UNN 7.8 W m −2). Similarly, the 
MAE for the turbulent sensible (Figures 7c and 7f) and latent (Figures 7d and 7f) heat flux densities are larger for 
TEB (30 and 25 W m −2, respectively) compared to MEM and UNN (≤21 W m −2, Table 2). The nMAE for the 
latent is larger than sensible because of its smaller mean (Table 2; Figure 7g). The short summer and winter focal 
periods are consistent with the 16-month results (Table 2, Figure 8), with generally higher biases and errors for 
TEB than for either MEM or UNN. However, both MEM and UNN outperform TEB in the winter, notably with 
better accuracy for upwelling shortwave radiation (Figures 8b and 8i–8n; Table 2).

Figure 6. Comparison of UNN to the MEM data, with 1:1 line (red), data density (color), and evaluation statistics (Section 2.6) shown, for 30-min flux densities of 
(a) daytime upwelling shortwave radiation (S ↑) and (b) 24 hr upwelling longwave radiation (L ↑), turbulent (c) sensible (QH), and (d) latent (QE) heat. Units are W m −2 
except for the nMAE percentage (%). Note that axes scales differ between plots.
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3.3. Online Simulations

The online coupled WRF-UNN and WRF-TEB simulation results for the grid cell centered on the measurement 
site are shown in Figure 9. The numerical stability of WRF-UNN (trained using MEM for Stage 2; Section 2.5) 
is demonstrated by executing thousands of iterations for hundreds of grid cells without numerical failure (i.e., 
2-week, hundreds of domain grid points). The WRF-UNN post-spin-up periods for both winter and summer 
(Figure 9) capture the general trends of observations. Despite being derived using data from simulations driven 
with Stage 2 parameters (Table S3 in Supporting Information S2), WRF-UNN has better predictive skills than 
WRF-TEB (using Stage 4 parameters) for both summer and winter periods (Figure 9). WRF-UNN errors are 
generally lower than those of WRF-TEB in both seasons for all but the winter upwelling shortwave radiation flux 
density (Figure 9; Table 2) and generally consistent with the errors shown for offline simulations (Section 3.2).

As online simulations are run for the entire domain, an additional, albeit qualitative, comparison can be made 
across the spatial domain. The inner domain surface cover is assigned the same land cover fractions (build-
ing 0.445, paved/road 0.175, vegetated 0.380) for all ‘urban’ grid cells (d4 red, Figure 5) in both WRF-TEB 
and WRF-UNN. Given the temporal difference between the two simulations is greatest around midday on 25 
December 2003 (Figure 9c), we select this time for the spatial comparisons (Figure 10). Although the simulated 
upwelling shortwave radiation flux density (Figures 10a and 10b) has a similar pattern across the domain, the 
longwave (Figures 10c and 10d) in WRF-UNN has a smaller magnitude and spatial range across all the urban 
grid cells. As a result, the WRF-TEB upwelling longwave radiation flux density is overpredicted by about 100 W 
m −2 (Figure 9e). The warmer WRF-UNN surface temperature can explain the larger turbulent sensible heat flux 
density at the observational site (Figure 9e) and across the domain (Figures 10e and 10f).

Figure 7. Offline (16-months. N = 8 865) simulated (MEM, UNN, TEB, see text) and observed (OBS) 30-min flux densities (lines) with interquartile range (shading) 
for (a) upwelling short- (S ↑) (daytime) and (b) longwave (L ↑) radiation, turbulent (c) sensible (QH) and (d) latent (QE) heat, with (e–g) their respective evaluation metrics 
(Table 2). Note that the y-axes differ between plots.
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Figure 8. Offline simulated (MEM, UNN, and TEB) and observed (OBS) 30-min flux densities in (a, c, e, g, and i–k) a summer and (b, d, f, h, and l–n) winter period 
for (a and b) upwelling short- (S ↑) and (c and d) longwave (L ↑) radiation, turbulent (e and f) sensible (QH) and (g and h) latent (QE) heat, with (i–n) evaluation metrics 
(Table 2). Note that the y-axes differ between plots.
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Figure 9. As Figure 8, but for online simulations.
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3.4. Computational Performance

The runtime between offline UNN and TEB simulations is compared based on 100 repeats each for the 16-month 
period. UNN runs include data normalization and inference using TensorFlow in Python. All runs are conducted 
on a shared AMD EPYC 7742 CPU node with 32 cores and 124 GiB of system memory. Both TEB and the UNN 
are configured to run fully single-threaded in a Singularity container running Ubuntu 20.04, GNU Fortran 9.3 
compiler, and Anaconda Python 3.9. UNN (0.50 ± 0.0053 s) runs are over one order of magnitude faster than 
TEB runs (6.0 ± 0.042 s).

4. Conclusion
In this work, we successfully develop a neural network emulator of urban land surface processes (UNN) for 
offline and online applications. The UNN is trained on the multi-model ensemble mean (MEM) of 22 urban land 
surface models (ULSMs) for an area of Melbourne, Australia. The accuracy is assessed using flux observations 
and compared to a well-known ULSM (Town Energy Balance TEB) model. The MEM data are derived from a 
study with four Stages of increasing complexity (1–4; Appendix A). The UNN is trained using Stage 2 MEM, but 
compared to the Stage 4 TEB simulations, the latter using more site-specific information.

