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Abstract

Crowdsourced vehicle-based observations have the potential to improve fore-

cast skill in convection-permitting numerical weather prediction (NWP). The

aim of this paper is to explore the characteristics of vehicle-based observations

of air temperature in the context of data assimilation. We describe a novel low-

precision vehicle-based observation dataset obtained from a Met Office proof-

of-concept trial. In this trial, observations of air temperature were obtained

from built-in vehicle air-temperature sensors, broadcast to an application on

the participant's smartphone, and uploaded, with relevant metadata, to the

Met Office servers. We discuss the instrument and representation uncertainties

associated with vehicle-based observations and present a new quality-control

procedure. It is shown that, for some observations, location metadata may be

inaccurate due to unsuitable smartphone application settings. The characteris-

tics of the data that passed quality control are examined through comparison

with United Kingdom variable-resolution model data, roadside weather informa-

tion station observations, and Met Office integrated data archive system observa-

tions. Our results show that the uncertainty associated with vehicle-based

observation-minus-model comparisons is likely to be weather-dependent and pos-

sibly vehicle-dependent. Despite the low precision of the data, vehicle-based obser-

vations of air temperature could be a useful source of spatially-dense and

temporally-frequent observations for NWP.

KEYWORD S
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1 | INTRODUCTION

Convection-permitting numerical weather prediction
(NWP) requires a large number of observations of high
spatio-temporal resolution to constrain short-term fore-
casts (Sun et al., 2014; Gustafsson et al., 2018; Dance
et al., 2019). However, due to the cost of installation,

management, and maintenance of observing instrumen-
tation, it may be impractical to extend traditional scien-
tific observing networks to provide sufficient additional
relevant observations. A potential alternative source of
inexpensive observations is from opportunistic data gen-
erated by the public or other organizations (Blair et al.,
2021; Waller, 2020).
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The application of opportunistic datasets in NWP has
been a popular area of research in recent years (Hintz
et al., 2019a). Observations from personal weather stations
(PWSs) (Chapman et al., 2017; Meier et al., 2017; Nipen
et al., 2020; Steeneveld et al., 2011; Wolters & Brandsma,
2012) and smartphones (Droste et al., 2017; Hintz et al.,
2020, 2021; Hintz 2019b; Madaus & Mass, 2017; Overeem
et al., 2013) are commonly obtained through
crowdsourcing. Such observations may be inaccurate when
compared with traditional scientific observations. However,
the number of crowdsourced observations available has the
potential to far exceed the number of scientific surface
observations currently produced (Muller et al., 2015).
Opportunistic datasets can also be obtained from partner-
ships with other organizations. For example, roadside
weather information station (RWIS) data obtained from
highways agencies are currently assimilated into the Met
Office United Kingdom variable-resolution (UKV) model
(Gustafsson et al., 2018).

Observations obtained from vehicles are another
dataset of opportunity (Mahoney III & O'Sullivan, 2013).
Similarly to PWS and smartphone observations, vehicle-
based observations can be obtained through crowdsourcing
and will therefore be most densely distributed in urban
areas and on major transport networks. Vehicle-based
observations can also be obtained through several non-
crowdsourcing methods. For example, the data can be
obtained directly from vehicle manufacturers through con-
nected vehicle initiatives (Mahoney III & O'Sullivan, 2013),
from built-in sensors of vehicle fleets via the controller
area network (Mercelis et al., 2020), or through externally
mounted sensors (Anderson et al., 2012). In this paper,
vehicle-based observations of air temperature are obtained
from built-in vehicle sensors through on-board diagnostic
(OBD) dongles. This method of data collection, which is
described in Section 3, could be used for crowdsourcing
vehicle-based observations.

Vehicle-based observations are currently used to improve
road weather modelling (Hu et al., 2019) and forecasts to
combat adverse road weather conditions on transportation
networks (Siems-Anderson et al., 2019). Karsisto and Lovén
(2019) showed that assimilation of vehicle-based observa-
tions into the Finnish Meteorological Institute's road weather
model had the greatest forecast impact factor when RWISs
were sparse. The use of vehicle-based observations in NWP
is still in its infancy, but their use for nowcasting has been
investigated by the German weather service (DWD) (Hintz
et al., 2019a). Additionally, an observing simulation system
experiment conducted by Siems-Anderson et al. (2020)
showed a modest but appreciable impact from assimilating
simulated vehicle-based observations.

