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Impact of 3-D urban landscape patterns on the outdoor thermal environment：A 1 

modelling study with SOLWEIG 2 

Abstract: With global warming and rapid urban growth, cities get warmer, which poses 3 

additional stress on human thermal comfort and health. Complex three-dimensional (3D) 4 

urban forms change radiation fluxes and shade patterns in cities, but most studies that link 5 

urban form to thermal exposure have traditionally investigated the horizontal, two-6 

dimensional composition and configuration of urban landscapes. Supported by high-7 

precision airborne LiDAR data and IKONOS satellite data, this study calculates 3D urban 8 

landscape metrics for central Nanjing, China, including vegetation above ground biomass 9 

(AGB), building volume (VB), standard deviation of building and vegetation heights (HSDB, 10 

HSDV), the building normalized compactness radio (nCR), sky view factor (SVF), surface 11 

roughness (SR), and shadow patterns (SP). Diurnal hourly mean radiant temperature (Tmrt) is 12 

simulated using the UMEP (Urban Multi-scale Environmental Predictor) tool forced with 13 

fixed-point observation data for a typical hot summer day. Correlation and multiple 14 

regression analyses are conducted to investigate the relationship between the 3D form metrics 15 

and Tmrt and to identify key factors that influence the thermal environments. Tmrt varies 16 

spatially and diurnally and is strongly related to SP during the day, revealing the importance 17 

of solar access for modulating the thermal environment. AGB is negatively, but SVF, SP, and 18 

building nCR are positively correlated with daytime Tmrt. At night, Tmrt is more homogeneous 19 

across space and mainly impacted by the urban fabric’s ability to lose heat. Open areas cool 20 

faster than areas with low SVF and complex urban forms with high building nCR. Findings 21 

from this study have great scientific and practical significance for optimizing urban landscape 22 

patterns from a human-centered heat exposure perspective and will guide planning and 23 
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design strategies to promote thermally comfortable urban environments.  24 

Keywords: Three-dimensional urban landscape metrics, urban thermal environment, mean 25 

radiant temperature, LiDAR, UMEP  26 

27 
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1. Introduction  28 

Livability, health, and sustainable development of cities are key issues of the 29 

Anthropocene in the face of climate change. Urbanization converts natural spaces into man-30 

made impervious spaces and meanwhile, building density and height increase continuously 31 

as urban areas develop and expand. Changes in the composition and configuration of urban 32 

landscapes directly affect the urban thermal environment, resulting in significant 33 

intensification of the urban heat island (UHI) (Oke et al., 1981; Santamouris et al., 2014; 34 

Solcerova et al., 2017). Additionally, with climate change, the intensity, duration, and 35 

frequency of heat waves in cities increase, leading to a decrease in outdoor thermal comfort 36 

and added heat stress on urban dwellers (Patz et al., 2005; Perkins et al., 2012; Li et al., 2020). 37 

The main incoming energy source in the urban canopy layer is the solar radiation 38 

received at the surface. The composition and configuration of three-dimensional (3D) urban 39 

landscape patterns affect how much direct radiation enters an urban canyon, how it is 40 

reflected, and how much heat is stored and emitted (Bonan, 2015, Zhu et al., 2020). In cities, 41 

buildings are major urban landscape elements. Building volumes and materials and their 42 

arrangement affect the thermal storage capacity and energy transmission processes of the city 43 

(Salata et al., 2015). Differences in building height and density can cause multiple reflections 44 

of sunlight irradiated on the building surface, causing reabsorption (Yang & Li, 2015; Ronchi 45 

et al., 2020). Street morphology, especially the ratio of building height to street width (H/W 46 

ratio), typically affects the radiative environment (Park et al., 2021). At night, heat is trapped 47 

in narrow streets, thereby increasing air temperature, but more surface shading during the 48 

day leads to cooling (Aboelata, 2020). Studies have also shown that the normalized 49 

compactness ratio (nCR) (Bonczak & Kontokosta, 2019), sky view factor (SVF) (Middel et 50 
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al., 2018), urban shade (Hwang et al., 2011; Peters, 2016), and surface roughness 51 

(Maragkogiannis et al., 2014; Zhang et al., 2018) affect the thermal environment. 52 

Urban green spaces play a critical role in mitigating the UHI and regulating the thermal 53 

environment. Previous studies have demonstrated that two-dimensional (2D) green space 54 

metrics, such as area and shape of vegetation, affect the urban thermal environment; generally, 55 

the larger the area is, the more pronounced the cooling effect (Kong et al., 2014; Motazedian 56 

et al., 2020). Additionally, the three-dimensional (3D) characteristics of vegetation also 57 

affect the thermal environment, creating a specific local microclimate (Chun & Guldmann, 58 

2018; Zellweger et al., 2019; Zhang et al., 2019). Research has shown that the aboveground 59 

biomass (AGB) of vegetation affects cooling (Chun & Guldmann, 2014). Leaves absorb part 60 

of the incident solar radiation and convert a small part of the radiation energy into chemical 61 

energy through photosynthesis, thereby reducing the ambient temperature (Rahman et al., 62 

2020). In addition, most of the radiant energy absorbed by vegetation is used for transpiration, 63 

which cools the environment and increases humidity (Hsieh et al., 2018). Moreover, the 64 

vegetation canopy shades ground surfaces and building façades, which reduces the 65 

absorption of solar radiation in the urban fabric (Wong & Yu, 2005; Bowler et al., 2010; 66 

Norton et al., 2015).  67 

Outdoor human activities and health are mainly affected by urban near-surface 68 

temperature and radiant flux densities the human body is exposed to. The mean radiation 69 

temperature (Tmrt) refers to the shortwave and longwave radiation that irradiates a person 70 

from all directions, including direct and reflected radiation. It is one of the most important 71 

meteorological parameters regulating the human energy balance and human thermal comfort 72 

(Thorsson et al., 2007; Middel et al., 2021). Tmrt considers the radiative influence of ground 73 
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surfaces, building façades, and vegetation. It characterizes how a person perceives thermal 74 

conditions more comprehensively than surface temperature or air temperature, especially 75 

under hot conditions (Middel & Krayenhoff, 2019). 76 

Most studies that investigate the impact of urban landscapes on temperatures are limited 77 

to 2D (Amiri et al., 2009; Li et al., 2016). However, 2D urban landscape patterns fail to 78 

represent the spatial heterogeneity of complex 3D structures, which may impact the thermal 79 

capacity, thermal conductivity, and thermal radiation in complex built environments. 80 

Additionally, it is difficult to scientifically guide real-world urban planning and development 81 

based on research conclusions drawn from a 2D landscape perspective (Chen et al., 2014). 82 

Therefore, 3D landscape patterns must be scientifically quantified to comprehensively assess 83 

the impact of urban form on outdoor thermal environments.  84 

In recent years, the rapid development of multisource remote sensing data, especially 85 

LiDAR remote sensing technology, has provided important support for obtaining and 86 

quantifying 3D urban landscape elements at fine scales. At the same time, advances in 87 

numerical simulation models for multiscale thermal environments facilitate comprehensive 88 

analyses of 3D urban morphological impacts on the thermal environment. Past LiDAR-based 89 

urban form studies investigated vertical characteristics of urban landscapes by creating 90 

metrics such as the average, minimum, and maximum height of buildings (Zimble et al., 2003; 91 

Petras et al., 2017). At present, land cover composition and configuration studies that 92 

consider height metrics still cannot fully reveal the impact of 3D urban form on the ability of 93 

urban surfaces to receive and emit radiation, because they lack information on radiant fluxes 94 

and shade. In addition, most studies focus on remotely sensed land surface temperature, 95 

because fine-scale radiant flux densities are not readily available for cities. There is a lack of 96 
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research that investigates the influence of 3D urban landscape patterns on the thermal 97 

environment from the perspective of outdoor thermal comfort.  98 

This research gap has great scientific and practical significance for optimizing urban 99 

landscape patterns from a human-centered heat exposure perspective. The present study 100 

constructs 3D urban landscape metrics retrieved from high-resolution airborne LiDAR point 101 

clouds coupled with numerical simulations of the radiant environment and shade to assess 102 

the impact of 3D urban form on the summer thermal environment for central Nanjing, China. 103 

Based on micrometeorological data from fixed-point observations, radiative fluxes and shade 104 

patters are simulated with the urban multiscale environmental predictor (UMEP) model to 105 

explore the thermal spatial heterogeneity and investigate its relationship with 3D urban form. 106 