Compared to MEM, the UNN captures the general variability of surface energy balance fluxes. Relative to the 
observations, the UNN is more accurate than TEB—or than WRF-TEB when coupled to the Weather Research 
and Forecasting (WRF) model—while having reduced both computational demands (by over an order of magni-
tude) and model parameter requirements (i.e., trained using fewer site-specific parameters). Technically, the 
coupling to WRF is straightforward thanks to WRF-CMake and TensorFlow Lite C bindings.

As the first study to show the development and application of a machine learning (ML) emulator for urban land 
surface fluxes, we demonstrate its potential to improve the modeling of key surface energy balance fluxes: we 
combine the strengths of several ULSMs into one and show that such models can be successfully integrated into 
complex weather models, such as WRF. The development of (coupled) emulators such as WRF-UNN have other 
advantages compared to ‘more-traditional’ ULSMs such as code optimization at the deployment stage, and inte-
gration into different codebases and hardware architectures through common high-level APIs.

Figure 10. The inner domain (d4, Figure 5) with observation tower (red) for the 30-min average period between 12:00 and 12:30 on 25 December 2003 with flux 
densities simulated using (a, c, e, and g) WRF-UNN and (b, d, f, and h) WRF-TEB for (a and b) upwelling shortwave (c and d) and longwave radiation, and turbulent (e 
and f) sensible and (g and h) latent heat.
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Although the current evaluation did not assess, or assume, surface energy balance closure, which is essential for 
climate applications (Grimmond et al., 2010), further research is needed to assess this before UNNs are used in 
climate studies. Furthermore, with no variations in urban areas (e.g., land cover fractions, surface parameters, and 
climate) assessed because of the current lack of multi-site data sets, the natural progression to assess our findings 
more globally requires data sets currently being developed (Lipson et al., 2020) with or without data augmenta-
tion strategies as outlined by Meyer et al. (2021).

Indeed, if MEMs are found to be more accurate than any individual ULSM on a global scale, an ML emulator 
as described here could help improve both the speed and accuracy of current ULSMs. Aside from the apparent 
speed-up improvement typical of ML emulators and that of improved accuracy outlined here, ML approaches 
may also prove helpful in operational Earth system models as the fewer site-specific parameters contained in 
MEM are easily retrievable and updatable globally using remote sensing techniques.

Appendix A: Stage Selection
Stage 2 data (Table S3 in Supporting Information S2) are selected for training the urban neural network (UNN; 
Section 2.2) and Stage 4 for the TEB to offer the best tradeoff between complexity and accuracy and better 
model metrics (Figure A1). Overall, TEB's mean bias and mean absolute error improve the more information is 
provided, notably when the site albedo is given in Stage 3 and 4 (Table S3 in Supporting Information S2). MEM 
generally has the lowest overall mean bias and mean absolute error for Stage 2.
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Figure A1. Distribution (boxplot with median (labels) interquartile range (IQR) and whiskers: 1.5 IQR) of the 30-min biases and absolute errors (Section 2.6) 
relative to observations (OBS) for four Stages (Table S3) of the multi-model ensemble mean (MEM) and Town Energy Balance (TEB) calculated for the test fraction 
(Section 2.5) of 30-min fluxes of upwelling (a and b) short- and (c and d) longwave radiation, and turbulent (e and f) sensible and (g and h) latent heat.
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Data Availability Statement
Software and tools are archived with a Singularity (Kurtzer et  al.,  2017) image and deposited on Zenodo as 
described in the scientific reproducibility section of Meyer, Schoetter, Riechert, et  al.  (2020). Users wishing 
to download (and reproduce) the results described in this paper can download the data archive at https://doi.
org/10.5281/zenodo.5142960 (Meyer,  2021) and optionally run Singularity on their local or remote systems. 
Because of licensing restrictions, meteorological forcing (MF), and observational (OBS) and multi-model output 
(MO) data sets cannot be bundled with the Meyer (2021) data archive and need to be requested separately at 
https://doi.org/10.5281/zenodo.4679279 (Grimmond et al., 2021) and at https://doi.org/10.5281/zenodo.4678387 
(Grimmond et al., 2013), respectively.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous 

systems. Retrieved from https://www.tensorflow.org/
Baklanov, A., Grimmond, C. S. B., Carlson, D., Terblanche, D., Tang, X., Bouchet, V., et al. (2018). From urban meteorology, climate and envi-

ronment research to integrated city services. Urban Climate, 23, 330–341. https://doi.org/10.1016/j.uclim.2017.05.004
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W., et al. (2017). The HARMONIE–AROME model configuration in the 

ALADIN–HIRLAM NWP system. Monthly Weather Review, 145(5), 1919–1935. https://doi.org/10.1175/MWR-D-16-0417.1
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Bolton, T., & Zanna, L. (2019). Applications of deep learning to ocean data inference and subgrid parameterization. Journal of Advances in 

Modeling Earth Systems, 11(1), 376–399. https://doi.org/10.1029/2018MS001472
Coutts, A. M., Beringer, J., & Tapper, N. J. (2007a). Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia. 

