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A B S T R A C T   

The Travelling Salesperson Problem (TSP) is a nondeterministic-polynomial hard (NP-hard) combinatorial 
problem that occurs in a wide range of industrial domains, including logistics, route finding, and computer 
wiring. Interestingly, despite the problem’s inherent computational difficulty, when presented in Euclidean space 
(ETSP), human participants can produce close-to-optimal solutions in near-linear time. However, when asked to 
compare and select the most optimum solution from a set of pre-defined competing solution options, participants 
can struggle. In this study we investigate this paradox by asking participants to compare four closed-loop 
Euclidean TSP solutions, in order to determine which solution they perceived to have the most optimal tour 
cost. We hypothesise that the extracted geometric properties have an effect on stimulus selection in a discrim-
ination task (selection or no selection). Accordingly, we extracted four geometric properties from competing 
stimuli in order to create a perceptual activation function. Predictive analytics demonstrated that a classification 
model could identify the most optimal solution 97% of the time using the perceptual activation scores alone, yet 
human participants only correctly determined the most optimal solution 47% of the time. Mixed-effects models 
suggest that ‘likelihood of stimulus selection’ can be modelled as a function of the weighted coefficients of 
competing perceptual activation scores within each trial; however only a small amount of the variance is 
explained by these perceptual activation scores. Finally, a drift–diffusion model was used to create a theoretical 
framework of how likelihood of stimulus selection is influenced by competing perceptual activators. Our study 
highlights a novel way of extracting and analysing the importance of geometric properties that influence ETSP 
discrimination tasks, and links this analysis to human behaviour when discriminating between competing ETSP 
solutions.   

1. Introduction 

A travelling salesperson might plan to visit a list of cities before 
returning home. Naturally, the salesperson aims to (a) minimize the 
distance travelled (i.e., the tour cost), and (b) avoid visiting the same 
city twice. This classic problem, referred to as the Travelling Salesperson 
Problem (TSP), might seem simple, however solving this problem is 
deceivingly complex due to the exponentially increasing number of 
possible routes – defined by the equation (n − 1)!/2, where n is the 
number of cities. For example, a list of ten cities has 181,440 possible 
route solutions, yet adding just one more causes a ten-fold increase in 
possible routes to 1,814,400. For this type of combinatorial problem – a 
nondeterministic polynomial (NP) hard problem – exhaustive search 

algorithms soon fail to produce optimal solutions within a viable time 
frame. Accordingly, applied algorithmic approaches focus instead on 
producing tours that are considered to be ‘good enough’, or ‘near- 
optimal’, with a practical trade-off between processing time (efficiency) 
and tour length (effectiveness) (Kyritsis, Gulliver, Feredoes, & Din, 
2018b). 

Interestingly, when presented in Euclidean space (ETSP) on a 2D 
graph, e.g., with dots/nodes representing cities, humans producing 
surprisingly highly efficient near-optimal tours in near-linear time (Dry, 
Lee, Vickers, & Hughes, 2006; Graham, Joshi, & Pizlo, 2000; Kyritsis 
et al., 2018b; MacGregor & Ormerod, 1996); a finding that also applies 
to navigational-variants of the TSP, i.e., in real space rather than on 
Euclidean 2D graphs (Blaser & Wilber, 2013). The lack of any significant 
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increase in processing time, as a result of number of nodes, indicates that 
the production of ETSP solutions are not determined by local processing 
(System 2), but as a result of heuristic/global processing (System 1). 
Human solutions can, at times, even outperform computational heuris-
tics (Kyritsis et al., 2018b), making it pertinent to model human 
behaviour in order to improve and/or develop faster algorithms that 
produce near-to-optimal ETSP solutions. 

Existing research has identified that human solutions tend to be both 
void of edge crossings, and tend to display convexity, which has resulted 
in researchers proposing a plethora of behavioural models such as: 
global-to-local precedence (e.g., convex hull hypothesis, and the quo-
tient algorithm), local-to-global precedence (e.g., crossing-avoidance 
hypothesis and pyramidal models), or a mix of both (e.g., generative 
models) (Kyritsis et al., 2018b; MacGregor & Chu, 2011; MacGregor, 
Chronicle, & Ormerod, 2004; Pizlo et al., 2006; Van Rooij, Stege, & 
Schactman, 2003). Despite a differing of opinion concerning which 
cognitive approach is dominant, there is consensus that several geo-
metric properties, termed ‘figural effects’, impact human ETSP solution 
generation performance, e.g., indentations, number of edge crossings, 
and convexity (Kyritsis, Gulliver, & Feredoes, 2018a; MacGregor & 
Ormerod, 1996; van Rooij, Schactman, Kadlec, & Stege, 2006). An 
indentation is a notch on the edge or surface of the route convex hull. 
MacGregor (2012) investigated whether the number of indentations 
influenced participant perception of optimality in a discrimination task, 
i.e., when different TSP solutions were presented in pairs. The results of 
MacGregor (2012) study indicated that, even though participant solu-
tions tend to have fewer number of indentations, participants did not use 
number of indentations when comparing optimality. Accordingly, there 
appears to be a discrepancy between the geometric properties and 
processes used to generate solutions, and those used to judge the opti-
mality of existing tours. Nevertheless, there is very limited research 
aimed at understanding the figural effects that impact judgement of 
optimality (tour lengths) of existing tours, i.e., discriminating between 
different pre-existing solutions (comparing the efficiency of existing 
solutions for a specific node layout). In this research we hypothesise that 
extracted geometric properties have an effect on stimulus selection in a 
discrimination task (selection or no selection). 

Ormerod and Chronicle (1999) found a linear relationship between 
aesthetic perception of a ETSP solution and the ratio between internal 
nodes, i.e. nodes not included in the convex hull and the number of 

nodes included in the convex hull. This result implies that participants 
visually prefer ETSP solutions where most nodes sit on the convex hull 
(e.g. implying that solution shown in Fig. 1 left is preferred over the 
solution in Fig. 1 right). In contrast, however, Vickers, Lee, Dry, Hughes, 
and McMahon (2006), whilst controlling for regularity, number of po-
tential intersections, number of internal nodes, and the number of 
nearest neighbours in each solution, failed to find evidence that the 
convex hull is an important determinant of aesthetic appeal. 

Dry and Fontaine (2014) focused on discrimination of tour lengths, 
and asked participants to choose the easiest ETSP graph to solve from 
four competing node layouts. The authors concluded that the number of 
convex hull nodes and the number of possible intersections served as the 
selection criteria for the discrimination test. This study explored selec-
tion between stimuli with a range of inherent geometric properties – 
particularly number of possible intersections, and the number of convex 
hull nodes. Although helpful in understanding ETSP solution formation, 
Dry and Fontaine (2014) did not consider participants’ ability to 
compare pre-existing solutions, but instead requested participants to 
select from a set of inconsistent unsolved layouts. MacGregor (2017) 
investigated the impact of two geometric properties, i.e., number of 
crossings (complexity) and area (convexity), on judgement of optimality 
between competing solutions. The author concluded that edge crossings, 
and the area of the polygon were significant to the participants’ judge-
ment of optimality. Ultimately, solutions with less crossings, and solu-
tions with larger polygon areas, were considered to be more optimal, 
with edge crossings the most important of the two criteria. Interestingly, 
the presence of any crossings in a solution, as illustrated in Fig. 2, ren-
ders the solution, from the view of a participant, as inherently ‘sub- 
optimal’. In the absence of crossings, however, polygon-enclosed area is 
used as the primary selection criteria, i.e. with a larger convex area 
representing a more optimal solution. 

