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Abstract	21	

In	this	study,	we	review	approaches	for	uncertainty	appraisal	in	the	life	cycle	assessment	literature.	We	cover	the	22	
acknowledgement	of	stochastic	and	epistemic	uncertainty	in	uncertainty	and	sensitivity	analysis	and	knowledge	23	
quality	assessment,	respectively.		24	
Consistent	with	previous	works,	our	findings	indicate	that	uncertainty	is	only	appraised	in	few	studies	on	life	cycle	25	
assessment.	Most	of	these	contributions	cover	only	one	of	the	phases	of	life	cycle	assessment,	mainly	the	life	cycle	26	
inventory.	 Less	 attention	 has	 been	 devoted	 to	 the	 phases	 of	 goal	 and	 scope	 definition	 and	 life	 cycle	 impact	27	
assessment.		28	
Additionally,	 in	most	studies,	uncertainty	analysis	and	sensitivity	analysis	have	been	applied	independently,	as	29	
wrongly	 assumed	 they	 cover	 different	 uncertainty	 spaces.	We	 also	 identify	 the	 scope	 for	 improvement	 in	 the	30	
appraisal	of	epistemic	uncertainty	and	the	correct	definition	of	the	probability	distribution	of	the	uncertain	factors.	31	
We	conclude	by	highlighting	studies	in	which	sensible	practices	have	been	adopted,	identifying	open	challenges,	32	
and	suggesting	possible	ways	forward.	33	

	34	

1 Introduction	35	

Life	Cycle	Assessment	(LCA)	aims	to	account	for	the	environmental	aspects	and	potential	impacts	of	a	given	system	36	
throughout	its	life	cycle	(International	Organization	for	Standardization,	2006a,	2006b).	While	the	methodology	37	
has	been	conceived	to	support	informed	decision-making,	its	application	is	associated	with	methodological	and	38	
communication	challenges.	These	include	knowledge	quality	and	its	appraisal	(Ross	et	al.,	2002;	Zampori	et	al.,	39	
2016),	normative	choices	(Scrucca	et	al.,	2020),	and	their	effects	on	LCA	outcomes	(Sala	et	al.,	2020;	Yoshida	et	al.,	40	
2013),	as	well	as	in	terms	of	impacts	of	policy	interventions	(Reale	et	al.,	2017).		41	
Arguably,	uncertainty	analysis	(UA)	and	sensitivity	analysis	(SA)	are	among	the	most	relevant	ones.	Yet	a	proper	42	
appraisal	of	uncertainty	in	LCA	is	challenging	due	to	complicated	accountings	that	includes	hundreds	to		hundreds	43	
of	thousands	flows.	These	are	handled	by	software	that,	in	the	majority	of	the	cases,	offer	only	a	limited	possibility	44	
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of	adequately	running	UA	and	SA	within	the	environment.	Further	tools	and	techniques	are	required,	along	with	45	
the	necessary	skills	that	may	not	align	with	the	expertise	of		practitioners.	46	
Uncertainty	was	already	a	subject	of	discussion	in	the	early	days	of	LCA	formalization	within	SETAC	(Society	of	47	
Environmental	Toxicology	and	Chemistry)(Fava	et	 al.,	 1994),	 alongside	with	uncertainty	appraisal	 (defined	as	48	
‘reliability’)1	 (Heijungs	 (1994).	 In	 1998,	 a	 SETAC-Europe	 LCA	Working	 Group	 on	 'Data	 Availability	 and	 Data	49	
Quality'	was	formed	(Huijbregts	et	al.,	2001).	Early	LCA	scholars	were	already	aware	of	the	potential	misuse	of	50	
LCA	results	(Lloyd	and	Ries,	2007;	Ross	et	al.,	2002).	Ross	et	al.	(2002)	scrutinised	a	pool	consisting	of	30	LCA	51	
studies	published	after	1997	and	found	that	the	assessment	of	uncertainty	was	largely	overlooked.		52	
Three	 recent	 literature	 reviews	 (Bamber	 et	 al.,	 2020;	 Igos	 et	 al.,	 2019;	 Michiels	 and	 Geeraerd,	 2020)		53	
(see	Supporting	Information	Table	S1)	and	a	book	chapter	(Rosenbaum	et	al.,	2018)	further	investigated	this	issue.	54	
Bamber	et	al.	(2020)	reviewed	recent	LCA	literature	and	found	that	UA	was	not	widespread	(less	than	20%	of	the	55	
sample)	and	that,	even	when	it	was	applied,	the	focus	was	often	only	on	parameter-related	uncertainty.		56	
Both	Bamber	et	al.	(2020)	and	Igos	et	al.	(2019)	concluded		by	 recommending	 increased	 reporting,	57	
implementation,	and	treatment	of	uncertainty	in	LCA	studies;	and	advocating	for	the	support	of	peer	reviewers,	58	
editors,	 LCI	databases,	 Life	Cycle	 Impact	Assessment	 (LCIA)	methods,	 and	LCA	 software	developers	 in	 raising	59	
awareness	and	disseminating	good	practices.	Michiels	and	Geeraerd	(2020)	recommend	the	use	of	Monte	Carlo	60	
simulations	to	visualise	uncertainty	and	variability	ratios	and/or	total	sensitivity	indices	through	global	sensitivity	61	
analysis	(GSA).	62	
Although	the	above	reviews	offered	meaningful	insights,	none	adequately	discussed	the	suitability	of	the	proposed	63	
approaches	for	the	intended	goals	of	uncertainty	appraisal	in	LCA.	The	selection	of	UA/SA	approach	is,	however,	64	
non-trivial	and	deserves	thorough	scrutiny.	The	present	study	aims	to	fill	this	gap	by	critically	assessing	current	65	
practices	 and	 recommendations	 in	 LCA	 (see	 Supporting	 Information	 Table	 S1).	 The	 objective	 of	 this	 study	 is	66	
twofold:		67	
	68	
i. To	 characterise	 current	 LCA	 practices	 in	 terms	 of	 UA/SA	 approach	 and	 the	 appraisal	 of	 epistemic	69	

uncertainty	by	structuring	reflections	according	to	ISO	phases.		70	
	71	

ii. To	critically	examine	current	practices	from	the	perspective	of	UA/SA	practitioners.	72	
	73	

2	Methods	74	

2.1	Definitions	75	
In	this	study,	we	adopt	the	distinction	between	epistemic	and	stochastic	uncertainty	(Walker	et	al.,	2003),	whereby	76	
the	former	is	the	lack	of	representativeness	of	a	model	or	the	lack	of	consistency	across	its	components,	whereas	77	
stochastic	 (or	 ontic)	 uncertainty	 is	 the	 variability	 of	 data	 and	 relationships	 (Igos	 et	 al.,	 2019).	 Additionally,	78	
epistemic	uncertainty	relates	to	those	aspects	that	are	beyond	full	quantification,	whereas	stochastic	uncertainty	79	
can	in	principle	be	fully	quantified.		80	
Stochastic	uncertainty	is	generally	explored	through	quantitative	UA	and	SA,	while	epistemic	uncertainty	can	be	81	
partially	explored	through	knowledge	quality	assessment,	or	through	stochastic	methods,	to	ascertain	the	effects	82	
of	 different	 methodological	 choices.	 However,	 epistemic	 uncertainty	 cannot	 be	 reduced	 to	 plain	 stochastic	83	
uncertainty.	Approaches	for	knowledge	quality	assessment	provide	an	analysis	and	diagnostic	of	uncertainty	in	84	
the	knowledge	base	of	complex	(environmental)	policy	problems	(Funtowicz	and	Ravetz,	1990;	Ravetz,	1971;	van	85	
der	Sluijs	et	al.,	2005).	It	is	commonly	believed	that	more	knowledge	is	a	means	towards	uncertainty	reduction,	86	
although	this	may	not	be	the	case	(van	der	Sluijs	et	al.,	1998).	Knowledge	and	uncertainty	do	not	necessarily	span	87	
commensurable	dimensions,	and	seeking	more	knowledge	may	actually	result	in	an	increase	in	uncertainty.	88	
Uncertainty	characterises	 the	 following	LCA	phases:	goal	and	scope	definition,	LCI,	 and	LCIA.	The	appraisal	of	89	
uncertainty	 is	conducted	 in	the	 interpretation	phase	(Heijungs	and	Kleijn,	2001;	Laurent	et	al.,	2020).	For	this	90	
reason,	in	this	study,	we	discuss	uncertainty	sources	accordingly.	The	intepretation	phase	may	also	add	further	91	
uncertainty	 in	 terms	 of	 the	 value-laden	 nature	 of	 the	 involved	 stakeholders,	 as	 discussed	 in	 Section	 3.3.	92	
Nevertheless,	the	nature	of	uncertainty	differs	across	LCA	phases.	In	particular,	the	goal	and	scope	phase	is	often	93	
characterised	by	epistemic	uncertainty	related	to	the	framing	of	the	assessment;	this	encompasses	aspects	such	94	
as	 selecting	 the	 functional	 unit,	 system	 boundaries,	 truncation	 threshold,	 and	 modelling	 and	 assessment	95	
techniques	(e.g.,	system	expansion	or	substitution;	consequential	or	attributional	LCA).	96	

