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Abstract: The increase in the number of bacteria that are resistant to multiple antibiotics poses a
serious clinical problem that threatens the health of humans worldwide. Nadifloxacin (1) is a highly
potent antibacterial agent with broad-spectrum activity. However, its poor aqueous solubility has
limited its use to topical applications. To increase its solubility, it was glycosylated herein to form a
range of trans-linked (3a-e) and cis-linked (7a,b) glycosides, each of which was prepared and purified
to afford single anomers. The seven glycoside derivatives (3a-e, 7a,b) were examined for potency
against eight strains of S. aureus, four of which were methicillin-resistant. Although less potent than
free nadifloxacin (1), the α-L-arabinofuransoside (3a) was effective against all strains that were tested
(minimum inhibitory concentrations of 1–8 µg/mL compared to 0.1–0.25 µg/mL for nadifloxacin),
demonstrating the potential of this glycoside as an antibacterial agent. Estimation of Log P as well
as observations made during preparation of these compounds reveal that the solubilities of the
glycosides were greatly improved compared with nadifloxacin (1), raising the prospect of its use in
oral applications.

Keywords: Staphylococcus aureus; MRSA; nadifloxacin; glycoside

1. Introduction

Staphylococci are commonly found in the environment and are major colonizers
of human skin [1,2]. Staphylococus aureus, the major human pathogen of the genus, is
mostly harmless, but in certain situations it can cause severe illness, such as endocarditis,
pneumonia, sepsis and toxic shock syndrome [3,4]. Infections were initially treated with
benzylpenicillin, but by the late 1950s, resistant strains of the bacteria that produced β-
lactamase were increasingly being isolated. In 1959, the β-lactamase-resistant antibiotic
methicillin was introduced, but since then there has been a steady increase in the prevalence
of methicillin-resistant strains of bacteria, and last-resort drugs such as vancomycin are
increasingly used to treat infections [5,6]. The isolation of strains with reduced susceptibility
to this drug, termed vancomycin-intermediate-resistant S. aureus (VISA), has raised the
prospect of there being no antibacterial therapy for such strains [7].

Nadifloxacin (1) (Scheme 1) is a broad-spectrum fluoroquinolone antibiotic that demon-
strates high potency against aerobic Gram-positive and Gram-negative organisms and
anaerobes. It has also been shown to be highly effective against methicillin-resistant Staphy-
lococcus aureus, and low incidence of resistance is noted [8,9]. Unfortunately, nadifloxacin
is poorly soluble in water and can only be used medicinally in topical ointments to treat
acne and other skin infections [10,11]. Many attempts have been made to increase the
aqueous solubility of nadifloxacin and thus enable it to be used in oral administration,
for example by forming carboxylate salts, esters and peptides and by incorporating the
drug in microemulsions and dendrimers [12–17]. However, the production of a suitable
commercial derivative has so far been unsuccessful.

An alternative approach to improve the solubility of nadifloxacin is to glycosylate the
free hydroxyl group on the piperidine ring (Scheme 1). Since this hydroxyl group is required
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for nadifloxacin to have antibacterial properties, masking of this position by formation of a
glycoside would serve a dual purpose. Firstly, it would increase the aqueous solubility of
nadifloxacin as required. Secondly, it would afford glycosides that would be less toxic than
nadifloxacin itself. Specific bacteria that express the corresponding glycosidase enzyme
would, however, be able to hydrolyse the glycosides to afford nadifloxacin, potentially
affording targeted treatments for specific bacterial infections [18–21]. This approach was
explored herein by synthesising and testing seven different nadifloxacin glycosides (3a-e,
7a,b) prepared from racemic nadifloxacin. The minimum inhibitory concentration (MIC) of
each glycoside was then determined by means of a doubling dilution method.

2. Results and Discussion

To prepare the different anomers of the nadifloxacin glycosides, two different syn-
thetic approaches were used. The trans-linked nadifloxacin glycosides, specifically α-
L-arabinofuranoside (3a), β-D-galactopyranoside (3b), β-D-glucopyranoside (3c), α-D-
mannopyranoside (3d) and β-D-xylofuranoside (3e), were synthesised by reacting nad-
ifloxacin (1) with the O-acetylated glycosides in the presence of 10 molar equivalents
of trimethylsilyl triflate (TMSOTf) in anhydrous acetonitrile (Scheme 1). The glycosides
(2a-2e) were deprotected by treatment with potassium carbonate in methanol and then
purified by adjusting the pH of the crude deprotection mixture to about 3.0 with formic
acid and eluting from a reverse-phase (C-18) flash chromatographic column with 0.1%
formic acid/MeCN (7:3).
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This afforded a mixture of glycoside anomers with α:β ratios of 1:1.59 for the galactoside 
(6a) and 1:1.23 for the glucoside (6b), as evidenced by 1H Nuclear Magnetic Resonance 
(NMR) spectroscopic analysis. The benzyl ethers were then removed by hydrogenolysis 
over palladium on charcoal to afford (7a) and (7b) as a mixture of anomers. These ano-
meric mixtures could not be separated by chromatography, and instead the β-glycoside 
was selectively hydrolysed using the corresponding β-glycosidase enzymes-β-galacto-
sidase from Escherichia coli in phosphate-buffered saline pH 7.0 or β-glucosidase from al-
monds, in acetate buffer, pH 6.0. The mixtures were then purified using flash chromatog-

Scheme 1. Synthesis of trans-linked nadifloxacin glycosides, specifically α-L-arabinofuranoside
(3a), β-D-galactopyranoside (3b), β-D-glucopyranoside (3c), α-D-mannopyranoside (3d) and β-D-
xylofuranoside (3e), from the respective protected intermediates (2a-e).

The cis-galactoside (7a) and cis-glucoside (7b) were obtained by changing the reaction
solvent and glycoside-protecting groups to favour the formation of the thermodynamic
product (Scheme 2). The tetra-O-benzyl glycosides (4a) and (4b) were acetylated with
acetic anhydride, then coupled with nadifloxacin (1) using TMSOTf in anhydrous acetone.
This afforded a mixture of glycoside anomers with α:β ratios of 1:1.59 for the galactoside
(6a) and 1:1.23 for the glucoside (6b), as evidenced by 1H Nuclear Magnetic Resonance
(NMR) spectroscopic analysis. The benzyl ethers were then removed by hydrogenolysis
over palladium on charcoal to afford (7a) and (7b) as a mixture of anomers. These anomeric
mixtures could not be separated by chromatography, and instead the β-glycoside was
selectively hydrolysed using the corresponding β-glycosidase enzymes-β-galactosidase
from Escherichia coli in phosphate-buffered saline pH 7.0 or β-glucosidase from almonds,
in acetate buffer, pH 6.0. The mixtures were then purified using flash chromatography as
described above. All intermediates (2a-e), (5a-b), (6a-b) and deprotected glycosides (3a-e)
and (7a,b) were characterised by 1H and 13C NMR and IR, spectroscopic analysis and mass
spectrometric analysis. Purity was determined by High Performance Liquid Chromatogra-
phy (HPLC) to be > 97% prior to subsequent analysis of the inhibitory properties of the
glycosides (3a-e) and (7a,b).
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Scheme 2. Synthesis and resolution of nadifloxacin-α-galactoside (7a) and α-glucoside (7b).