Since some geometric properties have been shown to correlate 
(Vickers et al., 2006), it makes sense to compare stimuli as pairs, or 
groups of solutions, as this can decrease finding uncertainty as a result of 
unknown and/or uncontrolled variables. For this study, we were inter-
ested in exploring the impact of the geometric properties (i.e., regular-
ity, area, tour cost, and path complexity) on judgement of ETSP 
optimality and ability to discriminate optimality. To satisfy this aim, a 
data mining and modelling approach was used to extract geometric 
properties from thousands of participant trials (independent variables) 
in order to better understand how they affect the process of target se-
lection in a discrimination task (dependent variable), where participants 
were asked to decide between competing ETSP stimuli based on 
perceived optimality. 

2. Method 

2.1. Experimental procedure 

The experimental front-end platform was developed using HTML5 
and Javascript, whilst PHP and mySQL were used to code the back-end 
processes and data storage. The platform was tested on Google Chrome, 

Fig. 1. Two solutions to the same ETSP stimulus (generated using R). The left solution has a surface area of 5213 AU2, while the right solution has a surface area of 
2817 AU2. Participants will typically judge the left solution as being more optimal. Note. AU is arbitrary units and depends on the screen resolution, but the ratio 
between the area of the solution and the total area remain consistent. 

Fig. 2. Solution to a 50 node ETSP containing a single crossing.  

M. Kyritsis et al.                                                                                                                                                                                                                                
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Microsoft Edge, and Mozilla Firefox. Data collection was anonymous, i. 
e., no IPs or contact details were collected. However, to stop participants 
from repeating the experiment more than once, PHP sessions were used 
to stop participants who (perhaps accidently) tried to run the experi-
ment multiple times. To allow collection of anonymous data, a unique 
number was generated and assigned to each participant. Randomly 
generated ETSP graphs were created using R by generating X and Y 
coordinate sets from a uniform distribution ranging from 0 to 100, such 
that X = X1,…,Xn ∼ U(0, 100) and Y = Y1,…,Yn ∼ U(0,100). The set 
of samples were then combining to create graph nodes G, so that G1… 
Gn = (X1,Y1)…(Xn,Yn) and rounded off G so that G ∈ N2. The number 
of nodes (n) ranged from 30 nodes to 70 nodes (in 10 node steps). Ul-
timately, 2,000 ETSP graphs were generated for each step increment (i. 
e., 2000 30 node graphs, 2000 40 node graphs, etc.), making 10,000 
graphs in total. For each of the 10,000 graphs, with the help of the TSP 
library (Hahsler & Hornik, 2007), solutions were generated by applying 
four commonly used TSP solution heuristics: Nearest Neighbour; Near-
est Insertion; Cheapest Insertion; and Farthest Insertion (see Table 1 for 
details of the four applied heuristics). The starting node was kept con-
stant for all heuristics. The stimuli presented to participants was 
rendered on four separate HTML5 canvases (see Fig. 3). The solutions 
were assigned to a cell position randomly, i.e., solutions generated by 

each of the heuristics had an equal likelihood of being assigned to each 
cell. A mouse listener was implemented to record participant mouse 
clicks as a method of logging target selection within each trial. Time-
stamps were also coded to record response time (RT); where RT =

Timeend − Timestart . 
Upon providing consent, i.e., by clicking the “happy to provide 

consent” checkbox, a short tutorial appeared on the screen explaining 
the travelling salesperson problem and the experimental process. This 
was done using a combination of step-by-step descriptions and illus-
trations across two separate pages. For the sake of transparency, we have 
added the instructions in Appendix 3. Participants were made aware that 
all trials were timed and were asked to complete trials as quickly as 
possible; without compromising the quality of their choices. Once the 
participants were ready to start, they were asked to click a hyperlink 
labelled “Start Experiment” at the bottom of the page. 

Before each trial, a black cross was presented for two seconds in the 
middle of a grey screen, i.e., to maximise the chance that all participants 
started at the same gaze position. The cross was followed by presenta-
tion of the four possible solutions (see Fig. 3). Participants were 
instructed to click on the solution that they deemed to be the most 
optimal – in terms of tour length, i.e., the least distance ‘travelled’ by the 
salesperson. The starting/finishing node was highlighted in green on all 
solutions throughout the experiment. Ten randomly selected trials were 
presented from each of the five increments, i.e., 50 trials per participant. 
Upon completion of the experiment, participants were directed to a 
‘Thank you’ page, which asked them to close their browser tab. The 
entire procedure is summarised in Fig. 4. 

2.2. Participant sample 

The proposed experimental procedure received a favourable ethics 
review in accordance with the ethical standards of the School of Psy-
chology and Clinical Language Sciences, at the University of Reading 
(UK). 120 participants were recruited using simple random sampling 
through email and social media. Only participants that had normal or 
corrected to normal vision were invited to participate in the experi-
mental study. All subjects were explicitly made aware that involvement 
in the study was voluntary and that they could withdraw at any time by 
simply closing the browser tab. Consent forms and information sheets 
were converted to HTML and all participants were asked to confirm that 
they were happy to participate in the experimental study prior to sitting 

Table 1 
Description of heuristics used to produce the four solutions in the experiment.  

Heuristic Description 

Nearest Neighbour 
(NN) 

Find the closest unconnected node and join this node to the 
sub-tour. Repeat until all nodes join the sub-tour to form the 
final tour. 

Nearest Insertion 
(NI) 

Join the closest node to form a sub-tour. Find a new node not 
in the sub-tour that is closest to any of the sub-tour nodes. 
Insert the new node between two nodes of the sub-tour in such 
a way as to minimise the cost. Repeat until all nodes are 
inserted. 

Farthest Insertion 
(FI) 

Join the farthest node to form a sub-tour. Find a new node not 
in the sub-tour that is farthest from any of the sub-tour nodes. 
Insert the new node between two nodes of the sub-tour in such 
a way as to minimise the cost. Repeat until all nodes are 
inserted. 

Cheapest insertion 
(CI) 

Join the closest node to form a sub-tour. Find the node not in 
the sub-tour that causes the least amount of increase in the 
cost. Insert the new node between two nodes of the sub-tour. 
Repeat until all nodes are inserted.  

Fig. 3. Four heuristic solutions to the same randomly generated ETSP graph were coded to appear in each trial. The green shaded node is the start/finish node. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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through the experiment. A script ensured that participants had ticked 
the box before allowing them to continue. Gender, age, and other per-
sonal data were not recorded for this study. No compensation was 
provided for participating in this study. 

