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Abstract
Dietary factors are assumed to play an important role in cancer risk, apparent in consensus recommendations for cancer 
prevention that promote nutritional changes. However, the evidence in this field has been generated predominantly through 
observational studies, which may result in biased effect estimates because of confounding, exposure misclassification, and 
reverse causality. With major geographical differences and rapid changes in cancer incidence over time, it is crucial to 
establish which of the observational associations reflect causality and to identify novel risk factors as these may be modi-
fied to prevent the onset of cancer and reduce its progression. Mendelian randomization (MR) uses the special properties of 
germline genetic variation to strengthen causal inference regarding potentially modifiable exposures and disease risk. MR 
can be implemented through instrumental variable (IV) analysis and, when robustly performed, is generally less prone to 
confounding, reverse causation and measurement error than conventional observational methods and has different sources 
of bias (discussed in detail below). It is increasingly used to facilitate causal inference in epidemiology and provides an 
opportunity to explore the effects of nutritional exposures on cancer incidence and progression in a cost-effective and 
timely manner. Here, we introduce the concept of MR and discuss its current application in understanding the impact of 
nutritional factors (e.g., any measure of diet and nutritional intake, circulating biomarkers, patterns, preference or behav-
iour) on cancer aetiology and, thus, opportunities for MR to contribute to the development of nutritional recommendations 
and policies for cancer prevention. We provide applied examples of MR studies examining the role of nutritional factors in 
cancer to illustrate how this method can be used to help prioritise or deprioritise the evaluation of specific nutritional factors 
as intervention targets in randomised controlled trials. We describe possible biases when using MR, and methodological 
developments aimed at investigating and potentially overcoming these biases when present. Lastly, we consider the use of 
MR in identifying causally relevant nutritional risk factors for various cancers in different regions across the world, given 
notable geographical differences in some cancers. We also discuss how MR results could be translated into further research 
and policy. We conclude that findings from MR studies, which corroborate those from other well-conducted studies with 
different and orthogonal biases, are poised to substantially improve our understanding of nutritional influences on cancer. 
For such corroboration, there is a requirement for an interdisciplinary and collaborative approach to investigate risk factors 
for cancer incidence and progression.
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Introduction

Approximately 40% of cancer cases and cancer deaths in 
high-income countries are thought to be explained by known 
lifestyle, environmental, and clinical risk factors [1–3]. 
These risk factors include aspects of diet (e.g., alcohol con-
sumption; eating high amounts of red and processed meat; 
or diets low in fruits, vegetables, wholegrains and dietary 
fibre) and other related lifestyle factors (e.g., overweight and 
obesity, physical inactivity, smoking and metabolic factors) 
that could account for 15–20% of total cancer cases and 
deaths [1–5]. Thus, an important element in the prevention 
of cancer and its progression is to reduce exposure to such 
potentially modifiable dietary and lifestyle risk factors. The 
World Cancer Research Fund (WCRF) now provides recom-
mendations for cancer prevention based on comprehensive 
reviews of existing studies which focus on nutritional behav-
iour coupled with management of body weight and regular 
physical activity (Box 1) [2].

Box 1  World Cancer Research Fund (WCRF) cancer prevention rec-
ommendations

• Be a healthy weight - keep your weight within a healthy range (i.e., 
a body mass index [BMI] between 18.5 and 24.9 kg/m2) and avoid 
weight gain in adulthood

• Be physically active - walk more, sit less and be at least moderately 
physically active (i.e., increase your heart rate to about 60–75% of 
its maximum) every day

• Eat wholegrains, veg, fruits and beans - make wholegrains, vegeta-
bles, fruit and pulses a major part of your usual daily diet to con-
sume at least 30 g of fibre with at least five portions of non-starchy 
vegetables and fruit per day

• Limit “fast foods” - particularly, limit consumption of processed 
foods high in fat, starches or sugars including fast foods, pre-pre-
pared dishes, confectionary, snacks and bakery foods

• Limit red and processed meats - eat no more than three portions of 
red meat (i.e., any mammalian muscle) such as beef, pork and lamb 
and little processed meat per week

• Limit sugary drinks - do not consume sugar sweetened drinks (i.e., 
liquids sweetened by adding sugars such as sucrose, high fructose 
corn syrup and sugars naturally present in honey, syrups, fruit 
juices and fruit juice concentrate)

• Limit alcoholic beverages - for cancer prevention, it is best not to 
drink any alcohol

• Do not rely on supplements - aim to meet nutritional needs through 
diet alone rather than with high-dose dietary supplements (i.e., a 
product intended for ingestion that contains a “dietary ingredient” 
to supplement what is usually achievable through diet alone)

• Breastfeed your baby - for mothers, there is strong evidence that 
breastfeeding (i.e., exclusively breastfeeding for 6 months and then 
up to 2 years of age and beyond alongside appropriate complemen-
tary foods) helps protect against breast cancer in the mother and 
promotes healthy growth of the infant

• After cancer diagnosis - follow these recommendations, if you can, 
and check with your healthcare provider what is right for you. All 
cancer survivors (i.e., those who have been diagnosed with cancer 
and those who have recovered from the disease) should receive 
nutritional care and guidance on physical activity from trained 
professionals

However, the primary source of evidence supporting such 
recommendations about risk factors for cancer are traditional 
observational studies, which are vulnerable to potential 
biases (e.g., from confounding, reverse causality, and mis-
reporting) when estimating effects. Such biases may, in part, 
explain why claims of several putative protective factors for 
cancer prevention have failed to be supported when tested 
in subsequent randomized controlled trials (RCTs) [6–8]. 
For example, observational studies supported a link between 
higher levels of beta-carotene (i.e., a red pigment found in 
vegetables, such as carrots, that is converted to vitamin A) 
and reduced cancer risk, suggesting that beta-carotene and 
vitamin A may prevent cancer. These findings led to the 
promotion of vitamin supplements and diets rich in beta-car-
otene as a potential strategy for cancer prevention; however, 
randomization of individuals to beta-carotene supplementa-
tion in trials performed subsequent to these observational 
findings showed no clear effect on cancer risk [6–8].

There are major geographical differences and rapid 
changes in cancer incidence over time suggest that many 
environmental risk factors for cancers exist, with a poten-
tially large proportion still yet to be discovered. However, in 
the absence of RCTs, which may not always be feasible or 
ethical, there is a requirement for improved causal inference 
in the identification and verification of nutritional exposures 
for cancer incidence and progression.

Current challenges in nutritional cancer epidemiology 
include a need for (i) reliable estimates of whether previ-
ously reported nutritional exposures causally affect can-
cer; (ii) identification of novel causal and modifiable risk 
factors for cancer; (iii) better understanding of biological 
mechanisms underpinning the effects of nutritional expo-
sures on cancer; (iv) investigating the impact of causal risk 
factors across the lifecourse; (v) understanding the nutri-
tional effects on cancer subtypes, progression, and survival; 
and (vi) a more diverse and global perspective, particularly 
within low- to middle-income countries. In this article, we 
review the application of Mendelian randomization (MR) to 
help address these challenges, updating an earlier review by 
Schatzkin et al. in 2009 [9].
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Mendelian randomization

Originally introduced within the framework of parent–off-
spring studies [10], MR uses germline genetic variation, usu-
ally in the form of single nucleotide polymorphisms (SNPs), 
that are strongly associated with putative environmental 
risk factors (e.g., dietary factors, behaviour, and molecular 
traits) to appraise the causal relationship of these factors on 
disease outcomes [11–13]. Groups defined by genetic vari-
ation associated with an exposure should be largely inde-
pendent of confounding factors at a population-level [14]. 
This is because, at conception, genetic variants across the 
genome are randomly inherited from parents to offspring. At 
a population-level, this means that germline genetic variants 
are less likely to be associated with many environmental 
(non-genetic) factors that commonly confound observational 
associations.

