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1. Introduction
Solar (hereafter, shortwave) and thermal-infrared (hereafter, longwave) radiation are the primary drivers of 
atmospheric weather systems via their role in creating the equator-to-pole temperature gradient, while their inter-
action with greenhouse gases drives anthropogenic climate change. As such, their detailed representation in 
radiation schemes is essential for both weather and climate (e.g., Stephens, 1984).

Historically viewed as one of the slowest components of atmospheric models, radiation schemes have been 
among the prime candidates for acceleration via machine learning (ML). Cheruy et al. (1996) are one of the first 
to develop a neural network (NN) emulator of longwave radiation, reporting accurate results for speedups of 3 
and 3,000 times the reference broadband and narrowband models, respectively. Chevallier et al.  (1998, 2000) 
extend Cheruy et al.  (1996)'s work to the European Centre for Medium-Range Weather Forecasts' (ECMWF) 
50-level longwave and shortwave radiation scheme, reporting promising results for a sixfold reduction in compu-
tational costs. Krasnopolsky et  al.  (2005) develop a longwave NN emulator in the NCAR's (National Center 
for Atmospheric Research) Community Atmosphere Model, reporting predicted heating rate root-mean-square 
errors between 0.26 and 0.33 K d −1, for a runtime reduction between 35 and 80 times the original schemes, while 
Krasnopolsky et al. (2008)'s emulation of shortwave radiation report successful multi-decadal simulations with 
offline scheme speedups of 150 and 20 times the original scheme, and errors of 0.34 and 0.19 K d −1 for longwave 
and shortwave heating rates, respectively. More recently, Pal et al. (2019)'s emulation of shortwave and longwave 
radiation in the Super-Parameterized Energy Exascale Earth System Model report a speedup of about one order 
of magnitude while retaining 90%–95% of the original scheme's accuracy.

Although these findings are encouraging, an assessment of Chevallier et al. (1998, 2000)'s emulators by Morcrette 
et al. (2008) report degraded accuracy and performance when the number of levels increases above the origi-
nal 50 levels. Ukkonen et al., (2020) note that differences in radiative fluxes may sometimes be larger than the 
internal variability of the original scheme or with regional errors in annual-mean surface net fluxes of 20 W m −2. 
Furthermore, although Roh and Song (2020) report average root-mean-square errors of 1.0 and 0.49 K d −1 for the 
longwave and shortwave heating rates, respectively, and 1.6 and 14 W m −2 for the longwave and shortwave fluxes, 

Abstract The treatment of cloud structure in numerical weather and climate models is often greatly 
simplified to make them computationally affordable. Here we propose to correct the European Centre for 
Medium-Range Weather Forecasts 1D radiation scheme ecRad for 3D cloud effects using computationally 
cheap neural networks. 3D cloud effects are learned as the difference between ecRad's fast 1D Tripleclouds 
solver that neglects them and its 3D SPARTACUS (SPeedy Algorithm for Radiative TrAnsfer through CloUd 
Sides) solver that includes them but is about five times more computationally expensive. With typical errors 
between 20% and 30% of the 3D signal, neural networks improve Tripleclouds' accuracy for about 1% increase 
in runtime. Thus, rather than emulating the whole of SPARTACUS, we keep Tripleclouds unchanged for cloud-
free parts of the atmosphere and 3D-correct it elsewhere. The focus on the comparably small 3D correction 
instead of the entire signal allows us to improve predictions significantly if we assume a similar signal-to-noise 
ratio for both.

Plain Language Summary Solar and terrestrial radiation is the primary driver of the Earth's 
weather and their detailed representation is essential for improving weather predictions and climate projections. 
Several aspects, however, such as the flow of radiation through the side of clouds and other three-dimensional 
effects are often too costly to compute routinely. In this paper we describe how machine learning can help 
account for these effects cheaply.
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respectively, large deviations of about 20 W m −2 occur. Indeed, comparing these results is challenging as studies 
report their results using specific datasets and summarize them with different statistical metrics.

An important point to note when seeking applications of ML in radiative transfer is that radiation schemes are 
no longer a particularly slow component of atmospheric models. For example, in the ECMWF Integrated Fore-
cast System (IFS), Hogan et al. (2017) report that the fractional time in the highest operational resolution model 
dropped from 19% in 2007 to 5% in 2017. Nevertheless, several simplifications are still made. For example: (a) 
operational radiation schemes cannot afford to represent the O(10 5) spectral lines explicitly and typically approx-
imate the spectral variation of gas absorption by O(10 2) quasi-monochromatic radiative transfer calculations 
(Hogan & Matricardi, 2020); (b) the accuracy of radiative forcing calculations due to changes in greenhouse 
gases in many schemes is questionable, with Soden et al. (2018) reporting that the spread of radiative forcing 
estimates due to increased CO2 is about 35% of the mean; and (c) the ways in which radiation interacts with 
cloud structure in radiation schemes is generally quite crude. Specifically, all radiation schemes used routinely in 
weather and climate models are ”1D”; that is, they neglect the full 3D interaction of radiation with clouds. They, 
therefore, ignore the interception of direct sunlight by cloud sides, the trapping of sunlight beneath clouds, and 
the emission of thermal radiation from the sides of clouds (e.g., Hogan & Shonk, 2013; Varnai & Davies, 1999). 
For cumulus clouds, these missing processes, here defined as 3D cloud effects, can change the magnitude of 
instantaneous cloud radiative effects (i.e., the difference between fluxes in the presence of clouds and in the 
equivalent clear-sky conditions) by 30% in the longwave (e.g., Heidinger & Cox, 1996) and by up to 60% in the 
shortwave, depending on sun angle (e.g., Pincus et al., 2005). Although the method of Jakub and Mayer (2015) 
may be more appropriate for (sub)kilometer-resolution where radiative exchanges between atmospheric columns 
become important, to date, the fastest method we are aware of to represent 3D interactions of radiation with 
clouds within a model column suitable for large-scale models with horizontal resolution no finer than 5–10 km 
is the Speedy Algorithm for Radiative Transfer through Cloud Sides (SPARTACUS; Hogan et al., 2016). Despite 
this, SPARTACUS is approximately five times slower than the radiation scheme currently used at the ECMWF 
(Hogan & Bozzo, 2018)—far too slow to be considered for operational use.