2.3. Extraction of figural effects 

All data was analysed using R (R Core Team, 2016), the ‘BayesFactor’ 
library (Morey, Rouder, & Jamil, 2015), and the ‘caret’ package (Kuhn 
et al., 2018). We modelled the discrimination task using selection vs 
non-selection, as well as success vs failure (i.e., with success defined as 
the selection of the solution with the most optimal solution) as the two 
response variables, and the extracted figural effects as the predictor 
variables. Several studies (e.g., Ormerod & Chronicle, 1999; Vickers 
et al., 2006; Dry & Fontaine, 2014; MacGregor, 2017) suggested ways to 

extract tour convexity, tour complexity, and tour circularity; shown to 
impact human problem-solving when generating solutions for the ETSP. 
The measure of circularity is closely related to ‘compactness’, i.e. the 
area of the polygon over its perimeter, which has been shown to influ-
ence aesthetic preference for polygons (Friedenberg and Bertamini, 
2015). Therefore, circularity can be extracted quite easily in graphs with 
no internal crossings (i.e., crossings that occur by routes going back 
inside the polygon). When considering convexity, we suggest that 
graphs with internal crossing should be penalised, because crossings can 
result in areas inside the convex hull that are not considered part of the 
final graph solution (e.g., Fig. 5). Accordingly, instead of using the term 
‘convexity’ for this measurement, we denote this measurement to be 
Areapen, since convexity is measured by taking As/Ac (where As is the 
polygon-enclosed area of the solution and Ac is the area of the convex 
hull surrounding the solution). 

Table 2 summarises the geometric properties that were extracted 
from the heuristic solutions. Note that since the ETSP stimuli were kept 
consistent in our experiment, we use the variability in the length of 
edges as an approximate measure of regularity, rather than the clus-
tering of stimulus (as presented by Dry & Fontaine, 2014). By definition, 
an irregular polygon will have both unequal edge lengths and angles, 
however, because of the uncertainty of what constitutes an ‘internal 
angle’ for intersecting polygons, we did not consider this measurement. 
A full description of how these geometric properties were extracted from 
the graphs has been added to Appendix 1. 

In our experimental set, to apply a penalty to solutions that contain 
internal crossings, we did not consider the internal area created by 
crossings (as shown in Fig. 5). It is important to clarify that this is a 

Fig. 4. Summary of the experimental procedure.  

Fig. 5. Graph contains internal edge crossings (left). The Monte Carlo algorithm will penalize these graphs by ignoring the areas created internally (right) Note. The 
area formed within the polygon-enclosed area is not considered when using the Monte Carlo approach (described in Appendix 1). We suggest that these inner in-
tersections mirror the lack of convexity in these solutions. 

Table 2 
Description of geometric properties extracted from the TSP solutions.  

Properties Method 

Areapen 
a The polygon enclosed area of the solution with a penalty for internal 

crossings 
Complexity Number of edge crossings 
Regularity Variation (SD) of the length of the edges in the solution 
Cost The total tour cost (i.e., the sum of length of all edges that make up the 

solution)  

a The area is an approximation that was extracted using Monte Carlo methods, 
which introduce a penalty for internal crossings. 
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Cognitive Systems Research 74 (2022) 1–17

5

numerical method that penalizes irregular solutions that contain inter-
nal crossings, and are therefore difficult to measure in terms of con-
vexity. We are not suggesting that the human visual system processes the 
information in this way. Rather, we suggest that the presence of internal 
crossings deters participants from considering any solution that contains 
internal crossings as a possible candidate in the discrimination task; 
limiting perceptional consideration of area. 

2.4. Perceptual activation of properties in the discrimination task 

Each trial contained four measurements for each of these geometric 
properties, i.e.: area, tour costs, complexity (number of edge crossings), 
and regularity (standard deviation of the length of edges in solutions). 
Since studies suggest that humans approach the Euclidean TSP using 
global processing, we presume that properties between competing so-
lutions (stimuli) are computed at a perceptual level, i.e., in order to 
support decision-making in near-linear time. Hence, rather than using 
absolute measurements of each stimulus separately, the difference in the 

quantity of geometric properties between each stimulus and its sur-
rounding neighbours (for each trial) was extracted using the formula: 

Pinter = ω1 −
1
3
∑4

i=2
ωi. (i)  

where ω1 is the score of the geometric property of any of the four graphs, 
and ω2,ω3,ω4 are the geometric scores of the remaining graphs in the 
trial (i.e., its competitors) – see Fig. 6. 

In Fig. 6, the top left stimulus has one intersection. Therefore, the 
‘perceptual activation score’ for complexity would be one minus the 
average number of intersections in the other graphs, giving it the 
number negative one. This approach allows us to make sense of trials 
where complexity is equal for all four competing stimuli, i.e., they all 
have the same number of crossings, and therefore complexity cannot be 
used as a guidance property. Note, that for regularity, complexity, and 
tour costs, perceptual activation scores decrease with optimality. Area 
perceptual activation scores increase as optimality increases (see Fig. 7). 

Fig. 6. Crossings are highlighted (i.e., top-left graph has one crossing, and bottom-right has five). For each stimulus, perceptual activation for a geometric property is 
derived by subtracting the quantity of said property in the stimulus by the average quantity of its neighbours. 

PA(Area) = 0.363 - mean(0.396 + 0.331 + 0.463) PA(Area) = 0.396 - mean(0.363 + 0.331 + 0.463) 

PA(Area) = 0.331 - mean(0.363 + 0.396 + 0.463) PA(Area) = 0.463 - mean(0.363 + 0.396 + 0.331) 

Fig. 7. Perceptual area activation scores. Note that the top-right stimulus contains crossings, yet has a larger area than two of the competitors with no crossings.  
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3. Analysis 

3.1. Human performance in the discrimination task 

The point-estimated probability of a participant selecting the most 
optimal route was 0.47 [Bootstrapped 95% Confidence Intervals from 
5000 samples: 0.43 < μ < 0.51]. Interestingly, existing work in the field 
(see MacGregor, 2017) placed the probability of successfully discrimi-
nating competing tours as being higher – based on complexity (i.e., 
crossings) at 66%, and on area at 91%. It seems unwise to ignore or 
dismiss these existing findings. Accordingly, we used a Bayesian bino-
mial analysis and took the rounded mean of the two readings as the 
maximum likelihood estimate of a beta prior, i.e., θ ∼ Beta(16, 4). In 
turn, we calculated the likelihood of occurrence, i.e., (p(D|θ)); and the 
combined knowledge was used to generate a posterior distribution using 
Markov Chain Monte Carlo (2 chains, 20,000 iterations), i.e., 
p(θ|D)∝p(D|θ)p(θ). Our results suggest that the maximum likelihood 
estimate for the posterior ̂θ = 0.54, with a 95% credible interval ranging 
from 0.46 to 0.63. Regardless, our findings are much less optimistic than 
findings from other studies. 