All of the synthesised nadifloxacin glycosides (3a-e) and (7a,b) were soluble in water
at physiological pH as demonstrated in the final enzymatic resolution step in Scheme 2,
wherein the product was dissolved in aqueous systems to allow for enzymatic hydrolysis.
The octanol–water coefficients (Log P) were also calculated as 0.05 for the hexose glycosides
and 0.51 for the pentoses, compared to 1.79 for underivatised nadifloxacin (1) (calculated
using ChemDraw 12.0, Perkin-Elmer, Cambridge, UK).

It should be noted that racemic nadifloxacin was used in all glycoside syntheses, and
the products (3a-e) and (7a,b) were isolated as mixtures of diastereomers. This afforded
more complex NMR spectra than expected with some peaks unresolved and thus quoted
as multiplets.

Since nadifloxacin (1) was developed as a potent antimicrobial for the treatment of
MRSA, the antimicrobial activities of the synthesised nadifloxacin glycosides were de-
termined for a range of Staphylococcus aureas strains. The lowest concentration at which
bacterial growth could not be detected was recorded as the minimum inhibitory concentra-
tion (MIC). All of the Staphylococcus aureas strains were found to be sensitive to nadifloxacin,
and all of the strains were found to be sensitive to, or intermediately sensitive to, the
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glycosides. However, all of the glycosides (3a-e) and (7a,b) had MICs that were higher than
free nadifloxacin (1) (Table 1), presumably due to the requirement of hydrolysis to release
the free nadifloxacin. This could indicate that the nadifloxacin glycosides do not induce
the genes that produce the proteins required for transport and hydrolysis of the glycosides.
There was variation in the MICs between glycosides and between strains for the same
glycoside, probably due to differences in the rate of uptake of the glycoside by the bacte-
ria and the amount of glycosidase that was expressed by the bacteria. Free nadifloxacin
(1) was slightly more inhibitory for the MRSA strains than for non-MRSA organisms
(0.125 µg/mL compared to 0.25–0.5 µg/mL), but there was no general pattern to the resis-
tance of the glycosides. Of the glycosides, the α-L-arabinofuranoside (3a) was the most
potent with MICs of 1–8 µg/mL for all of the strains that were examined.

Table 1. MICs (µg/mL) for nadifloxacin (1) and synthesised glycosides (3a-e) and (7a,b) against
drug-susceptible and -resistant S. aureus in TSA.

Species Strain 1 3a 3b 3c 3d 3e 7a 7b

S. aureus

ATCC 6538 0.25 2 8 64 16 2 8 16
ATCC 6538p 0.25 2 8 128 16 1 64 16
ATCC 9144 0.5 1 8 32 8 1 4 16
ATCC 25923 0.25 2 8 64 16 2 8 32

S. aureus
(MRSA)

ATCC 33591 0.125 1 32 64 128 1 2 4
ATCC 43300 0.125 2 2 4 8 32 64 128
NCTC 10442 0.125 8 2 2 4 32 2 128
NCTC 12493 0.125 2 32 8 64 32 32 32

1: nadifloxacin, 3a: α-arabinoside, 3b: β-galactoside, 3c: β-glucoside, 3d: α-mannoside, 3e: β-xyloside, 7a: α-galactoside,
7b: α-glucoside.

3. Materials and Methods

NMR spectra were recorded on a Bruker DPX spectrometer (400 MHz), and chemical
shifts are quoted in ppm relative to tetramethylsilane as internal standard using the fol-
lowing abbreviations: s, singlet, d, doublet, at, apparent triplet, as, apparent singlet and m,
multiplet. Liquid Chromatography Mass Spectrometry (LCMS) was accomplished using
a ThermoFisher Scientific Accela LC system coupled to a ThermoFisher Scientific LTQ
Fleet Ion Trap Mass Spectrometer (ThermoFisher Scientific, Loughborough, UK). Melting
points were recorded on a TA Instruments DSC Q2000 instrument heating at 10 ◦C/min
(Hertfordshire, UK). FTIR spectra were recorded on a ThermoFisher Scientific Nicolet iS10
instrument. Thin-layer chromatography was performed using ALUGRAM SIL G precoated
plates (Macherey-Nagel, Germany). The purity of deprotected samples was achieved
using an Agilent 1100 series HPLC with a ThermoFisher Scientific Hypersil Gold Column
(50 × 4.6 mm, 3 µm) eluting 0.1% (v/v) formic acid in water/MeCN (85:15), 2 mL/min, UV
absorbance at 254 nm.

All culture media was “Oxoid” from ThermoFisher Scientific, Basingstoke, UK. Nadi-
floxacin was purchased from AOKChem (Shanghai, China) as a racemate and was used
without further purification. Per-O-acetylated and 2,3,4,6-tetra-O-benzyl glucose and galac-
tose were purchased from Carbosynth (Berkshire, UK). All other reagents were purchased
from Sigma-Aldrich (Poole, Dorset, UK) or Fisher Scientific (Loughborough, UK).

Synthesis of 1,2-trans glycosides promoted by 10 molar equivalents of TMSOTf–
General method.

Nadifloxacin (1) (5 g, 13.9 mmoles) was suspended in anhydrous acetonitrile (250 mL),
and to this TMSOTf (2.51 mL, 13.9 mmoles) was added, and the solution was stirred. Fol-
lowing this were the additions of the per-O-acetylated glycoside (either 1,2,3,5-tri-O-acetyl-
α-L-arabinofuranoside, 1,2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside, 1,2,3,4,6-tetra-O-
acetyl-β-D-glucopyranoside, 1,2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside or 1,2,3,5-tri-O-
acetyl-β-D-xylofuranoside, 13.9 mmoles) followed by TMSOTf (22.59 mL, 124.9 mmoles).
Reactions were stirred at room temperature under an atmosphere of nitrogen for 24 h. The
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reaction mixtures were then diluted with anhydrous dichloromethane (250 mL), washed
with sat. NaHCO3 (2 × 100 mL) and brine (2 × 100 mL), dried over MgSO4 and concen-
trated in vacuo. The products were purified on silica columns and eluted with toluene (A)
and acetonitrile (B) at 14% B to 36% B over 5 column volumes and maintained at 36% for
10-column volumes.

Nadifloxacin 2,3,5-tri-O-acetyl-α-L-arabinofuranoside (2a)
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CH3), 1.94 (3 H, s, acetyl CH3), 1.89–1.55 (4H, m, C15-H2, C17-H2), 1.46 (3H, d, J = 6.5 Hz, 
C12-H3). 13C NMR (100 MHz, CDCl3) δ: 170.41, 170.28, 170.19, 167.25 (carboxyl C=O), 
146.35 (C3), 133.61 (aromatic C), 110.81, 110.59 (C10), 100.33 (C18), 70.86 (C20), 70.66 (C22), 
68.98 (C19), 66.99 (C21), 61.23 (C23), 57.94 (C5), 25.97 (C6), 20.81, 20.71, 20.62 (Acetyl CH3), 
20.23 (C12). FT-IR ν cm−1: 2976.02 (w, carboxyl OH), 1748.35 (s, ketone C=O), 1731.64 (car-
boxylic or ester C=O), 1624.15 (aromatic C=C). MS +ESI found 691.2141 (MH+) 
C33H40FN2O13 required 691.2509. 