As an alternative method to the emulation of an entire radiation scheme, Ukkonen et  al.  (2020) and Veer-
man et al. (2021) show a different approach whereby specific parts of a scheme, such as the gas optics in the 
RTE-RRTMGP (Radiative Transfer for Energetics and Rapid and accurate Radiative Transfer Model for General 
circulation models applications-Parallel; Pincus et  al.,  2019) framework, are emulated, retaining the original 
radiative transfer solver. Similar to the results by Veerman et al. (2021), Ukkonen et al. (2020) report heating rates 
and top-of-atmosphere longwave and shortwave radiative forcing root-mean-square errors relative to benchmark 
line-by-line radiation calculations typically below 0.1 K d −1 and 0.5 W m −2, respectively (with smaller errors 
relative to RTE-RRTMGP), and speedups for clear-sky longwave and shortwave fluxes of 3.5 and 1.8 times the 
original scheme, respectively.

In the same spirit, here we investigate how to improve the representation of 3D cloud effects with a hybrid phys-
ical-ML method. Rather than replacing the entire radiation scheme, we run the existing 1D radiation scheme in 
parallel with an emulator trained on the difference between SPARTACUS and the 1D scheme. As the compu-
tational cost of the emulator is expected to be a fraction of that of SPARTACUS, we hope to achieve a similar 
accuracy for a fraction of the cost. Moreover, as heating rates are susceptible to vertical changes in fluxes, by 
only correcting profiles within the troposphere, we expect this approach to be more tolerant to errors in heating 
rates for higher parts of the atmosphere where low values of atmospheric pressure exacerbate comparatively small 
errors in predicted fluxes.

The following sections describe the general method, with specific details about reference models and data 
(Section 2.1) used to develop and train the ML emulators (Section 2.2). We follow with a qualitative (Section 3.1) 
and quantitative (Section 3.2) evaluation of the results, as well as a runtime performance analysis of the emulators 
(Section 3.3), before concluding with a summary and prospects for future work (Section 4).

2. Methods
2.1. Reference Model and Data

Reference simulations use the open-source atmospheric radiative transfer software ecRad (Hogan & Bozzo, 2018) 
version 1.3.0 (ECMWF, 2020). ecRad computes profiles of up- and downwelling, long- and shortwave radiative 
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fluxes (with downwelling shortwave having both total and direct components) from zero- or one-dimensional 
(i.e., profiles) inputs of meteorological variables such as dry-bulb air temperature, cloud fraction, mixing ratios 
of water vapor, liquid water, ice cloud, snow, and trace gases. 3D cloud effects are computed as the differ-
ence between ecRad's 3D solver SPARTACUS and ecRad's 1D solver Tripleclouds (Shonk & Hogan, 2008). 
Although deterministic forecasts in the ECMWF Integrated Forecast System (IFS) use ecRad's 1D solver McICA 
(Monte Carlo Independent Column Approximation; Pincus et al., 2003), Tripleclouds is used here as (a) its flux 
predictions are noise-free, and (b) its underlying assumptions in cloud structure and overlap are the same as in 
SPARTACUS. Here, ecRad is forced with inputs from the EUMETSAT Numerical Weather Prediction Satellite 
Application Facility (NWP-SAF) data set (Eresmaa & McNally, 2014). This data set contains 25,000 atmospheric 
profiles representative of yearly, global, present-day atmospheric conditions on 137 atmospheric levels (surface 
to 0.01 hPa) from ECMWF operational forecasts between 2013 and 2014. Profiles of aerosol mixing ratio and 
greenhouse gas concentration are from the climatology of Bozzo et al. (2020) as a function of longitude, latitude, 
and month for the former, and latitude and month, for the latter. The prescribed horizontal cloud scale in SPART-
ACUS uses the parameterization of Fielding et al. (2020).

2.2. Neural Network Emulator

Two separate NNs to emulate short- and longwave 3D cloud effects are developed using the multilayer percep-
tron (MLP)—a standard form of NN with inputs traveling via one or more hidden layers towards the outputs 
(Bishop, 2006)—following poor results from a preliminary investigation using linear regression (not reported). 
Both NNs are implemented in Python with TensorFlow (Abadi et al., 2015) version 2.4.1.