Germline genetic variants (i.e., those that can be inher-
ited) are fixed at conception and are not modified by the onset 
of disease (e.g., cancer development), precluding reverse 
causation. Given improvements in modern genotyping tech-
nologies, measurement error in MR studies is often lower in 
comparison to that of the nutritional exposures. Additionally, 
some studies of cancer are of a case–control design and, for 
many nutritional factors (e.g., reported intake), retrospective 
reporting is subject to systematic measurement error and 
exposure misclassification. In contrast, this is not generally 
true for genetic variation (or any other biological measure). 
While misclassification of dietary assessments (e.g., self-
reported food frequency questionnaires) may be differential 
in relation to other traits (e.g., BMI levels), misclassification 
of such dietary measures would not, generally, be expected 
to be differential with regards to genotypic variation. Though 
there could be specific, but likely rare, scenarios where dif-
ferential misclassification could be expected. A consequence 
of non-differential misclassification of dietary assessments 
in an MR context is that statistical power would be reduced 
but MR estimates should not be biased. MR can be used 
to explore the longer-term effects of a particular exposure, 
which is particularly relevant in the context of diseases with 
long induction periods such as cancer.

Fundamentally, MR requires a “gene-environment 
equivalence” assumption, namely that downstream physi-
ological effects of modifying an exposure are the same 
whether they are genetically or non-genetically triggered 
(see Davey Smith 2012 for more details [15]) [10]. Formal 
applications of MR require three core IV assumptions to 
be met to provide a valid test of the causal null hypothesis 
(Fig. 1): (1) the genetic variant(s) being used as an instru-
ment is associated with the exposure (the relevance assump-
tion); (2) there are no common causes of both the genetic 
variant(s) used as an instrument and the outcome of interest 

(independence assumption); and (3) there is no independent 
pathway between the genetic variant(s) and outcome other 
than through the exposure (exclusion restriction assump-
tion). In the context of the exclusion restriction assumption, 
the presence of a direct effect of a genetic variant used as 
an instrument on an outcome (i.e., not mediated through the 
exposure of interest) is commonly termed “horizontal plei-
otropy”. In the presence of time-varying effects, however, 
these three assumptions are not sufficient to test all causal 
null hypotheses [16]. As previously shown by Swanson et al. 
in time-varying settings, MR estimates may only be able to 
provide evidence concerning the specific null hypothesis that 
altering an exposure at any time would have no effect on a 
particular outcome across all individuals.

Additional assumptions of homogeneity, monotonic-
ity and “no effect modification” are required to quantify 
the average causal effect (Fig. 1). Briefly, the homogene-
ity assumption requires that the causal effect of an expo-
sure on an outcome is constant across all individuals in a 
study, which may not be biologically plausible [17, 18]. As 
an alternative to estimating an average causal effect in an 
entire population, a local average effect can be estimated in 
a subgroup of that population under a weaker assumption 
of monotonicity (i.e., the direction of effect of a particular 
exposure within varying levels of the exposure-related IV 
is in the same direction for all individuals), although the 
subgroup is not defined. Another alternative to the homoge-
neity assumption is the “no effect modification” assumption, 
which requires that an instrument does not modify the effect 
of an exposure on an outcome differentially within levels of 
the exposure (e.g., through SNP-SNP or SNP-environment 

Fig. 1  Framework and assumptions of Mendelian randomiza-
tion (MR) analyses. In addition to a gene-environment equivalence 
assumption, MR relies on the following three core assumptions of 
formal instrumental variable analysis (in addition to those described 
as the “homogeneity”, “monotonicity” and “no effect modification” 
assumptions): (1) the “relevance” assumption—the genetic variant(s) 
being used as an instrument (Z) is robustly associated with the 
exposure (X); (2) the “independence” or “exchangeability” assump-
tion—there are no common causes of the genetic variant(s) and out-
come (e.g., population substructure, assortative mating and dynastic 
effects); and (3) the “exclusion restriction” assumption—there is no 
independent pathway between the genetic variant(s) and outcome (Y) 
other than through the exposure (X)—also known as horizontal plei-
otropy
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interactions). If the “no effect modification” assumption 
is met, an average causal effect can still be estimated even 
when an outcome is heterogenous (i.e., does not meet the 
“homogeneity assumption”). In addition to permitting quan-
tification of average causal effects, the presence of effect 
modification in an analysis can also inform on potential bio-
logical pathways underpinning effects (discussed further in 
“Challenges and sources of bias in MR analyses”).

Taken together, if the above assumptions hold, any dif-
ferences in an outcome by genotypic groups associated with 
an exposure can therefore be attributed to differences in that 
exposure [19]. MR has been developed and can be used in 
a multitude of scenarios; for example, with individual-level 
participant data (i.e., usually termed “one-sample MR”) and 
with summary-level data (i.e., usually termed “two-sample 
MR”), each with its own strengths and limitations. For more 
details on MR assumptions and methodology, please see our 
MR Dictionary (https:// mr- dicti onary. mrcieu. ac. uk/), the 
guidelines for performing MR analyses, and the STROBE-
MR [20–22].

Applied examples of how MR can contribute 
to understanding nutritional determinants 
of cancer

Genome-wide association studies (GWASs) have identified 
genetic variants that are robustly associated with a grow-
ing number of dietary factors and nutritional biomarkers 
(Box 2). Such GWASs have enabled the application of MR 
to improve understanding of nutritional exposures influenc-
ing cancer risk and progression studies in nutritional epide-
miology. Three illustrated examples are described below.

Box 2  Examples of genetic variants associated with nutritional and 
nutritionrelated factors

Genetic variants related to intake
• ALDH2 and ADH1B with alcohol intake
• LCT and MCM6 with milk and dairy intake
• CYP1A1, CYP1A2 and AHR with coffee and caffeine
• Macronutrients (e.g., the 21 loci published by the Social Sciences 

Genetic Association Consortium [SSGAC] [23])
 Genetic variants related to circulating biomarkers
• Iron, ferritin, transferrin and transferrin saturation
• Alpha- and beta-carotene, retinol
• Calcium
• Blood-based metabolites (e.g., those published by Kettunen et al. 

[24] and Shin et al. [25] for nuclear magnetic resonance and mass 
spectrometry platforms, respectively)

Genetic variants related to biologically relevant genes
• MTHFR with folate
• VDR with vitamin D

Genetic variants related to nutrition-related factors
• e.g., Body mass index (e.g., the 941 published by the Genetic 

Investigation of ANthropometric Traits [GIANT] consortium) [26]
• The human gut microbiome (e.g., those published by Hughes et al. 

[27] and the MiBioGen consortium [28])

Selenium and prostate cancer risk

Several prospective studies reported inverse associations of 
dietary, serum and toenail selenium with risk of prostate 
cancer [27–31], complemented by in vitro evidence [32, 33]. 
This led to the Selenium and Vitamin E Cancer Prevention 
Trial (SELECT) [34, 35], in which 35,533 healthy middle-
aged men were randomized in a 2 × 2 factorial design to 
daily supplementation of selenium, vitamin E or both, with 
prostate cancer onset after 12 years as the primary outcome. 
However, the trial was terminated prematurely by the data 
monitoring committee after 5.5 years due to indication of 
an increased risk of prostate cancer in the vitamin E supple-
mentation group along with lack of efficacy and suggestion 
of possible carcinogenic (i.e., increased rates of high-grade 
prostate cancer) and adverse metabolic effects (some evi-
dence of increased rates of type 2 diabetes) in the selenium 
supplementation group [34, 35]. Though it remains unclear 
as to what accounted for differences between findings from 
observational analyses and SELECT for selenium, it is 
plausible that residual confounding in the former may have 
driven the apparent protective observational associations 
reported [36, 37].