This study will guide the optimization of urban planning and development patterns to 107 

alleviate urban heat.  108 

2. Data and methods 109 

2.1. Study area 110 

The study was conducted in Nanjing, capital of the Jiangsu Province in China in the 111 

west of the Yangtze Delta (Fig. 1). Nanjing has a subtropical monsoon climate with four 112 

seasons and a hot and humid summer. The mean daily maximum temperature between June 113 

and August is 31 °C (Nanjing Meteorological Bureau). The number of hot days per year and 114 

the frequency of heat waves have been increasing, with 112 summer heat wave events 115 

(defined as three consecutive days with temperature ≥35 °C) between 1951 and 2009 (Xu et 116 

al., 2011; Kong et al., 2016). Nanjing has an urban built-up area of 971.62 km2 and a 117 

population of 6,959,900. Spatial urbanization patterns are constantly changing due to 118 

continuous horizontal and vertical urban growth. Nanjing has experienced outward 119 
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expansion at unprecedented rates along with vertical growth from infill development and 120 

neighborhood transformations. As a result, building density (compactness) and height 121 

variability have increased significantly and intensified the UHI effect. 122 

 

Fig.1 Land use /land cover, main parks and locations of the study area in Nanjing 

2.2 UMEP tool and data processing  123 

The UMEP tool is a plug-in for QGIS that can be used for various urban applications, 124 

such as outdoor thermal comfort, energy consumption, and climate change adaptation on an 125 

urban scale (Lindberg et al., 2018; Gabey et al., 2019). UMEP allows for interacting with 126 

QGIS-based spatial information and using different data sources (Abbasabadi & Ashayeri, 127 

2019; Fernández et al., 2021). This study uses the UMEP Urban Geometry module and the 128 

Outdoor Thermal Comfort module to calculate SVF, SP, and Tmrt for Nanjing. Based on the 129 

2-m resolution DEM, high resolution Tmrt maps are generated using SOLWEIG (SOlar and 130 

LongWave Environmental Irradiance Geometry model). SOLWEIG is part of UMEP and 131 
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estimates shortwave and longwave radiation fluxes based on the urban geometry (eg. SVF) 132 

(Lindberg et al., 2008; Ratti et al., 2006), vegetation, geographic information (latitude, 133 

longitude, and elevation), and meteorological forcing data (direct and diffuse radiation, 134 

global radiation, air temperature, and relative humidity).  135 

To understand the spatiotemporal variation of Tmrt in central Nanjing, this study selected 136 

August 7, 2013 as simulation date, because weather conditions were typical of a clear, hot 137 

summer day in Nanjing. Statistical analyses were conducted for six hours of the day: 10:00h, 138 

12:00h, 14:00h, 16:00h, 20:00h, and 22:00h. To analyze the impact of 3D urban form on Tmrt, 139 

the 2-m resolution UMEP output is aggregated to a 120-m grid. SPSS 26.0 was used to 140 

conduct bivariate correlation analyses and stepwise multivariate linear regressions for the 3D 141 

urban landscape metrics and Tmrt to identify the key factors affecting the thermal environment. 142 

2.3 Data sources and preprocessing 143 

This study uses four data sources to determine 3D urban landscape metrics and Tmrt for 144 

central Nanjing: fixed-point weather station data, airborne LiDAR data, a national vector 145 

dataset with detailed building footprints and land use/cover information (the second national 146 

land resource survey was conducted between 2007 and 2009), and IKONOS remote sensing 147 

images. The airborne LiDAR data were acquired by the City of Nanjing in April 2009 as part 148 

of a municipal effort to build a geospatial database. The LiDAR data were pre-processed and 149 

analyzed using the LiDAR360 software (GreenValley International Ltd 2019, Berkeley, 150 

California). A high-resolution urban normalized digital surface model (nDSM) and digital 151 

elevation model (DEM) were derived from the point cloud as basis for the 3D urban 152 

landscape metrics. The national vector dataset was used as mask to extract the 3D urban 153 

landscape metrics from LIDAR at 2-m resolution. High spatial resolution IKONOS remote 154 
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sensing images from 2009 served as virtual reference data to check the urban landscape 155 

classification. 156 

The UMEP model requires air temperature, relative humidity, and direct and diffuse 157 

solar radiation to simulate Tmrt. For meteorological forcing, hourly observations were 158 

obtained from a weather station in Downtown Nanjing (Table 1) for 24 hours on August 7, 159 

2013—a typical hot summer day with clear skies. 160 

Table 1 Hourly meteorological observations to force the UMEP model, corresponding 

sensors, and installation height. 

Parameters Instruments Installation 

Height (m) 

Net Radiation 
pyranometer (4-Component net radiometer, 

CNR4, Campbell Scientific Inc., USA) 
1.5 

Long-wave 

Radiation 

pyranometer (4-Component net radiometer, 

CNR4, Campbell Scientific Inc., USA) 
1.5 

Latent Heat 
EC150, Campbell 

Scientific Inc., USA 
1.5 

Relative 

Humidity 

temperature and RH probe (HMP155A, Scientific 

Inc., USA) 
4,9,18,36,72 

Wind Speed 
2-D sonic Anemometers (010C and 020C, 

Campbell Scientific Inc., USA) 
4,9,18,36,72 

Air Temperature 
temperature and RH probe (HMP155A, Scientific 

Inc., USA) 
4,9,18,36,72 

Precipitation rain gage (TE525WS-L, Campbell, USA) 1 

 161 

2.4 Three-dimensional urban landscape metrics 162 

The IKONOS classified land cover data was intersected with the high-resolution nDSM 163 

to generate a separate building nDSM (nDSM-B) and vegetation nDSM (nDSM-V) of central 164 

Nanjing. The two surface models form the basis to calculate four 3D urban landscape metrics 165 

on a 2-m × 2-m grid. Additional metrics are calculated using UMEP at a 2-m resolution. The 166 

3D urban landscape metrics are then used in statistical analyses to assess the impact of 3D 167 
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urban form on the thermal environment. 168 

2.4.1. Sky view factor (SVF) 169 

The SVF, which is defined as the amount of visible sky in the upper hemisphere 170 

(Johnson and Watson, 1984; Middel et al., 2018), is an important metric to quantify urban 171 

morphology, because it modulates how much solar radiation enters and leaves an urban street 172 

canyon. The SVF has been shown to impact air temperature (Oke, 1988; Chen et al., 2012), 173 

ventilation (Grimmond and Oke, 1999), solar radiation, and Tmrt (Lindberg & Grimmond, 174 

2011; Middel et al., 2018). Kidd and Chapman (2012) were the first to propose generating 175 

single-point and continuous SVFs based on high-resolution LiDAR data. In traditional SVF 176 

calculations, vegetation information is either omitted, or simple models (e.g., rectangular 177 

columns and ellipsoids) are used to replace trees, thereby posing a challenge to quantify the 178 

impact of vegetation in detail. An et al. (2014) analyzed the impact of vegetation canopy on 179 

SVF based on high-precision 3D point cloud (3DPC) data. The direct use of 3DPC to obtain 180 

SVF can be computationally intensive, but derived products (DEM and DSM) can be used 181 

instead (Zakšek et al., 2011). Continuous SVFs can be calculated using the preprocessing 182 

module of the UMEP tool, which implements a shadow casting algorithm based on raster 183 

data (Ratti and Richens, 1999). In this study, SVF data at 2-m resolution are obtained using 184 

the high-resolution DSM of Nanjing. 185 

2.4.2. Standard deviations for building and vegetation height 186 

The vertical variability of an urban area can be quantified using the standard deviation 187 

of the average building height (HSDB) and vegetation height (HSDV). Building height directly 188 

influences the solar radiation received by an urban canyon, as it impacts SVF. Areas with 189 

taller buildings and lower SVF have been shown to increase the nocturnal UHI (Oke, 1981; 190 
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Unger, 2009) but improve daytime thermal conditions due to shading (Ali-Toudert and Mayer, 191 

2007; Middel et al., 2014; Mirzaee et al., 2018). Taller and larger trees increase canopy 192 

coverage and shading of ground surfaces, thereby reducing the solar radiation absorbed by 193 

the ground during the day and reducing surface temperature (Bowler et al., 2010). 194 

Heterogeneous vertical urban forms increase roughness in the urban canopy layer, resulting 195 

in more complex reflection and absorption of solar radiation. Considering the scale difference 196 

of individual buildings and vegetation and the relatively large plane area of building roofs, 197 