Existing studies propose that several figural effects from Euclidean 
graphs impact human performance when generating solutions to the 
ETSP. These figural effect include: distance and variability between the 
nodes that form the convex hull of the graphs; the number of nodes that 
make up the convex hull; number of potential intersections in the graph; 
clustering of the graphs; and the variability of the angles of the convex 
hull (Dry, Preiss, & Wagemans, 2012; Kyritsis et al., 2018; Vickers, Lee, 
Dry, & Hughes, 2003). MANOVA with the aforementioned figural effects 
set as dependent variables and success set as the independent variable, 
which is a binomial variable – i.e., yes/no, indicated that there was an 
overall significant difference in some of these properties when 
comparing successful and failed trials [F(6,4223) = 9.66, p < 0.001, V =
0.01]. Independent ANOVAs, followed by Tukey HSD as a post-hoc test 

for multiple comparisons indicated that the following measures were 
significantly higher in successful vs failed trials: distance of nodes in the 
convex hull of the graph (Mdiff = 1.34, CI 95% [0.35, 2.35], p < 0.001), 
variability (standard deviation) of angles in the convex hull (Mdiff =
1.13, CI 95% [0.50, 1.77], p < 0.001), and clustering of the graph (Mdiff 
= 3.03, CI 95% [2.03, 4.04], p < 0.001). However, it is worth noting that 
in all cases the effect size difference, calculated using Cohen’s d, was 
negligible: d = 0.08, d = 0.11, and d = 0.18, respectively. Therefore, we 
found evidence that suggests that some of the figural effects that have 
been previously shown to impact human performance when generating 
TSP solutions in Euclidean space, also have a negligible effect on human 
performance when discriminating between existing solutions. 

3.2. Likelihood of selection as a function of perceptual activation scores 

In every trial, participants selected one graph that they perceived to 
be the most optimal TSP solution. Regardless of whether the selection 
was ‘correct’, i.e., was indeed the most optimal graph, we expect that the 
perceptual activation scores of the figural effects considered in this study 
influenced that choice. Stimulus selection can be thought of as a bino-
mial dependent variable. Accordingly, we examined the likelihood of a 
specific stimulus being either selected (or not) as a function of the 
weighted influence of its associated perceptual activation scores. Since 
the experiment relied on a repeated measures design, a generalised 
linear mixed model was implemented by applying the ‘lme4′ package 
(Bates, Mächler, Bolker, & Walker, 2014) in the form: 

logit(selection) = β1*pArea+ β2*pComplexity+ β3*pRegularity* 
+ β4*pCost+(tID|ID), (ii)  

where ID is the random effects variable for participant ID, tID is the trial 
ID that varied for each participant, and pArea, pComplexity, pRegularity, 
and pCost are the perceptual activation scores for respectively areapen, 
number of edge crossings, standard deviation of edges, and tour costs. 
For model comparisons, predictors from the model were removed in 
descending order of standardised coefficients. To evaluate how much 
the model suffered at each step, we compared the delta of BIC (Bayesian 
Information Criterion) to the best fitting model. This in turn allowed us 
to evaluate model fits using Bayes Factors analysis, which Wagenmakers 
(2007) suggested could be extracted from ΔBIC using: 

BF10 = exp((BIC2 − BIC1)/2). (iii) 

Comparisons of each model, including the predictors, BIC scores, 
Bayes Factors, marginal R2, and conditional R2 can be found in Table 3. 

Marginal and Conditional R2 were extracted with the help of the 
‘MuMIn’ package (Barton, 2020). Frequentist analysis suggested that 
graph volume (i.e., the number of nodes) significantly impacts the 
chance for successfully selecting the most optimal target, however the 
effect size was small [χ2(4) = 22.58, p < 0.001]. The independent 
multinomial Bayes Factor analysis resulted in BF10 = 1.19, which, ac-
cording to Kass and Raftery (1995), is not sufficient evidence to support 
independence of the groups; i.e., there does not appear to be an asso-
ciation between graph volume and the chance of successfully selecting 
the optimal solution. 

Model comparisons using Bayes Factors indicates that Model three, 
which uses the perceptual activation scores of area, complexity, and cost 
(see Table 3) was the best fitting model. The next best model (i.e., four) 
included consideration of regularity, was ~ 118 times less likely to fit 
the data. According to Kass and Raftery (1995) our result is decisive 
evidence in favour of model three, and provides credible evidence that 
all perceptual activations scores, with the exception of regularity, played 
a key part in driving stimulus selection. 

The standardised coefficients (a measure of variable importance), the 
z values, and the p-values of the best fitting model can be found in 
Table 4, which show that area, when considering the penalty term for 
internal edge crossings, is more meaningful in determining likelihood of 

Table 3 
Model comparisons of four logistic models. BIC was used as the criterion for 
retention of variables that predict stimulus selection.  

Model 
no. 

Perceptual Activators BIC Bayes 
Factors 

R2m R2c 

1. + pAreapen  18742.06 3.96 ×
10227  

0.04  0.10 

2. Model 1 + pComplexity  17806.66 3.00 ×
1024  

0.13  0.19 

3. Model 2 þ pCost  17693.94 1  0.14  0.20 
4. Model 3 + pRegularity 

(full model)  
17703.49 118.48  0.14  0.20 

Note. Bayes Factors were taken in relation to the most likely fit (i.e., the lowest 
BIC score), as shown by Dry et al. (2006). Model 3 was the best fitting model 
(highlighted). 

Table 4 
Standardised coefficients and z values for the logistic mixed effects model.  

Perceptual Activators Estimate Std. Error Z value 

Cost  − 0.007  <0.001  − 10.97*** 
Complexity  − 0.134  0.011  − 11.85*** 
Areapen  1.324  0.309  4.29*** 

***p < 0.001. 

Table 5 
Correlation table of fixed effects of the full model (all variables).   

Intercept pArea pComplexity 

pArea  0.045   
pComplexity  0.008  − 0.504  
pCost  0.104  0.769  − 0.681  
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selection than edge crossings alone. 
Table 3 shows that fixed effects accounted for 14% of the variance in 

the stimulus selection, i.e., the marginal variance R2m, while random 
effects accounted for an extra 6% of the variance. The model, however, 
suffered from correlation issues (see Table 5), yet the model did not 
suffer from major multicollinearity issues (as all VIF scores were under 
5). This result indicated that the perceptual activation scores were at the 
very least not linear combinations of each other, and, therefore, showed 
fair independence. 

The logistic model provides evidence to partially support our initial 
hypothesis, i.e., that the perceptual activation scores of the extracted 
geometric properties have an effect on stimulus selection in a discrimi-
nation task (selection or no selection). However, the model is not very 
informative with respect to the process of making a choice (selection or 
no selection), and how reaction time (RT) is affected by competing 
perceptual activation scores. 

3.3. Modelling selection and reaction time using a drift-diffusion model 

Selection process, and the impact on RT, can be considered using 
diffusion models. A diffusion model belongs to the family of sequential- 
sampling models, and is often applied to the analysis of discrimination 
tasks that contains two or more choices – for a comprehensive review of 
diffusion models see Ratcliff and Smith (2004) or Wagenmakers (2009). 
Diffusion model theory states that as participants are presented with 
stimuli (cues), they accumulate the cues presented to them, process the 
cues, and ultimately make a choice from selections A or B (Alexan-
drowicz, 2020). The process itself, however, is noisy and stochastic, 
often simulated as a random-walk, with drift parameters rather than 
constant slope terms (i.e., drift–diffusion models). This is reasonable as 
(i) cognitive tasks are not guaranteed to lead to success – even in the 
most informative environments, (ii) decisions may vary, even for trials 
with the same conditions – and even in repetitions by the same partic-
ipant, and (iii) there is variation in the time taken to complete the task - 
even when participants repeat the same task (Smith & Ratcliff, 2015). 
Drift-diffusion models return several parameters, which help the process 
of decision-making to be understood. The main parameters that we 
consider in the analysis are discussed in more detail by Voss, Roth-
ermund, and Voss (2004) and are summarised in Table 6. 