Following publication of findings from SELECT, an MR 
analysis using 11 SNPs associated with blood selenium was 
undertaken to appraise the relationships of circulating sele-
nium with overall and advanced prostate cancer risk [38]. In 
analyses scaled to mimic the blood selenium-raising effect of 
selenium supplementation versus placebo in SELECT (i.e., 
a difference of 114 μg/L), there was little evidence that cir-
culating selenium was associated with prostate cancer (odds 
ratio [OR] 1.01; 95% CI 0.89, 1.13). Consistent with adverse 
effects suggested in secondary analyses of SELECT, there 
was weak evidence that higher circulating levels of selenium 
increased risk of advanced prostate cancer (OR 1.21; 95% 
CI 0.98, 1.49) and type 2 diabetes (OR 1.18; 95% CI 0.97, 
1.43). These findings, coupled with those from SELECT, 
suggest that selenium supplementation is unlikely to prevent 
prostate cancer and that long-term selenium supplementa-
tion may increase the risk of advanced prostate cancer and 
type 2 diabetes. In addition, this example illustrates how the 
use of MR can provide additional insight into the potential 
efficacy of an intervention and thus inform policy when there 
is uncertainty remaining after a trial is stopped early. Given 
costs involved in developing SELECT (i.e., approximately 
$114 million U.S. dollars), this example also demonstrates 

https://mr-dictionary.mrcieu.ac.uk/
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how MR could be employed in the future as a time-efficient 
and inexpensive first step for prioritising or deprioritising 
interventions to be taken forward to testing in a RCT.

Adiposity and site‑specific cancer risk 
and progression

Recent MR studies have helped to refine the understanding 
of the role of body mass index (BMI) in the development 
of multiple cancers by suggesting substantially larger effect 
sizes for associations across multiple cancer sites, compared 
to those reported in the observational literature. The MR 
estimates for a 5 kg/m2 increment in BMI as proxied by 714 
independent germline genetic variants was approximately 
two to four-fold higher than the WCRF pooled observational 
multivariable regression estimate for most obesity-related 
cancers, including cancers of the kidney (MR RR 1.59: 
95% CI 1.45, 1.74 and observational RR 1.30; 95% CI 1.25, 
1.35), endometrium (MR RR 2.06; 95% CI 1.89, 2.21 and 
observational RR 1.50; 95% CI 1.42, 1.59), pancreas (MR 
RR 1.47; 95% CI 1.31, 1.66 and observational RR 1.10; 95% 
CI 1.07, 1.14), and colorectum (MR RR 1.44; 95% CI 1.22, 
1.70 and observational RR 1.05; 95% CI 1.03, 1.07) [39].

Smaller magnitudes of effect in observational analyses 
may reflect regression dilution bias from single time point 
measurements of BMI or reverse causation due to cancer-
induced weight loss [40–43]. In contrast, MR estimates 
reflect accumulated exposure to higher mean BMI across 
the life-course course and are unlikely to be influenced by 
reverse causation. The MR results suggest therefore that the 
cancer burden attributable to higher BMI is likely to have 
been underestimated. This is important as policy makers can 
use this evidence to strongly promote societal-wide interven-
tions aimed at maintaining a healthy weight.

In addition to cancer incidence, some MR analyses have 
examined the association of BMI with measures of cancer 
prognosis though such analyses can present additional meth-
odological challenges (e.g., collider bias, discussed below in 
the Sect. “Developments to mitigate the challenges of MR 
of nutrition in cancer”). For example, an analysis of 36,210 
individuals (2,475 breast cancer deaths) found evidence to 
corroborate some conventional observational analyses in 
support of an effect of BMI on breast cancer-specific sur-
vival among women with oestrogen-receptor (ER) positive 
breast cancer (hazard ratio (HR) per unit increase in a BMI-
related genetic risk score (GRS) 1.11; 95% CI 1.01, 1.22), 
but not ER negative breast cancer (HR 1.00; 95% CI 0.89, 
1.13) [44–46]. In MR analyses based on 46,155 participants 
(6,998 cancer deaths) in the UK Biobank with a cancer diag-
nosis, BMI was associated with an increased risk of overall 
cancer mortality (OR per SD increase in BMI 1.28; 95% CI 
1.16, 1.41).

Vitamin D and cancer risk

Meta-analyses of prospective observational studies have sup-
ported a role of low 25-hydroxyvitamin D levels [25(OH)
D], the primary circulating form of vitamin D, in overall 
cancer incidence along with risk of some site-specific can-
cers, most notably colorectal cancer [47–49]. Whether these 
findings represent an effect of 25(OH)D itself, a potential 
common cause of lower 25(OH)D and cancer risk (e.g., ciga-
rette smoking, excess adiposity or physical inactivity), or 
reverse causation is unclear and, as such, whether vitamin 
D supplementation is a chemoprevention agent cannot be 
established from these studies [50]. In contrast, MR stud-
ies found little evidence that circulating 25(OH)D affected 
risk of several cancers [51–54], in agreement with two large 
vitamin D supplementation trials [55, 56]. These findings 
collectively suggest that vitamin D supplementation should 
not be recommended as a strategy for cancer prevention.

Insights from discordance between MR studies

In contrast to studies of cancer risk, MR analyses of vitamin 
D and cancer survival have been inconsistent. An early MR 
analysis in 95,766 Danish participants (2,839 cancer deaths) 
suggested that higher levels of vitamin D (instrumented 
using 4 SNPs in DHCR7 or CYP2R1) may lower risk of 
cancer mortality (OR per 20 nmol/L higher plasma 25(OH)
D: 0.70; 95% CI 0.50, 0.98), consistent with a meta-analy-
sis of five trials (N = 1,591 deaths) showing that vitamin D 
supplementation (achieving a 54–135 nmol/L increase in 
circulating levels of circulating 25(OH)D in the interven-
tion group) reduced total cancer mortality [relative risk (RR) 
0.88; 95% CI 0.78, 0.98] [55, 57].

However, a more recent and larger MR analysis in UK 
Biobank (438,870 participants, 6,998 cancer deaths) found 
little evidence that circulating vitamin D (instrumented 
using 5 SNPs in GC, CYP2R1, DHCR7, or CYP24A1) influ-
enced cancer mortality [OR per 20 nmol/L higher plasma 
25(OH)D: 0.97; 95% CI 0.84, 1.11] [58]. Baseline lev-
els of plasma 25(OH)D in the Danish analysis and in UK 
Biobank (as reported elsewhere) were similar, suggesting 
that discordance across MR studies is unlikely to reflect a 
relative vitamin D deficiency among Danish participants 
(i.e., reflecting the more northern latitude of this country) 
[59]. It is possible that differences in findings could reflect 
differences in instrument construction across studies (and, 
thus, differences in the likelihood of introducing horizontal 
pleiotropy into analyses). For example, when the authors 
of the UK Biobank analysis re-examined the association 
between 25(OH)D levels and overall cancer mortality using 
two of four (independent) SNPs used in the Danish analysis, 
point estimates generated were more similar to the Danish 
analysis (OR 0.88; 95% CI 0.71–1.11), though imprecisely 



 Cancer Causes & Control

1 3

estimated. While instruments across both analyses were con-
structed from biologically plausible gene regions for 25(OH)
D levels (e.g., DHCR7, CYP2R1), the few SNPs available 
to instrument this trait meant that comprehensive sensitivity 
analyses (see Table 1) either could not be performed or were 
under-powered for these analyses. These examples therefore 
highlight potential challenges of reliably testing IV assump-
tions and, thus, obtaining reliable causal inferences when 
there are few SNPs in an instrument. Re-evaluating associa-
tions between 25(OH)D and cancer mortality using a recent 
GWAS of 417,580 individuals that identified 143 loci associ-
ated with 25(OH)D concentrations may provide the opportu-
nity to test the robustness of findings more comprehensively 
to MR assumption violations and thus help to potentially 
reconcile conflicting findings from these analyses [60].