Nadifloxacin 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (2c) 

 
Nadifloxacin (1) (5 g, 13.9 mmoles) was added to anhydrous acetonitrile and reacted 

with 1 molar equivalent of TMSOTf, 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranoside (5.6 g, 
13.9 mmoles) followed by 9 molar equivalents of TMSOTf overnight to yield the product 
(2c) as a white powder. 

Yield (2.73 g, 29%). m.p. 156–159 °C, 1H NMR (400 MHz, CDCl3) δ: 8.68 (1H, s, C3-H), 7.96 
(1H, d, J = 12.0 Hz, C10-H), 5.22 (1H, dd, J = 9.5, 2.0 Hz, C20-H), 5.08 (1H, dd, J = 9.5, 2.0 
Hz, C21-H), 5.04–4.96 (1H, m, C19-H), 4.67 (1H, d, J = 8.0 Hz, C18-H), 4.57 (1H, dt, J = 7.0, 
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Nadifloxacin (1) (5 g, 13.9 mmoles) was added to anhydrous acetonitrile and reacted
with 1 molar equivalent of TMSOTf, 1,2,3,4,6-penta-O-acetyl-β-D-galactopyranoside (5.6 g,
13.9 mmoles) followed by 9 molar equivalents of TMSOTf overnight to yield the product
(2b) as a white powder.

Yield (4.98 g, 52%). m.p. 151–165 ◦C, 1H NMR (400 MHz, CDCl3) δ: 8.63 (1H, s, C3-H),
7.92 (1H, d, J = 12.0 Hz, C10-H), 5.39–5.31 (1H, m, C21-H), 5.19 (1H, at, J = 9.0 Hz, C19-H),
5.02–4.96 (1H, m, C20-H), 4.57 (1H, d, J = 8.0 Hz, C18-H), 4.53–4.45 (1H, m, C5-H), 4.15
(1H, dd, J = 11.5, 7.0 Hz, C23-Ha), 4.06 (1H, dd, J = 11.5, 7.0 Hz, C23-Hb), 3.87 (1H, at,
J = 7.0 Hz, C22-H), 3.30–2.90 (5 H, m, C7-Ha, C13-H2, C14-H2), 2.79 (1 H, dt, J = 18.0,
8.5 Hz, C7-Hb), 2.14 (2H, m, C6-H2), 2.04 (2H, s, acetyl CH3), 2.01 (2H, s, acetyl CH3), 1.99
(3 H, s, acetyl CH3), 1.94 (3 H, s, acetyl CH3), 1.89–1.55 (4H, m, C15-H2, C17-H2), 1.46
(3H, d, J = 6.5 Hz, C12-H3). 13C NMR (100 MHz, CDCl3) δ: 170.41, 170.28, 170.19, 167.25
(carboxyl C=O), 146.35 (C3), 133.61 (aromatic C), 110.81, 110.59 (C10), 100.33 (C18), 70.86
(C20), 70.66 (C22), 68.98 (C19), 66.99 (C21), 61.23 (C23), 57.94 (C5), 25.97 (C6), 20.81, 20.71,
20.62 (Acetyl CH3), 20.23 (C12). FT-IR ν cm−1: 2976.02 (w, carboxyl OH), 1748.35 (s, ketone
C=O), 1731.64 (carboxylic or ester C=O), 1624.15 (aromatic C=C). MS +ESI found 691.2141
(MH+) C33H40FN2O13 required 691.2509.

Nadifloxacin 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (2c)
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13.9 mmoles) followed by 9 molar equivalents of TMSOTf overnight to yield the product 
(2c) as a white powder. 
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Nadifloxacin (1) (5 g, 13.9 mmoles) was added to anhydrous acetonitrile and reacted
with 1 molar equivalent of TMSOTf, 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranoside (5.6 g,
13.9 mmoles) followed by 9 molar equivalents of TMSOTf overnight to yield the product
(2c) as a white powder.

Yield (2.73 g, 29%). m.p. 156–159 ◦C, 1H NMR (400 MHz, CDCl3) δ: 8.68 (1H, s, C3-
H), 7.96 (1H, d, J = 12.0 Hz, C10-H), 5.22 (1H, dd, J = 9.5, 2.0 Hz, C20-H), 5.08 (1H, dd,
J = 9.5, 2.0 Hz, C21-H), 5.04–4.96 (1H, m, C19-H), 4.67 (1H, d, J = 8.0 Hz, C18-H), 4.57 (1H, dt,
J = 7.0, 3.5 Hz, C5-H), 4.25 (1H, dd, J = 12.5, 5.0 Hz, C23-Ha), 4.17–4.10 (1H, m, C23-Hb),
3.72 (1H, ddd, J = 10.0, 4.5, 2.5 Hz, C22-H), 3.33–2.94 (5 H, m, C7-Ha, C13-H2, C14-H2), 2.84
(1H, ddt, J = 17.0, 10.5, 5.5 Hz, C7-Hb), 2.15 (2H, m, C6-H2), 2.07 (3H, acetyl CH3), 2.04 (3H,
acetyl CH3), 2.02 (3H, acetyl CH3), 2.00 (3H, acetyl CH3), 1.50 (3H, d, J = 6.5 Hz, C12-H3).
13C NMR (100 MHz, CDCl3) δ: 207.66 (C1), 170.78, 170.38, 169.51, 167.64 (carboxyl C=O),
146.45 (C3), 133.64 (aromatic C), 107.39 (C10), 99.17 (C18), 72.76 (C20), 71.71 (C22), 71.44
(C19), 68.43 (C21), 61.98 (C23), 57.99 (C5), 30.89 (C6), 20.1 (acetyl CH3), 20.14 (C12). FT-IR ν

cm−1: 2973.23 (w, carboxyl OH), 1748.42 (s, ketone C=O), 1725.81 (carboxylic or ester C=O),
1672.21 (aromatic C=C). MS +ESI found 691.2930 (MH+) C33H40FN2O13 required 691.2509.

Nadifloxacin 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (2d)
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Nadifloxacin (1) (5 g, 13.9 mmoles) was added to anhydrous acetonitrile and reacted 

with 1 molar equivalent of TMSOTf, 1,2,3,4,6-penta-O-acetyl-D-mannopyranoside (5.6 g, 
13.9 mmoles) followed by 9 molar equivalents of TMSOTf overnight to yield the product 
(2d) as a white powder. 