HSDB is calculated using a grid of 120-m with a resampling resolution of 2-m, and 𝐻𝑆𝐷𝐵(𝑉)is 198 

calculated as follows: 199 

HSD𝐵(𝑉) = √∑
(𝐻𝐵(𝑉)𝑖−�̅�𝐵(𝑉))2

𝑛
𝑛
𝑖=1                         （1） 200 

 where 𝐻𝑆𝐷𝐵(𝑉) is the standard deviation of building and vegetation height, respectively; 201 

𝐻𝐵(𝑉)𝑖 is the height of the sample within the unit area; �̅�𝐵(𝑉) is the average height of the unit 202 

area; and n is the number of samples within the unit area. 203 

2.4.3. Building volume (VB) and aboveground biomass (AGB) 204 

The building volume VB is correlated to the height and envelope of a structure. Tall 205 

buildings are less likely to be shaded by other surrounding structures, thus they absorb more 206 

solar radiation and have increased roof surface temperatures (Sharmin et al., 2012; Perini & 207 

Magliocco, 2014; Shareef & Abu-Hijleh, 2020). Similarly, the size of the building envelope 208 

affects the heat capacity of a building and determines the amount of heat it can store during 209 

the day, affecting the UHI at night (Givoni, 1998). In turn, the AGB of vegetation impacts 210 

evapotranspiration and shading (Michiles & Gielow, 2008). VB and AGB within the unit area 211 

of a 2-m grid are calculated using the following equations: 212 
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𝑉𝐵𝑖 = 𝐻𝐵𝑖 × 𝑆 213 

                                       𝐴𝐺𝐵𝑖 = 𝐻𝑉𝑖 × 𝑆                                         （2） 214 

where 𝑉𝐵𝑖 and 𝐴𝐺𝐵𝑖 are the VB and AGB within the ith unit area, 𝐻𝐵(𝑉)𝑖 is the raster elevation 215 

of buildings (or vegetation) within the ith unit area, and  𝑆 is the base area of the unit area 216 

(2-m × 2-m). 217 

2.4.4. Building compactness ratio (CR) 218 

The building compactness ratio (CR) is the ratio of building surface area to VB within a 219 

unit area and is a metric in building morphology that describes the complexity of building 220 

structures. Subsequently, the normalized CR (nCR) is defined as the envelope surface area 221 

per unit building volume. As a metric characterizing the complexity of building surface 222 

structure, nCR is mostly applied in large-scale urban studies and rarely used as a landscape 223 

metric parameter in urban thermal studies. 224 

 Thus far, the impact of compact development on the urban thermal environment has 225 

been mostly studied in the context of land surface temperature (Li et al., 2016) but not with 226 

respect to Tmrt. The normalized CR (nCR) is calculated based on CR using the following 227 

equation (Bonczak & Kontokosta, 2019): 228 

𝐶𝑅𝑖 = 𝑆𝑒𝑖 ÷ 𝑉𝐵𝑖                                              （3） 229 

𝑛𝐶𝑅𝑖 =
𝐶𝑅𝑖

(( √𝑉𝐵𝑖
3 )

2
×5)÷𝑉𝐵𝑖

=
𝑆𝑒𝑖

( √𝑉𝐵𝑖
3 )

2
×5

            （4） 230 

Where 𝐶𝑅𝑖 is the building compactness ratio and  𝑛𝐶𝑅𝑖 is normalized within the ith 120-m 231 

grid respectively;  𝑆𝑒𝑖 is the building envelope surface area and VBi is VB within the ith 120-232 

m grid; building envelope surface area of each 2-m × 2-m grid 𝑆𝑒2 was computed using the 233 

following equation: 234 
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𝑆𝑒2 = 𝑆
cos([𝑆𝑙𝑜𝑝𝑒] × 𝜋

180⁄ )⁄                             (5) 235 

Where S is the area of the 2-m grid, and 𝑠𝑙𝑜𝑝𝑒 can be computed based on nDSM-B using the 236 

ArcGIS 3D Analyst extension (Vers. 10.5) (ESRI, Redlands, CA, USA) and the  𝑆𝑒𝑖  then be 237 

statistically computed using the “zonal statistics” (Zhang et al., 2011; Jenness, 2004). 238 

2.4.5. Daily Shadow Patterns (SP) 239 

The daily shadow pattern (SP) is a shade metric that changes with the position of the 240 

sun in the sky (azimuth and zenith angles). The shadow patterns on the ground originate from 241 

DSM of buildings, topography, trees and bushes using the Shadow generator plugin, and the 242 

position of the sun is calculated using PySolar, a python library for various sun related 243 

applications (Lindberg & Grimmond, 2011; Lindberg et al., 2018). The SP characterizes the 244 

direct solar radiation received by an area at a specific time of day, day of the year, and 245 

geographic location depending on the surrounding urban form. The amount of direct 246 

incoming solar radiation is a main driver of Tmrt during the day (Middel & Krayenhoff, 2019; 247 

Peeters et al., 2020). SP can have three transmittance values: 0 (completely shaded, e.g., by 248 

a building), 1 (completely sun-exposed), and 0.03 (shaded by vegetation). In this study, a SP 249 

map is produced in the UMEP SOLWEIG Analyzer using the 2-m resolution DSM. 250 

2.4.6. Surface roughness (SR) 251 

Buildings and vegetation create a rough surface in the urban canopy layer (Oke, 1989). 252 

Heterogeneous vertical urban forms increase surface roughness (SR), which impacts 253 

turbulence and ventilation (Barlow, 2014). The SR is an index to measure the surface 254 

(including building and vegetation) texture or fluctuation, which has been used in air quality 255 

and meteorological models to account for enhanced mixing and the drag effects of the 256 
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underlying surface and measured in different way (Duan & Takemi, 2021; Nield et al., 2013; 257 

Grimmond & Oke, 1999). The higher SR, the greater the resistance to wind, which impedes 258 

the flow of energy. SR𝑖  is calculated as the ratio of the surface area per unit building or 259 

vegetation envelope surface area 𝑆𝑒𝑖 to the corresponding vertical projected area (𝑆𝑝𝑖) (unit 260 

area size 120-m × 120-m): 261 

𝑆𝑅𝑖 =
𝑆𝑒𝑖

𝑆𝑝𝑖
             （6） 262 

Where 𝑆𝑅𝑖 is the surface roughness, 𝑆𝑒𝑖 is the envelope surface area which can be computed 263 

according to equation (5), and 𝑆𝑝𝑖  is vertical projected planimetric area within the ith 120-m 264 

grid. 265 

3. Results 266 

3.1 Urban landscape pattern characteristics 267 

3.1.1 Three-dimensional characteristics of vegetation and buildings 268 

The AGB of vegetation in central Nanjing varies significantly (Fig 2(a)). Areas with 269 

high AGB are mainly clustered in parks (Fig 2(a), ①-⑤), especially at Purple Mountain (Fig 270 

2(a), ①), a remnant hilly landscape with high vegetation cover and dense forest. In contrast, 271 

the southwestern Hexi New District—a newly urbanized area with little vegetation—has 272 

much lower AGB (Fig 2(a), I). Areas with high AGB also exhibit greater vertical variability. 273 

HSD𝑉  is largest at the park area, which are natural forest areas in the city with diverse 274 

vegetation, mixed forest, shrubs, and grass (Fig 2(b), ①-⑤). HSD𝑉 is also large on both sides 275 

of the streets in the Xinjiekou-Laomendong area (Fig 2(b), II- IV), which is the Old Town of 276 

Nanjing. Street trees are dominated by Platanus orientalis Linn trees and well-growing 277 
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shrubs and grasses. The Hexi New District (Fig 2(b), I) encompasses new residential and 278 

commercial areas in the southwestern part of the study area that generally have low HSD𝑉.  279 

 

 

Fig 2 Aboveground biomass AGB and standard deviation of vegetation height 𝐻𝑆𝐷𝑉 across 

Nanjing; a) Purple Mountain Park①, Jubao Mountain Park②, Shitoucheng Park ③,  

Qingliang Mountain Park④, Yuhuatai Scenic area⑤; b) Hexi new district(I),  Xinjiekou-

Laomendong(II- IV). 