Challenges and sources of bias in MR 
analyses

There are several important methodological challenges to 
and unique sources of bias that must be considered when 
applying MR to evaluating the causal role of nutritional fac-
tors in cancer.

Firstly, such analyses are limited to nutritional traits that 
have been shown to robustly associate with germline genetic 
variants. Although the number of GWASs of nutritional fac-
tors has increased in recent years, the sample sizes of these 
studies are often relatively limited, and thus for many factors 
there are relatively few established genetic variants that can 
be used as instruments in an MR framework. Large-scale 
collaboration across GWASs with measures of nutritional 
traits (as has been achieved, for example, for “energy bal-
ance” as indicated by adiposity within the GIANT consor-
tium [68]) will facilitate the continued discovery of genetic 
variants that influence nutritional traits.

Secondly, MR studies of nutritional factors often have 
insufficient statistical power to detect modest effect sizes, 
because of the moderate number and size of effects of 
genetic variants for individual nutrients and small heritable 
components of many nutritional exposures [69]. Power for 
MR analyses has generally increased with larger GWASs 
of nutritional exposures and site-specific cancers and the 
application of two-sample MR which leverages independent 
genotyped samples with dietary and cancer data to estimate 
causal effects, even in the absence of complete phenotypic 
data across both samples [70]. However, one potential trade-
off from constructing instruments using increasingly larger 
GWASs is the possibility that these SNPs are more likely to 
be horizontally pleiotropic [71].

Thirdly, as is the case with many non-nutritional expo-
sures, limited biological understanding of the mechanisms 
underlying the associations of genetic IVs with nutritional 

exposures can complicate or undermine interpretation of 
findings. For example, in an early MR analysis of alcohol 
intake and oesophageal cancer, understanding the dual role 
of an ALDH2 genetic variant (used to instrument alcohol 
intake), which influences both alcohol intake and acetalde-
hyde metabolism, was essential in ensuring correct inter-
pretation [72].

Specifically, the ALDH2 locus encodes an enzyme (alde-
hyde dehydrogenase) that metabolizes acetaldehyde, the 
principal metabolite of alcohol and a carcinogen [73]. Each 
copy of the ALDH2 *2 allele produces an inactive protein 
subunit that is unable to metabolise acetaldehyde, resulting 
in markedly higher acetaldehyde levels in *1*2 heterozy-
gotes and *2*2 homozygotes, compared to *1*1 homozy-
gotes, when alcohol is consumed. Carriers of the *2 allele 
also experience facial flushing along with nausea and other 
unpleasant symptoms after consuming alcohol, and thus 
have reduced tolerance (and consumption) of alcohol, which 
is particularly severe in *2*2 homozygotes.

In a meta-analysis of seven studies of 905 oesophageal 
cancer cases in East Asians, individuals with the ALDH2 
*2*2 genotype were found to have a lower risk of oesopha-
geal cancer as compared to those with a *1*1 genotype (OR 
0.36; 95% CI 0.16, 0.80). This suggests that lower levels 
of alcohol consumption protect against oesophageal cancer 
risk. When individuals with a *1*2 genotype were compared 
to *1*1 homozygotes, the former were shown to have an 
elevated risk of oesophageal cancer (OR 3.19; 95% CI 1.86, 
5.47). A naïve interpretation would be that individuals with 
moderate vs. higher alcohol consumption had an elevated 
risk of oesophageal cancer.

However, stratification of these results by self-reported 
alcohol intake revealed that there was no strong evidence for 
an increased risk of cancer in *1*2 heterozygotes relative to 
*1*1 homozygotes who abstained from alcohol (OR 1.31; 
95% CI 0.70, 2.47); whereas, among self-reported heavy 
drinkers, there was an approximate seven-fold increase in 
risk (OR 7.07; 95% CI 3.67, 13.60). Therefore, the obser-
vation of an increased risk of oesophageal cancer among 
individuals with a ALDH2 *1*2 genotype compared to *1*1 
homozygotes suggested that the substantially elevated acet-
aldehyde levels in these heterozygotes likely mediated the 
effect of alcohol intake on oesophageal cancer.

Fourth, genetic instruments may be associated with dif-
ferent dimensions of the same nutritional factor or behav-
iour, a phenomenon termed “trait heterogeneity,” making 
interpretation of some MR findings challenging [11]. For 
example, various genetic variants related to coffee intake are 
also linked to caffeine metabolism [74]. In the absence of 
strong biological knowledge into trait complexity, this lack 
of specificity can make it difficult to disentangle whether 
observed effects are primarily driven through coffee intake 
(independent to caffeine metabolism) or caffeine levels or, 
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alternatively, whether null effects observed could be driven 
through divergent effects of coffee and caffeine on a par-
ticular outcome.

Finally, robust conclusions from MR require that the three 
core IV assumptions required to test the causal null hypoth-
esis hold true. However, only the relevance assumption is 
readily verifiable (Fig. 1). Instrument strength and the pres-
ence of weak instrument bias, when an instrument explains 
only a small proportion of variance in an exposure, is typi-
cally assessed by calculating an F-statistic, with a threshold 
of ≥ 10 a conventional “rule of thumb” indicating minimal 
weak instrument bias [75]. The presence of weak instrument 
bias can have differing effects depending on the analysis per-
formed: in one-sample MR with individual-level data, weak 
instruments are expected to bias estimates towards the con-
founded multivariable regression estimate; in two-sample 
MR with summary-level data, weak instruments tend to bias 
estimates toward the null (in the absence of sample overlap).

Threats to the exchangeability assumption include con-
founding due to differences in population substructures, 
assortative mating, and dynastic effects [76]. Confound-
ing through population substructure is typically addressed 
through restricting analyses to ancestrally homogeneous 
groups and adjusting for principal components of ancestry 
or using linear mixed models but [77], as GWASs increase in 
size, these methods may fail to capture residual confounding 
through increasingly subtle population substructures. Assor-
tative mating, where there is non-random matching between 
spouses, can produce spurious associations and/or biased 
effect size estimates. Dynastic effects represent indirect 
effects of parental genotype on offspring genotype mediated 
via parental traits. For example, it is plausible that parental 
genetic variants could influence diet in childhood even if 
these are not inherited by the child (e.g., through parental 
feeding behaviours or the shared environment) which could 
have long-term effects on dietary preferences in adulthood, 
in turn influencing subsequent cancer risk.

Evidence is emerging that MR analyses performed in 
samples of unrelated individuals may be biased due to the 
aforementioned exchangeability violations, though this 
bias appears to be more pronounced for socioeconomic and 
behavioural traits (e.g., educational attainment and smoking 
status) as compared to physiological measures (e.g., circulat-
ing biomarkers) [78]. Consequently, these biases may have 
more relevance to MR analyses (performed in unrelated indi-
viduals) of self-reported dietary intake and dietary patterns 
as compared to circulating measures of nutritional factors. 
Within-family MR, which uses parent–offspring trios or sib-
ship designs, is increasingly feasible and can help to correct 
for biases due to each of these effects [76, 79]. Indeed, the 
MR approach was originally introduced within the frame-
work of parent–offspring studies [10]. Limited statistical 
power of studies using parent–offspring designs at the time Ta
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that this approach was conceptualised (in 2003) meant that 
the only viable analyses that could be performed were often 
those that used population data in unrelated individuals 
which relied on the premise that the random inheritance 
of genetic variants from parents to offspring is reflected at 
population-level in these individuals [10, 80]. Sensitivity 
analyses to assess violations of the exclusion restriction cri-
terion include:

• Tests for horizontal pleiotropy that is not “balanced” 
across an instrument (“directional pleiotropy”), such as 
the MR-Egger intercept term [81].

• Analyses to correct for directional pleiotropy in a regres-
sion model, such as MR-Egger regression [81].

• Analyses that can provide unbiased causal estimates in 
the presence of invalid instruments such as weighted 
median- and mode-based estimators [61, 62, 65, 66, 81–
84]. These methods relax certain IV assumptions while 
introducing additional assumptions.