Yield (2.20 g, 23%). m.p. 190–204 °C 1H NMR (400 MHz, CDCl3) δ: 8.63 (1H, s, C3-H), 7.92 
(1H, d, J = 12.0 Hz, C10-H), 5.34 (1H, dd, J = 10.5, 3.0 Hz, C20-H), 5.24 (1H, dd, J = 10.0, 3.0 
Hz, C21-H), 5.20–5.14 (1H, m, C19-H), 4.99–4.95 (1H, m, C18-H), 4.55–4.44 (1H, m, C5-H), 
4.23 (1H, dd, J = 12.0, 4.5 Hz, C23-Ha), 4.12–4.01 (2H, m, C23-Hb, C22-H), 3.50–2.93 (3H, 
m, C7-Ha, C13-H2, C14-H2), 2.81 (1H, dt, J = 17.5, 9.5 Hz, C7-Hb), 2.11 (5H, m,C6-H2, acetyl 
CH3), 2.04 (acetyl CH3), 2.00 (acetyl CH3), 1.95 (acetyl CH3), 1.91–1.52 (4H, m, C15-H2, C17-
H2) 1.47 (3H, d, J = 6.5 Hz, C12-H3). 13C NMR (100 MHz, CDCl3) δ: 177.36 (C11) 170.59, 
170.22, 170.01, 169.72 (carboxyl C=O), 146.39 (C3), 133.65 (aromatic C), 110.79, 110.56 (C10), 
107.66 (aromatic C) 95.97 (C18), 70.10 (C19), 69.01 (C20), 68.77 (C22), 66.31 (C21), 62.56 
(C23), 57.96 (C5), 25.95 (C6), 20.95, 20.75, 20.73 (acetyl CH3), 20.24 (C12), 18.84 (C7). FT-IR 
ν cm−1: 2956.60 (w, carboxyl OH), 1737.23 (carboxylic or ester C=O), 1617.60 (aromatic 
C=C). MS +ESI found 691.2372 (MH+) C33H40FN2O13 required 691.2509. 

Nadifloxacin 2,3,5-tri-O-acetyl-β-D-xylofuranoside (2e) 

Nadifloxacin (1) (5 g, 13.9 mmoles) was added to anhydrous acetonitrile and reacted
with 1 molar equivalent of TMSOTf, 1,2,3,4,6-penta-O-acetyl-D-mannopyranoside (5.6 g,
13.9 mmoles) followed by 9 molar equivalents of TMSOTf overnight to yield the product
(2d) as a white powder.

Yield (2.20 g, 23%). m.p. 190–204 ◦C 1H NMR (400 MHz, CDCl3) δ: 8.63 (1H, s, C3-H), 7.92
(1H, d, J = 12.0 Hz, C10-H), 5.34 (1H, dd, J = 10.5, 3.0 Hz, C20-H), 5.24 (1H, dd, J = 10.0,
3.0 Hz, C21-H), 5.20–5.14 (1H, m, C19-H), 4.99–4.95 (1H, m, C18-H), 4.55–4.44 (1H, m, C5-H),
4.23 (1H, dd, J = 12.0, 4.5 Hz, C23-Ha), 4.12–4.01 (2H, m, C23-Hb, C22-H), 3.50–2.93 (3H, m,
C7-Ha, C13-H2, C14-H2), 2.81 (1H, dt, J = 17.5, 9.5 Hz, C7-Hb), 2.11 (5H, m,C6-H2, acetyl
CH3), 2.04 (acetyl CH3), 2.00 (acetyl CH3), 1.95 (acetyl CH3), 1.91–1.52 (4H, m, C15-H2,
C17-H2) 1.47 (3H, d, J = 6.5 Hz, C12-H3). 13C NMR (100 MHz, CDCl3) δ: 177.36 (C11)
170.59, 170.22, 170.01, 169.72 (carboxyl C=O), 146.39 (C3), 133.65 (aromatic C), 110.79, 110.56
(C10), 107.66 (aromatic C) 95.97 (C18), 70.10 (C19), 69.01 (C20), 68.77 (C22), 66.31 (C21),
62.56 (C23), 57.96 (C5), 25.95 (C6), 20.95, 20.75, 20.73 (acetyl CH3), 20.24 (C12), 18.84 (C7).
FT-IR ν cm−1: 2956.60 (w, carboxyl OH), 1737.23 (carboxylic or ester C=O), 1617.60 (aromatic
C=C). MS +ESI found 691.2372 (MH+) C33H40FN2O13 required 691.2509.

Nadifloxacin 2,3,5-tri-O-acetyl-β-D-xylofuranoside (2e)
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134.19 (aromatic C), 110.60, 110.36 (C10), 104.69 (C18), 81.38 (C19), 78.47 (C21), 75.27 (C20), 
63.44 (C22), 58.49 (C5), 26.24 (C6), 21.00, 20.86, (acetyl C), 20.28 (C12), 19.25 (C13 or C14). 
FT-IR ν cm−1: 2936.38 (w, carboxyl OH), 1738.96 (carboxylic or ester C=O), 1621.49 (aro-
matic C=C). MS +ESI found 619.2062 (MH+) C30H36FN2O11 required 619.2298. 

Deprotection of per-O-acetylated nadifloxacin glycosides–General method 
The isolated glycosides (2a-e) were de-O-acetylated using a mixture of anhydrous 

dichloromethane and methanol (1:6) and potassium carbonate (50% w/w) over 30–60 min. 
The mixtures were adjusted to approximately pH 3 by the addition of formic acid and 
were purified on C18 columns and eluted with 0.1% (v/v) formic acid in water (A) and 
acetonitrile (B) isocratically at 7:3. 

Nadifloxacin α-L-arabinofuranoside (3a) 

 
Nadifloxacin 2,3,5-tri-O-acetyl-α-L-arabinofuranoside (2a) (2.04 g, 3.31 mmoles) was 

dissolved in anhydrous dichloromethane and methanol, reacted with potassium car-
bonate (1.02 g) and purified to afford the product (3a) as an off-white powder. 

Nadifloxacin (1) (5 g, 13.9 mmoles) was added to anhydrous acetonitrile and re-
acted with 1 molar equivalent of TMSOTf, 1,2,3,5-tetra-O-acetyl-β-D-xylofuranoside (4.53,
13.9 mmoles) followed by 9 molar equivalents of TMSOTf overnight to yield the product
(2e) as a white powder.
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Yield (4.72 g, 55%). m.p. 84–95 ◦C, 1H NMR (400 MHz, CDCl3) δ: 8.70 (1H, s, C3-H), 7.98
(1H, d, J = 12.5 Hz, C10-H), 5.34 (1 H, dd, J = 6.0, 2.0 Hz, C20), 5.22–5.19 (1H, m, C18-H),
5.15–5.12 (1H, m, C19-H), 4.65–4.50 (2H, m, C5-H, C21-H), 4.37–4.11 (2H, m, C22-H2),
3.37–3.01 (5H, m, C7-Ha, C13-H2, C14-H2), 2.90 (1H, ddd, J = 18.0, 11.5, 7.0 Hz, C7-Hb),
2.23–1.69 (m, C6, acetyl CH3, C15-H2, C17-H2), 1.52 (3H, d, J = 7.0 Hz). 13C NMR (100
MHz, CDCl3) δ: 177.85 (C11), 170.78, 170.14, 169.94, 167.32 (acetyl C=O), 146.76 (C3), 138.33,
134.19 (aromatic C), 110.60, 110.36 (C10), 104.69 (C18), 81.38 (C19), 78.47 (C21), 75.27 (C20),
63.44 (C22), 58.49 (C5), 26.24 (C6), 21.00, 20.86, (acetyl C), 20.28 (C12), 19.25 (C13 or C14).
FT-IR ν cm−1: 2936.38 (w, carboxyl OH), 1738.96 (carboxylic or ester C=O), 1621.49 (aromatic
C=C). MS +ESI found 619.2062 (MH+) C30H36FN2O11 required 619.2298.