The unstructured nature of our experimental design meant that 
reverse consideration of trials was required, i.e., identification of trials 
where only one perceptual activation score differed significantly 
compared to their competitors. As there was not enough information 
about the competitor stimuli to allow comparisons between them, we 
consider the outcome of each trial as being binomial: either a graph was 
selected by the participant or it was not. In the end, we isolated several 
trials that allowed consideration of conditions as shown in Table 7. 

Next, to ignore non-decision time, which was not factored into our 
experimental design – see Verdonck and Tuerlinckx (2016) for a 
description, we applied the D*M drift–diffusion model method; applying 
the ‘DstarM’ package in R (van den Bergh, Tuerlinckx, & Verdonck, 
2020) to extract the parameters highlighted in Table 6. To support 
model building, the data was split to ensure balance, i.e., resulting in 

Table 6 
Description of the three main parameters returned by drift–diffusion models.  

Parameter Description 

v The mean drift rate that influences the direction that a process would 
take towards boundary A or B 

a The distance between the thresholds of the decision boundaries of two 
choices: A and B 

z The starting point of the process. This is indicative of bias towards one 
decision over the other. 

Note. For a visual illustration of how the parameters affect decisions in our 
choice discrimination task see Fig. 8. 

Table 7 
Conditions used as inputs in the drift diffusion model.  

Condition Favourable Perceptual Activation 

Area PA(Area) > 0 
Complexity PA(Complexity) < 0 
Cost PA(Cost) < 0 
Regularity PA(Regularity) < 0 

Note. The function PA is the perceptual activation function as shown in 
Figs. 6 and 7.  

Table 8 
Parameters indicate the average starting bias, drift-rate, and selection boundary 
width for selection vs non-selection in our discrimination task according to the 
D*M drift–diffusion model.  

Parameter α v z 

Intercept only (RT) 0.33  − 3.76  0.66 
Complexity 1.9  0.27  0.29 
Area 2  0.9  0.5 
Cost 2  0.23  0.3 
Regularity 2  − 0.27  0.45 

Note. Regularity has a negative slope, which implies that it is not a strong enough 
perceptual activator to drag away from the default diffusion towards non- 
selection (as shown in the intercept term). 

Fig. 8. Random walk simulation using the average parameters of the 
drift–diffusion model. Note. Τhe drift-rate for the area perceptual activation 
score is much steeper than the other two activators, further validating our 
mixed-effects model, that showed perceptual score of area, with the associated 
penalty term, to have the strongest effect on target selection. 

Table 9 
Regression modelling using BIC as the criterion for retention of variables that 
predict the likelihood of a successful trial.  

Model 
no. 

Perceptual Activators BIC Bayes 
Factors 

Pseudo- 
R2 

1. + pArea  1833.32 1.04 × 10199  0.61 
2. Model 1 + pRegularity  931.45 1509.56  0.81 
3. Model 2 þ

pComplexity  
916.82 1  0.81 

Note. Bayes Factors were taken in relation to the most likely fit (i.e., the lowest 
BIC score), as shown by Dry et al. (2006). In this case, model two is 1510 times 
less likely to fit the data than model three. 
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consideration of only (i) the selected stimuli, and (ii) an equal number of 
non-selected stimuli (i.e., one of the non-selected stimuli from each 
trial). Moreover, only trials that lasted less than seven seconds were 
considered, as this delay is in line with expected results from a global 
processing task. In total there were 2114 trials. The parameters for each 
condition is summarised in Table 8. Fig. 8 shows, for the sake of 
demonstration, a hypothetical trial using the average slopes of each 
condition in a random walk simulation. 

Both D*M drift–diffusion and logit models show that the effect on 
selection follows the order: Areapen, Cost, and then Complexity. As such, 
the models have illustrated two things: firstly, that perceptual activation 
scores of geometric properties work as weighted inputs of a function that 
returns the likelihood of stimulus selection in the discrimination task, 
and secondly, that perception of area, with the associated penalty term 
for internal crossings, seems to be particularly influential in guiding 
human selection. 

3.4. Likelihood of success as a function of perceptual activation scores 

To validate our extracted properties as drivers for determining 
optimality in the discrimination task, we used a predictive analytics 
approach. It is already well established that the most optimal solution 
will never contain edge crossings, however, less is known about the 
properties of regularity and the area of the enclosed polygons. In this 
case, it would not make sense to include tour costs in our model, since 
the most optimal solution will have the lowest tour costs. A logistic 
model was fit, i.e., to evaluate whether perceptual scores can make any 
meaningful prediction of the likelihood of a stimulus being successful 
(note that we did not account for random effects, since no generalisa-
tions about human behaviour were made in this section). 

logit(success) = β0 + β1*pArea+ β2*pComplexity+ β3*pRegularity. (iv) 

The results of the full model show that all three perceptual activation 
scores were significant predictors of the likelihood of a stimulus being 

successful (see Table 9 for model comparisons). As before, variables 
were removed in order of least importance from the full model, i.e., 
according to their standardised coefficient scores. 

We were interested in evaluating how this model would perform on 
unseen data. To provide a proof of concept, the dataset was split into a 
training and a test set (80/20 split) – with the help of the ‘crea-
teDataPartion()’ function found in the ‘caret’ library (Kuhn et al., 2018) 
– and was used with the full model to predict the probability of unseen 
trials being classified as successful. The Receiver Operating Character-
istic (ROC) curve (shown in Fig. 9) illustrates that a suitable cut-off 
(trade-off between sensitivity and specificity) is ~ 0.7. 

The ROC curve indicated that the probability of an observation being 
classified as a success is higher than 0.7. More formally, 

ŷi =

{
1 if P(ŷi) > 0.7
0 otherwise (v)  

where ŷi are the fitted probabilities of the logit model on previously 
unseen data (i.e., the predictions on the test set). Applying the cut-off of 
at 0.7 – as shown in (v) – leads to the confusion matrix found in Table 10. 

The most interesting finding from this confusion matrix is the very 
high positive predictive value, which is the probability of a successful 
trial given a positive prediction, i.e., 

P(Success|Positive) =
P(Success AND Positive)

P(Positive)
=

358
373

≈ 0.96 (vi) 

The result shows that, using just these three variables, our model can 
accurately predict 96% of the time, whether a stimulus is likely to be the 
most optimal solution. Interestingly, however, participants did not 
perform as well as the regression model in the task, which suggests there 
are other factors influencing humans when selecting the most optimal 
from multiple pre-defined ETSP solutions. 