A non-exhaustive list of these sensitivity analyses along 
with their key aims, assumptions, strengths, and limita-
tions is presented in Table 1 (more definitions and details in 
the MR Dictionary). Given differences in the assumptions 
required of these methods, it is often beneficial to test the 
consistency of findings across various sensitivity analyses.

Developments to mitigate the challenges 
of MR of nutrition in cancer

Several methods that have been developed to mitigate the 
challenges in the design of MR studies of nutrition and can-
cer are highlighted below. Specifically, we discuss:

• Instrument identification
• Tissue-specificity
• Hypothesis-free investigations of the phenome
• Two-step MR for mediation analyses
• Multivariable MR for correlated traits, mediation and 

time-varying exposures
• Evaluating risk factors for cancer progression and col-

lider bias in case-only studies
• Factorial MR for the combined impact of multiple nutri-

tional exposures
• MR to examine non-linear associations.

Instrument identification

Beyond established instruments for alcohol and milk intake 
(Box 2), there are currently few reliable instruments for 
dietary intake. Performing GWASs for broad dietary fac-
tors and behaviours has the potential threat of uncovering 

non-informative SNPs or SNPs that are indirectly related 
to diet through other sociodemographic and behavioural 
factors, re-introducing confounding into MR analyses. 
For example, a recent GWAS of dietary habits in the UK 
Biobank identified a variant (rs1421085) in FTO, an estab-
lished adiposity locus, associated with a principal compo-
nent-derived dietary pattern profile at genome-wide sig-
nificance [69]. Naïve use of this SNP to proxy a particular 
dietary pattern in the context of an MR analysis examining 
the effect of this dietary pattern on subsequent adiposity or 
adiposity-related traits would be erroneous as this variant is 
likely to influence dietary patterns via its effect on adipos-
ity (i.e., rather than influencing adiposity via an effect on 
dietary patterns). Thus, these complex relationships between 
genetic variation and the primary phenotype of interest need 
to be understood at a more basic level within the context of 
MR.

In contrast, instruments for circulating biomarkers rel-
evant to dietary intake are more abundant, including, for 
example, variants linked to circulating levels of iron, ferritin, 
vitamins (e.g., alpha- and beta-carotene, retinol and vitamin 
C), selenium and calcium.

However, as is the case for many molecular markers, 
interpretation of findings when using instruments based on 
nutritional biomarkers may introduce their own challenges 
when the biology underpinning associations with genetic 
variants is unclear. For example, circulating biomarkers may 
not accurately represent the cellular concentration of that 
marker, such as intracellular biomarkers involved in parac-
rine or autocrine signalling [85]. Indeed, higher circulating 
levels of a particular biomarker may represent lower levels 
of cell uptake or cell signalling regulation in the tissue of 
interest, as is the case for variants in IL6R associated with 
higher circulating concentrations of interleukin-6 because 
of lower cellular binding of this protein to its receptor [11]. 
To overcome this limitation, it is possible to generate instru-
ments from variants within well-characterised gene regions. 
For example, variants in MTHFR, which encodes the rate-
limiting enzyme in one-carbon metabolism, could be used 
to proxy folate; similarly, variants in VDR, which encodes 
the vitamin  D3 receptor, could be used to proxy vitamin 
D-related pathways. However, if variants have not been 
identified in GWASs, it may be difficult to generate a causal 
effect estimate of the exposure-cancer relationship due to 
unreliable quantification of the SNP-exposure association. 
Furthermore, publication bias in candidate gene studies 
calls into question the reliability of variants identified in 
these type of studies [86]. By extension, as in conventional 
molecular epidemiological analyses, circulating biomarkers 
may also not reflect changing consumption of related nutri-
tional exposures. As several micronutrients (e.g., calcium) 
are tightly regulated, dietary intake will be unlikely to lead 
to detectable changes in circulating concentrations; thus, 
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MR estimates should not be interpreted as being relative 
to dietary intake per se and, in general, this limits power to 
detect genetic contributions to these micronutrients.

GWASs of increasingly refined nutritional biomark-
ers and traits (e.g., using assays of xenobiotics or urinary 
metabolite data as biomarkers of dietary intake) will help to 
increase the number of genetic variants available to develop 
instruments for MR analyses. For example, the growing 
understanding of germline genetic contributors to the human 
gut microbiome could help to examine the potential role 
of microbiota in site-specific cancers [87–89]. Integration 
of high throughput profiling of the metabolome, proteome 
and transcriptome within GWASs will also permit MR stud-
ies to examine potential mediating roles of these molecular 
markers in linking nutritional exposures to cancer risk and 
progression [90–92]. Targeting these factors and pathways 
may be more preferable and achievable when dietary modi-
fication is challenging.

Tissue specificity

MR analyses have historically examined associations of 
circulating levels of nutritional biomarkers on cancer. How-
ever, in contexts where a gene’s function is restricted to (or 
relevant only in) a particular tissue, MR estimates using 
biomarker levels measured in whole blood may not be a 
suitable proxy for tissue-specific expression levels or activity 
of a particular gene product [93, 94]. Using genetic vari-
ants associated with tissue-level gene expression (expres-
sion quantitative trait loci, eQTLs) as instruments can 
permit exploration of the possible tissue-specific effects of 
molecular traits downstream of nutritional factors on can-
cer outcomes. Instruments for such analyses are becoming 
increasingly available from the genotype-tissue expression 
(GTEx) consortium, which, at the time of writing, has inte-
grated genotyping with gene expression data from 49 tissue 
types from 838 individuals [90, 95]. Richardson et al. used 
cis-acting eQTLs obtained from GTEx to examine associa-
tions of genetically instrumented, tissue-specific expression 
of 32,116 transcripts with 395 complex traits, including a 
range of dietary intakes and nutritional biomarkers [96]. In 
the context of nutritional epidemiological studies of cancer, 
such tissue-specific MR analysis could be used, for exam-
ple, to examine whether alterations of gene expression in 
the colonic epithelium in relation to n−3 polyunsaturated 
fatty acid (PUFA) intake, as reported in animal models of 
colorectal cancer, may mediate an effect of n−3 PUFAs on 
subsequent cancer risk [96, 97]. An important consideration 
when performing tissue-specific MR analyses is that limited 
and variable sample sizes currently available for different 
tissues means that few reliable instruments may be available 
in some tissues, so that differences in findings across tissues 
may simply reflect differences in statistical power.

Hypothesis‑free investigations of the phenome

The integration of MR within studies that scan a comprehen-
sive range of all measured phenotypes (otherwise known as 
phenome-wide association studies, MR-PheWASs) can be 
used to appraise causality in multiple relationships simul-
taneously in an agnostic manner, and so generate novel 
hypotheses [98–100]. MR-PheWASs can be used to char-
acterize the potential causal downstream effects of a par-
ticular exposure and prioritise modifiable risk factors for 
an outcome of interest. For example, Langdon et al. used 
MR-PheWAS in a hypothesis-free scan of 486 lifestyle, 
behavioural, and molecular risk factors using summary sta-
tistics from 28 GWASs. The analysis corroborated previ-
ously reported effects of adiposity-related risk factors on 
pancreatic cancer, and identified novel risk factors, such as 
altered circulating levels of ADpSGEGDFXAEGGGVR*, 
a fibrinogen-cleavage peptide, and O-sulfo-l-tyrosine [101].

Given the increasing statistical power afforded by larger 
sample sizes of individual and curated GWAS databases 
(e.g., the GWAS Catalog [102], GWAS ATLAS [103], the 
IEU OpenGWAS project [104, 105] and PhenoScanner 
[106]) coupled with efficient analytical platforms for per-
forming such analyses (e.g., PHESANT for UK Biobank 
data [107] and MR-Base [104]), MR-PheWAS are becoming 
more commonplace. However, MR-PheWASs require care-
ful consideration of a multiple testing correction, which can 
limit power and the number of causal relationships that are 
potentially prioritized for follow-up. That being said, with 
sufficiently strong instruments, such an approach could read-
ily be applied to investigation of the contribution of dietary 
intake and different cancers and other diseases [108].