VB gradually decreases from the city center to the periphery of the study area. VB is 280 

highest in the central business district (CBD) of Nanjing between Xinjiekou (II) and 281 

Fuzimiao-Laomendong (Fig 3(a), III-IV). The CBD further exhibits a large variability in 282 

building heights (Fig. 3(b), II-IV). HSD𝐵 is also elevated in commercial areas and in newly 283 

developed areas, such as the Hexi New Town area (Fig. 3(b), I), which is currently the 284 

subcenter of Nanjing.  285 

The downtown area near the Qinhuai River, Xuanwu Lake, and Purple Mountain Park 286 

are dense areas with high nCR (Fig. 3(c)). These districts have experienced constant urban 287 

redevelopment and infill over time. Buildings with various uses and styles lead to complex 288 
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urban morphology and high nCR. SR is larger in the urban center Xinjiekou (Fig. 3(d), II) 289 

and Fuzimiao-Laomendong (Fig. 3(d), III-IV) than in the surrounding areas and smaller in 290 

natural areas and over water bodies (Fig. 3(d)), consistent with the distribution of dense built-291 

up areas. 292 

 

Fig 3 a) Distribution of building volume 𝑉𝐵, Xinjiekou (II) and Fuzimiao-Laomendong (III-

IV); b) standard deviation of building height 𝐻𝑆𝐷𝐵 , Hexi New District (I), Xinjiekou-

Laomendong (II- IV); c) Building compactness ratio, 𝑛𝐶𝑅(c) and d) Surface roughness, 𝑆𝑅 . 
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3.1.2 Sky view factor (SVF) 293 

The study area has an average SVF of 0.59. Open water bodies such as the Yangtze River 294 

and Xuanwu Lake have a SVF of 1, while forested areas such as Purple Mountain Park① 295 

and Jubao Mountain Park②, Yuhuatai Scenic Area ⑤, and the Nanjing Green Expo Park⑥ 296 

(Fig. 4) have a SVF of 0 or near 0 due to dense tree cover. The Old Town of Nanjing has 297 

dense buildings and a reduced SVF of generally less than 0.6, such as the Laomendong area 298 

(Fig. 4, IV). The SVF value of building roof varies with the height of the surrounding 299 

buildings in the area. In areas with similar building heights, the roof SVF is close to 1, while 300 

in areas with high HSD𝐵, the roof SVF is less than 1, e.g., in Xinjiekou (Fig. 4, II). 301 

 
 

Fig. 4 Pattern of the SVF calculated using the UMEP model,  Purple Mountain Park① and 

Jubao Mountain Park②, Yuhuatai Scenic Area⑤, and the Nanjing Green Expo Park⑥,  

Laomendong area (IV),  Xinjiekou (II) 
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3.2 Spatiotemporal shadow patterns (SP) 302 

Hourly shadow simulations for August 7, 2013 illustrate how shade travels throughout 303 

the day. Minimum shading occurs at noon when the solar elevation angle is largest. Tree-304 

covered areas such as Purple Mountain Park are shaded throughout the day independent of 305 

the sun’s position. In built-up areas, SP changes with solar elevation angle and building 306 

arrangement (Fig. 5). At 10:00h, shadows are to the west; at 12:00h, shadows are to the north; 307 

and at 14:00h and 16:00h, shadows are to the northeast and east, respectively. A comparison 308 

of SP maps at 10:00h and 14:00h reveals an asymmetrical shade pattern. Despite similar solar 309 

elevation angles, the heterogeneous urban form results in 30% shade coverage at 10:00h and 310 

22% at 14:00h. 311 
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3.3 Spatiotemporal Tmrt patterns and characteristics 312 

Simulated Tmrt that is spatially averaged over the study area peaks at 61.4 ℃ at 14:00h 313 

and then decreases gradually (Fig. 6, Table 2). The highest Tmrt value across space and time 314 

is found at 12:00h (78.57 ℃). The standard deviation of Tmrt decreases as the day progresses, 315 

and stabilizes at around 2.3 ℃ after sunset, indicating that the thermal environment becomes 316 

more homogeneous across sites.  317 

 

Fig. 5: Shadow pattern (SP) maps of the Xinjiekou area (II) for select times of day: 10:00h, 

12:00h, 14:00h, and 16:00h local time. Pixels denote shaded areas (0), sun-exposed areas (1), 

and areas shaded by vegetation (0.03). 
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The Purple Mountain Park and surrounding areas maintain relatively stable thermal patterns 318 

with low Tmrt values in green spaces. During the day, built-up areas experience a Tmrt increase 319 

between 10:00h and 12:00h when shade is minimal. In contrast, impervious surfaces are 320 

mostly shaded by buildings in the afternoon, which reduces direct solar radiation and heat 321 

storage (e.g., in the Xinjiekou area (II)). However, over extensive impervious surfaces with 322 

little vegetation such as parking lots and wide streets with low-rise buildings, Tmrt is elevated, 323 

e.g., in the Purple Mountain to the northeast and Hexi New Town to the southwest. 324 

Neighborhoods with forest cover exhibit lower Tmrt in the afternoon. 325 

The minimum and maximum nocturnal Tmrt is 29.8 °C and 38.5 °C respectively (Table 326 

2). The nocturnal average Tmrt varies slightly. The Tmrt is lower for areas with high SVF (open 327 

areas) than for densely built-up and vegetated areas. This is inverse to the thermal daytime 328 

pattern. At night, the longwave radiation emitted from the ground is trapped in densely built-329 

up areas, which results in elevated Tmrt after sunset. At the same time, thermal patterns are 330 

more homogeneous and Tmrt differences are smaller across space due to the absence of 331 

incoming shortwave radiation. 332 

 333 

 334 

 335 

Table 2  Differences in simulated Tmrt  at different times of day. 

Time Mean (°C) Max (°C) Min(°C) SD (°C) 

10:00 56.53 72.97 37.73 12.05 

12:00 60.90 78.57 39.97 12.06 

14:00 61.39 77.68 41.62 11.79 

16:00 55.53 69.09 41.32 9.45 

20:00 33.28 38.49 30.70 2.29 

22:00 32.39 37.59 29.82 2.28 
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Fig. 6 Tmrt distribution (2-m resolution) in central Nanjing for August 7, 2013 at 10:00h, 

12:00h, 14:00h, 16:00h, 20:00h and 22:00h. 

 
Fig. 7 Distribution of Tmrt differences (ΔTmrt) (a) difference in 14:00h - 20:00h and (b) 

difference in 20:00h - 22:00h to indicate cooling rates. 
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Fig. 7 shows the distribution of Tmrt differences (a) difference in 14:00h - 20:00h and (b) 336 

difference in 20:00h - 22:00h to indicate cooling rates.  ΔTmrt is largest between 14:00h and 337 

20:00h with a temperature difference of 45.3°C. Locations covered with water or vegetation 338 

showed a slightly lower change compared with built-up areas.  The change in Tmrt after sunset 339 

is minimal (<1 °C), because Tmrt variability is mainly driven by solar radiation, which is 340 

absent at night. Radiative cooling rates after sunset are mainly driven by longwave radiation 341 

emitted from hot surfaces that retained heat. 342 

3.4 Impact of 3-D urban landscape patterns on mean radiant temperature (Tmrt) 343 

A bivariate correlation analysis is performed to investigate the correlation between each 344 

metric and Tmrt (Table 3). After investigating multicollinearity, a stepwise multiple regression 345 

analysis is conducted to identify key factors that affect Tmrt (Table 4). Results from the 346 

bivariate correlation analysis show that all landscape indices have a significant relationship 347 

with Tmrt (p < 0.01) (Table 3). During the day, all vegetation metrics (AGB, HSDv) are 348 

negatively correlated with Tmrt, while at night, the relationship is reversed. In contrast, all 349 

building metrics (VB, HSDB, nCR) and the vegetation and building-related integrated metrics 350 

(nCR, SR, SVF) show positive correlations with Tmrt, while at night, the reverse applies. The 351 

SP is positively correlated with Tmrt during the day; there is no SP at night.   352 

The negative daytime correlation between vegetation metrics and Tmrt indicates cooling 353 

benefits of green infrastructure. The correlation is strongest at 12:00h and 14:00h when 354 

incoming solar radiation is near its peak and average Tmrt is largest (Table 2). The positive 355 

correlation of vegetation metrics and Tmrt at night combined with low SVF values in densely 356 

forested areas illustrates longwave radiation trapping as found by several authors (Oke, 1989; 357 

Colter et al., 2019; Middle et al., 2021) 358 
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The correlation between building-related landscape metrics (VB, HSDB, nCR) and Tmrt is 359 

strongest at peak Tmrt (at 12:00h and 14:00h). nCR is most significantly correlated with Tmrt. 360 

Among the vegetation and building-related integrated metrics, SP shows a very strong 361 

positive correlation with Tmrt during daytime; SR is positively and negatively correlated with 362 

Tmrt during the day and at night, respectively. SVF and SP have the highest correlation with 363 