Deprotection of per-O-acetylated nadifloxacin glycosides–General method
The isolated glycosides (2a-e) were de-O-acetylated using a mixture of anhydrous

dichloromethane and methanol (1:6) and potassium carbonate (50% w/w) over 30–60 min.
The mixtures were adjusted to approximately pH 3 by the addition of formic acid and
were purified on C18 columns and eluted with 0.1% (v/v) formic acid in water (A) and
acetonitrile (B) isocratically at 7:3.

Nadifloxacin α-L-arabinofuranoside (3a)
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Nadifloxacin 2,3,5-tri-O-acetyl-α-L-arabinofuranoside (2a) (2.04 g, 3.31 mmoles) was 

dissolved in anhydrous dichloromethane and methanol, reacted with potassium car-
bonate (1.02 g) and purified to afford the product (3a) as an off-white powder. 

Nadifloxacin 2,3,5-tri-O-acetyl-α-L-arabinofuranoside (2a) (2.04 g, 3.31 mmoles) was
dissolved in anhydrous dichloromethane and methanol, reacted with potassium carbonate
(1.02 g) and purified to afford the product (3a) as an off-white powder.

Yield (1.12 g, 69%). mp: 167–178 ◦C, 1H NMR (400 MHz, DMSO-d6) δ: 8.94 (1H, s, C3-H),
7.81 (1H, d, J = 12.5 Hz, C10-H), 4.95–4.91 (1H, m, C18-H), 4.91–4.82 (1H, m, C5-H), 3.83–3.79
(1H, m, C19-H), 3.76 (1H, m, C21-H), 3.64 (1H, m, C20-H), 3.61–3.54 (1H, m, C22-Ha), 3.42
(1H, dd, J = 12.5, 6.0 Hz, C22-Hb), 3.37–3.07 (5H, m, C7-Ha, C13-H2 and C14-H2), 3.03–2.81
(1H, m, C7-Hb), 2.16–1.86 (3H, m, C6-H2, C15-H2 or C17-H2), 1.82–1.50 (2H, m, C15-H2 or
C17-H2), 1.41 (3H, d, J = 6.5 Hz, C12). 13C NMR (100 MHz, DMSO-d6) δ: 206.32 (ketone
C=O), 176.49, 166.35 (carboxyl C=O), 147.56 (C3), 133.81 (aromatic C), 109.06 (C10), 106.17
(C18), 83.54 (C21), 82.58 (C19), 77.09 (C20), 61.25 (C22), 57.10 (C5), 49.40 (C13 and C14),
33.70 (C15 or C17), 30.64 (C6), 19.62 (C12), 18.63 (C7). FT-IR ν cm−1: 3343.32 (m, alcohol
OH), 2936.72 (w, carboxyl OH), 1716.43 (carboxylic or ester C=O), 1618.00 (aromatic C=C).
MS +ESI found 493.1568 (MH+) C24H30FN2O8 required 493.1986. HPLC analysis: retention
time: 5.912 min, 97.4%.

Nadifloxacin β-D-galactopyranoside (3b)
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C6-H2), 2.02–1.53 (4H, m, C15-H2 and C17-H2), 1.41 (3H, d, J = 4.5 Hz, C12-H3). 13C NMR
(100 MHz, DMSO-d6) δ: 166.08 (carboxyl C=O), 147.25 (C3), 133.46 (aromatic C), 108.99
(C10), 101.56 (C18), 75.09 (C22), 73.19, 70.39 (C19 and C21), 67.95 (C20), 60.45 (C23), 57.02
(C5), 33.66 (C15 and C17), 24.80 (C6), 19.55 (C12), 18.53 (C7). FT-IR ν cm−1: 3383 (w, alcohol
C-OH), 2925 (w, carboxylic C-OH), 1698 (m, ketone C=O), 1628 (m, aromatic C=C), 1448
(m, alkyl C-H), 1021 (s, C-O). MS + ESI found 523.2897 (MH+) C25H32FN2O9 required
523.2092. HPLC analysis: retention time: 3.042 min, purity: 97.3%.
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m, C6-H2), 2.02–1.53 (4H, m, C15-H2 and C17-H2), 1.41 (3H, d, J = 4.5 Hz, C12-H3). 13C NMR 
(100 MHz, DMSO-d6) δ: 166.08 (carboxyl C=O), 147.25 (C3), 133.46 (aromatic C), 108.99 
(C10), 101.56 (C18), 75.09 (C22), 73.19, 70.39 (C19 and C21), 67.95 (C20), 60.45 (C23), 57.02 
(C5), 33.66 (C15 and C17), 24.80 (C6), 19.55 (C12), 18.53 (C7). FT-IR ν cm−1: 3383 (w, alcohol 
C-OH), 2925 (w, carboxylic C-OH), 1698 (m, ketone C=O), 1628 (m, aromatic C=C), 1448 
(m, alkyl C-H), 1021 (s, C-O). MS + ESI found 523.2897 (MH+) C25H32FN2O9 required 
523.2092. HPLC analysis: retention time: 3.042 min, purity: 97.3%. 

Nadifloxacin β-D-glucopyranoside (3c) 

 
Nadifloxacin 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (2c) (2.6 g, 3.77 mmoles) was

dissolved in anhydrous dichloromethane and methanol, reacted with potassium carbonate
(1.3 g) and purified to afford the product (3c) as an off-white powder.

Yield (1.26 g, 64%), m.p. 162–163 ◦C, 1H NMR (400 MHz, DMSO-d6) δ: 8.94 (1H, s, C3-H),
7.83 (1H, d, J = 12.0 Hz, C10-H), 4.93–4.80 (1H, m, C5-H), 4.30 (1H, d, J = 7.0 Hz, C18-H),
3.88 (2H, s, C13-H2 or C14-H2), 3.67 (1H, d, J = 11.5 Hz, C23-Ha), 3.43 (1H, d, J = 9.5 Hz,
C23-Hb), 3.23 (2H, s, C13-H2 or C14-H2), 3.20–3.06 (4H, m, C20-H, C21-H, C22-H and
C7-Ha), 2.96 (1H, at, J = 7.0 Hz, C19-H), 2.94–2.85 (1H, m, C7-Hb), 2.20–1.98 (2H, m, C6-H2),
1.85–1.48 (4H, m, C15-H2 and C17-H2), 1.41 (3H, d, J = 5.5Hz, C12-H3). 13C NMR (100 MHz,
DMSO-d6) δ: 166.08 (carboxyl C=O), 147.10 (C3), 133.48 (aromatic C), 133.16 (aromatic
C), 106.24 (C10), 100.41 (C18), 76.8 (C20, C22), 73.52 (C19), 70.45 (C21), 61.06 (C23), 57.04
(C5), 49 (C13 or C14) 33.60 (C15 and C16),19.56 (C12), 18.60 (C7). FT-IR ν cm−1: 3386 (w, b,
alcohol C-OH), 2925 (w, carboxylic C-OH), 1703 (m, ketone C=O), 1628 (m, aromatic C=C),
1448 (m, alkyl C-H), 1021 (s, C-O). MS +ESI found 523.2073 (MH+) C25H32FN2O9 required
523.2092. HPLC analysis: retention time: 2.537 min, purity: 97.7%.
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Nadifloxacin 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (2d) (2.0 g, 2.90 mmoles) 

was dissolved in anhydrous dichloromethane and methanol, reacted with potassium car-
bonate (1.0 g) and purified to afford the product (3d) as an off-white powder. 