To capture the interaction of radiation with clouds, we compute the cloud optical depth 𝐴𝐴 𝐴𝐴𝑐𝑐 in the large particle 
limit where geometric optics are applicable, albeit ignoring small spectral dependences, as 3
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layer interface 𝐴𝐴 𝐴𝐴 + 1∕2 and 𝐴𝐴 𝐴𝐴 − 1∕2 (counting down from the top of the atmosphere), and 𝐴𝐴 𝐴𝐴𝑝𝑝 the specific heat of dry 
air (1004 J kg −1 K −1). As heating rates are proportional to the vertical derivative of the net flux, noise in predicted 
fluxes can amplify the errors in computed heating rates. Although training the NNs using fluxes and heating rates 
can partially mitigate this issue, predictions can no longer conserve energy. To avoid this issue, here we instead 
predict the 3D scalar (downwelling plus upwelling) flux and corresponding heating rates, as well as the direct 
downwelling shortwave flux, and postprocess the outputs in a separate step (Appendix A) to obtain energy-con-
sistent downwelling and upwelling fluxes and heating rates. As we aim to predict the 3D cloud effects, only levels 
between the surface and 50 hPa (i.e., assuming no clouds above the troposphere) are used. The full profiles, span-
ning 137 levels, are recovered by setting values between 50 and 0 hPa to zero for the downwelling component, 
and extending the last predicted value at 50 hPa to all levels between 50 and 0 hPa for the upwelling component.

Train, validation, and test datasets contain a random 60% (13,702), 20% (4,568), 20% (4,568) selection of 
NWP-SAF profiles as inputs, and corresponding ecRad computed 3D cloud effect profiles (SPARTACUS minus 
Tripleclouds; Section 2.1) as outputs. Before being fed to the NNs, profiles are reshaped to two-dimensional 
matrices with each profile as row (sample) and flattened level and quantity as column (feature). To determine the 
sensitivity to different choices of hyperparameters and input quantities, a grid search is conducted. In it, NNs are 
trained with NWP-SAF profiles of dry-bulb air temperature 𝐴𝐴 𝐴𝐴  , cloud fraction 𝐴𝐴 𝐴𝐴𝑐𝑐 , surface temperature 𝐴𝐴 𝐴𝐴𝑠𝑠 , surface 
albedo 𝐴𝐴 𝐴𝐴 , cloud optical depth 𝐴𝐴 𝐴𝐴𝑐𝑐 , cosine of solar zenith angle 𝐴𝐴 𝐴𝐴0 , specific humidity 𝐴𝐴 𝐴𝐴 , and vertical layer thickness 

𝐴𝐴 Δ𝑧𝑧 as inputs (Table 1a), and corresponding ecRad-computed 3D cloud effect profiles of scalar fluxes, heating 
rates, and direct downwelling shortwave as outputs (Table 1b). All configurations use the Exponential Linear Unit 
activation function, Adam optimizer with mean squared error on all outputs, and 1,000 epoch-limit with early 
stopping patience set to 50 epochs. The surface emissivity 𝐴𝐴 𝐴𝐴 is not used as it is constant across all profiles. Itera-
tions are repeated 10 times to account for the stochasticity of the training algorithm. Hyperparameter choices are 
(a) input quantities: {{𝐴𝐴 𝐴𝐴𝑐𝑐, 𝜏𝜏𝑐𝑐 , 𝑇𝑇 , 𝑇𝑇𝑠𝑠, 𝛼𝛼, 𝛼𝛼 }, {𝐴𝐴 𝐴𝐴𝑐𝑐, 𝜏𝜏𝑐𝑐 , 𝑇𝑇 , 𝑇𝑇𝑠𝑠, 𝛼𝛼, 𝛼𝛼, 𝛼𝛼 }, {𝐴𝐴 𝐴𝐴𝑐𝑐, 𝜏𝜏𝑐𝑐 , 𝑇𝑇 , 𝑇𝑇𝑠𝑠, 𝛼𝛼, 𝛼𝛼, 𝛼𝛼,Δ𝑧𝑧 }}; (b) number of hidden 
layers: {1, 2, 3, 4, 5}; (c) hidden (neuron) size multipliers: {0.5, 1, 2}; (d) L1 and L2 regularization factors: {10 −6, 
10 −5, 10 −4}. The number of neurons in hidden layers is computed by multiplying the number of inputs (182 for 
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shortwave and 271 for longwave) by the hidden size multiplier. Results are visually inspected (Figure 1) and the 
simplest NN configuration (e.g., fewer neurons and input quantities) with the lowest mean absolute is chosen. For 
both longwave and shortwave components, this ‘optimal’ configuration is found to have three hidden layers, each 
with 217 and 182 neurons per hidden layer for longwave and shortwave, respectively, and L1 and L2 regulariza-
tion factors set to 10 −5 (Figure 1). The most sensitive input quantities are: 𝐴𝐴 𝐴𝐴𝑐𝑐 , 𝐴𝐴 𝐴𝐴  , 𝐴𝐴 𝐴𝐴𝑠𝑠 , 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴𝑐𝑐 , and 𝐴𝐴 𝐴𝐴0 (Table 1a). 𝐴𝐴 𝐴𝐴 and 

𝐴𝐴 Δ𝑧𝑧 are not used as they do not improve predictions (Figure 1); This is reasonable as (a) the cloud layer optical 
depth, which is proportional to layer thickness (for same cloud water mixing ratio), is already an input variable to 
the NNs, and (b) any dependence on humidity is likely captured by the dry-bulb air temperature for cloudy parts 
of the atmosphere. An increase in either the network size or the number of layers does not improve the overall 
accuracy (Figure 1). Convergence is achieved after approximately 100 epochs.