Tmrt among all landscape metrics, because they characterize how much direct solar radiation 364 

an urban surface can receive. 365 

Table 3 Bivariate correlations between 3D landscape indices and Tmrt 

Data Tmrt_1000D Tmrt_1200D Tmrt_1400D Tmrt_1600D Tmrt_2000N Tmrt_2200N 

AGB -0.550** -0.452** -0.484** -0.529** 0.579** 0.579** 

HSDv -0.286** -0.157** -0.200** -0.293** 0.307** 0.307** 

VB 0.199** 0.398** 0.334** 0.146** -0.178** -0.178** 

HSDB 0.184** 0.377** 0.313** 0.132** -0.175** -0.175** 

nCR 0.349** 0.552** 0.489** 0.310** -0.311** -0. 311** 

SR 0.188** 0.412** 0.338** 0.125** -0.155** -0.155** 

SVF 0.786** 0.577** 0.650** 0.766** -0.851** -0.851** 

SP_1000D 0.875** / / / / / 

SP_1200D / 0.693** / / / / 

SP_1400D / / 0.744** / / / 

SP_1600D / / / 0.818** / / 

Note: Significance level: ** p < 0.01 366 

SP is collinear with SVF with a variance inflation factor (VIF) greater than 10 (with 367 

n >  10000). At the same time, shade only existed during the day, so the SP variable is 368 

subsequently excluded from the multiple regression analysis. Table 4 summarizes the 369 

regression standardized coefficients between the 3-D urban landscape metrics and Tmrt 370 

showing a significant relationship (P < 0.01, except HSDv  at 10:00h). 371 

SVF, building nCR, and AGB are three important time-invariant factors governing 372 
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outdoor Tmrt.  SVF and building nCR have a significant warming effect on the local thermal 373 

environment in areas with high metric values that affect the radiation received and emitted 374 

by urban surfaces during the day.  375 

SVF as a vegetation and building-related metric has the strongest positive daytime and 376 

negative nighttime impact on Tmrt.  During the day, increasing building or vegetation height 377 

increases shade, therefore reducing heat storage of surfaces in the urban canyon. However, it 378 

also leads to more trapping of outgoing radiation at night.  Open areas have a stronger ability 379 

to lose heat and lower Tmrt. Lastly, areas with little obstruction to air circulation also have 380 

lower Tmrt due to faster heat loss. The daytime vs. nighttime impacts of SVF require further 381 

investigation by considering the diurnal microclimate and solar altitude.  382 

Higher nCR indicates compact buildings and larger building envelopes per volume. The 383 

building envelope, when its outer surface is heated by solar radiation to exceed the air 384 

temperature of the surrounding environment, will exchange heat with the environment 385 

through convection and longwave radiation, causing the surrounding temperature and Tmrt to 386 

rise (Givoni, 1998). After sunset, Tmrt decreases with increasing nCR, indicating that areas 387 

with complex building morphology cool faster than areas with low nCR values.   388 

AGB is negatively correlated with Tmrt, during the day, revealing that urban green spaces 389 

play an important role in regulating the outdoor thermal environment. AGB affects Tmrt during 390 

the day by converting sensible heat into latent heat and by preventing the ground from 391 

absorbing solar radiation, resulting in lower temperatures in areas with high metric values, 392 

however, at night, higher AGB will contribute to heat trapping, which produces a mild 393 

warming effect and leads to a positive correlation with Tmrt. 394 
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Table 4 Results of the multi-variate linear stepwise regression between urban multi-

dimensional landscape indices and Tmrt after eliminating collinear variables. 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta 

Dependent Variable: 

Tmrt_1000D 

Adjusted R2=0.809 

(Constant) 38.140 0.171 -- 223.599 0.000 

AGB -0.120 0.008 -0.095 -15.569 0.000 

HSDv 0.074 0.032 0.013 2.320 0.020 

nCR 4.011 0.065 0.343 61.941 0.000 

SR 1.197 0.089 0.114 20.230 0.000 

SVF 22.087 0.154 0.788 143.045 0.000 

Dependent Variable: 

Tmrt_1200D 

Adjusted R2=0.744 

(Constant) 38.954 0.315 -- 123.555 0.000 

AGB -0.157 0.011 -0.104 -14.773 0.000 

HSDv 0.300 0.044 0.043 6.868 0.000 

VB 0.025 0.006 0.046 4.030 0.000 

nCR 6.260 0.089 0.453 70.173 0.000 

SR 3.634 0.232 0.195 15.658 0.000 

SVF 20.404 0.213 0.614 95.763 0.000 

Dependent Variable: 

Tmrt_1400D 

Adjusted R2=0.754 

(Constant) 40.808 0.292 -- 139.787 0.000 

AGB -0.140 0.010 -0.098 -14.269 0.000 

HSDv 0.215 0.041 0.032 5.270 0.000 

VB 0.023 0.006 0.044 3.940 0.000 

nCR 5.543 0.083 0.424 67.107 0.000 

SR 2.687 0.215 0.153 12.503 0.000 

SVF 21.213 0.197 0.676 107.523 0.000 

Dependent Variable: 

Tmrt_1600D 

Adjusted R2=0.737 

(Constant) 42.645 0.123 -- 346.541 0.000 

AGB -0.096 0.007 -0.092 -14.613 0.000 

HSDB 0.040 0.005 0.048 7.933 0.000 

nCR 3.343 0.057 0.349 58.928 0.000 

SVF 17.219 0.146 0.749 118.103 0.000 

Dependent Variable: 

Tmrt_2000N 

Adjusted R2=0.889 

(Constant) 36.874 0.037 -- 990.239 0.000 

AGB 0.025 0.001 0.096 20.870 0.000 

HSDv -0.028 0.005 -0.024 -5.716 0.000 

VB 0.005 0.001 0.058 6.431 0.000 

HSDB -0.029 0.002 -0.140 -15.160 0.000 

nCR -0.744 0.010 -0.316 -74.391 0.000 

SR -0.111 0.029 -0.035 -3.869 0.000 

SVF -4.797 0.024 -0.850 -201.526 0.000 

Dependent Variable: 

Tmrt_2200N 

Adjusted R2=0.889 

(Constant) 35.927 0.037 -- 968.860 0.000 

AGB 0.025 0.001 0.096 20.869 0.000 

HSDv -0.028 0.005 -0.024 -5.715 0.000 

VB 0.005 0.001 0.058 6.430 0.000 

HSDB -0.029 0.002 -0.140 -15.160 0.000 

nCR -0.742 0.010 -0.316 -74.389 0.000 

SR -0.111 0.029 -0.035 -3.868 0.000 

SVF -4.784 0.024 -0.850 -201.561 0.000 
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4. Discussion  396 

4.1 Advancing urban thermal management and planning by coupling 3-D morphology 397 

with numerical model 398 

Urban morphology created by buildings, vegetation, and other urban landscape elements 399 

influences the thermal environment (Oke, 1989). Areas with high AGB and HSDV  values are 400 

mostly located in parks and natural areas. In the city, 3-D vegetation patterns follow the age 401 

of urban developments, with higher AGB and HSDV values in the Old Town of Nanjing and 402 

lower AGB and HSDV values in new developments. High-density built-up areas are mainly 403 

located near the Qinhuai River-Xuanwu Lake-Purple Mountain with high VB and HSDB 404 

values. College Town and Old Town in the city center exhibit high building nCR; the 405 

university and Old Town mostly have old, low-rise buildings, but new higher buildings have 406 

been added for infill development. The distribution of SR is consistent with that of densely 407 

built-up urban areas. The areas with low SVF (smaller than 0.6) are mainly distributed in the 408 

densely built-up Xinjiekou-Laomendong areas (Fig 1, Fig 4), where both the compact 409 

building arrangement and large building height reduce the SVF in street canyons. The SVF 410 

of highly vegetated areas is also relatively low. The SVF of building roofs is high in areas 411 

with low HSDB. Shadow patterns are influenced by the solar elevation angle and building 412 

arrangement, and since most of the buildings in the study area face southwest and are 413 

arranged more compactly in the south-north direction than in the east-west direction, the 414 

shadow patterns in the southwest-northeast and southeast-northwest directions exhibit clear 415 

characteristics of temporal gradient changes (Fig. 5). 416 

The spatial distribution of hourly Tmrt varies significantly in the central urban area of 417 

Nanjing. During the day, the southwestern part exhibits higher Tmrt than other areas, and Tmrt 418 
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of extensive impervious surfaces is elevated. In contrast, the Purple Mountain and 419 

surrounding areas covered with green spaces or water bodies maintain a relatively low Tmrt. 420 