Yield (1.10 g, 73%). m.p. 186 °C, 1H NMR (400 MHz, DMSO-d6) δ: 8.94 (1H, s, C3-H), 7.84 
(1H, d, J = 12.5 Hz, C10-H), 4.92–4.81 (2H, m, C5-Hand C18-H), 3.83 (2H, as, C13-H2 or 
C14-H2), 3.70–3.62 (1H, m, C23-Ha), 3.62–3.58 (1H, m, C19-H), 3.55–3.30 (5H, m, C20-H, 
C21-H, C22-H, C23-Ha), 3.25–3.09 (1H, m, C7-Ha), 3.02–2.82 (1H, m, C7-Hb), 2.16–1.88 
(4H, m, C6-H2 and C15-H2 or C17-H2), 1.80–1.52 (2H, m, C15-H2 or C17-H2), 1.46–1.35 (3H, 
m, C12-H3). 13C NMR (100 MHz, DMSO-d6) δ: 165.62 (aromatic C), 147.46 (C3), 133.75 
(aromatic C), 109.03 (C10), 98.23 (C18), 74.27, 70.89, 70.77, 67.05 (C20, C21 and C22), 61.37 
(C23), 56.95 (C5), 33.39 (C15 and C17), 19.58 (C12), 18.52 (C7). FT-IR ν cm−1: 3429.13, 
3343.67 (m, alcohol OH), 2937.98 (w, carboxyl OH), 1722.74 (carboxylic or ester C=O), 
1616.53 (aromatic C=C). MS +ESI found 523.2296 (MH+) C25H32FN2O9 required 523.2092. 
HPLC analysis: retention time: 6.923 min, purity: 98.1%. 

Nadifloxacin β-D-xylofuranoside (3e) 

Nadifloxacin 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (2d) (2.0 g, 2.90 mmoles)
was dissolved in anhydrous dichloromethane and methanol, reacted with potassium
carbonate (1.0 g) and purified to afford the product (3d) as an off-white powder.

Yield (1.10 g, 73%). m.p. 186 ◦C, 1H NMR (400 MHz, DMSO-d6) δ: 8.94 (1H, s, C3-H), 7.84
(1H, d, J = 12.5 Hz, C10-H), 4.92–4.81 (2H, m, C5-Hand C18-H), 3.83 (2H, as, C13-H2 or
C14-H2), 3.70–3.62 (1H, m, C23-Ha), 3.62–3.58 (1H, m, C19-H), 3.55–3.30 (5H, m, C20-H,
C21-H, C22-H, C23-Ha), 3.25–3.09 (1H, m, C7-Ha), 3.02–2.82 (1H, m, C7-Hb), 2.16–1.88
(4H, m, C6-H2 and C15-H2 or C17-H2), 1.80–1.52 (2H, m, C15-H2 or C17-H2), 1.46–1.35
(3H, m, C12-H3). 13C NMR (100 MHz, DMSO-d6) δ: 165.62 (aromatic C), 147.46 (C3), 133.75
(aromatic C), 109.03 (C10), 98.23 (C18), 74.27, 70.89, 70.77, 67.05 (C20, C21 and C22), 61.37
(C23), 56.95 (C5), 33.39 (C15 and C17), 19.58 (C12), 18.52 (C7). FT-IR ν cm−1: 3429.13,
3343.67 (m, alcohol OH), 2937.98 (w, carboxyl OH), 1722.74 (carboxylic or ester C=O),
1616.53 (aromatic C=C). MS +ESI found 523.2296 (MH+) C25H32FN2O9 required 523.2092.
HPLC analysis: retention time: 6.923 min, purity: 98.1%.

Nadifloxacin β-D-xylofuranoside (3e)
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DMSO-d6) δ: 147.79 (C3), 133.75 (aromatic C), 109.09 (C10), 102.3 (C18), 76.65 (C20), 73.28 
(C19), 69.62 (C21), 65.65 (C22), 33.77 (C15 and C17), 24.91 (C6), 19.65 (C12), 18.85 (C7). FT-
IR ν cm−1: 3335.48 (m, alcohol OH), 2933.13 (w, carboxyl OH), 1614.51 (aromatic C=C). MS 
+ ESI found 493.1762 (MH+) C24H30FN2O8 required 493.1986. HPLC analysis: retention 
time: 8.713 min, purity: 98.7%. 
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method 

2,3,4,6-Tetra-O-benzyl-D-galactopyranose (4a) and 2,3,4,6-tetra-O-benzyl-D-glucopy-
ranose (4b) (20 g, 37 mmoles) were each dissolved in anhydrous dichloromethane (100 
mL). To these solutions pyridine (6.4 mL, 74.4 mmoles) and acetic anhydride (7.52 mL, 
74.4 mmoles) were added. The mixtures were stirred under nitrogen, monitored by TLC 
(hexane–ether 1:1) and stirred at room temperature for approximately 18 h. The organic 
solutions were extracted with 1M HCl (3 × 100 mL), sat. NaHCO3 (3 × 100 mL) and brine 
(3 × 100 mL). The organic fractions were dried over MgSO4 and concentrated in vacuo to 
afford an oil. The galactoside (5a) was precipitated from methanol to afford a white pow-
der. The glucoside (5b) was used as a crude oil. 

1-O-Acetyl-2,3,4,6-tetra-O-benzyl-D-galactopyranoside (5a) 

O
1

4 6
2

3

O

O
O

O

5

30

31
36

35

34
33

32

23

24

29

28

27

26

25

16

17

22

21
20

19

18
9

10

15

14 13

12

11

O
8

O

7

 

Nadifloxacin 2,3,5-tri-O-acetyl-β-D-xylofuranoside (2e) (2.31 g, 3.74 mmoles) was
dissolved in anhydrous dichloromethane and methanol, reacted with potassium carbonate
(1.16 g) and purified to afford the product (3e) as an off-white powder.

Yield (1.10 g, 66%). m.p.145 ◦C, 1H NMR (400 MHz, DMSO-d6) δ: 9.01 (1H, s, C3-H), 7.90
(1H, d, J = 12.5 Hz, C10-H), 5.00–4.91 (1H, m, C5-H), 4.34 (1H, d, J = 7.5 Hz, C18-H), 3.75 (1H,
m, C22-Ha), 3.54–3.26 (1H, m, C21-H), 3.22–3.10 (3H, m, C20-H, C22-Hb, C7-Ha), 3.07–2.93
(2H, m, C19-H and C7-Hb), 2.26–1.92 (4H, m, C6-H2, C15-H2 or C17-H2), 1.87–1.61 (2 H, m,
C15-H2 or C17-H2), 1.48 (3H, d, J = 4.0 Hz, C12-CH3). 13C NMR (100 MHz, DMSO-d6) δ:
147.79 (C3), 133.75 (aromatic C), 109.09 (C10), 102.3 (C18), 76.65 (C20), 73.28 (C19), 69.62
(C21), 65.65 (C22), 33.77 (C15 and C17), 24.91 (C6), 19.65 (C12), 18.85 (C7). FT-IR ν cm−1:
3335.48 (m, alcohol OH), 2933.13 (w, carboxyl OH), 1614.51 (aromatic C=C). MS + ESI found
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493.1762 (MH+) C24H30FN2O8 required 493.1986. HPLC analysis: retention time: 8.713 min,
purity: 98.7%.