4. Discussion 

In this study we presented ETSP solutions (with node volume be-
tween 30 and 70) to participants in an online experiment. Participants 
were asked to select the one most optimum solution, i.e., the stimulus 
with the shortest tour length in a discrimination task between four 
competing stimuli (ETSP solutions). Solutions were produced using 
common TSP heuristics (Nearest Neighbour; Nearest Insertion; Cheapest 
Insertion; and Farthest Insertion) and were randomly positioned on a 
2x2 grid. Data mining was used to extract geometric properties, which 

Fig. 9. The Receiver Operating Characteristic curve highlights the best trade-off between sensitivity and specificity (which is the cut-off at the top-left corner of 
the curve). 

Table 10 
Confusion matrix of the predictive logit model shown in (v) with a cut-off of 0.7.   

Reference 

Prediction  Fail Success 
Negative 438 35 
Positive 15 358  
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literature suggests would aid human selection in an ETSP solution 
discrimination task, and aid human selection response time. The 
extracted properties were complexity (edge crossings), polygon area 
with an associated penalty term for internal crossings, regularity (SD of 
edge lengths), and tour costs. Complexity was extracted from stimuli 
through a system of two linear equations (see xix in Appendix 1). Area of 
the enclosed polygon was extracted using the Monte Carlo method (see 
formulas vi to xvi in Appendix 1). Regularity and tour costs were 
extracted by measuring edge lengths, and in the case of regularity the 
standard deviation of all the lengths of edges in a solution (see formula 
xxvi in Appendix 1). Finally, the properties were used as inputs in a 
perceptual activation function, which returned the difference between 
the properties in competing stimuli, rather than treating them as abso-
lute values. Admittedly, one of the limitations of our study was that only 
a small set of properties that impacted target selection were investi-
gated, most of which had been previously discussed in literature (with 
the exception of regularity); i.e., we are not presenting an exhaustive list 
of variables. 

Participants performed quite poorly in this task (point estimate of 
47% success rate), and success was only negligibly influenced by the 
usual properties often shown to occur in the formation of participant 
solutions (such as convex hull parameters). Poor participant perfor-
mance contrasts with the more optimistic results found by MacGregor 
(2017), however, the difference in results were speculative due to (a) the 
noisy nature of online experiments, and (b) that our competing solutions 
were generated on the same graph using four different heuristics, none 
of which are ‘state of the art’. It is therefore possible that participants 
performed more poorly than anticipated due to all solutions simply 
being too underwhelming. 

Mixed-effects linear modelling was used to evaluate whether the 
probability of stimulus selection can be expressed as a function of 
perceptual activation scores. Our findings suggest that differences in 
polygon area, complexity, and tour costs explain a small, but significant 
amount of the variance in participant selections in the discrimination 
task, with about half of that attributed to conditional / random effects. 
Regularity did not predict likelihood of selection, despite being a sig-
nificant predictor of optimality when used as an input in a logit classi-
fication model. Furthermore, the standardised effect sizes indicate that 
the perceptual activation score from the polygon area measurement, 
when accompanied by a penalty term for overlapping areas caused by 
internal crossings, was the most important cue for target selection, fol-
lowed by complexity, and then tour costs. This finding was reinforced by 
our drift–diffusion model, which also showed a larger drift-rate for area, 
followed by complexity, and finally cost (see Fig. 8 for the output of a 
random walk simulation given the parameters of the drift–diffusion 
model). It is worth noting that we were forced to set a cut-off RT for this 
model at seven seconds to be more in-line with what one would expect 
from a global processing task. This resulted in a loss of about half of the 
trials and a significant drop, therefore, in statistical power. However, the 
drift–diffusion model is an early theoretical framework for modelling 
the process involved in reaching a decision (selection between 
competing stimuli) boundary in the task through accumulation of evi-
dence (i.e., perceptual activation scores); though this needs to be vali-
dated in a lab setting whilst testing for other properties that impact 
judgement of optimality in this discrimination task. 

As mentioned earlier, the area of graphs in our study, when using the 
Monte Carlo method, was penalised by the presence of internal crossings 
(i.e., crossings that occur by routes that go back inside the polygon itself, 
as shown in Fig. 5). Our data suggests that people are averse to selecting 
these types of graphs when judging optimality, more so than other so-
lutions that contain external crossings. As an ad hoc follow-up to these 
findings, we asked ten participants to judge two solutions, one with 
internal crossings, one with external crossings, while consistently 
maintaining all other properties. The emerging codings identified that 
solutions with internal crossings were perceived as being “messy”, 
“intertwining”, “back-and-forth”, and “looping”. As expected, all 

participants described solutions with internal crossings as being less 
optimal. Our anecdotal evidence suggests that, despite the presence of 
crossings being a well-known factor that impacts human performance in 
the TSP, for the discrimination task this can be further broken down into 
internal and external crossings. From a perceptual viewpoint, we believe 
the presence of internal crossings more strongly activates the diffusion 
process towards the non-selection boundary than external crossings. We 
aim to explore the reason for this further in future work. 

Our results are consistent with the work of MacGregor (2017), who 
argued that both complexity (edge crossings) and area are important 
cues for discriminating between ETSP tour lengths. Furthermore, we 
expanded the area measurement to include a penalty for internal 
crossings as to not over-bias the estimated area that these solutions 
would otherwise create. 

Moreover, our results agree with previous findings, which suggest 
that geometric properties in the ETSP task correlate with each other 
(Vickers et al., 2006), which, as MacGregor (2007) stated “suggests a 
nexus of stimulus characteristics that people could use to judge the 
lengths of tours”. Our correlation matrix (Table 5) shows that properties 
were significantly correlated; however, this is practically not surprising 
when altering one will subsequently alter the others. It is important to 
note that our logistic model did not indicate serious multicollinearity 
problems (all VIFs < 5), which at least leads us to believe that the 
perceptual activation scores were fairly independent, and not just linear 
combinations of each other. 

Finally, a logit model, with success as the binomial response variable 
and perceptual activation scores as the predictors can be used to detect 
the most optimal solution 96% of the time in the discrimination task, 
which shows that extracted geometric properties (i.e., area, complexity, 
and regularity) can be used effectively to distinguish between ETSP 
solutions – however there are other factors impacting human trials. 

5. Conclusion 

Studies have consistently shown that some humans can outperform 
even the best commonly used heuristics when solving ETSP graphs (see 
Kyritsis et al., 2018b). Although humans are good at ETSP problem 
solving, they performed poorly in a discrimination task where they were 
asked to judge between four competing ETSP stimuli and select the most 
optimal solution. Our initial probability of success (p(success) ~ 0.47) 
was much lower than the rate presented by MacGregor (2017) (0.66 to 
0.91), and our MCMC Binomial Bayesian analysis, using the information 
provided by MacGregor as a prior, showed a likelihood estimate of the 
participant selecting the most optimum solution as being 0.54 (95% 
credible interval [0.46, 0.63]). 