Atmospheric Environment, 41(1), 51–62. https://doi.org/10.1016/j.atmosenv.2006.08.030
Coutts, A. M., Beringer, J., & Tapper, N. J. (2007b). Impact of increasing urban density on local climate: Spatial and temporal variations in the 

surface energy balance in Melbourne, Australia. Journal of Applied Meteorology and Climatology, 46(4), 477–493. https://doi.org/10.1175/
JAM2462.1

ECMWF. (2004). Cycle 28r2 summary of changes [Text]. ECMWF Documentation. Retrieved from https://www.ecmwf.int/en/forecasts/
documentation-and-support/evolution-ifs/cycle-archived/cycle-28r2-summary-changes

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Grimmond, C. S. B., Best, M., Barlow, J., Arnfield, A. J., Baik, J.-J., Baklanov, A., et al. (2009). Urban surface energy balance models: Model 

characteristics and methodology for a comparison study. In A. Baklanov, G. Sue, M. Alexander, & M. Athanassiadou (Eds.), Meteorological 
and air quality models for urban areas (pp. 97–123). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-00298-4_11

Grimmond, C. S. B., Blackett, M., Best, M. J., Baik, J.-J., Belcher, S. E., Beringer, J., et al. (2011). Initial results from Phase 2 of the international 
urban energy balance model comparison. International Journal of Climatology, 31(2), 244–272. https://doi.org/10.1002/joc.2227

Grimmond, C. S. B., Blackett, M., Best, M. J., Barlow, J., Baik, J.-J., Belcher, S. E., et  al. (2010). The international urban energy balance 
models comparison project: First results from phase 1. Journal of Applied Meteorology and Climatology, 49(6), 1268–1292. https://doi.
org/10.1175/2010JAMC2354.1

Grimmond, S., Blackett, M., Best, M., Coutts, A., Beringer, J., & Urban Model Comparison Team. (2021). Phase 2 of the International urban 
energy balance comparison project—Forcing Data (Original) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4679279

Grimmond, S., Blackett, M., Best, M., & Urban Model Comparison Team. (2013). Phase 2 of the International urban energy balance comparison 
project—Data analysed—Anonymous (Anonymous (10/4/21)) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4678387

Grimmond, S., Bouchet, V., Molina, L. T., Baklanov, A., Tan, J., Schlünzen, K. H., et al. (2020). Integrated urban hydrometeorological, climate and 
environmental services: Concept, methodology and key messages. Urban Climate, 33, 100623. https://doi.org/10.1016/j.uclim.2020.100623

Hamdi, R., Degrauwe, D., & Termonia, P. (2012). Coupling the Town Energy Balance (TEB) scheme to an operational limited-area NWP model: 
Evaluation for a highly urbanized area in Belgium. Weather and Forecasting, 27(2), 323–344. https://doi.org/10.1175/WAF-D-11-00064.1

Hertwig, D., Ng, M., Grimmond, S., Vidale, P. L., & McGuire, P. C. (2021). High-resolution global climate simulations: Representation of cities. 
International Journal of Climatology, 41(5), 3266–3285. https://doi.org/10.1002/joc.7018

Holmgren, W. F., Calama-Consulting, Hansen, C., Anderson, K., Mikofski, M., Lorenzo, A., et al. (2021). pvlib/pvlib-python: V0.9.0 (v0.9.0) 
[Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.5366883

Holmgren, W. F., Hansen, C. W., & Mikofski, M. A. (2018). pvlib python: A python package for modeling solar energy systems. Journal of Open 
Source Software, 3(29), 884. https://doi.org/10.21105/joss.00884

Kelso, N. V., & Patterson, T. (2009). Natural Earth vector. Cartographic Perspectives, 64, 45–50. https://doi.org/10.14714/CP64.148
Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations 

(ICLR). Retrieved from https://arxiv.org/abs/1412.6980
Krasnopolsky, V. M., Fox-Rabinovitz, M. S., & Belochitski, A. A. (2013). Using ensemble of neural networks to learn stochastic convection 

parameterizations for climate and numerical weather prediction models from data simulated by a cloud resolving model. Advances in Artificial 
Neural Systems, 2013, 1–13. https://doi.org/10.1155/2013/485913

Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for mobility of compute. PLoS One, 12(5), e0177459. 
https://doi.org/10.1371/journal.pone.0177459

Lemonsu, A., Grimmond, C. S. B., & Masson, V. (2004). Modeling the surface energy balance of the core of an old Mediterranean city: Marseille. 
Journal of Applied Meteorology, 43, 16. https://doi.org/10.1175/1520-0450(2004)043<0312:MTSEBO>2.0.CO;2

Lemonsu, A., & Masson, V. (2002). Simulation of a summer urban breeze over Paris. Boundary-Layer Meteorology, 104(3), 463–490. https://
doi.org/10.1023/A:1016509614936

Lipson, M., Grimmond, S., & Best, M. (2020). Calling for participants: A new multi-site evaluation project for modelling in urban areas. Urban 
Climate News: Quarterly Newsletter of the IAUC, 75, 15–16. https://www.urban-climate.org/wp-content/uploads/IAUC075.pdf