To improve the results further, the two NNs with the above-determined configuration are trained with more data. 
For this, we use Synthia (Meyer & Nagler, 2021) version 0.3.0 (Meyer & Nagler, 2020) as outlined in Meyer, 

Symbol Name Unit Dimension

(a) Inputs

 𝐴𝐴 𝐴𝐴𝑐𝑐  L,SCloud fraction 1 FL

 𝐴𝐴 𝐴𝐴𝑐𝑐  L,SCloud optical depth 1 FL

 𝐴𝐴 𝐴𝐴  LDry-bulb air temperature K FL

 𝐴𝐴 𝐴𝐴𝑠𝑠  LSurface temperature K Scalar

 𝐴𝐴 𝐴𝐴  SSurface (shortwave) albedo 1 Scalar

 𝐴𝐴 𝐴𝐴0  SCosine of solar zenith angle 1 Scalar

(b) Outputs

 𝐴𝐴 𝐴𝐴
𝑠𝑠 3D effect on scalar longwave radiative flux density W m −2 HL

 𝐴𝐴 𝐴𝐴
𝑠𝑠 3D effect on scalar shortwave radiative flux density W m −2 HL

 𝐴𝐴 𝐴𝐴
⇓ 3D effect on downwelling direct shortwave radiative flux density W m −2 HL

 𝐴𝐴 𝐴𝐴
𝐻𝐻 3D effect on longwave heating rate K s −1 FL

 𝐴𝐴 𝐴𝐴
𝐻𝐻 3D effect on shortwave heating rate K s −1 FL

Note. Vector quantities are either at the interface between two model layers (half level; HL), or at the model layer (full level; 
FL). The superscript “ L” or “ S” denotes if the input is used in the longwave or shortwave NN. The scalar flux is defined as 
downwelling plus upwelling flux.

Table 1 
Inputs and Outputs Used in the Two NN Emulators

Figure 1. Mean absolute errors resulting from different hyperparameter configurations for the (a) longwave and (b) shortwave neural network. Each line represents a 
realization from a different hyperparameter configuration. Lines are shown slightly offset in the vertical axis for clarity. The search is conducted for configurations of 
(i) input quantities: {𝐴𝐴 {𝑓𝑓𝑐𝑐, 𝜏𝜏𝑐𝑐 , 𝑇𝑇 , 𝑇𝑇𝑠𝑠, 𝛼𝛼, 𝛼𝛼} , 𝐴𝐴 {𝑓𝑓𝑐𝑐, 𝜏𝜏𝑐𝑐 , 𝑇𝑇 , 𝑇𝑇𝑠𝑠, 𝛼𝛼, 𝛼𝛼, 𝛼𝛼} , 𝐴𝐴 {𝑓𝑓𝑐𝑐, 𝜏𝜏𝑐𝑐 , 𝑇𝑇 , 𝑇𝑇𝑠𝑠, 𝛼𝛼, 𝛼𝛼, 𝛼𝛼,Δ𝑧𝑧} } shown as 6, 7, and 8, respectively; (ii) hidden layer size: {1, 2, 3, 4, 5}; (iii) 
hidden (neuron) size multipliers: {0.5,1,2}; and (iv) L1 and L2 regularization factors: {10 −6, 10 −5, 10 −4}. Hidden size multipliers are multiplied by the number of inputs 
(182 for shortwave and 271 for longwave) to obtain the number of neurons in each hidden layer.
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Nagler, et al. (2021) but only for independent inputs. Thus, we (a) generate nine synthetic copies of the surface 
albedo 𝐴𝐴 𝐴𝐴 and cosine of the solar zenith angle 𝐴𝐴 𝐴𝐴0 , (b) randomly re-assign them to plain copies of NWP-SAF 
train-fraction profiles, and (c) collate them together to the original data set to form a total of 137,020 profiles for 
training (i.e., the original 13,702 profiles and 123,318 modified profiles). These augmented profiles are then used 
in ecRad to generate corresponding training outputs, and both augmented inputs and outputs to train the NNs. To 
account for the variability in the results given by the NN’s training algorithm, training (and inference) is run 20 
times (10 times with and 10 times without data augmentation), varying random seeds between repeats. From this, 
the short- and longwave emulator with median mean absolute error are chosen. With this simple augmentation, 
the shortwave error is found to improve by about 18%.