However, after sunset, open areas in the center have a lower Tmrt and cooled faster than the 421 

densely built-up areas, vegetation-covered areas, and water bodies (Fig. 6, 7). 422 

The statistical and correlation analyses of the 3-D urban landscape pattern metrics and 423 

Tmrt show that solar access of urban surfaces is an important factor affecting the daytime 424 

thermal environment (Table 3, 4). The SVF and building nCR are significantly positively 425 

correlated with Tmrt. Reducing solar access (increasing shade) during the day can effectively 426 

improve the urban thermal environment. At night, the cooling capacity of urban surfaces 427 

becomes the main factor that affects the urban thermal environment. The high correlation 428 

with nCR suggests that improving the thermal performance of the building envelope is one 429 

important way to increase thermal comfort outside and inside of buildings (Natephra et al., 430 

2017). Considering the cooling effects of green building envelopes (vertical or roof greening) 431 

shown by previous studies (Perini et al., 2011; Zheng et al., 2021; Yin et al., 2017), greening 432 

the exterior of buildings (living building envelope) may have great potential as nature -based 433 

solutions to increase urban thermal comfort (Kim et al., 2016). 434 

4.2 Current Limitations and Future Directions 435 

The rapid development of LiDAR and other remote sensing techniques and 436 

advancements in computing power have facilitated the development of 3-D city models and 437 

derived 3-D landscape metrics to quantify the complex geometric structure of urban areas 438 

(Bonczak & Kontokosta, 2019). Linking these metrics with numerical model output yields 439 

more precise and accurate results on the urban thermal environment. Current models cannot 440 

directly calculate 3-D landscape metrics, which is a limitation that led to the use of SVF and 441 
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SP from UMEP, while other metrics had to be calculated from different data sources.  442 

Since LiDAR data and meteorological forcing data used in this study are historical data, 443 

synchronously measured Tmrt data could not be obtained, resulting in an insufficient model 444 

validation. While real-world Tmrt values may deviate from simulations, the fundamental 445 

relationships discovered in the correlation and regression analyses are expected to remain 446 

valid. Previous studies have investigated the close relationship between urban building 447 

volume and population (Biljecki et al., 2016; et al., 2016; Maroko et al., 2019; Chen et al., 448 

2021), which provided a novel approach to estimate population patterns for areas that do not 449 

have demographic information available. Based on this relationship, further assumptions can 450 

be made about the amount of anthropogenic heat due to increased population size and the 451 

number of people who are potentially experience increased heat load on their body outdoors 452 

due to elevated Tmrt. 453 

The study illustrates how knowledge related to coupling 3-D urban morphology with 454 

numerical modeling can be used to moderate the undesirable consequences of urban 455 

development and help create more livable and resilient cities. Tmrt spatial patterns combined 456 

with population information will also be helpful to evaluate inequities of who is exposed to 457 

excessive heat and how heat impacts the quality of life and wellbeing. Finally, this approach 458 

has great potential to be used for building energy modeling and multi-scenario designs that 459 

consider building envelope greening to mitigate heat and improve outdoor and indoor thermal 460 

comfort. 461 

5. Conclusions  462 

This study investigated the impacts of 3-D urban landscape patterns on the outdoor 463 

thermal environment at an urban scale by coupling the 3-D urban landscape metrics 464 
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calculated from LiDAR point-clouds and the UMEP tool. Using LiDAR point-clouds, this 465 

study constructed an innovative building compactness measure (nCR) and implemented 466 

urban shadow pattern metrics and high-resolution SVF maps derived from UMEP output to 467 

facilitate a more realistic characterization of the 3-D urban landscape and promote an in-468 

depth investigation of 3-D landscape patterns that affect the urban thermal environment. 469 

By coupling the 3-D metrics with the UMEP integrated tool, Tmrt was simulated in the 470 

urban area using observed meteorological data as forcing. A bivariate correlation analysis 471 

showed that all 3-D urban landscape metrics are significantly correlated with Tmrt, indicating 472 

that 3D urban form plays an important and crucial role in shaping urban Tmrt. The results of 473 

a multi-variate linear stepwise regression analysis highlight that the 3-D urban morphology 474 

parameters AGB, nCR, and SVF are key variables governing the urban thermal environment. 475 

During the day, AGB is negatively correlated with Tmrt, while SVF and building nCR are 476 

positively correlated with Tmrt, an inverse relationship exists at night.  477 

Our results provide a new perspective on managing urban form to help create thermally 478 

comfortable and livable environments based on fully considering the impact of 3-D urban 479 

landscape patterns, which can be quantified by the 3-D metrics derived from LiDAR. Results 480 

also highlight the offset effects and tradeoffs of these 3D metrics related to Tmrt, which 481 

requires further investigation in various localities to optimize urban form for improved 482 

outdoor thermal comfort.   483 

Acknowledgments 484 

This study was funded by the National Key R&D Program of China (No. 2017YFE0196000) 485 

and the National Natural Science Foundation of China (No. 51878328, 31670470).  486 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



30 

 

References 487 

Abbasabadi, N., & Ashayeri, M. (2019). Urban energy use modeling methods and tools: A 488 

review and an outlook. Building and Environment, 161, 106270. 489 

Aboelata, A. (2020). Vegetation in different street orientations of aspect ratio (H/W 1: 1) to 490 

mitigate UHI and reduce buildings’ energy in arid climate. Building and Environment, 491 

172, 106712. 492 

Ali-Toudert, F., & Mayer, H. (2007). Thermal comfort in an east-west oriented street 493 

canyon in Freiburg (Germany) under hot summer conditions. Theoretical and Applied 494 

Climatology, 87(1-4), 223-237.  495 

Amiri, R., Weng, Q., Alimohammadi, A., & Alavipanah, S. K. (2009). Spatial-temporal 496 

dynamics of land surface temperature in relation to fractional vegetation cover and 497 

land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 498 

113(12), 2606–2617. 499 

An, S. M., Kim, B. S., Lee, H. Y., Kim, C. H., Yi, C. Y., Eum, J. H., & Woo, J. H. (2014). 500 

Three-dimensional point cloud based sky view factor analysis in complex urban 501 

settings. International Journal of Climatology, 34(8), 2685–2701.  502 

Barlow, J. F. (2014). Progress in observing and modelling the urban boundary layer. Urban 503 

Climate, 10, 216-240. 504 

Biljecki, F., Arroyo Ohori, K., Ledoux, H., Peters, R., & Stoter, J. (2016). Population 505 

estimation using a 3D city model: A multi-scale country-wide study in the 506 

Netherlands. PloS one, 11(6), e0156808. 507 

Bonan, G. (2015). Ecological climatology: concepts and applications. Cambridge 508 

University Press. 509 

Bonczak, B., & Kontokosta, C. E. (2019). Large-scale parameterization of 3D building 510 

morphology in complex urban landscapes using aerial LiDAR and city administrative 511 

data. Computers, Environment and Urban Systems, 73, 126-142. 512 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



31 

 

Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to 513 

cool towns and cities: A systematic review of the empirical evidence. Landscape and 514 

Urban Planning, 97(3), 147–155.  515 

Chen, H., Wu, B., Yu, B., Chen, Z., Wu, Q., Lian, T., ... & Wu, J. (2021). A New Method 516 

for Building-Level Population Estimation by Integrating LiDAR, Nighttime Light, 517 

and POI Data. Journal of Remote Sensing, 2021. 518 

Chen, L., Ng, E., An, X., Ren, C., Lee, M., Wang, U., & He, Z. (2012). Sky view factor 519 

analysis of street canyons and its implications for daytime intra‐ urban air temperature 520 

differentials in high‐ rise, high‐ density urban areas of Hong Kong: a GIS‐ based 521 

simulation approach. International Journal of Climatology, 32(1), 121–136. 522 

Chen, Y.-C., Lin, T.-P., & Matzarakis, A. (2014). Comparison of mean radiant temperature 523 

from field experiment and modelling: a case study in Freiburg, Germany. Theoretical 524 

and Applied Climatology, 118(3), 535–551.  525 

Chun, B., & Guldmann, J. M. (2014). Spatial statistical analysis and simulation of the urban 526 

heat island in high-density central cities. Landscape and urban planning, 125, 76-88. 527 

Chun, B., & Guldmann, J. M. (2018). Impact of greening on the urban heat island: Seasonal 528 

variations and mitigation strategies. Computers, Environment and Urban Systems, 71, 529 