Synthesis of 1-O-acetyl-2,3,4,6-tetra-O-benzyl-D-glycosides (5a, 5b)–General method
2,3,4,6-Tetra-O-benzyl-D-galactopyranose (4a) and 2,3,4,6-tetra-O-benzyl-D-glucopyranose

(4b) (20 g, 37 mmoles) were each dissolved in anhydrous dichloromethane (100 mL).
To these solutions pyridine (6.4 mL, 74.4 mmoles) and acetic anhydride (7.52 mL, 74.4
mmoles) were added. The mixtures were stirred under nitrogen, monitored by TLC
(hexane–ether 1:1) and stirred at room temperature for approximately 18 h. The organic
solutions were extracted with 1M HCl (3 × 100 mL), sat. NaHCO3 (3 × 100 mL) and brine
(3 × 100 mL). The organic fractions were dried over MgSO4 and concentrated in vacuo to
afford an oil. The galactoside (5a) was precipitated from methanol to afford a white powder.
The glucoside (5b) was used as a crude oil.

1-O-Acetyl-2,3,4,6-tetra-O-benzyl-D-galactopyranoside (5a)
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Yield (14.8 g, 69%), m.p. 102–104 ◦C, isolated as a mixture of anomers, α:β 1:1.59, 1H
NMR (400 MHz, CDCl3) δ: 7.38–7.22 (m, benzyl C-H), 6.38 (d, J = 3.5 Hz, α-C1-H), 5.57
(d, J = 8.0 Hz, β-C1-H), 4.95 (d, J = 11.5 Hz, α-benzyl CH2), 4.94 (d, J = 11.5 Hz, β-benzyl
CH2), 4.84 (d, J = 11.5 Hz, β-benzyl CH2), 4.82 (d, J = 11.5 Hz, α-benzyl CH2), 4.74 (d,
J = 11.5 Hz, α-benzyl CH2), 4.75–4.69 (m, benzyl CH2), 4.62 (d, J = 11.5 Hz, β-benzyl CH2),
4.57 (d, J = 11.5 Hz, α-benzyl CH2), 4.46 (d, J = 11.5 Hz, α-benzyl CH2), 4.43 (d, J = 11.5
Hz, β-benzyl CH2), 4.39 (d, J = 11.5 Hz, α-benzyl CH2), 4.38 (d, J = 11.5 Hz, β-benzyl
CH2), 4.16 (dd, J = 10.0, 3.5 Hz, α-C2-H), 4.06–3.99 (m, C5-H), 3.94 (m, β-C2-H), 3.89 (dd,
J = 10.0, 2.5 Hz, α-C3-H), 3.72–3.66 (m, β-C4-H), 2.11 (s, α-C8-H3), 2.03 (s, β-C8-H3). 13C
NMR (100 MHz, DMSO-d6) δ: 169.63, 169.41 (carboxyl C=O), 138.64, 138.52, 138.42, 138.22,
138.06, 137.80, 137.77 (benzyl ipso C), 128.63–127.36 (benzyl CH), 94.30 (β-C1), 90.81 (α-C1),
82.42 (α-C5), 78.61 (α-C3), 78.19 (β-C2), 75.42 (α-C2), 75.35, 74.95, 74.72 (benzyl CH2), 74.08
(β-C4), 73.61, 73.54, 73.40, 73.40 (benzyl CH2), 73.04 (β-C5), 72.89 (benzyl CH2), 68.41
(α-C6), 67.94 (β-C6), 21.24 (α-C8), 21.06 (β-C8). FT-IR ν cm−1: 3059.70, 3026.72 (w, aromatic
C-H), 1747.65 (m, ester C=O), 1081.32, 1045.51, 1024.29 (s, ether C-O). MS + ESI found
621.3333 (M + K+) C36H38KO7 required 621.2249.

1-O-Acetyl-2,3,4,6-tetra-O-benzyl-D-glucopyranoside (5b)
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found 621.5834 (M + K+) KC36H38O7 required 621.2249.
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Nadifloxacin (1) (5 g, 13.9 mmoles) was suspended in anhydrous acetone (250 mL),
and to this TMSOTf was added (2.51 mL, 13.9 mmoles), and the solution was stirred. To this
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and C22-H), 3.95–3.88 (C21-H), 3.82 (d, J = 9.5 Hz, C22-H), 3.77 (d, J = 9.0 Hz, β-C19-
H), 3.52–3.44 (m, C20-H and C23-H2), 3.21 (d, J = 17.0 Hz, C7-Ha), 3.03–2.90 (m, C16-H),
2.85–2.67 (m, C7-Hb), 2.15–2.03 (m, C6-H2), 2.03–1.59 (m, C15-H2 and C17-H2), 1.48–1.39 (m,
C12-H3). 13C NMR (100 MHz, CDCl3) δ: 167.16 (carboxyl C=O), 146.47 (C3), 128.62–127.27
(aromatic C), 125.29 (aromatic C), 110.72 (C10), 101.92 (β-C18), 5.83 (α-C18), 82.12 (C20),
79.77 (β-C19), 79.27 (C21), 76.06 (α-C19), 75.32 (benzyl CH2), 75.03 (C21), 74.77 (benzyl
CH2), 74.53 (benzyl CH2), 73.94 (C20), 73.65 (C22) 73.13 (benzyl CH2), 69.78 (C22), 69.31,
69.01 (C23), 32.64 (C15, C17), 26.04 (C6), 20.25 (C12), 18.93 (C7). FT-IR ν cm−1: 3061.62,
3029.55 (w, aromatic C-H), 2920.54, 2861.87 (w, carboxylic C-OH), 1723.88 (m, carbonyl
C=O), 1619 (m, C=C), 1490 (s, arene C-C), MS +ESI found 883.3593 (MH+) C53H56FN2O9
expected 883.3970.

Nadifloxacin 2,3,4,6-tetra-O-benzyl-α,β-D-glucopyranoside (6b)
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glucose H), 3.78–3.71 (m, C23-Ha), 3.71–3.44 (m, C23-Hb, α-C19-H, β-C19-H, glucose H),
3.38–3.16 (m, C7-Ha), 3.15–3.00 (m, C13-H2 or C14-H2), 2.93–2.75 (m, C7-Hb), 2.11–1.64
(m, C17-H2, C15-H2), 1.53 (d, J = 6.5 Hz, C12-H3), 1.52 (d, J = 6.5 Hz, C12-H3).13C NMR
(100 MHz, CDCl3) δ: 177.14, 167.35 (carbonyl C=O), 110.77, 110.49 (C10), 101.88 (β-C18),
95.13 (α-C18), 84.52, (glucose C), 82.29 (β-C19), 82.04 (α-C20), 79.98, 77.88 (glucose C), 75.69,
75.25, 75.04, 74.95 (benzyl CH2), 74.82 (β-glucose C), 73.50, 73.42, 73.33, 73.25 (benzyl CH2),
70.51 (glucose C), 68.62 (C23), 57.95 (C5), 33.12 (C17, C15), 30.97 (C6), 20.23 (C12), 18.83
(C7). FT-IR ν cm−1: 3062.43, 3028.98 (w, aromatic C-H), 2900.68, 2865.08 (w, carboxylic
C-OH), 1618.42 (m, C=C), 1452 (s, arene C-C), 1067.21, 1027.67 (s, C-O). MS + ESI found
883.3850 (MH+) C53H56FN2O9 expected 883.3970.