3. Results and Discussion
3.1. Qualitative Evaluation

First, a separate visual inspection is conducted using an atmospheric slice of ERA5 reanalysis data (Hersbach 
et al., 2020), extending from north to south poles at a longitude of 5°E at 12:00 UTC (Coordinated Universal 
Time) on 11 July 2019. This includes the response of radiation to Saharan dust, marine stratocumulus, deep 
convection, and Arctic stratus. The surface albedo, cosine of the solar zenith angle, and cloud fraction are shown 
in Figure 2. Figure 3 shows the outputs from SPARTACUS (left), reference 3D cloud effects (3D signal; SPART-
ACUS minus Tripleclouds; middle), and NN predictions (right), respectively. The longwave effect of clouds 
(Figures 3a and 3d) is to warm the Earth system by reducing the upwelling radiation to space and increasing it 
towards the surface. When the 3D effects are simulated, clouds can not only interact with radiation through their 
base and top, but also through their sides. Thus, they further reduce the upwelling longwave radiation to space and 
further increase it towards the surface (Figures 3b and 3e). Figure 3n shows that the longwave heating rate signal 
of clouds is also amplified, increasing the magnitudes of cooling at cloud tops, and of warming at cloud bases (see 
Schafer et al., 2016 for further discussion). In the shortwave, the sign of the impact is dependent on solar zenith 
angle (Figure 3k): when the Sun is near its zenith, at the tropics, the 3D cloud effect acts to reduce the upwelling 
radiation reflected into space from cloud tops, but to increase it when near the horizon, over the Southern Ocean. 
These behaviors can be explained by the mechanisms of entrapment and side-illumination, respectively (Hogan 
et al., 2019). Although the vertical structure of heating rate is smoothed somewhat vertically in both the longwave 
(Figure 3o) and shortwave (Figure 3r), the sign and size predicted by the NN is captured for high and low clouds 

Figure 2. Typical zero- and one-dimensional Speedy Algorithm for Radiative Transfer through Cloud Sides and Tripleclouds inputs: (a) surface albedo (𝐴𝐴 𝐴𝐴 ; blue 
line), and cosine of the solar zenith angle 𝐴𝐴 cos(𝜃𝜃0) ; black line; scalar quantities, and (b) cloud fraction (vector quantity) at 5°E on 11 July 2019 12:00 UTC from ERA5 
reanalysis data (Hersbach et al., 2020). Vector quantities consist of 137 vertical levels, here shown using atmospheric pressure as coordinate. The hatched area shows 
the topography. Temperature contours are shown using dashed and dotted lines.
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and for high and low sun angles. Figure 4 compares the 3D effects at top-of-atmosphere (TOA) upwelling fluxes 
and surface downwelling fluxes between the reference ecRad calculations and NN-predicted 3D cloud effects 
with generally good agreement across the range of latitudes.

3.2. Quantitative Evaluation

Second, a quantitative evaluation is made by comparing NN-predicted 3D cloud effects to reference ecRad calcu-
lations (3D signal; SPARTACUS minus Tripleclouds) using the test fraction (Section 2.1). Evaluation metrics are 
computed using profiles of either 3D signal, 3D predictions, or error (i.e., prediction minus signal) separately for 
each level, or with no distinction in vertical levels (hereafter referred to as bulk), for a vector 𝐴𝐴 𝒚𝒚 of 𝐴𝐴 1…𝑁𝑁 samples 
for the mean 

(

1
�

∑�
�=1 ��

)

 or mean absolute 
(

1
�

∑�
�=1 |��|

)

 . Per-level statistics are shown in Figure 5 for fluxes, 
and in Figure 6 for heating rates. Bulk error statistics are summarized in Table 2. The first column in Figure 5 
shows per-level means, and 50% and 90% quantiles of 3D signal and NN predictions. On average, the 3D signal is 
approximately 1 W m −2 for the longwave (Figures 5a and 5d) and about 3 W m −2 at the surface for the shortwave 
(Figure 5j). To put these numbers into context, the radiative forcing from doubling carbon dioxide concentrations 
from preindustrial levels is around 3.7 W m −2 (Forster et al., 2007). Visually, NN predictions are close to the 
mean reference 3D signal (Figures 5a, 5d, 5g, 5j, and 5m). The 3D error for the mean (solid) and mean absolute 
(dashed) is shown in the second column of Figure 5. This reaches about 0.2 W m −2 for the longwave (Figures 5b 
and 5e) and about 0.6 W m −2 for the shortwave (Figures 5h, 5k, and 5n). Similarly to the qualitative assessment 
in Figure 4, scatterplots of top-of-atmosphere upwelling, and surface downwelling (Figures 5c, 5f, 5i, 5l, and 5o) 
flux predictions are close to reference calculations across the range of values. The third column in Figure 6 shows 
larger errors in the vertical structure of the 3D effects on heating rates (Figures 6c and 6f). The size of 3D effects 
on heating rates (Figures 6b and 6e) is, however, about two orders of magnitude smaller than the absolute heating 
rates from SPARTACUS (Figures 6a and 6d).

Table 2 summarizes bulk error statistics for fluxes and heating rates. NNs errors are generally small. The mean 
percentage error is below 20%, except for the upwelling shortwave where it is −96%. This latter result is not 
particularly interesting, however, as the mean 3D cloud effect for the entire upwelling component is about 
−0.16 W m −2—much smaller than that at the top of the atmosphere of −1.3 W m −2. The mean absolute percent-
age error of fluxes is about 20%–30%; in other words, NN predictions capture about 70%–80% of the 3D effects 
predicted by SPARTACUS. For heating rates, the mean and mean absolute percentage errors are 15% and 66% for 
the longwave, and −6.1% and 62% for the shortwave. This latter result is not particularly important as 3D effects 
on heating rates are small, about 0.01 K d −1 for the shortwave. Indeed, the primary means by which shortwave 
3D effects influence the Earth system is via a change in surface fluxes, and from there the surface temperature.