We mined geometric properties from the ETSP solutions generated 
for our experiment and used them in two models (a mixed-effects model, 
and a drift–diffusion model) to both evaluate the importance of the 
variables in predicting human discrimination of optimality between 
competing tours, and to assess to what extent measures of area, 
complexity, regularity, and tour costs can be used as predictors of 
stimulus selection. The study looked at the effect of measures when 
predicting optimality amongst competing stimuli. Interestingly, 
although our models can accurately predict the most optimal stimulus in 
trials 96% of the time (on previously unseen data), the same geometric 
properties only explain a very small amount of the variance in partici-
pant selections (~14%), with another 6% being down to random effects. 
Ultimately there is definitely more ‘going on’ here, which we aim to 
investigate in future work. To this end, we have made our data and our 
scripts available online for the sake of replicability, as well as to generate 
additional interest in the area (see Appendix 2 for the URL). 

The results from the diffusion-drift models was promising, and we 
certainly plan to use this method more in future studies, however much 
work is needed to fully identify the factors impacting human selection 
between pre-existing ETSP solutions. We aim to undertake future 
research that uses the fact that all geometric properties correlate, to 
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explore the effects on human selection in a more controlled experiment. 
Moreover, consideration of personal, information assimilation, and in-
dividual difference factors are planned in future work. 
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Appendix 1 

A.1. Approximating area using the Monte Carlo method 

Since we are using arbitrary units of measurement, we took the ratio of the area between the complex polygons created by the graph solutions, and 
the total area of the graph, as an appropriate measure of area for the TSP solutions. To get a good approximation of the area of each polygon, we used 
the Monte Carlo method to generate a large number of points that were randomly placed on the graph, and then took the proportion of the points that 
fell within the boundaries of the polygon over the total number of points. Descriptively, the way this method works is by projecting horizontal lines 
from each point and using a system of equations to find all intersections with the projected lines of the edges. If an intersection is found, the algorithm 
then checks to ensure that the intersection is within the boundaries of the edge. Finally, if the number of total intersections is an even number, then the 
point is outside the polygon, if it is odd, then the point is within the polygon. 

More formally, suppose a set of points P = (X,Y)isgenerated such that X = X1,…,Xn ∼ U(a, b) and Y = Y1,…,Yn ∼ U(a, b) where U(a, b) denotes a 
uniform distribution with a minimum number a and a maximum number b (which in our experiment ranged from 0 to 100). Furthermore, for the sake 
of notational clarity, x and y were defined as mapping functions i.e., x, y : R2→R, so that they decompose the two-dimensional point to its × and y 
coordinates. For example, for the point T = (52,45), x(T) is 52, and y(T) is 45. For illustration purposes, only one such point is presented (for now) in 
Fig. A1. 

To identify if point P has fallen within the polygon, initially a horizontal line is ‘drawn’ from the point P. The linear form of the line is 

yI = 0+ y(P), (vi)  

where yI is the y coordinate of the point of intersection between the two lines (see Fig. A2). 
Next, the linear projections of all TSP solution edges are extracted. Each pair of points, which make up the edge, are define as being Hi= (Gi,Gi+1). 

Extraction of edges is an iterative process, however for the sake of clarity we consider a single pair of points (i.e., H1). To generate the line for each pair 
of points, the slope is determined 

m =
y(G2) − y(G1)

x(G2) − x(G1)
|x(G2) ∕= x(G1). (vii) 

Identification of the slope allows the intercept to be determined 

c = y(G1) − m*x(G1). (viii) 

Finally, we combined the two equations, since the value of yI is already known, allowing us to find xI. By rearranging the formula y = mx + c, i.e.: 

xI =
y − c

m
|m ∕= 0, (ix) 

Fig. A1. A randomly placed point P = (x, y) in the graph, with coordinates × and y sampled from a uniform distribution with min = 0 and max = 100.  
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the intersection point (xI, yI) is determined. This works well in most cases, however, there are two exceptions to this rule. The first condition, as shown 
in (vii), is if the edge projects a vertical line, then there will be no slope, i.e., x(G2) = x(G1). This happens more regularly when G ∈ N2, as was the case 
with our graphs. In these cases, xI is set as 

xI = x(G2), (x) 

and yI as 

yI = y(P). (xi) 

The second condition is that the slope of the edge cannot be equal to 0, shown in (ix), i.e., the edge cannot be horizontal. If that is the case, then the 
result would be undefined, since you would have parallel lines that would never intersect. Algorithmically, one solution is to return a non-meaningful 
coordinate, e.g., containing negative numbers, which is outside the bounds of our problem space. 

Implementation of the above algorithm will return all intersections with the horizonal line, however not all intersections are meaningful, since we 
are only interested in finding the intersections within the bounds of the edges themselves (not their linear projections). To check if an intersection is 
within the bound of the TSP problem space, an indicator function can be used. Suppose the intersection point I = (xI,yI), then, 

g(I,G) =

{
1 if x(G1) < x(I) < x(G2)andy(G1) < y(I) < y(G2)

0 Otherwise . (xii) 

Algorithmically, optimisation of the process can be achieved determining whether a graph point is within the polygon by checking intersections to 
either the left (x(P) < b/2) or the right (x(P) ≥ b/2); where b is the maximum number from the uniform distribution of points that were used to 
generate the graph (i.e., 100). By extending this iteratively to all edges in the graph the result can be determined (see Fig. A3). 

If the number of intersections is even, then the point must lay outside the polygon. If the number of interceptions is odd, the point is inside the 
polygon. Formally, assigning that number to a variable 

v =
∑

g
(

I
)

(xiii) 

Fig. A2. A horizontal line ‘drawn’ on the point P, so that yI = y(P).  

Fig. A3. Process is optimised by only counting the number of intersections to the left of the point if x(P) < a/2 and to the right if x(P) ≥ a/2.  
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With our final indicator function, the modulus of v is returned, which will inform us whether the point is inside or outside the polygon, i.e. 

o(v) =
{

1 if v mod 2 = 1
0 otherwise . (xiv) 

The procedure can be used with an arbitrarily large number of points, allowing us to determine the number of points that fall within the polygon 
using the function o(v). In other words, if we were to create n number of points, and run process steps (vi) to (xiv) n number of times, each time 
updating x(P) and y(P), then the sum of the o(v) outputs can be used to assign a value representing number of points inside the polygon, 

τ =
∑n

i=1
o(v). (xv) 

As we increase n, results tend towards a better estimate of the area of the polygon by taking the ratio 

w(r, n) =
τ
n
= Areapen, (xvi)  

where w is a function of τ and n, and returns an estimate of the true area of the polygon, which can be denoted as θ. Naturally, lim
n→∞

w(τ,n) = θ, however, 

this iterative process (i.e., our Monte Carlo method), is computationally expensive. For one forty-node graph, it took the University Academic Cluster 
approximately four seconds to compute w when n = 5000, eight seconds when n = 10,000, and 15 s when n = 20,000. Interestingly, there is a point of 
saturation, i.e., a compromise between accuracy and speed. We suggest that a good value for n is 20,000, which is approximately when the difference 
in output precision is equivalent at two decimal places (see Table A1). 

Finally, as discussed earlier, we suggest that areas for solutions that contain internal crossings should be penalized. Our approach penalizes these 
graphs by not considering the internal area created by crossings (as shown in Fig. 5 of the main text). 