Masson, V. (2000). A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorology, 94(3), 
357–397. https://doi.org/10.1023/A:1002463829265

Acknowledgments
The authors would like to thank Stephen 
Rasp, Brian Henn (Allen Institute for 
Artificial Intelligence, Climate Modeling 
Group, Seattle, WA), and one anonymous 
reviewer for their valuable comments and 
feedback. The authors would also like to 
thank Andrew Coutts and Jason Beringer 
for supplying the observation data used 
in evaluations and those who contributed 
to the urban model comparison project. 
Peter Dueben gratefully acknowledges 
funding from the Royal Society for his 
University Research Fellowship, as well 
as from the ESiWACE Horizon 2020 
project (#823988) and the MAELSTROM 
EuroHPC Joint Undertaking project 
(#955513).

https://doi.org/10.5281/zenodo.5142960
https://doi.org/10.5281/zenodo.5142960
https://doi.org/10.5281/zenodo.4679279
https://doi.org/10.5281/zenodo.4678387
https://www.tensorflow.org/
https://doi.org/10.1016/j.uclim.2017.05.004
https://doi.org/10.1175/MWR-D-16-0417.1
https://doi.org/10.1029/2018MS001472
https://doi.org/10.1016/j.atmosenv.2006.08.030
https://doi.org/10.1175/JAM2462.1
https://doi.org/10.1175/JAM2462.1
https://www.ecmwf.int/en/forecasts/documentation-and-support/evolution-ifs/cycle-archived/cycle-28r2-summary-changes
https://www.ecmwf.int/en/forecasts/documentation-and-support/evolution-ifs/cycle-archived/cycle-28r2-summary-changes
https://doi.org/10.1007/978-3-642-00298-4_11
https://doi.org/10.1002/joc.2227
https://doi.org/10.1175/2010JAMC2354.1
https://doi.org/10.1175/2010JAMC2354.1
https://doi.org/10.5281/zenodo.4679279
https://doi.org/10.5281/zenodo.4678387
https://doi.org/10.1016/j.uclim.2020.100623
https://doi.org/10.1175/WAF-D-11-00064.1
https://doi.org/10.1002/joc.7018
https://doi.org/10.5281/ZENODO.5366883
https://doi.org/10.21105/joss.00884
https://doi.org/10.14714/CP64.148
https://arxiv.org/abs/1412.6980
https://doi.org/10.1155/2013/485913
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1175/1520-0450(2004)043%3C0312:MTSEBO%3E2.0.CO;2
https://doi.org/10.1023/A:1016509614936
https://doi.org/10.1023/A:1016509614936
https://www.urban-climate.org/wp-content/uploads/IAUC075.pdf
https://doi.org/10.1023/A:1002463829265


Journal of Advances in Modeling Earth Systems

MEYER ET AL.

10.1029/2021MS002744

17 of 19

Masson, V., Grimmond, C. S. B., & Oke, T. R. (2002). Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from 
dry districts in two cities. Journal of Applied Meteorology, 41, 16. https://doi.org/10.1175/1520-0450(2002)041<1011:EOTTEB>2.0.CO;2

Masson, V., Lemonsu, A., Pigeon, G., Schoetter, R., de Munck, C., Bueno, B., et al. (2021). The Town Energy Balance (TEB) model (4.1.2) 
[Computer software]. Zenodo. https://doi.org/10.5281/zenodo.5775962

May, R. M., Arms, S. C., Marsh, P., Bruning, E., Leeman, J. R., Goebbert, K., et al. (2021). MetPy: A Python package for meteorological data 
(1.1.0) [Computer software]. MetPy. https://doi.org/10.5065/D6WW7G29

Meyer, D. (2021). Data archive for paper “machine learning emulation of urban land surface processes” (1.0.0) [Data set]. Zenodo. https://doi.
org/10.5281/zenodo.5142960

Meyer, D., Hogan, R. J., Dueben, P. D., & Mason, S. L. (2022). Machine learning emulation of 3D cloud radiative effects. Journal of Advances 
in Modeling Earth Systems, e2021MS002550. https://doi.org/10.1029/2021MS002550

Meyer, D., Nagler, T., & Hogan, R. J. (2021). Copula-based synthetic data augmentation for machine-learning emulators. Geoscientific Model 
Development, 14(8), 5205–5215. https://doi.org/10.5194/gmd-14-5205-2021

Meyer, D., & Riechert, M. (2019). Open source QGIS toolkit for the Advanced Research WRF modelling system. Environmental Modelling & 
Software, 112, 166–178. https://doi.org/10.1016/j.envsoft.2018.10.018

Meyer, D., & Riechert, M. (2020). The GIS4WRF Plugin (0.14.4) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.4035877
Meyer, D., Schoetter, R., Masson, V., & Grimmond, S. (2020). Enhanced software and platform for the Town Energy Balance (TEB) model. 