Figure 4. Comparison of 3D signal (SPARTACUS minus Tripleclouds; magenta) and 3D prediction (NN; cyan) for (a–b) top-of-atmosphere upwelling flux and (c–d) 
surface downwelling flux using pole-to-pole slice at 5°E on 11 July 2019 12:00 UTC from ERA5 reanalysis data (Hersbach et al., 2020).
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Figure 5. Per-level statistics of mean (a), (d), (g), (j), (m) 3D signal (SPARTACUS minus Tripleclouds) and 3D prediction 
(NN), (b), (e), (h), (k), (n) mean (continuous) and mean absolute (dashed) error (3D prediction minus 3D signal), and (c), 
(f), (i), (l), (o) scatterplots of 3D top-of-atmosphere and bottom-of-atmosphere fluxes, computed using the test fraction. 50% 
(lighter) and 90% (darker) quantiles are shown for right and middle panels.
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3.3. Runtime Performance

The emulators' runtime performance is assessed using a normalized runtime performance metric defined as 
total model runtime divided by total number of profiles. The total model runtime includes measurements of data 
normalization, inference with TensorFlow in Python, data denormalization, and postprocessing (Appendix A). 
To reduce input, output, and runtime overheads during measurements, the input data is replicated 10 times and 
the batch size of TensorFlow set to 50,000. Both ecRad and the NN are run fully single-threaded in Singularity 
(Kurtzer et al., 2017) with Ubuntu 18.04, GNU Fortran 7.5.0 compiler, Anaconda Python 3.8 and TensorFlow 2.4.1 
on a shared AMD EPYC 7742 node with 32 CPUs and 124 GiB of system memory. SPARTACUS is about 4.58 
times slower than Tripleclouds with an average of 11.6 ± 0.0196 ms per profile, compared to 2.53 ± 0.00854 ms 
for Tripleclouds. In comparison, the two NNs predicting 3D effects take 0.0257 ± 0.0000372 ms per profile. 
Thus, the combined time for running both Tripleclouds and the two NNs is 2.56 ± 0.00856 ms per profile, an 
increase of about 1.19% of Tripleclouds' runtime. A key reason for the NNs being so fast is that they predict 
broadband quantities directly, rather than integrating over many spectral intervals (140 in the longwave and 112 in 
the shortwave) as done in Tripleclouds and SPARTACUS. While these absolute runtimes are expected to change 
when run on different hardware, or coupled to the IFS, relative differences are indicative of the order of speedup. 
With graphics processing units (GPUs) likely playing a significant role in future high-performance computing 
systems (Bauer et al., 2021), switching to GPUs is generally a trivial task with ML libraries such as TensorFlow.

4. Conclusion
In this paper we propose a hybrid physical machine learning approach to correct a fast but less accurate 1D 
radiative transfer scheme with two neural network emulators of shortwave and longwave 3D cloud effects. The 
emulators are trained on the difference between a 3D (SPARTACUS) and a 1D (Tripleclouds) solver. Results 

Figure 6. Per-level statistics of (a), (d) mean absolute heating rates from SPARTACUS, (b), (e) mean 3D signal and prediction, and (c), (f) mean (continuous) and 
mean absolute (dashed) error (3D prediction minus 3D signal), computed using the test fraction. 50% (lighter) and 90% (darker) quantiles are shown for all panels.
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show that the 3D effects on fluxes are captured with bulk mean absolute errors between 20% and 30% of the 
3D signal (Figures 3–5; Table 2). To put these results into perspective, Hogan et al. (2019) report the same error 
range, albeit with biases of about 0.3 W m −2, for comparing the shortwave component of SPARTACUS to Monte 
Carlo simulations of 65 3D cloud scenes. Although profiles of heating rates show large mean absolute errors of 
up to 66% (Table 2), the impact of 3D cloud effects on heating rates is up to two orders of magnitude smaller than 
that of the absolute heating rates (cf. Figures 6a–6d vs. Figures 6c–6f). As the 3D effects for top-of-atmosphere 
upwelling fluxes and surface downwelling fluxes are constantly improved, this hybrid physical machine learning 
approach may be valuable in operational settings where the computational performance of a parameterization 
scheme is often a limiting factor for its uptake. Here, clear-sky fluxes are efficiently and accurately computed 
using Tripleclouds, and cloudy profiles are corrected with neural network emulators that have a negligible impact 
on Tripleclouds' runtime performance (∼1%; Section 3.3).