Two‑step MR for mediation analyses

Two-step MR enables the estimation of mediating effects 
(mechanisms) linking upstream exposures with cancer risk 
and progression. In the first step, genetic variant(s) asso-
ciated with the exposure are used in MR analyses testing 
the relationship between the exposure and proposed inter-
mediate trait(s). In the second step, a second set of genetic 
variants, independent of those used in the first step, are 
used in MR analyses testing the relationship between the 
intermediate trait(s) and the outcome of interest. Evidence 
for a causal effect in both steps provides some evidence for 
causal mediation in the exposure-outcome relationship via 
this intermediary, with appropriate consideration of the 
assumptions of mediation and MR analyses. Two-step MR 
can be used to test for evidence of mediation in a known or 
hypothesized pathway or can be expanded (and combined 
with MR-PheWAS, for example) to identify and estimate the 
effects of potential mediators in an exposure-outcome rela-
tionship of interest. For example, MR has provided robust 
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evidence that cigarette smoking causes alterations to DNA 
methylation but little evidence that DNA methylation at sev-
eral CpG sites in peripheral blood play a causal role in lung 
cancer development, consistent with methylation at these 
particular sites not be relevant for lung cancer [109].

Two-step MR can be used to estimate the proportion of 
the total exposure-outcome effect influenced by this inter-
mediate trait and, by combining with traditional mediation 
methodology or multivariable MR (MVMR; see below), 
both the indirect effect (i.e., the effect of the exposure on 
outcome only via the intermediate) and direct effect (i.e., 
the effect of the exposure on outcome independent of the 
intermediate) [110].

The method has, however, been used relatively infre-
quently due to requirement of large sample sizes, either 
individual- or non-overlapping summary-level data for all 
three components (i.e., exposure, intermediate and out-
come traits), multiple valid instruments for exposure and 
valid instruments for mediator that are independent of expo-
sure, and appropriate correction against false positives due 
to multiple testing. However, steps one and two have been 
performed separately in a range of different studies to make 
inferences of likely molecular mediation, without undertak-
ing a full mediation analysis [111–113].

Multivariable MR for correlated traits and mediation

MVMR can be used to address known pleiotropy in genetic 
variants associated with multiple, highly correlated expo-
sures such as lipids, metabolites, adiposity measures and 
macronutrients. MVMR uses genetic variants associated 
with multiple exposures to jointly estimate the independ-
ent causal effect of each of those correlated exposures on 
the outcome—the direct effect of each exposure (Fig. 2). 
For example, in a MVMR analysis of 6,034 oral/oropharyn-
geal cancer cases and 6,585 controls, Gormley et al. dem-
onstrated that smoking and alcohol consumption both con-
ferred direct effects on oral/oropharyngeal cancer risk when 
mutually adjusted for each other (per SD increase in lifetime 
smoking: MVMR OR 2.6; 95% CI 1.7, 3.9; per SD increase 
in drinks consumed per week: MVMR OR 2.1; 95% CI 1.1, 
3.8) [114].

Used in conjunction with two-step MR, MVMR can be 
used in mediation analyses to estimate the direct, indirect, 
and total effects of interrelated traits [116, 117]. When using 
MVMR for formal mediation analyses, the instruments for 
the exposure and mediator need to be independent.

However, MVMR analyses require instruments that 
explain sufficient variation in each exposure conditional on 
the other exposures (i.e., this should be re-estimated in light 
of other exposures being modelled) [118]. Though, if the 
exposures of interest are very highly correlated, then the 
MVMR analysis may have very low power [119].

With the growth of studies and GWASs focusing on mul-
tiple characterisations of nutrition (e.g., intake, preferences 
and composition) and the inherent correlation between nutri-
tional factors, MVMR (alongside factorial MR—see below) 
will be increasingly useful in the examination of the impact 
of nutrition on cancer aetiology and prognosis.

Multivariable MR for time‑varying exposures

Some nutritional factors may operate during a critical 
period of the life-course to influence cancer risk, such as 
the hypothesized protective role of phytoestrogen expo-
sure during puberty on subsequent breast cancer risk [120]. 
Under the assumption that the relationship between a genetic 
variant and an exposure is constant over time (i.e., from 
conception to measurement of an outcome at a particular 
time), Labrecque and Swanson proposed that MR estimates 
generated using univariable models can be considered as an 
average “lifetime” change in this outcome measured at this 
time in relation to a unit change in the exposure [121]. Under 
this definition, if effects are time-varying, however, an MR 
estimate cannot reflect a “lifetime” effect, as it cannot be 
summarised by measuring it at any one point in time and it is 
advised that MVMR be employed to examine potential time-
varying exposures. More recently, Morris et al. have pro-
posed that a “lifetime” causal effect can be estimated in MR 
analyses using one measure of a time-varying exposure if 
conceptualised as the “causal effect of changing the liability 
[to the exposure] such that the exposure would be one unit 
higher at a given time” [122]. In this framework, the esti-
mated “lifetime effect” would differ in magnitude if meas-
ured at a different point in time, but MR estimates would 
nonetheless be consistent with the underlying trajectory of 
an exposure induced by a SNP. In the presence of multiple 
SNPs with different time-varying effects on the exposure 
(i.e., leading to different estimated effect of the exposure 

Fig. 2  Multivariable MR for correlated nutritional factors. Multi-
variable MR uses multiple genetic instruments  (Z1, …,  Zn) associ-
ated with multiple, potentially correlated exposures (e.g.,  X1,  X2, and 
 X3) to jointly estimate the independent causal effect of each of the 
exposures on a particular outcome (Y). It can also be used to explore 
mediation following two-step MR analyses to provide a better under-
standing of the direct, indirect and total effects of each exposure [64, 
115]
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on an outcome), MVMR could be used to disentangle the 
effects of different liabilities to a particular exposure on an 
outcome. Where MVMR is not possible to perform (e.g., 
where only one SNP is available to instrument an exposure 
or where data are not available to examine whether multiple 
SNPs in an instrument have differing time-varying associa-
tions with the exposure), authors should, at minimum, com-
ment on the precise estimand of interest in an analysis and 
all assumptions that must be met to reliably estimate this.

By extension, in the presence of a time-varying exposure, 
a univariable MR analysis of an exposure at an earlier stage 
in the life-course (e.g., in childhood) on an outcome can gen-
erate a total effect of that exposure on outcome, which could 
include any effect that is mediated through that exposure at 
a later time point (e.g., in adulthood). In contrast to a uni-
variable MR analysis, when genetic variants have differing 
effects on the exposure at different time points, MVMR can 
be used to estimate direct effects of time-varying exposures 
on disease outcomes, decomposing effects that are operating 
at more than one time point. Richardson et al. recently used 
this approach to disentangle the effects of childhood and 
adulthood body size on breast cancer risk [123]. The authors 
reported strong evidence for a protective direct effect (not 
via adult body size) of larger childhood body size on breast 
cancer risk (OR 0.59; 95% CI 0.50, 0.71) with less evidence 
for a direct effect of adult body size (OR 1.08; 95% CI 0.93, 
1.27). An important caveat of MVMR analysis applied to 
time-varying exposures is that large sample sizes for meas-
ures across different time points are required.