A.2. Calculating the number of edge crossings in solutions 

The graphs are made up of nodes, which when connected form edges. These edges are straight lines and can be projected to follow the usual linear 
equation y = mx+c by getting the slope and the intercept as shown in steps (vii) and (viii). To check if two edges in the graph intersect, one would 
need to (a) find where the intersection is between the two lines, followed by (b), check if that intersection falls within the boundary space of the edges. 
Finding the intersections is another iterative process that requires the checking of every edge against every other edge. This can be expressed using two 
functions. The first function checks where the linear projections of the lines intersect using a system of two equations 

fc(l1, l2) =

{
y = ax + c
y = bx + k . (xvii) 

In the case of two vertical lines, two horizontal lines, or horizontal and vertical lines, we need to make exceptions. In the first two cases, our 
function would be undefined, so algorithmically coordinates that are outside the problem space can be returned as a negative number. In the last case 
the steps shown in (x) and (xi) would be followed. 

As an example, let us consider 

0.522  0.481 

Fig. A4. Graph containing no crossings (left), and crossings (right). The area is extracted using a Monte Carlo method and is simply the ratio of points inside the 
polygon to the total number of points. 

Table A1 
Examples of differences in Areapen estimates derived by the function w(s,n).  

Graph ID Number of Nodes (n)  

n ¼ 10,000 n ¼ 20,000 n ¼ 30,000 

5  0.51  0.51025  0.5080667 
27  0.37  0.364  0.3646333 
150  0.5534  0.55775  0.5605333 
300  0.5621  0.5487  0.5522667 

Note. The Graph ID identifies solutions in our dataset, which are made available on Github (see Appendix 2, for the URL). Also, the ratio measurements of area are point 
estimates, and can differ slightly due to the stochastic nature of Monte Carlo. The algorithm works well for graphs with, and without crossings in most cases, as shown 
in Fig. A4. 
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{
y = 3x + 5

y = − 4x + 12 . (xviii) 

The intersection point is shown in Fig. A5. 
This expressed in standard form allows us to align x and y 

{
− 3x + y = 5
4x + y = 12 . (xix) 

Next, multiplying the equation on the bottom by 34 in order to get x = 3, would allow the removal of x when adding the two equations. 
⎧
⎨

⎩

− 3x + y = 5
12x
4

+
3y
4

=
36
4

=

− 3x + y = 5

3x +
3y
4

= 9
. (xx) 

This allows us to solve y 

( − 3x+ 3x)+
(

3y
4
+ y

)

= (9+ 5) (xxi)  

0+
7y
4
= 14  

4
7

(
7y
4

)

=
4
7

14 

Fig. A5. Two linear projections of edges will cross unless they are parallel lines.  

Fig. A6. Our algorithm detected the six intersections in this graph using an iterative system of two linear equations.  
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y = 8,

which can be replaced in either of the two equations in order to identify x 

8 = 3x+ 5 (xxii)  

3x = 8 − 5  

x = (8 − 5)/3  

x = 1.

Therefore, the intersection point in this example is (1,8). By iterating through this process, we were able to identify all intersections and add them 
to the set of intersection points Iint . 

The second part of the process is to check whether the intersection points are within the bounds of both edges. This is similar to process step (xii), 
however one would need to run the function twice – once for each edge. Let us imagine two edges (Ga and Gb) exist. Each edge is made up of two nodes, 
i.e., Ga

1 = (x1, y1) and Ga
2 = (x2,y2). The function shown in (xii) is required to check if the intersection is within the bounds of the first edge g(Iint ,Ga), 

and then to check if it is within the bounds of the second edge g(Iint ,Gb). Again, a simple indicator function can be used, which will sum the in-bound 
intersections later 

q
(
g(Iint,Ga), g

(
Iint,Gb) ) =

{
1 if vg(Iint,Ga) = 1 and g

(
Iint,Gb) = 1

0 otherwise
. (xxiii) 

Finally, intersection points can be counted by considering the number returned by function q. 

ninter =
∑n

i=1
q
(
g(Iint,Ga), g

(
Iint,Gb) ). (xxiv) 

For illustration purposes, we demonstrate the proposed algorithm on a graph solution containing six crossing; highlighted by marked line in-
tersections (see Fig. A6). 

Interestingly, despite the simplistic nature of the problem, we could not find a script specifically designed to either i) detect intersections or ii) 
measure areas in the TSP. Therefore, two R scripts were created to facilitate the process and have been shared on Github (see appendix 2 for the URL). 

A.3. Cost of TSP tours 

The total cost of a tour is the sum of all distances travelled between nodes in the solution (i.e., the edges). Since every edge is made up of two nodes, 
which we denote as Gi =

(
xi,yi

)
andGi+1 = (xi+1,yi+1), the Euclidean distance d of the tour is 

dtot =
∑n− 1

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x(Gi) − x(Gi+1))
2
+ (y(Gi) − y(Gi+1))

2
√

. (xxv)  

A.4. Regularity of TSP solutions 

A polygon is regular when all sides and all angles are equal. An irregular polygon will have one or more incongruent sides. TSP solutions can 
therefore be seen as complex irregular polygons. The variability in the length of edges can be extracted by taking the standard deviation. As a 
reminder, every graph G, is made up of an arbitrary number of nodes n where {n : n ∈ N,n > 2}, denoted as G1,…Gn, and every edge Hi is made up of 
the two adjacent points (Gi,Gi+1). To get the variability of edge lengths, the standard deviation can be determined using 

s2 =
1

n − 1
∑n− 1

i=1

(( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x(Gi) − x(Gi+1))
2
+ (y(Gi) − y(Gi+1))

2
√ )

−
1
n
dtot

)2

(xxvi)  

s =
̅̅̅̅
s2

√
.

It is expected that each edge is likely to vary in length when compared to other edges in the solution, however we hypothesise that as variation 
increases, the solution is more irregular (see Fig. A7). 

Low irregularity (SD of edges: 5.03) High irregularity (SD of edges: 6.68) 

Fig. A7. According to our analysis, the graph on the left is more regular than the one on the right (edges are more likely to be similar lengths).  
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Appendix 2 

Scripts and datasets for this study are available at: https://github.com/markoskyritsis/TSP_Scripts. 

Appendix 3 

Below are the instructions given to participants (converted from HTML for presentation purposes) prior to the start of the experiment (just after 
clicking ‘consent’). 

Page1 

A short tutorial 

The travelling salesperson problem describes a hypothetical scenario where a salesperson wants to travel from their home city to multiple other 
locations once and only once before returning home. There are multiple tours the salesperson could take, some more optimal than others. Consider the 
following graph (starting city circled).

Below are four possible tours the salesperson could have taken. Some more optimal than the others
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In this case, our analysis shows that the tour on the bottom-left is the most optimal in this set, since it requires less travelling. We are interested in 
how good you are at ’guessing’ which tour is most optimal just by looking at four possible solutions. 

Page 2 

The process 

The experiment consists of 50 trials. Each trial will start with a crosshair

After a second or so, you will be presented with four tours for a random graph. It’s up to you to decide which of those you think is the best tour. In 
other words, is the tour that the salesperson travelled the least distance

Each trial is timed, so try your best to complete it is as quickly as possible, without compromising the quality of your decision. 
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