Although further improvements in emulating radiative transfer processes may be achieved with other types of 
network architectures (e.g., Ukkonen, 2021), the use of large domain-specific datasets such as those recently 
published as part of the MAchinE Learning for Scalable meTeoROlogy and climate project (see A3 in Dueben 
et al., 2021), or of data augmentation strategies (e.g., as implemented by Meyer, Nagler, & Hogan, 2021) may 
help to further improve the accuracy and generalization of current emulators. As the number of vertical levels in 
the current emulator is fixed, retraining may be necessary if levels in the atmospheric model increase. However, 
we expect this to be a minor limitation as changes in operational components are often on a much longer time 
scale (i.e., a few years) than those needed to retrain and retest emulators. While we show that the emulation 
of 3D cloud effects is a promising area of research, it is only the first step toward operationalization. As new 
model capabilities may only be used operationally at the ECMWF if found to improve forecast skills, online 
evaluations within the ECMWF Integrated Forecast System, need to assess our findings in the broader context 
on skill scores and numerical stability: compensating errors in cloud-radiation interactions mean that changes in 
their representation may degrade forecast scores unless accompanied by other modifications (Haiden et al., 2018; 

Mean Mean absolute

3D signal 3D error Percentage error 3D signal 3D error Percentage error

W m −2 W m −2 % W m −2 W m −2 %

(a) Fluxes

𝐴𝐴 L
↓ 0.55 0.00048 0.087 0.56 0.14 25

𝐴𝐴 L
↓

BOA
1.0 −0.029 −2.8 1.1 0.2 19

𝐴𝐴 L
↑ −0.72 −0.025 3.4 0.73 0.17 23

𝐴𝐴 L
↑

TOA
−1.1 −0.071 6.7 1.1 0.2 19

𝐴𝐴 S
↓ 0.73 −0.032 −4.4 1.1 0.38 33

𝐴𝐴 S
↓

BOA
0.53 −0.092 −17 1.4 0.48 35

𝐴𝐴 S
⇓ −1.5 0.037 −2.5 1.5 0.45 30

𝐴𝐴 S
⇓

BOA
−3.2 −0.15 4.5 3.2 0.72 22

𝐴𝐴 S
↑ −0.16 0.15 −96 1.6 0.52 32

𝐴𝐴 S
↑

TOA
−1.3 0.22 −17 1.9 0.51 27

K d −1 K d −1 % K d −1 K d −1 %

(b) Heating Rates

𝐴𝐴 L
𝐻𝐻 0.0069 0.001 15 0.037 0.024 66

𝐴𝐴 S
𝐻𝐻 0.0066 −0.0004 −6.1 0.0099 0.0062 62

Note. Flux components are shown for the total upwelling (𝐴𝐴 ↑ ), downwelling (𝐴𝐴 ↓ ), and direct downwelling (𝐴𝐴 ⇓ ), and separately for top-of-atmosphere (TOA), and bottom-
of-atmosphere (BOA).

Table 2 
Bulk Mean and Mean Absolute 3D Signal (SPARTACUS Minus Tripleclouds), 3D Error (Prediction Minus Signal), and Percentage Error (3D Error Divided by 3D 
Signal, Multiplied by 100) for (a) Longwave (𝐴𝐴 𝐴𝐴 ) and Shortwave (𝐴𝐴 𝐴𝐴 ) Fluxes, and (b) Corresponding Heating Rates (𝐴𝐴 𝐴𝐴

𝐻𝐻 , 𝐴𝐴 𝐴𝐴
𝐻𝐻 )
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Martin et al., 2010) and further influence a model's stability. Current research highlights challenges with NN 
emulators coupled to Earth system models, reporting degraded performance and unstable simulations under 
some circumstances (Brenowitz & Bretherton, 2019; Rasp et al., 2018). While our recent experience in emulating 
gravity wave drag (Chantry et al., 2021) and urban land surface (Meyer, Grimmond, et al., 2022) schemes was 
positive, long coupled evaluations are required to better assess these type of models for operational use.

Appendix A: Postprocessing Methods
As introduced in Section 2.2, it can be challenging to use NNs to predict flux and heating rate profiles that are 
both, physically consistent with each other, and with heating rate profiles free from excessive noise. Here we 
describe a method to obtain consistent profiles by postprocessing NN outputs. Rather than using NNs to predict 
the profiles of 3D effects on upward and downward fluxes, we use them to predict the profiles of 3D effects 
on scalar fluxes (equal to the downwelling plus upwelling) and 3D effects on heating rates. As the latter are 
proportional to the divergence of the 3D effect on the net flux (downwelling minus upwelling), the information 
content is the same, but it is expressed in variables that are closer to what we need, and it is easier for the NNs 
to predict. For the rest of this appendix we omit the term “3D effect on” prefix for describing fluxes and heating 
rates. As the postprocessing method is common across longwave and shortwave components, we explain the 
main method via the longwave and highlight differences in assumptions and processing separately at the end 
of the section.