	
1	We	thank	a	reviewer	for	pointing	us	to	these	contributions.	
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The	LCI	and	LCIA	phases	are	often	characterised	by	both	stochastic	and	epistemic	uncertainty.	In	the	inventory	97	
phase,	 epistemic	 uncertainty	 is	mostly	 concerned	with	 the	 quality	 of	 LCI	 data	 and	 the	 underlying	 production	98	
process	of	 this	 information.	The	LCIA	phase	 relies	on	 impact	 assessment	models	 that,	 in	 turn,	 are	 affected	by	99	
normative	choices,	and	thus	by	epistemic	uncertainty.	The	choice	of	impact	assessment	indicators	may	also	reflect	100	
a	normative	choice,	and	likewise	the	modelling	assumptions	associated	with	background	inventories.		101	
UA	and	SA	are	both	technical	approaches	for	the	quantitative	appraisal	of	uncertainty.	UA	quantifies	the	range	of	102	
output	uncertainty,	which	can	then	be	apportioned	onto	the	input	parameters	and	modelling	hypotheses	through	103	
SA	(Figure	1).	Various	approaches	 for	SA	have	been	proposed	 in	 the	 literature,	and	a	major	distinction	can	be	104	
drawn	between	One-variable-at-a-time	 SA	 (OAT-SA)	 and	GSA.	The	 former	 is	 carried	out	 by	 varying	 one	 input	105	
parameter	at	a	time,	leaving	the	others	fixed.	Conversely,	the	latter	is	based	on	experimental	designs	where	all	the	106	
parameters	move	together.	In	this	way,	GSA	allows	inferences	to	be	drawn	about	interactions	among	parameters,	107	
which	are	unaddressed	in	an	OAT	context.	Higher-order	interactions	occur	in	non-additive	models,	which	is	the	108	
standard	setting	in	LCA,	whereby	the	mathematical	relations	among	input	factors	are	beyond	mere	additions	and	109	
subtractions.	110	
	111	

[Figure	1	–	about	here]	112	

	113	
	114	

2.2 Bibliometric	search		115	
A	 literature	 search	was	 performed	 in	 Scopus	 on	 10	 August	 2020	 and	 updated	 on	 25	 October	 2021,	with	 the	116	
keywords	life	cycle	AND	uncertainty	AND	sensitivity	analysis	in	the	Article	Title,	Abstract,	and	Keywords	fields.	The	117	
search	was	 also	 extended	with	 the	 keywords	 life	 cycle	 AND	 (uncertainty	OR	 sensitivity	 analysis)	 to	 ensure	 the	118	
inclusion	of	articles	that	addressed	either	UA	or	SA.	This	search	resulted	in	~9,000	papers,	of	which	the	majority	119	
was	filtered	out	because	not	written	in	English	or	out	of	scope.	We	discarded	articles	on	techno-economic	analyses,	120	
life	cycle	cost	estimations,	or	other	life-cycle	assessments	that	did	not	cover	the	environmental	impact	assessment,	121	
where	 LCA	 did	 not	 play	 a	 pivotal	 role,	 or	 where	 uncertainty	 and	 sensitivity	 analysis	 where	 used	 at	 another	122	
analytical	level.	123	
The	total	sample	resulted	in	a	total	of	344	scientific	articles,	80	of	which	had	a	methodological/theoretical	scope.	124	
The	full	list	of	documents	is	presented	in	Supporting	Material.	A	limitation	of	the	Scopus	search	is	that	so-called	125	
grey	literature	(e.g.,	technical	reports	and	policy	documents)	was	omitted	from	the	pool	of	documents	searched.	126	

Figure	2	shows	the	change	in	the	number	of	documents	produced	over	time,	on	a	yearly	basis.	The	first	LCA	study	127	
that	 explicitly	 analysed	 uncertainty	was	 a	 conference	 paper	 published	 in	 1995	 (Chen,	 1995).	 Following	 that,	128	
publication	was	intermittent	until	the	mid-2000s,	after	which	the	number	of	articles	began	to	ramp	up	to	around	129	
30	per	year	in	2016,	with	fairly	stable	production	thereafter.	In	relative	terms,	over	the	total	production	of	LCA	130	
papers,	the	relative	ratio	has	been	mainly	stable	around	a	few	percentage	points.	131	

 132	
[Figure	2	–	about	here]	133	

3	 Results	134	

In	 this	 section,	 we	 describe	 the	methodological	 choices	 of	 LCA	 practitioners	 for	 uncertainty	 appraisal	 in	 the	135	
different	phases	of	LCA.	The	numbers	of	contributions	across	LCA’s	phases	are	detailed	in	Figure	3.	The	lion’s	share	136	
is	associated	with	the	inventory	phase,	with	around	60%	of	the	total	contributions.	This	reaches	more	than	90%	137	
if	one	acknowledges	the	contribution	also	dealing	with	LCIA	(14%)	or	goal	and	scope	definition	(13%),	or	these	138	
three	dimensions	altogether	(3%).	The	purely	theoretical/methodological	contributions	are	excluded	from	this	139	
counting	given	their	scope.	The	specific	figures	for	each	phase	are	discussed	in	the	following	subsections.	140	
	141	

[Figure	3	–	about	here] 142	

	143	
	144	
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3.1	Goal	and	scope	definition		145	
50	studies	acknowledged	a	form	of	uncertainty	in	one/two	aspects	of	the	goal	and	scope	definitions,	as	per	the	146	
details	presented	in	Figure	4a.	147	

 148	
[Figure	4	–	about	here]	149	

	150	
Most	contributions	simply	qualitatively	discussed	the	option	of	considering	variable	system	boundaries,	although	151	
several	studies	also	produced	quantitative	figures,	such	as	by	performing	system	expansion	(Eranki	and	Landis	152	
2019).	 In	 one	 of	 these,	 Schmidt	 and	 Pahl-Wostl	 (2007)	 acknowledged	 uncertainty	 in	 their	 system	 boundary	153	
depending	on	the	local	characteristics	of	the	system	inquired	into.	154	
In	 the	 literature,	 uncertainty	 in	 the	 functional	 unit	 definition	 has	mainly	 been	 examined	 in	 terms	 of	multiple	155	
functional	units;	different	coefficients	for	the	production	scaling	factors	(Wenker	et	al.,	2016);	replacement	rates	156	
(e.g.,	number	of	polyethylene	shoppers	replaced	by	an	individual	cotton	bag	in	Mattila	et	al.,	2011);	spaces	(area),	157	
time	(life-years),	and	service	(occupancy),	along	with	their	possible	combinations	in	a	building	(de	Simone	Souza	158	
et	al.,	2021);	or	end-uses	(Wang	et	al.	2018).	159	
	160	
3.2 Life	cycle	inventory	161	
Almost	280	articles	assessed	uncertainty	in	the	LCI	phase	(Figure	4b).	As	regards	the	uncertainty	associated	with	162	
the	background	system,	most	of	the	studies	assessed	the	effect	of	different	carbon	intensities	of	the	electricity	mix.	163	
Some	authors	considered	a	country’s	carbon	intensity	against	the	carbon	intensities	of	the	whole	international	164	
electric	 grid,	 or	 against	 other	 reference	 countries	 with	 particularly	 low	 or	 high	 carbon	 intensities;	 or	 they	165	
examined	 hourly	 variable	 rates	 against	 the	 yearly	 average	 (Pannier	 et	 al.	 2018).	 Other	 studies	 extended	 this	166	
approach	to	heat	generation	(Tonini	et	al.,	2012)	or	the	composition	of	transformer	oil	(e.g.,	soybean	versus	other	167	
possible	compositions	(Mason	et	al.,	2006)).	A	few	studies	also	included	uncertainty	in	the	background	process	168	
from	the	used	inventories	(typically,	the	ecoinvent	database).	Cox	et	al.	(2018)	fully	characterised	the	uncertainty	169	
of	the	background	against	the	foreground.		170	
In	 the	 foreground	 system,	 uncertainty	 is	 associated	 to	 the	 inventory	 inflows	 and	 the	 related	 outflows	 in	 the	171	
process/system	under	study.	When	not	available	from	primary	data,	it	has	been	common	practice	in	the	literature	172	
to	resort	to	inventory	figures	along	with	their	uncertainty.		173	
Modelling	 the	 uncertainty	 ranges	 for	 emission	 factors	 is	 a	 less	 frequent	 practice.	 Deng	 et	 al.	 (2017b)	 tested	174	
different	approaches	by	assessing	nitrogen-related	 field	emissions	 in	a	 cultivation	 through	 the	denitrification-175	
decomposition	approach	and	benchmarked	it	against	the	IPCC	standard	figure.	176	