Journal of Open Source Software, 5(50), 2008. https://doi.org/10.21105/joss.02008
Meyer, D., Schoetter, R., Riechert, M., Verrelle, A., Tewari, M., Dudhia, J., et al. (2020). WRF-TEB: Implementation and evaluation of the 

coupled Weather Research and Forecasting (WRF) and Town Energy Balance (TEB) model. Journal of Advances in Modeling Earth Systems, 
12(8). https://doi.org/10.1029/2019MS001961

Meyer, D., & Thevenard, D. (2019). PsychroLib: A library of psychrometric functions to calculate thermodynamic properties of air. Journal of 
Open Source Software, 4(33), 1137. https://doi.org/10.21105/joss.01137

Meyer, D., & Thevenard, D. (2020). PsychroLib: A library of psychrometric functions to calculate thermodynamic properties of air (2.5.0) 
[Computer software]. Zenodo. https://doi.org/10.5281/zenodo.3748874

Nowack, P., Braesicke, P., Haigh, J., Abraham, N. L., Pyle, J., & Voulgarakis, A. (2018). Using machine learning to build temperature-based ozone 
parameterizations for climate sensitivity simulations. Environmental Research Letters, 13(10), 104016. https://doi.org/10.1088/1748-9326/
aae2be

Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban climates. Cambridge University Press. https://doi.org/10.1017/9781139016476
Oleson, K. W., Bonan, G. B., Feddema, J., & Jackson, T. (2011). An examination of urban heat island characteristics in a global climate model. 

International Journal of Climatology, 31(12), 1848–1865. https://doi.org/10.1002/joc.2201
OpenStreetMap contributors. (2017). Planet dump. Retrieved from https://planet.osm.org
Pigeon, G., Moscicki, M. A., Voogt, J. A., & Masson, V. (2008). Simulation of fall and winter surface energy balance over a dense urban area 

using the TEB scheme. Meteorology and Atmospheric Physics, 102(3–4), 159–171. https://doi.org/10.1007/s00703-008-0320-9
Rasp, S., & Lerch, S. (2018). Neural networks for postprocessing ensemble weather forecasts. Monthly Weather Review, 146(11), 3885–3900. 

https://doi.org/10.1175/MWR-D-18-0187.1
Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes in climate models. Proceedings of the National 

Academy of Sciences, 115(39), 9684–9689. https://doi.org/10.1073/pnas.1810286115
Riechert, M., & Meyer, D. (2019a). WPS-CMake (version 4.1.0) (WPS-CMake-4.1.0) [Computer software]. Zenodo. https://doi.org/10.5281/

zenodo.3407075
Riechert, M., & Meyer, D. (2019b). WRF-CMake: Integrating CMake support into the Advanced Research WRF (ARW) modelling system. 

Journal of Open Source Software, 4(41), 1468. https://doi.org/10.21105/joss.01468
Riechert, M., & Meyer, D. (2021). WRF-CMake: Integrating CMake support into the Advanced Research WRF (ARW) modelling system 

(WRF-CMake-4.2.2) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.4449077
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., et al. (2011). The AROME-France convective-scale operational model. 

Monthly Weather Review, 139(3), 976–991. https://doi.org/10.1175/2010MWR3425.1
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., et al. (2019). A description of the advanced research WRF model 

version 4 (p. 145). NCAR Technical Note NCAR/TN-556+STR. https://doi.org/10.5065/1dfh-6p97
Stamen Design. (2021). Stamen Maps. Retrieved from http://maps.stamen.com/
Stensrud, D. J. (2007). Parameterization schemes: Keys to understanding numerical weather prediction models. Cambridge University Press.
TensorFlow Developers. (2021a). Install TensorFlow for C. TensorFlow. Retrieved from https://www.tensorflow.org/install/lang_c
TensorFlow Developers. (2021b). TensorFlow lite|ML for mobile and edge devices. TensorFlow. Retrieved from https://www.tensorflow.org/lite
TensorFlow Developers. (2021c). TensorFlow (v2.6.2) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.5645375
UCAR. (2019). WPS V4 geographical static data. Retrieved from http://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html

References From the Supporting Information
Best, M. J. (2005). Representing urban areas within operational numerical weather prediction models. Boundary-Layer Meteorology, 114(1), 

91–109. https://doi.org/10.1007/s10546-004-4834-5
Best, M. J., Grimmond, C. S. B., & Villani, M. G. (2006). Evaluation of the urban tile in MOSES using surface energy balance observations. 

Boundary-Layer Meteorology, 118(3), 503–525. https://doi.org/10.1007/s10546-005-9025-5
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R., Ménard, C. B., et  al. (2011). The Joint UK Land Environment Simulator 

(JULES), model description – Part 1: Energy and water fluxes. Geoscientific Model Development, 4(3), 677–699. https://doi.org/10.5194/
gmd-4-677-2011

Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model 
implementation and sensitivity. Monthly Weather Review, 129, 17. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2

Chen, F., Kusaka, H., Tewari, M., Bao, J., & Hirakuchi, H. (2004). Utilizing the coupled WRF/LSM/Urban modeling system with detailed urban 
classification to simulate the urban heat island phenomena over the Greater Houston area. Fifth Symposium on the Urban Environment (Vol. 
25, pp. 9–11).