Evaluating risk factors for cancer progression 
and the potential for collider bias

MR studies of cancer progression could inform trials test-
ing adjuvant therapies in a cancer survival setting [124]. In 
recent years, there has been a growth in GWASs examin-
ing germline genetic contributions to measures of disease 
prognosis and survival, as opposed to incidence. This is of 
particular importance in studies of cancer, as there is evi-
dence suggesting that the effects of particular exposures may 
differ between incidence of cancer and subsequent progres-
sion once cancer has occurred [104]. Whilst GWASs of can-
cer prognosis have generally uncovered few genome-wide 
significant loci to date, explained in part by the relatively 
smaller sample sizes of these studies compared to those for 
disease incidence, these summary-level data can still be 
valuable in MR for identifying causal risk factors for cancer 
progression. As such, MR has been used to examine the 
causal roles of alcohol consumption on prostate cancer mor-
tality in men with low-grade disease, coffee consumption 
on prostate cancer progression and BMI on breast cancer 
survival [44].

However, restricting prognostic study samples to indi-
viduals with cancer can cause “collider bias”, which can 
potentially induce an attenuation, reversal or overestimation 
of associations between otherwise independent exposures for 
cancer progression when adjusting or selecting for a com-
mon consequence of those two exposures [124–126]. When 
restricting the study sample to those who have cancer in 
prognostic studies, all independent risk factors for cancer 
incidence become associated with each other. If one or more 
of these risk factors is also a prognostic factor for cancer, 
this can potentially lead to a spurious associations between 
exposure-associated genetic variants and cancer prognosis. 
Collider bias is an issue for both conventional observational 
and MR approaches, and, to address it, any common causes 
of cancer incidence and progression need to be measured 
and controlled for [124, 127] (see Fig. 3, [128]).

The development of methods for mitigating collider bias 
in case-only progression studies is an active area of research, 
including the use of directed acyclic graphs (DAGs) of cor-
relates of both cancer incidence and progression and notable 
methodological developments that adjust for collider bias 
in an MR setting [124, 129]. Firstly, if associations exist 
between exposure-related genetic variants and common 
causes of cancer incidence and progression, adjusting for 
these common causes may mitigate collider bias [124]. This 
not only requires individual-level data but is itself subject 
to unmeasured confounding and measurement error. Sec-
ondly, quantifying and correcting the induced bias is possi-
ble using analytical formulae proposed by Yaghootkar et al. 
or inverse probability weightings. However, these methods 
require certain population-level parameters, such as cancer 
prevalence and the effects of genetic variation and confound-
ers on cancer incidence, to be quantified. Thirdly, Dudbridge 
et al. recently proposed a method that uses the residuals from 
the regression of genetic effects of cancer prognosis on the 

Fig. 3  Directed acyclic graph illustrating selection bias in a Mende-
lian randomization analysis of cancer prognosis. In this example, esti-
mating the causal effect of body mass index on colorectal cancer sur-
vival, the sample is restricted to colorectal cancer cases. Conditioning 
analyses on colorectal cancer incidence (i.e., case status, a collider 
in this scenario) could generate a spurious association between two 
causes of colorectal cancer incidence (i.e., body mass index and ciga-
rette smoking). This then induces an association between body mass 
index and colorectal cancer survival (via cigarette smoking) even in 
the absence of a true causal relationship between these two traits in 
the target population
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genetic effects of cancer incidence to eliminate (when the 
genetic effects on disease incidence and progression are 
independent) or, more realistically, reduce this bias [126, 
130, 131].

Another potential source of collider bias is the presence 
of survival bias (i.e., selective survival of participants prior 
to study enrolment) [132]. This may be particularly prob-
lematic for cancer GWASs where participants tend to be 
middle-aged or elderly. In a hypothetical MR study exam-
ining the effect of BMI on cancer risk, if genetic variants 
used to proxy BMI also influence mortality prior to study 
enrolment, conditioning on surviving to study entry can 
induce an association between these genetic variants and 
other common causes of survival into a study and cancer 
risk. Additionally, selection into studies (particularly large 
cohort studies or biobanks with low response rates) is likely 
to have a considerable impact on the representation of the 
study (e.g., only 5% of those invited to UK Biobank were 
enrolled and are therefore likely not an accurate representa-
tion of the wider UK). If genetic variants used to instrument 
an exposure in an MR analysis also influence participation in 
a study, this could also introduce collider bias, as condition-
ing on study participation can induce an association between 
these genetic variants and other common causes of participa-
tion in the study and an outcome of interest.

Factorial MR for the combined impact of multiple 
nutritional exposures

Factorial MR methods estimate the combined causal 
effects of two or more exposures on disease outcomes [10, 
133–136]. Similar to factorial RCTs, factorial MR provides 
estimates of risk of disease outcome in the presence of two 
or more causal factors that act independently of each other 
(i.e., no statistical interaction) and the ability to explore 
potential synergistic or antagonistic interactions (i.e., where 
the effect of two risk factors is different to what would be 
expected based on independence and risk factor prevalence). 
Previous examples have evaluated the combined and indi-
vidual effects of genetic polymorphisms at two loci encoding 
drug targets in the NPC1L1 and HMGCR  loci (that lower 
low-density lipoprotein cholesterol (LDL-c)) with CHD risk 
[135], and tested the individual and combined effects of BMI 
and alcohol consumption on liver disease [133].

Challenges include finding studies with adequate statisti-
cal power due to the requirement of large-scale, (usually) 
individual-level data, and justifying the dichotomisation or 
categorisation of multiple risk factors for translation to real-
istic scenarios. Whilst factorial MR can identify whether two 
independent exposures might interact and have a combined 
effect of public health importance, extensions using MVMR 
can provide a more efficient approaches for estimation of 
statistical interaction [137]. Furthermore, if the group upon 

which stratification is based is a common consequence of 
exposure-related genetic variants and common causes of the 
exposure and outcome of interest, stratification for factorial 
MR analyses may induce spurious associations (in either 
direction) via collider bias.

MR to examine non‑linear associations

Almost all MR studies to date have estimated linear effects 
assuming that increasing the exposure, at any level, leads 
to the same increase in outcome. However, observational 
data may suggest a non-linear relationship such as a J- or 
U-shaped association. For example, an inverted U-shaped 
association was reported between circulating 25(OH)D 
and skin cancer risk, suggesting that intermediate levels of 
25(OH)D confer greater risk than either low or high lev-
els [138]. Here, a linear analysis may suggest little overall 
effect. A naïve approach in such cases would be to stratify 
individuals by exposure level and perform MR within each 
stratum, but this could create collider bias.

Instead, methods using individual-level data have been 
proposed to stratify individuals on the “instrument-free 
exposure”, which can be used to examine the potential 
non-linearity of effects of nutritional risk factors on cancer 
[139, 140]. Such methods have recently become possible 
with BMI in relation to mortality risk in the UK Biobank 
and Norwegian HUNT studies [137, 141–143]. These 
approaches are promising but may be under-powered, and 
some technical challenges remain [144]

International perspectives

Many existing GWASs combine multiple independent stud-
ies into large consortia, involving substantial international 
collaboration (e.g., PRACTICAL, GECCO and ILCCO-
TRICL for cancer [145–147]). Despite this, a substantial 
majority of GWAS analyses focus on individuals of Euro-
pean descent or adjust for heterogeneity arising from ances-
tral diversity or population structure [148]. Therefore, MR 
analyses have predominantly focused on populations of 
European ancestry. Given heterogeneity between samples of 
varying ethnic and ancestral diversity (with regards to differ-
ential genetic architectures, cancer prevalence and exposure 
levels [145–147]), challenges associated with this approach 
include questions over the generalizability of genetic vari-
ants found in predominantly European GWASs and their 
use within MR analyses in other non-European populations. 
For example, comparing GWASs of alcohol intake in the 
UK Biobank and Kadoorie Biobank, obtained genetic vari-
ant effect sizes (either individually or in combination) differ 
substantially both between studies and even between sexes 
and geographic regions within east Asian populations, likely 
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due to cultural differences in alcohol intake between and 
within these diverse populations [149, 150]. Therefore, there 
is a growing need for large-scale GWASs in populations of 
predominantly non-European ancestry and non-Westernized 
contexts to increase our ability to detect SNPs for the appro-
priate application of MR within different ancestrally and 
culturally diverse populations.