	177	
3.3	Life	cycle	impact	assessment	178	
This	phase	has	 received	 far	 less	 attention	 compared	 to	LCI:	Only	69	 studies	 acknowledged	uncertainty	 at	 the	179	
impact	assessment	phase	(Figure	4c).	180	
Several	studies	acknowledged	the	effect	of	the	variability	of	the	time	horizon	investigated.	Guo	and	Murphy	(2012)	181	
applied	this	approach	to	three	impact	categories	(global	warming	potential,	ozone	depletion,	and	human	toxicity).	182	
De	Rosa	et	al.	(2018)	and	Reisinger	et	al.	(2017)	discussed	the	volatility	of	actual	CO2eq	emissions	due	to	uncertainty	183	
in	the	different	time	horizons	of	the	characterisation	factors,	static	vs.	dynamic	accounting	for	the	emissions,	and	184	
land-use	change.	185	

Seppälä	et	 al.	 (2004)	proposed	a	 temporally	 and	 spatially	variable	estimate	of	 the	 characterisation	 factors	 for	186	
eutrophication	based	on	different	hypotheses	of	impact,	in	the	context	of	Finland’s	emissions.	Maia	de	Souza	et	al.	187	
(2016)	analysed	the	effect	on	the	LCA	outcome	rankings	using	different	LCIA	methods.	Specifically,	the	authors	188	
compared	ReCiPe	with	a	hierarchist	approach	to	IMPACT	2002	+	VQ2.2.	Bueno	et	al.	(2016)	considered	5	different	189	
LCIA	methods	and	Wang	et	al.	(2020)	6	for	the	human	health	impact	category.	Chen	et	al.	(2021)	characterised	the	190	
LCIA	in	terms	of	i)	the	total	emission	values	across	inventories;	ii)	the	coverage	of	substances	in	the	methods;	iii)	191	
the	characterisation	factors	associated	to	these	substances	in	impact	methods.	192	

In	the	normalisation	and	weighting	phase,	Pang	et	al.	(2015)	and	Wang	et	al.	(2018)	assessed	different	perspectives	193	
on	the	environmental	endpoint	dependent	upon	the	relative	weight	attached	to	the	different	impact	categories.	194	
Belboom	et	al.	(2013)	and	Smetana	et	al.	(2019)	studied	the	sensitivity	of	the	output	to	the	actual	point	at	which	195	
the	impact	was	evaluated	(midpoint	vs.	endpoint).	Ravikumar	et	al.	(2018)	simultaneously	examined	the	effects	of	196	
uncertainty	in	three	impact	categories	(marine	eutrophication,	climate	change,	and	metal	depletion)	and	weighting	197	
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criteria	 (ReCiPe	 impact	 assessment	method	against	hierarchy	perspective	with	 variable	weights).	Meyer	 et	 al.	198	
(2017)	assessed	uncertainty	in	the	weighting	for	an	impact	of	special	interest	(environmental	noise).	199	

French	and	Geldermann	(2005)	posited	that	uncertainty	appraisal	should	take	into	account	the	values	attached	to	200	
different	impact	categories	by	stakeholders.	Thies	et	al.	(2019)	agreed	with	this,	arguing	that	the	full	phases	of	201	
normalisation	through	weighting	attribution	and	final	 interpretation	are	confronted	with	important	difficulties	202	
linked	to	value-ladenness	and	preferences	(Alanne	et	al.,	2007).	Approaches	beyond	manuals	and	software	have	203	
been	 proposed	 to	 address	 these	 dimensions,	 including	 resorting	 to	 composite	 indicators	 (Nardo	 et	 al.,	 2005)	204	
and/or	multi-criteria	assessments	(Agarski	et	al.,	2016;	Munda,	2004).	205	

3.4	Contributions	involving	more	than	one	phase	206	
Several	 contributions	 acknowledged	 uncertainty	 across	 the	 phases	 of	 LCA	 (Figure	 2).	 For	 instance,	 multiple	207	
authors	considered	uncertainty	at	the	foreground	and	characterisation	phases	(Alyaseri	and	Zhou,	2019;	Carless	208	
et	al.,	2016;	De	Marco	et	al.,	2018;	Van	Zelm	and	Huijbregts,	2013),	while	Belboom	et	al.,	(2013);	Cox	et	al.,	(2018);	209	
Cucurachi	et	al.,	(n.d.);	Guo	and	Murphy,	(2012);	Pannier	et	al.,	(2018);	Thévenot	et	al.,	(2018)	also	included	the	210	
background	phase.	Palazzo	and	Geyer	(2019)	considered	the	whole	modelling	assumptions	in	a	consequential	LCA	211	
study.	212	

Hernández-Padilla	et	al.	(2017)	highlighted	the	issue	of	the	adequateness	of	using	data	from	different	geographical	213	
areas	by	considering	uncertainty	in	electricity	mix	(background);	wastewater	treatment	processes	(foreground);	214	
and,	 local	characterisation	factors	 for	the	 impact	assessment.	 In	the	research,	uncertainty	 in	the	normalisation	215	
phase	was	also	acknowledged	by	comparing	the	results	under	different	impact	assessment	methods.	Patouillard	216	
et	al.	(2019)	also	dealt	with	spatial	variability	at	the	level	of	background,	foreground,	and	impact	assessment.	217	

3.5	Stochastic	uncertainty:	Uncertainty	analysis	218	
In	this	section,	we	assess	the	methodological	choices	of	the	LCA	practitioners	in	running	UA.	UA	was	performed	in	219	
217	 studies,	 two-thirds	 of	 which	 were	 based	 on	Monte	 Carlo	 simulations	 (Figure	 5a).	 The	 simulations	 were	220	
executed	 on	 random	 combinations	 of	 input	 parameters	 sampled	 from	 their	 assumed	 input	 distributions.	 The	221	
output	of	Monte	Carlo	simulations	is	also	a	distribution	of	the	possible	values	of	output.	47	articles	resorted	to	a	222	
min-(mean)-max	range	inquiry	by	testing	the	effects	of	sampling	the	parameters	at	the	mean	and	the	extreme	of	223	
their	distributions	on	the	output	uncertainty.	7	studies	performed	an	analytical	propagation	of	the	uncertainty,	224	
and	half	 of	 these	benchmarked	against	Monte	Carlo	 simulations.	 Finally,	 8	 studies	 appraised	uncertainty	only	225	
qualitatively.		226	
	227	