Dandou, A. (2005). Development and evaluation of an urban parameterization scheme in the Penn State/NCAR Mesoscale Model (MM5). Jour-
nal of Geophysical Research, 110(D10), D10102. https://doi.org/10.1029/2004JD005192

https://doi.org/10.1175/1520-0450(2002)041%3C1011:EOTTEB%3E2.0.CO;2
https://doi.org/10.5281/zenodo.5775962
https://doi.org/10.5065/D6WW7G29
https://doi.org/10.5281/zenodo.5142960
https://doi.org/10.5281/zenodo.5142960
https://doi.org/10.1029/2021MS002550
https://doi.org/10.5194/gmd-14-5205-2021
https://doi.org/10.1016/j.envsoft.2018.10.018
https://doi.org/10.5281/zenodo.4035877
https://doi.org/10.21105/joss.02008
https://doi.org/10.1029/2019MS001961
https://doi.org/10.21105/joss.01137
https://doi.org/10.5281/zenodo.3748874
https://doi.org/10.1088/1748-9326/aae2be
https://doi.org/10.1088/1748-9326/aae2be
https://doi.org/10.1017/9781139016476
https://doi.org/10.1002/joc.2201
https://planet.osm.org
https://doi.org/10.1007/s00703-008-0320-9
https://doi.org/10.1175/MWR-D-18-0187.1
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.5281/zenodo.3407075
https://doi.org/10.5281/zenodo.3407075
https://doi.org/10.21105/joss.01468
https://doi.org/10.5281/zenodo.4449077
https://doi.org/10.1175/2010MWR3425.1
https://doi.org/10.5065/1dfh-6p97
http://maps.stamen.com/
https://www.tensorflow.org/install/lang_c
https://www.tensorflow.org/lite
https://doi.org/10.5281/zenodo.5645375
http://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html
https://doi.org/10.1007/s10546-004-4834-5
https://doi.org/10.1007/s10546-005-9025-5
https://doi.org/10.5194/gmd-4-677-2011
https://doi.org/10.5194/gmd-4-677-2011
https://doi.org/10.1175/1520-0493(2001)129%3C0569:CAALSH%3E2.0.CO;2
https://doi.org/10.1029/2004JD005192


Journal of Advances in Modeling Earth Systems

MEYER ET AL.

10.1029/2021MS002744

18 of 19

Dupont, S., & Mestayer, P. G. (2006). Parameterization of the urban energy budget with the submesoscale soil model. Journal of Applied Mete-
orology and Climatology, 45(12), 1744–1765. https://doi.org/10.1175/JAM2417.1

Dupont, S., Mestayer, P. G., Guilloteau, E., Berthier, E., & Andrieu, H. (2006). Parameterization of the urban water budget with the submesoscale 
soil model. Journal of Applied Meteorology and Climatology, 45(4), 624–648. https://doi.org/10.1175/JAM2363.1

Essery, R. L. H., Best, M. J., Betts, R. A., Cox, P. M., & Taylor, C. M. (2003). Explicit representation of subgrid heterogeneity in a GCM land 
surface scheme. Journal of Hydrometeorology, 4(3), 530–543. https://doi.org/10.1175/1525-7541(2003)004<0530:EROSHI>2.0.CO;2

Fortuniak, K. (2003). A slab surface energy balance model (SUEB) and its application to the study on the role of roughness length in forming an 
urban heat island. Acta Universitatis Wratislaviensis, 2542, 368–377.

Fortuniak, K., Offerle, B., & Grimmond, C. (2005). Application of a slab surface energy balance model to determine surface parameters for urban 
areas. Lund Electronic Reports in Physical Geography, 5, 90–91.

Grimmond, C. S. B., & Oke, T. R. (2002). Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameter-
ization scheme (LUMPS). Journal of Applied Meteorology, 41, 19. https://doi.org/10.1175/1520-0450(2002)041<0792:THFIUA>2.0.CO;2

Hamdi, R., & Masson, V. (2008). Inclusion of a drag approach in the Town Energy Balance (TEB) scheme: Offline 1D evaluation in a street 
canyon. Journal of Applied Meteorology and Climatology, 47(10), 2627–2644. https://doi.org/10.1175/2008JAMC1865.1

Harman, I. N., Barlow, J. F., & Belcher, S. E. (2004). Scalar fluxes from urban street canyons part II: Model. Boundary-Layer Meteorology, 
113(3), 387–410. https://doi.org/10.1007/s10546-004-6205-7

Harman, I. N., & Belcher, S. E. (2006). The surface energy balance and boundary layer over urban street canyons. Quarterly Journal of the Royal 
Meteorological Society, 132(621), 2749–2768. https://doi.org/10.1256/qj.05.185

Harman, I. N., Best, M. J., & Belcher, S. E. (2004). Radiative exchange in an urban street canyon. Boundary-Layer Meteorology, 110(2), 301–316. 
https://doi.org/10.1023/A:1026029822517

Hong, S.-Y., & Lim, J.-O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological 
Society, 42(2), 129–151.