Within the last 5 years, there has been greater use of the 
ethnic diversity within existing GWASs and consortia and an 
increase in the number of cancer GWASs in non-Europeans, 
which have then been included in trans-ethnic meta-analyses 
[145–147, 151–157]. For example, Lu et al. conducted a 
GWAS of colorectal cancer specifically within East Asians 
from 14 studies in the Asia Colorectal Cancer Consortium 
(n = 2,775 cases and n = 47,731 controls) [153]. Schmit et al. 
conducted a GWAS of colorectal cancer in individuals of 
European descent (n = 49,900 cases and n = 79,247 controls) 
and examined the generalizability of discovered variants in 
East Asians, African Americans and Hispanics (n = 12,085 
cases and n = 22,083 controls) [151]. As the number of 
trans-ethnic GWASs increase, so will the ability to compare 
results derived from MR analyses across contexts and vali-
date results across different ethnicities and ancestries.

Access to data from international, non-European cohorts 
enables the application of MR to appraise risk factors that 
may be specific to non-Westernized cultures. For example, 
evidence from observational studies conducted in North-
ern and Eastern India suggests that adulterated mustard 
oil (e.g., those containing high levels of sanguinarine or 
diethyl nitrosamine, known carcinogenic adulterants [158]) 
increases the risk of gallbladder cancer, potentially driven 
by its pro-inflammatory properties [159, 160]. With infor-
mation on the genetic contribution to the behaviour of con-
suming mustard oil, the circulating metabolic response to 
eating mustard oil or even the component parts of mustard 
oil (i.e., levels of sanguinarine or diethyl nitrosamine), MR 
analyses could test whether consuming mustard oil or expo-
sure to its components has a causal impact on gallbladder 
cancer in Indian populations. Similarly, knowing more about 
the genetic contribution to preference and consumption of 
spicy foods may enable further causal analyses of the obser-
vational relationship between consumption of spicy foods 
and mortality found across geographically diverse areas of 
China [161].

With the recent development of large international 
biobank studies in non-European settings (e.g., China 
Kadoorie Biobank, Biobank Japan, GeNuIne Collaboration 
and the NIHR-funded South Asia Biobank [162–165]) and 
in low-to-middle-income settings, the opportunity to expand 
GWASs and MR analyses to obtain further insights into the 
role of nutrition in cancer from an international context will 
improve. Similarly, the ability to triangulate MR findings 

from these contexts with complementary observational stud-
ies and RCTs will improve causal inference.

Translational considerations

When considering translating findings from MR analyses to 
potential population interventions, there are several impor-
tant issues to consider. Firstly, since MR estimates of some 
nutritional factors may represent the effects of longer-term 
effects to a particular exposure, effect estimates obtained 
in such analyses may be of a larger magnitude than those 
obtained in a clinical trial of a relatively shorter intervention 
or follow-up period. To refine understanding of necessary 
intervention lengths and/or follow-up periods required for 
a nutritional intervention to confer an effect on cancer risk 
in a hypothetical trial, conventional multivariable regres-
sion analysis could be used to examine the association of 
a nutritional exposure, with indication of a potential causal 
relationship from MR, with cancer risk over variable lengths 
of follow-up. The identification of molecular biomarkers 
which may mediate the effect of a hypothetical intervention 
on cancer risk (e.g., as identified through MR analysis) could 
also be used to establish short-term intermediate endpoints 
in the setting of a feasibility trial which in turn could guide 
investigators in planning adequate intervention and follow-
up periods of a subsequent trial examining cancer risk as the 
primary endpoint.

Secondly, univariable MR may not inform on a critical or 
sensitive period of the life-course over which an exposure is 
operating. Where such life-course-specific effects are sus-
pected, MVMR could (in principle) be used to identify these 
periods and, thus, potentially inform on the most appropri-
ate timing for testing an intervention in a randomized trial. 
However, such an analysis would require the presence of 
genetic variants which confer effects over differing parts of 
the life-course, which may not be the case for most nutrition-
related exposures. Thirdly, as in conventional observational 
analyses, effect estimates obtained in MR analyses may 
not be relevant to the population to be targeted in an RCT. 
For example, MR analyses performed in vitamin D replete 
populations may not be of relevance to vitamin D deficient 
populations. Access to individual-level genetic association 
data can facilitate exploration of causal hypotheses that are 
targeted to particular populations of interest.

A two-stage randomisation analysis design has been 
proposed in which effects of interventions on long-term 
clinical outcomes are predicted via changes in intermediate 
biomarkers examined in feasibility trials (i.e., small-scale, 
preliminary trials which aim to assess the acceptability and 
viability of interventions). Here, differences in intermedi-
ate trait levels across intervention and control arms of a 
feasibility or early-stage RCT (first stage) are genetically 



 Cancer Causes & Control

1 3

instrumented and then tested for association with a disease 
outcome of interest using MR (second stage) [166]. Such 
an approach permits extension of findings from feasibility 
trials, which are often unable to establish effects of interven-
tions on clinical endpoints due to their limited duration, to 
potential downstream effects on cancer risk or progression. 
Beynon et al. used findings from a 6-month feasibility trial, 
which reported an effect of dietary lycopene interventions 
on levels of the metabolites acetate, pyruvate, valine and 
docosahexaenoic acid in 133 men with raised prostate-spe-
cific antigen (PSA) levels who did not have prostate can-
cer [167]. Genetic instruments to proxy these metabolites 
were then constructed and tested for their association with 
prostate cancer risk using genetic data on 44,825 cases and 
27,904 controls in the PRACTICAL consortium. Each SD 
increase in genetically instrumented pyruvate was associated 
with a 29% (95% CI 3, 62%) higher odds of prostate cancer, 
suggesting one potential pathway through which nutritional 
lycopene interventions could influence prostate cancer risk. 
An important consideration in two-stage randomisation anal-
yses is that samples included in both stages of such analyses 
are representative of the same underlying population.

Conclusions

MR is now a well-established method in the epidemiolo-
gist’s toolbox for interrogating causal relationships. The 
rapidly increasing wealth of genotype data on well-charac-
terised populations continues to enhance the potential for 
well-powered MR studies. Advances in the way diet and its 
nutritional components are measured can be exploited to 
good effect using this method. The measurement of molecu-
lar phenotypes that can proxy some nutritional exposures 
(i.e., proteins, lipids, amino acids, etc.) is more widespread. 
These ’omic measures can be readily coupled to genotype 
data and thus expand opportunities for MR and identification 
of new intervention targets aimed at molecular intermedi-
ates. Improvements in MR methods, including an increas-
ing panel of sensitivity analyses which interrogate and over-
come certain biases, provide a more robust basis to advance 
causal claims. There now exist semi-automated approaches 
to analyses (and readily accessible platforms) that can help 
to search thousands of potential nutritional cancer relation-
ships and prioritise areas of most interest. MR can also be 
applied, in certain instances, to predict the possible outcome 
of hypothetical nutritional RCTs with the potential to assist 
in prioritising those nutritional interventions which may be 
more likely to be effective in reducing cancer risk or pro-
gression while de-prioritising other interventions where 
evidence from MR suggests they are unlikely to alter subse-
quent disease risk or prognosis.

The challenge remains that nutritional exposures repre-
sent a complex, interconnected network of relationships—
both between the exposure types themselves and with cancer. 
Reductionist approaches that consider a single micronutri-
ent or macronutrient at once will only elucidate part of the 
relationship between diet and cancer. Recent developments 
in MR methodology, coupled with the growth in GWASs 
focusing on both granular dietary measures (e.g., micro- and 
macro-nutrients) and distal dietary measures (e.g., dietary 
patterns and preferences), may provide new opportunities to 
identify modifiable causal nutritional risk factors for cancer.
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