The starting point is the output from the neural network: the scalar flux profile at half levels 𝐴𝐴 𝐴𝐴
𝑠𝑠
= 𝐴𝐴

↓
+ 𝐴𝐴

↑ (where 
𝐴𝐴 𝐴𝐴

↓ and 𝐴𝐴 𝐴𝐴
↑ are the downwelling and upwelling fluxes) and the heating rate profile at full levels 𝐴𝐴 𝐴𝐴 = −

𝑐𝑐𝑝𝑝

𝑔𝑔

Δ𝐿𝐿𝑛𝑛

Δ𝑝𝑝
 , where 

𝐴𝐴 𝐴𝐴
𝑛𝑛 = 𝐴𝐴

↓ − 𝐴𝐴
↑ is the net flux, 𝐴𝐴 Δ denotes the difference between the base and top of a layer so 𝐴𝐴 Δ𝑝𝑝 is the pressure 

difference across a layer, and 𝐴𝐴 𝐴𝐴𝑝𝑝 and g are the specific heat of dry air and the gravitational acceleration. The post-
processing consists of the following steps:

1.  Compute the total atmospheric flux divergence (i.e., total emission minus absorption, in W m −2) from a heat-
ing rate profile. Fundamentally the divergence is the difference in net flux between the bottom-of-atmosphere 
(BOA) and top-of-atmosphere (TOA), that is, 𝐴𝐴 𝐴𝐴 = 𝐿𝐿

𝑛𝑛

BOA
− 𝐿𝐿

𝑛𝑛

TOA
 . To obtain this from the heating rate, we sum 

the profile of divergences of individual layers, that is, 𝐴𝐴 𝐴𝐴
𝐻𝐻 =

∑

Δ𝐿𝐿𝑛𝑛 , where the 𝐴𝐴 Δ𝐿𝐿𝑛𝑛 profile is obtained from 
the heating rate by inverting the expression for 𝐴𝐴 𝐴𝐴 above.

2.  Compute the total atmospheric flux divergence from the scalar fluxes. At TOA, the downwelling longwave 
flux is zero so 𝐴𝐴 𝐴𝐴

𝑛𝑛

TOA
= −𝐴𝐴↑ = −𝐴𝐴𝑠𝑠

TOA
 (in the shortwave the same formula can be applied because, even though 

the downwelling shortwave flux is not zero at TOA, the 3D effect on this part is). At BOA, the upwelling 
longwave flux is dominated by surface emission rather than reflection, so we can assume that the 3D effect is 
zero, leading to 𝐴𝐴 𝐴𝐴

𝑛𝑛

BOA
= 𝐴𝐴

↓
= 𝐴𝐴

𝑠𝑠

BOA
 . Therefore, the atmospheric divergence estimated from the scalar fluxes 

is 𝐴𝐴 𝐴𝐴
𝑠𝑠
= 𝐿𝐿

𝑠𝑠

BOA
+ 𝐿𝐿

𝑠𝑠

TOA
 .

3.  Rescale the heating rate profile so that its divergence equals that from the scalar flux. This is done by multi-
plying the heating rates by a scaling factor equal to 𝐴𝐴 𝐴𝐴

𝑠𝑠∕𝐴𝐴𝐻𝐻 , and, if necessary, capping the scaling factor to 
lie in the range 0.5–2. If capping, the scalar fluxes are also scaled to ensure they have the same divergence.

4.  Use the rescaled heating rate (and hence 𝐴𝐴 Δ𝐿𝐿𝑛𝑛 ) and scalar flux profiles to compute the profiles of upwelling 
and downwelling flux. First the 𝐴𝐴 𝐴𝐴

𝑛𝑛 profile is computed by integrating 𝐴𝐴 Δ𝐿𝐿𝑛𝑛 down from TOA from a start value 
of 𝐴𝐴 𝐴𝐴

𝑛𝑛

TOA
= −𝐴𝐴𝑠𝑠

TOA
 . Then the upwelling and downwelling components are computed from 𝐴𝐴 𝐴𝐴

↑ = 𝐴𝐴
𝑠𝑠 − 𝐴𝐴

𝑛𝑛∕2 and 
𝐴𝐴 𝐴𝐴

↓ = 𝐴𝐴
𝑠𝑠 + 𝐴𝐴

𝑛𝑛∕2 .

The calculation of shortwave components follows that of the longwave above, except for computing the BOA net 
flux from the scalar flux in step 2. The net shortwave flux is given by 𝐴𝐴 𝐴𝐴

𝑛𝑛 = 𝐴𝐴
↓ − 𝐴𝐴

↑ , the scalar shortwave flux by 
𝐴𝐴 𝐴𝐴

𝑠𝑠
= 𝐴𝐴

↓
+ 𝐴𝐴

↑ , and the albedo by 𝐴𝐴 𝐴𝐴 = 𝑆𝑆
↑

BOA
∕𝑆𝑆↓

BOA
 thus, 𝐴𝐴 𝐴𝐴

𝑛𝑛

BOA
= 𝐴𝐴

𝑠𝑠

BOA
[(1 − 𝛼𝛼)∕(1 + 𝛼𝛼)] . As the total atmospheric 

flux divergence is the BOA net flux minus the TOA net flux, the total atmospheric flux divergence is computed 
from the shortwave scalar fluxes as 𝐴𝐴 𝐴𝐴

𝑠𝑠 = 𝑆𝑆
𝑠𝑠

BOA
[(1 − 𝛼𝛼)∕(1 + 𝛼𝛼)] + 𝑆𝑆

𝑠𝑠

TOA
 . Other steps are identical to those for the 

longwave.
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Data Availability Statement
Software, data, and tools are archived with a Singularity (Kurtzer et al., 2017) image deposited on Zenodo as 
described in the scientific reproducibility section of Meyer et al. (2020). Users wishing to access (and reproduce) 
the results can download the data archive at https://doi.org/10.5281/zenodo.5113055 (Meyer, 2021) and option-
ally run Singularity on their local or remote systems.
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