165-176. 530 

Colter, K. R., Middel, A. C., & Martin, C. A. (2019). Effects of natural and artificial shade 531 

on human thermal comfort in residential neighborhood parks of Phoenix, Arizona, 532 

USA. Urban Forestry and Urban Greening, 44. 533 

Darmanto, N. S., Varquez, A. C., & Kanda, M. (2017). Urban roughness parameters 534 

estimation from globally available datasets for mesoscale modeling in megacities. 535 

Urban Climate, 21, 243-261. 536 

Duan, G., & Takemi, T. (2021). Predicting urban surface roughness aerodynamic 537 

parameters using random forest. Journal of Applied Meteorology and Climatology, 538 

999-1018. 539 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



32 

 

Fernández, M. E., Picone, N., Gentili, J. O., & Campo, A. M. (2021). Analysis of the Urban 540 

Energy Balance in Bahía Blanca (Argentina). Urban Climate, 37, 100856. 541 

Gabey, A. M., Grimmond, C. S. B., & Capel-Timms, I. (2019). Anthropogenic heat flux: 542 

advisable spatial resolutions when input data are scarce. Theoretical and applied 543 

climatology, 135(1), 791-807. 544 

Givoni, B. (1998). Climate Considerations in Building and Urban Design. John Wiley & 545 

Sons 546 

Grimmond, C. S. B., & Oke, T. R. (1999). Aerodynamic Properties of Urban Areas Derived 547 

from Analysis of Surface Form. Journal of Applied Meteorology, 38(9), 1262–1292. 548 

Grimmond, C. S. B., & Oke, T. R. (1999). Aerodynamic properties of urban areas derived 549 

from analysis of surface form. Journal of Applied Meteorology and Climatology, 550 

38(9), 1262-1292. 551 

Hsieh, C. M., Li, J. J., Zhang, L., & Schwegler, B. (2018). Effects of tree shading and 552 

transpiration on building cooling energy use. Energy and Buildings, 159, 382-397. 553 

Hwang, R. L., Lin, T. P., & Matzarakis, A. (2011). Seasonal effects of urban street shading 554 

on long-term outdoor thermal comfort. Building and environment, 46(4), 863-870. 555 

Jenness, J. S. (2004). Calculating landscape surface area from digital elevation models. 556 

Wildlife Society Bulletin, 32(3), 829-839. 557 

Johnson, G. T., & Watson, I. D. (1984). The determination of view-factors in urban 558 

canyons. Journal of Climate and Applied Meteorology, 23(2), 329–335. 559 

Kidd, C., & Chapman, L. (2012). Derivation of sky-view factors from lidar data. 560 

International Journal of Remote Sensing, 33(11), 3640–3652.  561 

Kim, J., Hong, T., Jeong, J., Koo, C., & Jeong, K. (2016). An optimization model for 562 

selecting the optimal green systems by considering the thermal comfort and energy 563 

consumption. Applied Energy, 169, 682-695. 564 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



33 

 

Kong, F., Yan, W., Zheng, G., Yin, H., Cavan, G., Zhan, W., ... & Cheng, L. (2016). 565 

Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning 566 

(TLS) data to analyze the cooling effect of vegetation. Agricultural and forest 567 

meteorology, 217, 22-34. 568 

Kong, F., Yin, H., James, P., Hutyra, L. R., & He, H. S. (2014). Effects of spatial pattern of 569 

greenspace on urban cooling in a large metropolitan area of eastern China. Landscape 570 

and Urban Planning, 128, 35–47.  571 

Li, X., Li, W., Middel, A., Harlan, S. L., Brazel, A. J., & Turner, B. L. (2016). Remote 572 

sensing of the surface urban heat island and land architecture in Phoenix, Arizona: 573 

Combined effects of land composition and configuration and cadastral demographic 574 

economic factors. Remote Sensing of Environment, 174, 233–243.  575 

Li, Y., Schubert, S., Kropp, J. P., & Rybski, D. (2020). On the influence of density and 576 

morphology on the Urban Heat Island intensity. Nature communications, 11(1), 1-9. 577 

Lidar360 User Guide. GreenValley International Ltd, Berkeley, California. Available at the 578 

following (accessible on Oct. 2, 2021) 579 

website:https://greenvalleyintl.com/static/upload/file/20210817/1629190611196646.p580 

df 581 

Lindberg, F., & Grimmond, C. S. B. (2011). Nature of vegetation and building morphology 582 

characteristics across a city: influence on shadow patterns and mean radiant 583 

temperatures in London. Urban Ecosystems, 14(4), 617-634. 584 

Lindberg, F., Grimmond, C. S. B., Gabey, A., Huang, B., Kent, C. W., Sun, T., ... & Zhang, 585 

Z. (2018). Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for 586 

city-based climate services. Environmental Modelling & Software, 99, 70-87. 587 

Lindberg, F., Holmer, B., & Thorsson, S. (2008). SOLWEIG 1.0–Modelling spatial 588 

variations of 3D radiant fluxes and mean radiant temperature in complex urban 589 

settings. International journal of biometeorology, 52(7), 697-713. 590 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



34 

 

Maragkogiannis, K., Kolokotsa, D., Maravelakis, E., & Konstantaras, A. (2014). 591 

Combining terrestrial laser scanning and computational fluid dynamics for the study 592 

of the urban thermal environment. Sustainable Cities and Society, 13, 207-216. 593 

Maroko, A., Maantay, J., Pérez Machado, R. P., & Barrozo, L. V. (2019). Improving 594 

population mapping and exposure assessment: three-dimensional dasymetric 595 

disaggregation in New York City and São Paulo, Brazil. Applied Geography, 5(1-2), 596 

45-57. 597 

Michiles, A. A. dos S., & Gielow, R. (2008). Above-ground thermal energy storage rates, 598 

trunk heat fluxes and surface energy balance in a central Amazonian rainforest. 599 

Agricultural and Forest Meteorology, 148(6–7), 917–930.  600 

Middel, A., & Krayenhoff, E. S. (2019). Micrometeorological determinants of pedestrian 601 

thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the 602 

MaRTy observational platform. Science of the Total Environment, 687.  603 

Middel, A., AlKhaled, S., Schneider, F. A., Hagen, B., & Coseo, P. (2021). 50 Grades of 604 

Shade. Bulletin of the American Meteorological Society, 1–35. 605 

Middel, A., Häb, K., Brazel, A. J., Martin, C. A., & Guhathakurta, S. (2014). Impact of 606 

urban form and design on mid-afternoon microclimate in Phoenix Local Climate 607 

Zones. Landscape and Urban Planning, 122, 16–28.  608 

Middel, A., Lukasczyk, J., Maciejewski, R., Demuzere, M., & Roth, M. (2018). Sky View 609 

Factor footprints for urban climate modeling. Urban climate, 25, 120-134. 610 

Middel, A., Selover, N., Hagen, B., & Chhetri, N. (2016). Impact of shade on outdoor 611 

thermal comfort—a seasonal field study in Tempe, Arizona. International journal of 612 

biometeorology, 60(12), 1849-1861. 613 

Motazedian, A., Coutts, A. M., & Tapper, N. J. (2020). The microclimatic interaction of a 614 

small urban park in central Melbourne with its surrounding urban environment during 615 

heat events. Urban Forestry & Urban Greening, 126688. 616 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



35 

 

Mirzaee, S., Özgun, O., Ruth, M., & Binita, K. C. (2018). Neighborhood-scale sky view 617 

factor variations with building density and height: A simulation approach and case 618 

study of Boston. Urban climate, 26, 95-108. 619 

Natephra, W., Motamedi, A., Yabuki, N., & Fukuda, T. (2017). Integrating 4D thermal 620 

information with BIM for building envelope thermal performance analysis and 621 

thermal comfort evaluation in naturally ventilated environments. Building and 622 

Environment, 124, 194-208. 623 

Nield, J. M., King, J., Wiggs, G. F., Leyland, J., Bryant, R. G., Chiverrell, R. C., ... & 624 

Washington, R. (2013). Estimating aerodynamic roughness over complex surface 625 

terrain. Journal of Geophysical Research: Atmospheres, 118(23), 12-948. 626 

Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. 627 

G. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to 628 

mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 134, 629 

127–138.  630 

 Oke, T. R. (1981). Canyon geometry and the nocturnal urban heat island: comparison of 631 

scale model and field observations. Journal of Climatology, 1(3), 237–254. 632 

Oke, T. R. (1989). The micrometeorology of the urban forest. Philosophical Transactions of 633 

the Royal Society of London. B, Biological Sciences, 324(1223), 335-349. 634 

Oke, T. R. "Street design and urban canopy layer climate." Energy and buildings 11.1 635 