Deprotection of per-O-benzylated nadifloxacin glycosides and resolution of anomers
by enzyme hydrolysis (7a, 7b)–General method

De-O-benzylation of glycosides (6a) and (6b) was achieved using Pd/C (10 wt.%) in
methanol under an atmosphere of hydrogen. After 24 h, the mixtures were filtered over
Celite and concentrated in vacuo to afford anomeric mixture of nadifloxacin glycosides (7a
α,β) and (7b α,β). These were then stirred in a suitable buffer, β-glycosidase (100 U) was
added for 7a α,β: β-galactosidase from E. coli, for 7b α,β, β-glucosidase from almonds, and
the suspensions were incubated at 37 ◦C and monitored by HPLC analysis for the decrease
in the β-glycoside. Once the β-anomers had all been hydrolysed, the reaction mixtures
were filtered, adjusted to pH 3.0 using formic acid and purified on C18 columns and eluted
with 0.1% (v/v) formic acid in water (A) and acetonitrile (B) (70:30).

Nadifloxacin α-D-galactopyranoside (7a)
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carboxyl OH), 1708.29 (carboxylic or ester C=O), 1620.84 (aromatic C=C). MS + ESI found
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purity: 98.2%.
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Yield (0.20 g, 27%), m.p. 162 ◦C, 1H NMR (400 MHz, DMSO-d6) δ: 9.01 (1H, s, C3-
H), 7.90 (1H, d, J = 12.0 Hz, C10-H), 5.03–4.83 (2H, m, C5-H and C18-H), 3.69 (1H, d,
J = 11.0 Hz, C23-Ha), 3.61–3.46 (3H, m, C20-H, C22-H, C23-Hb), 3.30–3.20 (1H, m, C19-H),
3.25–3.12 (1H, m, C6-Ha), 3.20–3.08 (1H, m, C21-H), 3.07–2.88 (1H, m, C6-Hb), 2.25–1.95
(2H, m, C7-H2), 2.07–1.60 (4H, m, C15-H2 and C17-H2), 1.48 (3H, d, J= 7.0 Hz). 13C NMR
(100 MHz, DMSO-d6) δ: 176.47 (carboxyl C=O), 166.08 (aromatic C), 147.40 (C3), 133.61
(aromatic C), 108.99 (C10), 106.44 (aromatic C), 97.28 (C18), 73.16 (C20), 73.05 (C22), 71.81
(C19), 70.37 (C21), 61.03 (C23), 57.07 (C5), 24.84 (C7), 19.57 (C12), 18.53 (C15 and C17).
FT-IR ν cm−1: 3359.86 (m, alcohol OH), 2928.52 (w, carboxyl OH), 1709.04 (carboxylic
or ester C=O), 1621.75 (aromatic C=C). MS + ESI found 523.1920 (MH+) C25H32FN2O9
required 523.2092. HPLC analysis: retention time: 5.028 min, purity 98.4%.

Determination of minimum inhibitory concentration
The glycosides (3a-e and 7a,b) and underivatised nadifloxacin (1) were individually

dissolved in dimethyl sulfoxide, and amounts of the solutions were added to Tryptone
Soya Agar (TSA) that had been autoclaved and then cooled to 50 ◦C to produce doubling
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concentrations of nadifloxacin (1) from 0.125–8 µg/mL and 1–128 µg/mL of the glycosides
(3a-f and 7a,b). The agar was swirled to mix, and then plates were poured and dried.
Specifically, a stock of nadifloxacin (1) was prepared in DMSO (1.6 mg/mL). Concentrations
of 800, 400, 200, 100, 50 and 25 µg/mL were prepared by serial dilutions starting with
addition of 0.5 mL of the 1.6 mg/mL solution into 0.5 mL of DMSO and so forth. An aliquot
(100 µL) from each concentration was added individually to molten agar (20 mL) to give
final agar concentrations of 8, 4, 2, 1, 0.5, 0.25 and 0.125 µg/mL. A stock of each nadifloxacin
glycoside was prepared in DMSO (25.6 mg/mL). Concentrations of 12.8, 6.4, 3.2, 1.6, 0.8,
0.4 and 0.2 mg/mL were prepared by serial dilutions starting with addition of 0.5 mL of
the 25.6 mg/mL solution into 0.5 mL of DMSO. A nadifloxacin glycoside concentration of
20 µg/mL was prepared by diluting 100 µL of concentration 0.2 mg/mL into 900 µL of
DMSO. An aliquot (100 µL) from each concentration was added individually to molten agar
(20 mL) to give final agar concentrations of 128, 64, 32, 16, 8, 4, 2, 1 and 0.1 µg/mL. A plate
containing no nadifloxacin glycoside was used as control. Plates were cooled and dried
before use. A plate containing no nadifloxacin was used as control. Plates were cooled and
dried before use.

Cultures of bacteria were grown overnight in Nutrient Broth 2 (NB2) at 37 ◦C from
beads stored at −80 ◦C. Cultures were then diluted decimally in Maximum Recovery
Diluent (MRD) to approximately 106 CFU/mL, and 300 µL of each organism added to
the wells of a multipoint inoculator (“Oxoid Cathra Replicator”, Thermofisher Scientific).
Pins of the inoculator then dispensed amounts of bacterial suspension onto the surface
of the agar plates. Plates were incubated at 37 ◦C and inspected after 18 h for growth to
obtain cultures in the log phase, wherein cells were actively dividing. The lowest amount of
antibacterial agent that totally inhibited growth was recorded as the MIC for that organism.

4. Conclusions

The poor aqueous solubility of nadifloxacin (1) has limited its clinical use to topical
applications, and this is unfortunate since it exhibits broad-spectrum antibacterial activity
at very low concentrations. The glycosides prepared in this study were water-soluble, mean-
ing that aqueous-based preparations are now feasible. Importantly, all of the Staphylococcus
aureus strains, including four MRSA strains, were found to be sensitive to, or intermediately
sensitive to, the glycosides. Hence, the glycosides could be suitable as lead compounds
for the development of orally administered antibacterial agents for the treatment of MRSA
infections. The stability of the glycosidic bond should also allow them to arrive at the site of
infection intact. The most potent glycoside, nadifloxacin-α-L-arabinofuranoside (3a), had
MICs of 1–8 µg/mL for the eight S. aureus strains, making it a prime candidate for further
studies. Since the glycosides exhibited different MICs for different organisms, they could
also be developed as tools for the selective isolation of target organisms in the presence of
background flora.
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