[Figure	5	–	about	here] 228	
	229	
As	regards	Monte	Carlo	simulations,	the	typical	number	amounted	to	10,000,	although	the	figures	varied	from	300	230	
(Muñoz	et	al.,	2020)	to	10,000,000	(Wong	et	al.,	2016).	In	the	vast	majority	of	cases,	simulations	were	directly	run	231	
on	the	input	parameters’	uncertainty	ranges,	although	pre-filtering	by	removing	non-influential	parameters	and	232	
feeding	only	the	relevant	ones	into	the	Monte	Carlo-based	UA	was	performed	through	regression	(Hsu	et	al.,	2010;	233	
Jaxa-Rozen	et	al.,	2021)	or	OAT-SA	(Chiu	and	Lo	2018).	234	
On	sampling	schemes,	three	studies	used	a	Latin	hypercube	(Jaxa-Rozen	et	al.,	2021;	Khang	et	al.,	2017;	Mckay	et	235	
al.,	2000),	in	which	the	range	of	variability	of	the	input	parameters	was	more	efficiently	explored	through	a	design	236	
that	allowed	a	more	uniform	coverage	of	the	uncertainty	input	space.	The	range	approach	can	also	be	used	by	237	
setting	the	input	parameters	at	the	extreme	of	their	range	of	variability.	Bawden	et	al.	(2016)	and	Chen	et	al.	(2018)	238	
made	use	of	the	range	approach	as	a	means	of	dealing	with	potentially	unreliable	LCA	inventory	data	so	as	to	avoid	239	
making	any	judgment	about	the	probability	of	different	occurrences.	240	
Only	a	minority	of	studies	justified	the	shape	(Sabará,	2021)	and	range	of	the	input	parameter	distributions	fed	241	
into	the	UA	and/or	SA.	4	studies	used	statistical	testing	to	define	the	most	appropriate	distribution	shape	for	the	242	
input	parameters	based	on	their	data	population	(Aktas	and	Bilec,	2012;	De	Marco	et	al.,	2018;	Goulouti	et	al.,	243	
2020;	Guo	and	Murphy,	2012).	Analogously,	Barjoveanu	et	 al.	 (2020a)	 tested	 the	effects	of	distribution	 shape	244	
(normal,	uniform,	or	 triangular)	and	range	 (by	doubling	 the	standard	deviation	 in	a	normal	distribution),	and	245	
evaluated	how	uncertainty	in	the	output	was	affected	in	a	ceteris	paribus	context	(i.e.,	when	all	other	parameters	246	
were	 fixed).	 To	 produce	 representative	 figures,	 Quinn	 et	 al.	 (2020)	 defined	weighed	 distributions	 for	 several	247	
foreground	parameters	dependent	on	the	mass	associated	with	each	specific	data	point.	248	
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Most	studies	used	standard	distributions	from	life	cycle	inventories	(tout	court	or	to	compensate	for	the	lack	of	249	
primary	data),	whose	shape	and	ranges	were	rarely	adjusted	to	 the	specific	context	 investigated.	The	adopted	250	
shape	was	almost	exclusively	lognormal,	while	the	range	was	mainly	defined	based	on	the	Pedigree	approach	(for	251	
more	details,	see	Section	3.8).	A	notable	exception	is	the	work	of	Beylot	et	al.	(2018),	who	resorted	to	triangular	252	
instead	of	lognormal	shapes	upon	the	parameters’	physical	incompatibility	with	this	distribution	shape.	Normal	253	
and	triangular	shapes	were	the	primary	alternatives	to	the	adoption	of	lognormal,	while	uniform,	PERT,	or	beta	254	
distributions	were	more	rarely	used.		255	
The	uncertainty	of	the	output	was	frequently	conveyed	in	terms	of	statistical	features	of	the	output	distributions	256	
(percentiles,	quartiles,	standard	deviation,	min-median-max,	90%	or	95%	confidence	intervals,	and	relative	error	257	
or	coefficient	of	variation	on	the	mean).	Probabilities	of	rankings	of	output	alternatives	are	less	practiced,	although	258	
they	do	play	a	role	in	comparative	studies.	In	terms	of	visual	outputs,	whisker	box	plots	were	the	typical	chart	259	
selected,	 along	with	 the	 probability	 distribution	 functions	 drawn	 from	 the	Monte	 Carlo	 runs.	 Violine	 plots	 or	260	
cumulative	distribution	functions	were	less	commonly	used.		261	
	262	
3.5.1 Use of pedigree matrices 263	
Kennedy	et	al.	(1996),	Weidema	and	Wesnæs	(1996),	and	then	Weidema	et	al.	(2013)	proposed	the	use	of	pedigree	264	
matrices	as	proxies	to	estimate	stochastic	uncertainty.	 In	this	approach,	the	pedigree	score	 is	translated	into	a	265	
factor	that,	in	combination	with	the	standard	deviation	of	a	given	parameter	and	under	the	assumption	of	a	certain	266	
density	function	shape,	provides	an	estimate	of	stochastic	uncertainty.	The	rationale	is	the	following:	the	lower	the	267	
knowledge	quality,	the	weaker	the	pedigree	and	the	larger	the	stochastic	uncertainty	entailed.	The	implementation	268	
of	this	approach	to	the	scale	of	LCI	databases	has	been	successful	to	the	point	that	it	is	now	at	the	foundation	of	the	269	
proposed	 uncertainty	 ranges	 for	 parameters	 in	 the	 major	 LCI	 commercial	 databases	 and	 software	 (e.g.	270	
Frischknecht	and	Jolliet,	2017;	Weidema	et	al.,	2013).		271	
The	 reliability	 and	 commensurability	 (Cooper	 and	 Kahn,	 2012)	 of	 the	 use	 of	 the	 pedigree	 score	 to	 appraise	272	
stochastic	uncertainty	has	been	scrutinised	in	the	literature	(Ciroth	et	al.,	2016;	Cooper	and	Kahn,	2012;	Lin	et	al.,	273	
2015;	Mohajerani	et	al.,	2018;	Muller	et	al.,	2016a).	Kennedy	et	al.	(1996)	also	tested	how	the	statistical	properties	274	
attributed	 to	 a	 given	pedigree	 influenced	 the	 results	 through	 an	OAT-SA	 in	 a	 sort	 of	meta-sensitivity	 analysis	275	
exercise.	Ciroth	et	al.	(2016)	sought	to	provide	empirical	grounding	for	standard	deviation	coefficients	based	on	a	276	
pedigree	analysis	of	distribution	shapes	other	than	normal	and	lognormal.	Qin	et	al.	(2020)	used	the	pedigree-277	
based	approach	for	investigation	on	LCIA	models.	278	
Yet,	 it	 is	 important	 to	 remind	 that	 the	 original	 developers	 and	 proponents	 of	 the	 pedigree	 matrix	 approach	279	
(Funtowicz	and	Ravetz,	1990;	van	der	Sluijs	et	al.,	2005)	designed	it	as	a	knowledge	quality	assessment	tool.	280	
	281	