(1988): 103-113. 636 

Park, Y., Guldmann, J. M., & Liu, D. (2021). Impacts of tree and building shades on the 637 

urban heat island: Combining remote sensing, 3D digital city and spatial regression 638 

approaches. Computers, Environment and Urban Systems, 88, 101655. 639 

Patz, J. A., Campbell-Lendrum, D., Holloway, T., & Foley, J. A. (2005). Impact of regional 640 

climate change on human health. Nature 2005 438:7066, 438(7066), 310–317.  641 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



36 

 

Peeters, A. (2016). A GIS-based method for modeling urban-climate parameters using 642 

automated recognition of shadows cast by buildings. Computers, Environment and 643 

Urban Systems, 59, 107-115. 644 

Peeters, A., Shashua-Bar, L., Meir, S., Shmulevich, R. R., Caspi, Y., Weyl, M., ... & Angel, 645 

N. (2020). A decision support tool for calculating effective shading in urban streets. 646 

Urban Climate, 34, 100672. 647 

Perini, K., & Magliocco, A. (2014). Effects of vegetation, urban density, building height, 648 

and atmospheric conditions on local temperatures and thermal comfort. Urban 649 

Forestry & Urban Greening, 13(3), 495-506. 650 

Perini, K., Ottelé, M., Fraaij, A. L. A., Haas, E. M., & Raiteri, R. (2011). Vertical greening 651 

systems and the effect on air flow and temperature on the building envelope. Building 652 

and Environment, 46(11), 2287-2294. 653 

Perkins, S. E., Alexander, L. V., & Nairn, J. R. (2012). Increasing frequency, intensity and 654 

duration of observed global heatwaves and warm spells. Geophysical Research 655 

Letters, 39(20), 20714.  656 

Petras, V., Newcomb, D. J., & Mitasova, H. (2017). Generalized 3D fragmentation index 657 

derived from lidar point clouds. Open Geospatial Data, Software and Standards, 2(1), 658 

1–14.  659 

Rahman, M. A., Stratopoulos, L. M., Moser-Reischl, A., Zölch, T., Häberle, K. H., Rötzer, 660 

T., ... & Pauleit, S. (2020). Traits of trees for cooling urban heat islands: A meta-661 

analysis. Building and Environment, 170, 106606. 662 

Ratti, C., & Richens, P. (1999). Urban texture analysis with image processing techniques. 663 

In Computers in Building (pp. 49-64). Springer, Boston, MA. 664 

Ratti, C., Di Sabatino, S., & Britter, R. (2006). Urban texture analysis with image 665 

processing techniques: winds and dispersion. Theoretical and applied climatology, 666 

84(1), 77-90. 667 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



37 

 

Ronchi, S., Salata, S., & Arcidiacono, A. (2020). Which urban design parameters provide 668 

climate-proof cities? An application of the Urban Cooling InVEST Model in the city 669 

of Milan comparing historical planning morphologies. Sustainable Cities and Society, 670 

63, 102459. 671 

Salata, F., Golasi, I., de Lieto Vollaro, A., & de Lieto Vollaro, R. (2015). How high albedo 672 

and traditional buildings’ materials and vegetation affect the quality of urban 673 

microclimate. A case study. Energy and Buildings, 99, 32-49. 674 

Santamouris, M. (2014). On the energy impact of urban heat island and global warming on 675 

buildings. Energy and Buildings, 82, 100–113.  676 

Sato, Y., Higuchi, A., Takami, A., Murakami, A., Masutomi, Y., Tsuchiya, K., ... & 677 

Nakajima, T. (2016). Regional variability in the impacts of future land use on 678 

summertime temperatures in Kanto region, the Japanese megacity. Urban Forestry & 679 

Urban Greening, 20, 43-55. 680 

Shareef, S., & Abu-Hijleh, B. (2020). The effect of building height diversity on outdoor 681 

microclimate conditions in hot climate. A case study of Dubai-UAE. Urban Climate, 682 

32, 100611. 683 

Sharmin, T., Kabir, S., & Rahaman, M. (2012). A study of thermal comfort in outdoor 684 

urban spaces in respect to increasing building height in Dhaka. AIUB Journal of 685 

Science and Engineering, 11(1). 686 

Solcerova, A., van de Ven, F., Wang, M., Rijsdijk, M., & van de Giesen, N. (2017). Do 687 

green roofs cool the air? Building and Environment, 111, 249–255.  688 

Thorsson, S., Lindberg, F., Eliasson, I., & Holmer, B. (2007). Different methods for 689 

estimating the mean radiant temperature in an outdoor urban setting. International 690 

Journal of Climatology: A Journal of the Royal Meteorological Society, 27(14), 1983-691 

1993. 692 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



38 

 

Tomás, L., Fonseca, L., Almeida, C., Leonardi, F., & Pereira, M. (2016). Urban population 693 

estimation based on residential buildings volume using IKONOS-2 images and lidar 694 

data. International Journal of Remote Sensing, 37(sup1), 1-28. 695 

Unger, J. (2009). Connection between urban heat island and sky view factor approximated 696 

by a software tool on a 3D urban database. International Journal of Environment and 697 

Pollution, 36(1–3), 59–80. 698 

Wong, N. H., & Yu, C. (2005). Study of green areas and urban heat island in a tropical city. 699 

Habitat International, 29(3), 547–558.  700 

Wonorahardjo, S., Sutjahja, I. M., Mardiyati, Y., Andoni, H., Thomas, D., Achsani, R. A., 701 

& Steven, S. (2020). Characterising thermal behaviour of buildings and its effect on 702 

urban heat island in tropical areas. International Journal of Energy and Environmental 703 

Engineering, 11(1), 129-142. 704 

Xu, X.Z., Zheng, Y.F., Yin, J.F., Wu, R.J., 2011. Characteristics of high temperature and 705 

heat wave in Nanjing City and their impacts on human health. Chin. J. Ecol.30 (12), 706 

2815–2820 (in Chinese). 707 

Yang, X., & Li, Y. (2015). The impact of building density and building height 708 

heterogeneity on average urban albedo and street surface temperature. Building and 709 

Environment, 90, 146-156. 710 

Yin, H., Kong, F., Middel, A., Dronova, I., Xu, H., & James, P. (2017). Cooling effect of 711 

direct green façades during hot summer days: An observational study in Nanjing, 712 

China using TIR and 3DPC data. Building and Environment, 116, 195-206. 713 

Zakšek, Klemen, Oštir, Kristof, & Kokalj, Žiga. (2011). Sky-view factor as a relief 714 

visualization technique. Remote Sensing, 3(2), 398-415. 715 

Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D., & Coomes, D. (2019). Advances in 716 

microclimate ecology arising from remote sensing. Trends in Ecology & Evolution, 717 

34(4), 327-341. 718 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



39 

 

Zhang, Y., Middel, A., & Turner, B. L. (2019). Evaluating the effect of 3D urban form on 719 

neighborhood land surface temperature using Google Street View and 720 

geographically weighted regression. Landscape Ecology, 34(3), 681–697.  721 

Zhang, Y., Sun, C., Bao, Y., & Zhou, Q. (2018). How surface roughness reduces heat 722 

transport for small roughness heights in turbulent Rayleigh–Bénard convection. 723 

Journal of Fluid Mechanics, 836, R2.  724 

Zhang, Y., Zhang, L. N., Yang, C. D., Bao, W. D., & Yuan, X. X. (2011). Surface area 725 

processing in GIS for different mountain regions. Forestry Studies in China, 13(4), 726 

311-314. 727 

Zheng, X., Kong, F., Yin, H., Middel, A., Liu, H., Wang, D., ... & Lensky, I. (2021). 728 

Outdoor thermal performance of green roofs across multiple time scales: A case study 729 

in subtropical China. Sustainable Cities and Society, 70, 102909. 730 

Zhu, R., Wong, M. S., You, L., Santi, P., Nichol, J., Ho, H. C., ... & Ratti, C. (2020). The 731 

effect of urban morphology on the solar capacity of three-dimensional cities. 732 

Renewable Energy, 153, 1111-1126. 733 

Zimble, D. A., Evans, D. L., Carlson, G. C., Parker, R. C., Grado, S. C., & Gerard, P. D. 734 

(2003). Characterizing vertical forest structure using small-footprint airborne LiDAR. 735 

Remote sensing of Environment, 87(2-3), 171-182. 736 

 737 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 