Hong, S.-Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather 
Review, 134(9), 2318–2341. https://doi.org/10.1175/MWR3199.1

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long-lived 
greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research, 113(D13), D13103. https://doi.
org/10.1029/2008JD009944

Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., & García-Bustamante, E. (2012). A revised scheme for the WRF 
surface layer formulation. Monthly Weather Review, 140(3), 898–918. https://doi.org/10.1175/MWR-D-11-00056.1

Kanda, M., Kawai, T., Kanega, M., Moriwaki, R., Narita, K., & Hagishima, A. (2005). A simple energy balance model for regular building arrays. 
Boundary-Layer Meteorology, 116(3), 423–443. https://doi.org/10.1007/s10546-004-7956-x

Kanda, M., Kawai, T., & Nakagawa, K. (2005). A simple theoretical radiation scheme for regular building arrays. Boundary-Layer Meteorology, 
114(1), 71–90. https://doi.org/10.1007/s10546-004-8662-4

Kawai, T., Kanda, M., Narita, K., & Hagishima, A. (2007). Validation of a numerical model for urban energy-exchange using outdoor scale-model 
measurements. International Journal of Climatology, 27(14), 1931–1942. https://doi.org/10.1002/joc.1624

Kawai, T., Ridwan, M. K., & Kanda, M. (2009). Evaluation of the simple urban energy balance model using selected data from 1-yr flux observa-
tions at two cities. Journal of Applied Meteorology and Climatology, 48(4), 693–715. https://doi.org/10.1175/2008JAMC1891.1

Kawamoto, Y., & Ooka, R. (2006). Analysis of the radiation field at pedestrian level using a meso-scale meteorological model incorporating the 
urban canopy model. In Sixth International Conference on Urban Climate (pp. 446–449).

Kawamoto, Y., & Ooka, R. (2009a). Accuracy validation of urban climate analysis model using MM5 incorporating a multi-layer urban canopy 
model. Seventh International Conference on Urban Climate (Vol. 4).

Kawamoto, Y., & Ooka, R. (2009b). Incorporating an urban canopy model to represent the effects of buildings: Development of urban climate 
analysis model using MM5 Part 2. Journal of Environmental Engineering, 74(642), 1009–1018. https://doi.org/10.3130/aije.74.1009

Kondo, H., Genchi, Y., Kikegawa, Y., Ohashi, Y., Yoshikado, H., & Komiyama, H. (2005). Development of a multi-layer urban canopy model for 
the analysis of energy consumption in a big city: Structure of the urban canopy model and its basic performance. Boundary-Layer Meteorology, 
116(3), 395–421. https://doi.org/10.1007/s10546-005-0905-5

Kondo, H., & Liu, F.-H. (1998). A study on the urban thermal environment obtained through one-dimensional urban canopy model. Journal of 
Japan Society for Atmospheric Environment, 33(3), 179–192. https://doi.org/10.11298/taiki1995.33.3_179

Krayenhoff, E. S., & Voogt, J. A. (2007). A microscale three-dimensional urban energy balance model for studying surface temperatures. Bound-
ary-Layer Meteorology, 123(3), 433–461. https://doi.org/10.1007/s10546-006-9153-6

Kusaka, H., Kondo, H., Kikegawa, Y., & Kimura, F. (2001). A simple single-layer urban canopy model for atmospheric models: Comparison with 
multi-layer and slab models. Boundary-Layer Meteorology, 101(3), 329–358. https://doi.org/10.1023/A:1019207923078

Lee, S.-H., & Park, S.-U. (2007). A vegetated urban canopy model for meteorological and environmental modelling. Boundary-Layer Meteorol-
ogy, 126(1), 73–102. https://doi.org/10.1007/s10546-007-9221-6

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2018). Hyperband: A novel bandit-based approach to hyperparameter 
optimization. Journal of Machine Learning Research, 18(185), 1–52. http://jmlr.org/papers/v18/16-558.html

Loridan, T., Grimmond, C. S. B., Grossman-Clarke, S., Chen, F., Tewari, M., Manning, K., et al. (2010). Trade-offs and responsiveness of the 
single-layer urban canopy parametrization in WRF: An offline evaluation using the MOSCEM optimization algorithm and field observations. 
Quarterly Journal of the Royal Meteorological Society, 136(649), 997–1019. https://doi.org/10.1002/qj.614

Loridan, T., Grimmond, C. S. B., Offerle, B. D., Young, D. T., Smith, T. E. L., Järvi, L., & Lindberg, F. (2011). Local-scale urban meteorological 
parameterization scheme (LUMPS): Longwave radiation parameterization and seasonality-related developments. Journal of Applied Meteor-
ology and Climatology, 50(1), 185–202. https://doi.org/10.1175/2010JAMC2474.1

Martilli, A., Clappier, A., & Rotach, M. W. (2002). An urban surface exchange parameterisation for mesoscale models. Boundary-Layer Meteor-
ology, 104(2), 261–304. https://doi.org/10.1023/A:1016099921195

Offerle, B., Grimmond, C. S. B., & Oke, T. R. (2003). Parameterization of net all-wave radiation for urban areas. Journal of Applied Meteorology, 
42, 17. https://doi.org/10.1175/1520-0450(2003)042<1157:PONARF>2.0.CO;2