	282	
3.6 Uncertainty	apportionment:	Sensitivity	analysis						283	
SA	was	slightly	more	widespread	than	UA	(Figure	5b).	Most	SA	studies	involved	OAT	approaches,	with	almost	190	284	
contributions.	 Practitioners	 used	 various	 terms	 to	 refer	 to	 this	 approach:	 derivative,	 Taylor	 expansion,	285	
perturbations,	etc.	While	slightly	conceptually	different,	the	logic	of	these	approaches	is	the	same:	vary	a	single	286	
input	parameter	and	evaluate	its	effect	on	the	output	variable(s),	either	numerically	(perturbations),	analytically	287	
(derivatives,	Taylor	expansion),	or	both.	The	range	of	variability	of	the	individual	parameters	is	 fixed	in	either	288	
directions	or	only	increased	by	5-30%.	Alternatively,	more	points	may	be	studied,	such	as	95%	variation	of	the	289	
input	range	at	a	5%	resolution	(Quinn	et	al.,	2020).	Just	above	20	studies	performed	GSA,	with	a	further	8	studies	290	
running	both	analyses,	OAT-SA	and	GSA,	mainly	in	a	comparative	fashion.	 291	
One	of	the	approaches	included	in	the	‘other’	category	in	Figure	5b	is	a	sensitivity	metric	known	as	the	First-order	292	
Reliability	 Method	 (FORM)	 (Riesch-Oppermann	 and	 Brückner-Foit,	 1988)	 used	 by	 Wei	 et	 al.	 (2016).	 Other	293	
approaches	to	SA	may	be	only	qualitative.	294	
OAT-SA	has	been	 frequently	 adopted	 in	LCA	 to	 check	 the	 robustness	of	modelling	 assumptions.	Mattick	 et	 al.	295	
(2015)	ran	an	anticipatory	LCA	to	estimate	the	potential	impact	of	future	in-vitro	meat	cultivation.	Benoist	et	al.	296	
(2012),	Moreira	et	al.	(2014),	Safaei	et	al.	(2015),	and	Tu	and	McDonnell	(2016)	performed	OAT-SA	even	when	the	297	
computational	 effort	 to	 resort	 to	 large	Monte	 Carlo	 random	 sampling	 from	 the	 input	 parameters	 was	made.	298	
Hanandeh	and	El-Zein	(2010)	embedded	SA	into	Monte	Carlo	simulations,	whereby	all	parameters	but	one	were	299	
kept	 fixed.	 Ziyadi	 and	 Al-Qadi	 (2019)	 applied	 Bayesian	 inference	 to	 determine	 parameter	 uncertainty	 and	300	
surrogate	models	to	propagate	the	uncertainty	of	model	parameters	and	model	form	in	a	Monte	Carlo	setting.	An	301	
extension	of	OAT/analytic	approaches	was	presented	in	von	Pfingsten	et	al.	(2017).	In	their	research,	the	authors	302	
introduced	a	method	based	on	second-order	analytical	uncertainty	to	overcome	the	limitations	of	a	simple	first-303	
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order	Taylor	expansion,	in	which	only	first-order	derivatives	are	computed,	and	concluded	that	the	second-order	304	
approach	was	more	accurate	in	computing	parameter	sensitivities.	305	
The	sensitivity	measures	proposed	in	the	literature	include	the	use	of	the	Spearman	rank	correlation	coefficient	306	
(Carless	et	al.,	2016;	Lee	et	al.,	2011;	Mattinen	et	al.,	2015;	Palazzo	and	Geyer,	2019;	Pfister	et	al.,	2016;	Ross	and	307	
Cheah,	2017)	and	other	measures	of	input-output	covariance	(Zhang	et	al.,	2016).	These	measures	were	used	in	308	
approximately	20	studies.	Spearman’s	rank	correlation	coefficient	may	also	be	produced	in	a	global	context,	yet	309	
this	does	not	allow	the	estimation	of	higher-order	interactions	across	parameters.	The	latter	are	accounted	for	in	310	
the	so-called	total-order	Sobol’	 indices	(Homma	and	Saltelli,	1996).	This	variance-based	sensitivity	metric	was	311	
used	along	with	first-order	Sobol’	indices	(Sobol′,	2001)	in	9	studies.	Other	GSA	approaches	have	also	been	tested,	312	
including	the	Fourier	Amplitude	Sensitivity	Test	(FAST)	(Saltelli	et	al.,	1999),	which	was	adopted	in	2	studies	(Chen	313	
et	 al.,	 2005;	 De	 Koning	 et	 al.,	 2010),	 and	 the	 polynomial	 chaos	 expansion	 (Sudret,	 2008),	 which	 resorts	 to	314	
orthogonal	polynomials	to	approximate	the	model	response	surface,	in	Galimshina	et	al.	(2019).	8	studies	used	315	
moment-independent	GSA	 (Borgonovo,	2007),	which	 is	 a	method	 that	does	not	 rely	on	any	 specific	 statistical	316	
moment	when	apportioning	the	effect	of	input	uncertainty	onto	the	output.		317	

As	regards	comparative	approaches,	Di	Lullo	et	al.	(2020)	compared	a	Sobol’-based	GSA	and	OAT	Morris	method	318	
to	 evaluate	 a	model	 for	 the	 emissions	 produced	 by	 crude	 oil	 extraction	 from	 different	 oil	 fields.	 The	 authors	319	
concluded	 that	 the	 latter	was	 computationally	advantageous,	 although	 the	 range	of	output	uncertainty	 (i.e.,	 in	320	
terms	of	its	variance)	by	applying	the	two	different	methods	was	not	quantified.	321	
	322	

3.7 Epistemic	uncertainty	and	its	appraisal	323	
Epistemic	uncertainty	is	only	partially	knowable	(by	its	own	definition),	therefore,	the	methods	and	techniques	324	
that	support	its	appraisal	in	LCA	focus	on	the	assessment	of	quality	of	knowledge	and	its	fitness	for	purpose.		325	
In	the	goal	and	scope	phase,	epistemic	uncertainty	results	from	modelling	assumptions	such	as	the	following:	the	326	
definition	 of	 the	 functional	 unit	 (Avadí	 et	 al.,	 2020;	 Barjoveanu	 et	 al.,	 2020b;	 Feiz	 et	 al.,	 2020)	 and	 system	327	
boundaries;	 the	 cut-off	 and	 allocation	 rules;	 the	 choice	 of	 marginal	 suppliers	 between	 the	 attributional	 and	328	
consequential,	static	or	dynamic	approaches;	and,	indirect	consequential	effects.	For	example,	the	truncation	of	329	
economic	activities	in	the	accounting	of	LCA	input-output	processes	has	been	questioned	in	the	literature	as	it	330	
would	 lead	 to	an	underestimation	of	environmental	 impacts	 (Jiang	et	al.,	2014;	Majeau-Bettez	et	al.,	2011).	 In	331	
comparative	LCA,	this	aspect	may	not	necessarily	affect	all	products	equally	because	they	may	be	manufactured	in	332	
different	industrial	sectors.	This	bias	may	be	even	more	serious	when	estimating	the	absolute	impact	due	to	this	333	
mismatch,	 with	 top-down	 information	 coming	 from	 the	 underrepresented	 (or	 even	 completely	 neglected)	334	
economic	sectors.	335	
The	vast	majority	of	the	contributions	that	address	epistemic	uncertainty,	either	implicitly	or	explicitly,	have	done	336	
so	by	focusing	on	the	LCI	phase.	This	has	been	achieved	by	accounting	for	the	quality	of	LCI	datasets	by	means	of	337	
qualitative	discussion	or	the	use	of	off-the-shelf	pedigree	coefficients,	through	the	development	and	application	of	338	
data	quality	assessment	systems	or	pedigree	produced	by	expert	judgement	(Beylot	et	al.,	2018;	Fazio	et	al.,	2015;	339	
Henriksen	et	al.,	2020;	Li	et	al.,	2020)	integrated	with	new	data	through	Bayesian	inference	(Muller	et	al.,	2016b);	340	
use	of	alternative	inventories	(Röder	et	al.,	2014);	combination	of	alternative	distribution	shapes	(Lacirignola	et	341	
al.,	2017;	Larsson	Ivanov	et	al.,	2019);	use	of	fuzzy	logic	(Benetto	et	al.,	2006a;	Tan,	2008;	Tan	et	al.,	2002);	and,	342	
use	of	alternative	methods	for	the	imputation	of	missing	data	(Geisler	et	al.,	2004).	343	
In	the	LCIA	phase,	epistemic	uncertainty	relates	to	the	selection	of	a	particular	method;	the	normative	aspects	344	
embedded	within	LCIA	models	(Qin	et	al.,	2020),	such	as	in	terms	of	accounting	at	mid-	and	end-points	or	different	345	
impact	assessment	methods,	and	impact	weighting	(Igos	et	al.,	2019).	Forcing	incommensurable	environmental	346	
impacts	–	let	alone	social	aspects	–	into	a	single	indicator	is	challenging	(Benini	and	Sala,	2016),	to	the	extent	that	347	
only	few	studies	addressed	epistemic	uncertainty	in	the	LCIA	phase	(Avadí	et	al.,	2020;	Benetto	et	al.,	2006b;	Milani	348	
et	al.,	2011;	Petrakopoulou	and	Tsatsaronis,	2014).	349	
In	the	next	subsections,	we	discuss	the	main	approaches	used	in	the	reviewed	set	of	papers	to	handle	epistemic	350	
uncertainty	and	the	question	of	how	this	has	been	linked	to	stochastic	uncertainty.	351	
	352	
3.7.1 Data	quality	indicators	353	

According	to	the	approach	proposed	by	Weidema	and	Wesnæs	(1996),	criteria	such	as	reliability,	completeness,	354	
and	 technological,	 temporal,	 and	 geographical	 representativeness	 are	 used	 to	 characterise	 the	 quality	 of	 LCI	355	
datasets	based	on	expert	judgment	and	evaluation.	A	‘pedigree’	coefficient	represents	the	level	of	quality	of	a	given	356	
dataset,	and	it	is	estimated	according	to	a	structured	approach.	357	
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Applications	of	 the	pedigree	matrix	 approach	 are	 found	 in	 the	US	Environmental	Protection	Agency	 guidance	358	
document	for	LCI	data	quality	assessment	(Edelen	and	Ingwersen,	2016)	and	the	European	Commission	Handbook	359	
(Joint	Research	Centre,	2010).	These	documents	cover	six	data	quality	indicators,	along	with	a	five-point	scale	and	360	
minimum	entry-level	requirements	for	datasets	to	support	science-for-policy	applications.	361	
Maia	de	Souza	et	al.	(2016)	used	the	pedigree	score	to	transparently	single	out	areas	with	a	low	score	to	report	on	362	
the	limitations	of	their	study.	Henriksen	et	al.	(2020)	proposed	a	new	framework	to	assess	the	pedigree	coefficient,	363	
which	acknowledged	the	actual	pace	of	development	of	industrial	sectors	and	their	adjustment	to	more	demanding	364	
normative	 frameworks.	 This	 involved	 estimating	 the	 actual	 distance	 between	 inventory	 data	 and	 the	 current	365	
figures	in	the	system	represented.	366	
	367	
3.7.2	Fuzzy	logic	368	

Fuzzy	logic	has	also	been	proposed	to	handle	epistemic	uncertainty	(Clavreul	et	al.,	2012;	Gavankar	and	Suh,	2014).	369	
This	approach	merges	experts’	beliefs	with	quantitative	data	to	obtain	potential	ranges	for	parameters.	The	use	of	370	
fuzzy	logic	has	been	proposed	throughout	the	phases	of	LCA,	including	at	the	level	of	inventory	(Ardente	et	al.,	371	
2004;	Heijungs	and	Tan,	2010;	Sabará,	2021;	Tan,	2008;	Tan	et	al.,	2002);	impact	assessment	(Benetto	et	al.,	2006a,	372	
2006b;	Potting	et	al.,	2006);	and	interpretation	(Benetto	et	al.,	2008).		373	
	Fuzzy	logic	is	a	good	candidate	for	expressing	epistemic	uncertainty,	because	fuzzy	sets	can	express	vagueness	374	
(e.g.,	imprecise	and	non-numerical	data)	(Clavreul	et	al.,	2013)	more	effectively	than	probability	distributions,	for	375	
instance	by	 translating	 linguistic	uncertainty	 levels	 into	 ranges	of	 plausible	outcomes	 (Tan,	 2008).	Despite	 its	376	
computational	easiness,	 the	number	of	applications	of	 fuzzy	 logic	 in	LCA	 is	 limited	due	 to	 fuzzy	 logic’s	 lack	of	377	
capacity	to	deal	with	correlated	parameters,	the	limited	acquaintance	of	LCA	developers	and	practitioners	with	378	
this	concept,	and	the	lack	of	compatibility	in	major	commercial	software	(Tan,	2008).	Further	research	is	necessary	379	
to	assess	how	fuzzy	sets	can	be	used	 in	combination	with	stochastic	uncertainty	 (Tan,	2008),	and	whether	SA	380	
techniques	for	estimating	sensitivity	indices	could	be	extended	to	fuzzy	LCA	models.		381	

4	Discussion	382	

Despite	the	growing	number	of	publications	on	the	subject,	the	appraisal	of	uncertainty	in	the	LCA	literature	still	383	
appears	limited	and	widely	characterised	by	questionable	practices.	The	methodological	developments	published	384	
in	the	literature	seem	to	be	rather	isolated	exercises	with	very	few	practical	applications.	This	is	witnessed	by	the	385	
large	resort	to	OAT-SA	approaches	instead	of	GSA	(see	Section	3.7).	An	overview	of	the	main	issues	encountered	386	
is	presented	in	the	sections	below,	as	well	as	in	Table	1,	along	with	reflections	on	possible	remedies.		387	
	388	

Table	1:	Issues	and	remedies	for	uncertainty	appraisal	in	LCA						389	
Issue	 What	 Why	is	this	a	

problem?	
Remedy	 Who	should	act	

by	setting	
minimum	
requirements?	

Downplay	
uncertainty	
(stochastic)	
(Section	3)	

UA	is	separately	
characterised	
across	LCA	phases	

Uncertainty	is	
deflated	in	LCA	
and	outcomes	are	
unreliable,	
especially	in	
comparative	
studies	and	
labelling	

Fullest	possible	
characterisation	
of	UA	across	all	
phases	

Researchers;	
Practitioners;	
Editors	of	
scientific	
journals.	

Garbage-in	
garbage-out	
(stochastic)	
(Section	3.6)	

Resort	to	one-size-
fits-all	(default)	
approaches	for	
addressing	lack	of	
knowledge	on	
probability	
distributions	of,	for	
example,	all	factors	
given	the	same	
percentage	error	

Could	render	UA	
or	SA	(even	GSA)	
perfunctory	as	
assumed	
probability	
distribution	
functions	ranges	
and	shapes	do	not	
reflect	real	states	
of	knowledge	on	
uncertainty		

Avoid	the	use	of	
pedigree	scores	
as	proxies	for	
uncertainty	
characterisation,	
and	justify	
distribution	
shapes	and	
ranges		

Dataset	
developers;	
Software	
developers;	
Researchers;	
Practitioners;	
Editors	of	
scientific	
journals.	
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Independent	and	
confusing	UA	and	
SA	(stochastic)	
(Sections	3.6	and	7)	

UA	and	SA	are	run	
separately	

Miscommunication	
and	confusing	
outcomes,	and	
interactions	
among	factors	are	
lost	

Adequate	
exploration	of	
the	option	space	
through	GSA	

Software	
developers;	
Researchers;	
Practitioners;	
Editors	of	
scientific	
journals.	

Inadequacy	and	
misuse	of	
knowledge	quality	
assessment	tools	
(epistemic)	
(Section	3.8)	

Inflation	of	
epistemic	and	
stochastic	
uncertainty	by	
misuse	of	
DQI/pedigree	
approaches	

Overemphasis	of	
stochastic	
uncertainty,	
downplay	of	
epistemic	
uncertainty,	and	
lack	of	appraisal	of	
the	fitness	for	
purpose	

Use	of	
DQI/pedigree	
approaches	to	
assess	and	
discuss	quality	
entry	levels,	and	
application	of	
the	diagnostic	
diagram	for	
appraisal	and	
communication		

Researchers;	
Practitioners;	
Editors	of	
scientific	
journals.	

	390	
Issue	1:	Downplay	uncertainty	 	391	

A	 fairly	common	practice	 that	we	 identified	 involves	separately	characterising	uncertainty	across	 the	different	392	
phases	of	LCA	(Section	3).	However,	in	so	doing,	stochastic	uncertainty	may	be	severely	downplayed	as	only	a	tiny	393	
portion	of	the	option	space	would	actually	be	explored	by	neglecting	interactions	across	the	phases	of	LCA	(Saltelli	394	
and	Annoni,	2010).	When	considering	uncertainty	in	the	characterisation	phase,	this	can	span	several	orders	of	395	
magnitude,	up	to	more	than	twenty	(Chen	et	al.,	2021;	De	Schryver	et	al.,	2013;	Deng	et	al.,	2017a;	Roy	et	al.,	2014;	396	
Schryver	et	al.,	2011;	Van	Zelm	et	al.,	2009;	Van	Zelm	and	Huijbregts,	2013).	The	same	may	occur	by	using	figures	397	
from	development	labs	in	LCA	(up	to	seven	orders	of	magnitudes	according	to	Li	et	al.,	2014)	and	projecting	these	398	
to	a	full-scale	industrial	application.	One	immediate	implication	of	this	finding	is	that	only	assessments	where	the	399	
differences	 among	 options	 are	 pronounced	 can	 be	 considered	 meaningful.	 However,	 few	 contributions	400	
acknowledge	 that	 overlapping	 output	 uncertainty	 ranges	 may	 challenge	 ranking	 reliability	 in	 a	 comparative	401	
analysis	(Mendoza	Beltran	et	al.,	2018;	Muñoz	et	al.,	2014).	A	conservative	approach	may	involve	reporting	the	402	
results	in	terms	of	the	probability	of	one	option	being	better	–	that	is	to	say,	less	impactful	–	than	the	compared	403	
option.		404	