Oleson, K. W., Bonan, G. B., Feddema, J., & Vertenstein, M. (2008). An urban parameterization for a global climate model. Part II: Sensitivity 
to input parameters and the simulated urban heat island in offline simulations. Journal of Applied Meteorology and Climatology, 47(4), 
1061–1076. https://doi.org/10.1175/2007JAMC1598.1

Oleson, K. W., Bonan, G. B., Feddema, J., Vertenstein, M., & Grimmond, C. S. B. (2008). An urban parameterization for a global climate 
model. Part I: Formulation and evaluation for two cities. Journal of Applied Meteorology and Climatology, 47(4), 1038–1060. 
https://doi.org/10.1175/2007JAMC1597.1

https://doi.org/10.1175/JAM2417.1
https://doi.org/10.1175/JAM2363.1
https://doi.org/10.1175/1525-7541(2003)004%3C0530:EROSHI%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2002)041%3C0792:THFIUA%3E2.0.CO;2
https://doi.org/10.1175/2008JAMC1865.1
https://doi.org/10.1007/s10546-004-6205-7
https://doi.org/10.1256/qj.05.185
https://doi.org/10.1023/A:1026029822517
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1175/MWR-D-11-00056.1
https://doi.org/10.1007/s10546-004-7956-x
https://doi.org/10.1007/s10546-004-8662-4
https://doi.org/10.1002/joc.1624
https://doi.org/10.1175/2008JAMC1891.1
https://doi.org/10.3130/aije.74.1009
https://doi.org/10.1007/s10546-005-0905-5
https://doi.org/10.11298/taiki1995.33.3_179
https://doi.org/10.1007/s10546-006-9153-6
https://doi.org/10.1023/A:1019207923078
https://doi.org/10.1007/s10546-007-9221-6
http://jmlr.org/papers/v18/16-558.html
https://doi.org/10.1002/qj.614
https://doi.org/10.1175/2010JAMC2474.1
https://doi.org/10.1023/A:1016099921195
https://doi.org/10.1175/1520-0450(2003)042%3C1157:PONARF%3E2.0.CO;2
https://doi.org/10.1175/2007JAMC1598.1
https://doi.org/10.1175/2007JAMC1597.1


Journal of Advances in Modeling Earth Systems

MEYER ET AL.

10.1029/2021MS002744

19 of 19

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al. (2019). KerasTuner. Retrieved from https://github.com/keras-team/
keras-tuner

Porson, A., Clark, P. A., Harman, I. N., Best, M. J., & Belcher, S. E. (2010). Implementation of a new urban energy budget scheme into MetUM. 
Part II: Validation against observations and model intercomparison. Quarterly Journal of the Royal Meteorological Society, 136(651), 1530–
1542. https://doi.org/10.1002/qj.572

Ryu, Y.-H., Baik, J.-J., & Lee, S.-H. (2011). A new single-layer urban canopy model for use in mesoscale atmospheric models. Journal of Applied 
Meteorology and Climatology, 50(9), 1773–1794. https://doi.org/10.1175/2011JAMC2665.1

Salamanca, F., Krayenhoff, E. S., & Martilli, A. (2009). On the derivation of material thermal properties representative of heterogeneous urban 
neighborhoods. Journal of Applied Meteorology and Climatology, 48(8), 1725–1732. https://doi.org/10.1175/2009JAMC2176.1

Salamanca, F., Krpo, A., Martilli, A., & Clappier, A. (2010). A new building energy model coupled with an urban canopy parameterization 
for urban climate simulations—Part I. formulation, verification, and sensitivity analysis of the model. Theoretical and Applied Climatology, 
99(3–4), 331–344. https://doi.org/10.1007/s00704-009-0142-9

Salamanca, F., & Martilli, A. (2010). A new building energy model coupled with an urban canopy parameterization for urban climate simu-
lations—Part II. Validation with one dimension off-line simulations. Theoretical and Applied Climatology, 99(3–4), 345–356. https://doi.
org/10.1007/s00704-009-0143-8

Zhang, C., & Wang, Y. (2017). Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-mesh 
regional climate model. Journal of Climate, 30(15), 5923–5941. https://doi.org/10.1175/JCLI-D-16-0597.1

https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
https://doi.org/10.1002/qj.572
https://doi.org/10.1175/2011JAMC2665.1
https://doi.org/10.1175/2009JAMC2176.1
https://doi.org/10.1007/s00704-009-0142-9
https://doi.org/10.1007/s00704-009-0143-8
https://doi.org/10.1007/s00704-009-0143-8
https://doi.org/10.1175/JCLI-D-16-0597.1

	Machine Learning Emulation of Urban Land Surface Processes
	Abstract
	Plain Language Summary
	1. Introduction
	2. Methods
	2.1. General Problem
	2.2. Urban Neural Network
	2.3. Town Energy Balance
	2.4. Weather Research and Forecasting (WRF) Coupling
	2.5. Data and Model Setup
	2.6. Evaluation Metrics

	3. Results and Discussion
	3.1. Multi-Model Ensemble Mean
	3.2. Offline Simulations
	3.3. Online Simulations
	3.4. Computational Performance

	4. Conclusion
	Appendix A: Stage Selection
	Data Availability Statement
	References
	References From the Supporting Information