Simultaneous	variations	of	 the	uncertain	 input	parameters	and	assumptions	 in	Monte	Carlo	simulations,	when	405	
coupled	to	GSA,	enable	the	full	exploration	and	characterisation	of	the	uncertainty	space.	Nevertheless,	satisfactory	406	
examples	of	its	use	in	LCA	are	still	scarce	(Sections	3.6	and	3.7)	to	extent	that	even	a	comprehensive	review	of	LCA	407	
(Ling-Chin	et	al.,	2016)	omitted	the	possible	use	of	Sobol’	sensitivity	indices	in	LCA.		408	
Performing	GSA	requires	time-consuming	simulations,	which	may	be	prohibitive	for	a	complex	LCA.	Additionally,	409	
the	practice	of	simplifying	UA	by	focusing	on	the	influential	factors	before	a	GSA	(Aui	et	al.,	2019;	Groen	et	al.,	2017;	410	
Röder	and	Thornley,	2018;	Van	der	Harst	and	Potting,	2014)	is	unlikely	to	produce	reliable	results.	This	is	because	411	
it	is	to	be	seen	how	this	uncertainty	would	propagate	with	the	uncertainty	at	play	in	all	the	LCA	phases.	In	running	412	
an	SA	only	on	key	parameters	(Tao	et	al.,	2022),	the	mean	is	confused	with	the	uncertainty;	one	can	know	the	effect	413	
of	the	input	parameters	on	the	output	by	running	the	model.	However,	the	question	of	how	parameter	uncertainty	414	
affects	output	uncertainty	 is	determined	by	running	an	SA.	Thus,	 the	key	parameters	can	only	be	known	after	415	
running	an	SA.	The	same	caveat	applies	when	running	an	uncertainty	analysis	in	a	context	of	reduced	uncertainty	416	
by	firstly	varying	only	a	subset	of	parameters	and	then	opening	up	the	option	space	by	varying	more	(De	Koning	417	
et	al.,	2010).	The	opposite	would	actually	be	recommendable:	namely,	let	the	model	freely	vary	and	then	simplify	418	
it	by	fixing	the	non-influential	parameters	(Saltelli	et	al.,	2008).	419	
	420	
Issue	2:	Garbage-in	garbage-out	421	

Another	issue	is	represented	by	the	shapes	and	ranges	of	the	probability	distributions	of	the	modelled	parameters	422	
fed	into	UA	and	SA	(Sections	3.6	and	3.7).	In	many	LCA	studies,	the	following	distributions	are	typically	considered:	423	
distributions	with	standard	deviation	equal	to	the	mean	or	to	fixed	ratios	across	parameters,	or	as	per	the	pedigree	424	
coefficients	(Section	3.8)	(Kennedy	et	al.,	1996;	Weidema	and	Wesnæs,	1996);	and,	lognormal	distributions.	This	425	
shape	is	typically	selected	because	distributions	of	this	kind	are	already	available	in	life	cycle	inventories;	allow	426	
for	 the	 accounting	 of	 data	 skewness;	 and	 avoid	 negative	 figures	 (that	 could	 be	 randomly	 extracted	 from	 e.g.,	427	
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normal	distributions)	(Mattila	et	al.,	2011).	However,	it	is	important	to	recognise	that	this	approach	is	prone	to	428	
the	Garbage-in	Garbage-out	(GIGO)	phenomenon	(Funtowicz	and	Ravetz,	1990;	Saltelli	et	al.,	2013),	which	can	429	
invalidate	UA	or	(G)SA	even	in	a	synthetic	case	study	(Groen	et	al.,	2017).		430	
	431	
Issue	3:	Independent	and	confusing	UA	and	SA	432	

A	 frequent	 practice	 identified	 in	 the	 reviewed	 studies	 was	 the	 independent	 running	 of	 UA	 and	 SA,	 which	 is	433	
tantamount	to	assuming	that	the	uncertainty	appraised	using	these	approaches	belongs	to	different	categories	434	
(Sections	3.6	and	3.7).	Logic	would	dictate	that	the	uncertainty	space	is	the	same	for	the	two	analyses.	For	instance,	435	
Guo	and	Murphy	(2012)	ran	independent	UA	on	inventory	data	and	OAT-SA	on	the	time	horizon	of	the	impact	436	
categories,	but	these	two	analyses	are	necessarily	correlated.	For	this	reason,	they	should	be	run	in	tandem	rather	437	
than	independently.	Studies	were	also	found	in	the	literature	that	performed	SA	before	UA	(Cherubini	et	al.,	2018;	438	
Eranki	and	Landis,	2019).	Even	when	accounting	for	the	impact	of	the	same	parameters,	one	can	find	that	different	439	
uncertainty	ranges	are	used	in	SA	and	UA	(Li	et	al.,	2014).	Some	authors	even	mistook	UA	for	SA	(Bernstad	Saraiva	440	
et	al.,	2016;	Bisinella	et	al.,	2017;	Capello	et	al.,	2008;	Esteban	et	al.,	2014;	Meneses	et	al.,	2016;	Poujol	et	al.,	2020;	441	
Xu	et	al.,	2018)	or	vice	versa	(Amonkar	et	al.,	2019).		442	

Remedy	to	issues	1-3:	Approaches	to	handle	computational	burden	443	
In	LCA,	the	order	of	magnitude	of	the	analysed	flows	challenges	the	effective	implementation	of	GSA.	However,	444	
some	of	these	flows	(e.g.,	those	related	to	the	same	production	process)	may	be	correlated,	which	would	partially	445	
reduce	the	dimensionality	of	the	problem.	Effective	methods	to	deal	with	correlated	variables	in	GSA	have	also	446	
been	proposed	(Kucherenko	et	al.,	2012).	Patouillard	et	al.,	(2020,	2019),	and	Wei	et	al.,	(2015a)	presented	another	447	
valid	 approach	 by	 running	 GSA	 on	 grouped	 inventory	 data	 and	 impact	 categories	 to	 reduce	 the	 problem’s	448	
dimensionality.	 Meta-models	 can	 also	 assist	 in	 reducing	 the	 computational	 burden	 of	 cumbersome	 LCA	449	
accountings	in	a	GSA	setting	(Galimshina	et	al.,	2019).	450	

GSA	may	 also	 assist	 LCA	 practitioners	 in	 simplifying	 the	 adopted	model	 by	 fixing	 non-influential	 parameters	451	
(Saltelli	et	al.,	2008).	This	approach	was	showcased	in	Padey	et	al.	(2013),	who	first	ranked	the	input	parameters	452	
as	per	their	Sobol’	total	sensitivity	indices	through	GSA,	and	fixed	those	with	the	lowest	indices	because	their	values	453	
do	not	influence	the	output	variance.	In	a	non-global	context,	such	an	analysis	could	result	in	erroneously	fixing	454	
too	many	or	too	few	parameters,	thus	downplaying	the	output	uncertainty	or	wasting	computational	resources,	455	
respectively	(Pannier	et	al.,	2018).		456	

Issue	4:	Inadequacy	and	misuse	of	knowledge	quality	assessment	tools	457	
In	general,	the	LCA	studies	reviewed	in	this	work	did	reflect	on	epistemic	uncertainty	qualitatively,	yet	most	of	the	458	
studies	neglected	important	aspects	such	as	the	quality	–	or	fitness	for	purpose	–	of	the	methodological	choices	in	459	
relation	 to	 the	goal	 and	 scope	of	 the	assessment.	A	very	 limited	number	of	 studies	discussed	how	alternative	460	
methodological	or	value-laden	choices	would	compare	against	outcomes	(Section	3.8).		461	
LCA	developers	have	explored	several	avenues	to	estimate	missing	uncertainty	values	associated	with	LCI	due	to	462	
the	scattered	nature	of	statistical	information,	which	stems	from	the	large	number	of	flows	and	processes	involved	463	
in	LCA.	However,	 it	may	be	unwarranted	to	translate	qualitative	 information	 into	commensurable	metrics	and	464	
then	to	a	range	of	probability/possibility	estimates	(Gavankar	and	Suh,	2014).	Contrary	to	what	was	proposed	by	465	
Weidema	and	Wesnæs	(1996),	the	quality	of	a	parameter	(e.g.,	underpinning	theoretical	vs.	empirical	foundation)	466	
or	its	geographical	representativeness	says	little	about	whether	its	standard	deviation	should	be	increased	by	a	467	
factor	2,	10,	or	100,	and	it	does	not	indicate	which	shape	the	probability	distribution	functions	should	have.	The	468	
variability	of	a	certain	phenomenon	might	have	literally	nothing	to	do	with	the	quality	of	the	underpinning	mode	469	
of	measurement/estimation.	Even	if	an	empirical	relation	is	established	for	specific	circumstances	(e.g.,	a	given	470	
database,	see	Ciroth	et	al.,	2016),	 it	 is	rather	unclear	why	this	should	be	assumed	out	 for	other	processes	and	471	
databases.	472	
	473	
Epistemic	 uncertainty	may	 significantly	 influence	modelled	 quantities,	 but	 it	 cannot	 be	 reduced	 to	 stochastic	474	
uncertainty.	 Adopting	 the	 pedigree	 coefficient	 as	 a	 multiplicative	 proxy	 has	 a	 mere	 psychological	 effect.	 It	475	
reassures	practitioners	and	decision-makers	by	making	uncertainty	seemingly	manageable,	providing	a	sense	of	476	
confidence	 in	LCA.	Nevertheless,	epistemic	and	stochastic	uncertainty	are	simply	 two	different	domains.	Their	477	
conflation	 into	 stochastic	 uncertainty	 entails	 two	 risks:	 first,	 it	 can	 lead	 to	 a	 skewed	 or	 completely	 biased	478	
(stochastic)	 UA	 and	 SA	 (Issue	 2);	 and	 second,	 it	 undermines	 the	 importance	 of	 the	 appraisal	 of	 epistemic	479	
uncertainty.	However,	this	approach	has	become	the	norm	across	the	LCA	community.		480	
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	481	
Remedy	to	issue	4:	Use	of	diagnostic	diagrams	482	
Appraisals	of	stochastic	and	epistemic	uncertainty	should	be	retained	and	used	in	a	complementary	way.	Tools	483	
such	 as	 diagnostic	 diagrams	 can	 help	 to	 appraise	 epistemic	 uncertainty	 against	 the	 stochastic	 uncertainty	484	
apportioned	in	SA	(Pye	et	al.,	2018;	Van	Der	Sluijs	et	al.,	2005)	(Figure	6).	The	y-axis	represents	a	measure	of	the	485	
sensitivity	 of	 the	 output	 to	 the	 variation	 of	 input	 factors	 (e.g.,	 Sobol’s	 sensitivity	 indices),	 while	 the	 x-axis	486	
represents	the	score	of	a	knowledge	quality	assessment	scheme	(e.g.,	pedigree	score	and	data	quality	indicators).	487	
Understandably,	 weak	 pedigree	 values	 and	 high	 sensitivity	 indices	 would	 lead	 to	 the	 identification	 of	 most	488	
problematic	 inputs	 and	 assumptions,	 seek	 for	 remedies	 or	 alternatives,	 and	 enact	 proper	 uncertainty	489	
communication.	All	in	the	interest	of	assessing	the	quality	of	information	on	the	parameters	affecting	the	output	490	
uncertainty	the	most	(Cooper	and	Kahn,	2012;	Lewandowska	et	al.,	2004).	491	
	492	

[Figure	6	–	about	here]	493	
	494	
Epistemic	 uncertainty	 could	 be	 addressed	 most	 effectively	 through	 the	 extended	 participation	 of	 peers,	495	
deliberation.	 By	 acknowledging	 the	 perspectives	 of	 different	 stakeholders	 and	 recognising	 what	 is	 in	 their	496	
interests	in	a	production	process,	different	choices	may	be	adopted	and	discussed	(e.g.,	on	the	allocation	factors	497	
(Fedele	et	al.,	2014)).	In	so	doing,	different	interpretations	of	the	figures	may	be	possible,	which	means	that	LCA	498	
could	 be	 open	 to	 a	 quantitative	 storytelling	 perspective	 (Kuc-Czarnecka	 et	 al.,	 2020),	 and	 be	 used	 as	 such	 in	499	
conflicted	contexts.		500	
Finally,	when	epistemic	uncertainty	is	unbearable	(i.e.,	weak	pedigrees	for	plenty	of	the	assessed	relations),	one	501	
may	simply	refrain	from	quantifying	and,	instead,	develop	the	discussion	merely	around	qualitative	terms	(Sala	et	502	
al.,	2015,	p.	2).	503	
		504	

5	Conclusions	505	

In	this	study,	we	reviewed	LCA	studies	that	have	appraised	and	apportioned	uncertainty	in	their	modelling	activity.	506	
We	 identified	 a	 number	 of	 issues	 as	 follows:	 i)	most	 articles	merely	 focused	 on	 uncertainty	 at	 the	 LCI	 phase,	507	
neglecting	 the	 other	 LCA	phases;	 ii)	 UA	 and	 SA	were	 typically	 run	 as	 independent	 assessments;	 iii)	 the	 input	508	
parameters	for	which	uncertainty	was	acknowledged	were	mainly	selected	based	on	their	effect	on	the	LCA	output	509	
(thereby	confusing	 the	mean	with	 its	uncertainty);	 iv)	SA	was	often	run	one-factor-at-a-time,	which	overlooks	510	
interactions	among	parameters;	v)	the	terminology	associated	with	uncertainty	communication	was	frequently	511	
misused	by	confusing	uncertainty	appraisal	with	its	apportionment;	vi)	the	pedigree	coefficient	for	data	quality	512	
assessment	was	also	misused	by	translating	it	 into	a	multiplicative	coefficient	to	define	the	ranges	of	the	input	513	
parameters’	 probability	 distributions;	 and	 finally,	 vii)	 a	 significant	 gap	 exists	 between	 state-of-the-art	514	
methodologies	and	commonly	adopted	practices	in	LCA	studies.		515	

Based	on	these	findings,	it	is	reasonable	to	conclude	that	UA	and	SA,	as	well	as	knowledge	quality	appraisal,	in	LCA	516	
are	 insufficient	 in	a	 large	proportion	of	 the	published	scientific	 literature.	This	does	not	necessarily	reflect	 the	517	
practices	of	the	whole	community.	Much	work	is	needed	to	ensure	that	LCA	studies	can	be	used	for	policy	support	518	
and	 that	 the	 risk	 of	 misinterpretation	 is	 minimised.	 We	 understand	 the	 implicit	 trade-off	 of	 exhaustively	519	
acknowledging	uncertainty	and	the	resulting	risk	of	being	incapable	of	ranking	options	due	to	largely	overlapping	520	
outcome	 ranges.	 However,	 adequate	 uncertainty	 appraisal	 and	 apportionment	 should	 be	 regarded	 as	 a	 basic	521	
requirement	 at	 any	 scientific	 journal	 for	 publishing	LCA-based	papers,	 as	well	 as	 for	 product	 assessment	 and	522	
labelling	 schemes.	 This	 aspect	 should	 play	 a	 crucial	 role	 in	 the	 future	 agenda	 on	 uncertainty	 appraisal,	523	
apportionment	 and	 communication	 in	 LCA.	 Developing	 a	 more	 coherent	 and	 holistic	 view	 on	 this	 issue	 is	 a	524	
necessary	and	promising	avenue	to	explore	further,	as	well	as	fostering	collaboration	with	UA	and	SA	practitioners.	525	
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10	Figure	legends	1029	

Figure	1:	Uncertainty/sensitivity	analysis	workflow,	adapted	from	Saltelli	et	al.	(2008).	1030	
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Figure	2:	Scopus	search	on	yearly	LCA,	uncertainty,	and	sensitivity	analysis	(primary	axis)	vs.	percentage	over	1032	
total	contributions	on	LCA	(secondary	axis).	Dotted	lines	are	the	five-year	averages	of	these	trends.	The	underlying	1033	
data	are	available	from	the	Supporting	Material	repository	(Zenodo).	1034	

Figure	3:	Uncertainty	appraisal	across	LCA	phases.	The	underlying	data	are	available	from	the	Supporting	Material	1035	
repository	(Zenodo).	1036	
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Figure	4:	a)	Uncertainty	appraisal	at	the	goal	and	scope	phase;	b)	Uncertainty	appraisal	at	the	inventory	phase;	c)	1038	

Uncertainty	appraisal	at	the	impact	assessment	phase.	The	underlying	data	are	available	from	the	Supporting	1039	
Material	repository	(Zenodo).	1040	
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Figure	5:	a)	Technical	 aspects	 of	 uncertainty	 appraisal	 across	 LCA	phases;	 b)	 Sensitivity	 analysis	 across	 LCA	1042	
phases.	The	underlying	data	are	available	from	the	Supporting	Material	repository	(Zenodo).	1043	
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Figure	6:	Instance	of	diagnostic	diagram.	1045	