Before opportunistic datasets can be assimilated,
they must undergo thorough quality control (QC) and

the contributions to their observation uncertainty identi-
fied and investigated. Bell et al. (2015) attributed the total
uncertainty of crowdsourced PWS observations to five
sources: calibration issues, communication and software
issues, inaccurate metadata, design flaws, and error
due to unresolved scales. As a result of these issues,
which also apply to other opportunistic datasets, the
implementation of QC procedures can become substan-
tially more difficult than the QC for traditional observa-
tions. In some studies, over half of the crowdsourced data
were removed by the QC procedure (Meier et al., 2017;
Madaus & Mass, 2017; Hintz et al., 2019b). Siems-
Anderson et al. (2019) developed QC for vehicle-based
observations from disparate sources for use in road
weather forecasting systems. However, some of these QC
tests required a large number of observations to be in
close spatio-temporal proximity such that spatial compar-
isons can be used and were therefore not applicable to
our dataset. A new QC procedure, described in Section
3.3, was developed for this dataset that used some exis-
ting and some novel QC tests.

Understanding the characteristics of opportunistic
observations is key to their effective use in NWP (Waller,
2020). For data assimilation, an understanding of the
instrument and representation errors that contribute to the
total observation uncertainty is required. Important meteo-
rological features such as sharp discontinuities caused by
precipitation processes can be observed by opportunistic
observations but will likely be misrepresented by an NWP
model (Mahoney III & O'Sullivan, 2013). Hence, it is likely
that there will be significant representation error caused by
the mismatch in scales observed and modelled (Janji�c et al.,
2018). The instrument and representation components of
the vehicle-based observation uncertainty are discussed in
Section 2. For the vehicle-based observations of air temper-
ature examined in this study, an important physical feature
misrepresented by an NWP model will be the underlying
road surface. The influence of roads on the air temperature
measured by vehicles will be complex as the road-surface
energy balance (RSEB) at a given location is substantially
affected by the availability of water, the quantity of visible
sky, and the amount of traffic (Anandakumar, 1999;
Chapman & Thornes, 2011; Karsisto & Lovén, 2019; Oke
et al., 2017). To properly understand the discrepancy
between what is observed and modelled, it is necessary to
examine the characteristics of the differences between the
model and the observations. The objective of this paper is
to explore the characteristics of a vehicle-based temperature
dataset through comparison with other datasets.

The format of this paper is as follows. In Section 2,
the uncertainties associated with vehicle-based observa-
tions of air temperature are discussed. The Met Office
trial used to obtain the vehicle-based observations in this
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study, the datasets used for comparison, and the novel
QC procedure applied to the vehicle-based observations
are detailed in Section 3. The results of the new QC pro-
cess highlight that the observation location metadata can
be inaccurate due to poor global positioning system
(GPS) signal and application settings. A comparison
between vehicle-based observations and other datasets is
given in Section 4. Our novel results show that the uncer-
tainty of vehicle-based observations is likely weather-
dependent and possibly vehicle-dependent. In Section 5
our results are summarized, and we conclude that
vehicle-based observations are a promising opportunistic
dataset for convection-permitting data assimilation.

2 | UNCERTAINTIES IN
VEHICLE-BASED OBSERVATIONS
OF AIR TEMPERATURE

2.1 | Vehicle-based observations of air
temperature from built-in sensors

Most modern vehicles are equipped with a sensor to mea-
sure the air temperature of the surrounding atmosphere.
Throughout this paper, these sensors will be referred to as
external air-temperature sensors. Measurements obtained
from external air-temperature sensors are used by vehicle
air conditioning systems to adjust cabin-air temperature
(Abdelhamid et al., 2014) and alert the driver to safety haz-
ards such as the possible presence of ice on the roads
(Padarthy & Heyns, 2019). External air-temperature sen-
sors are commonly negative temperature coefficient therm-
istors (FierceElectronics, 2014). The location of external
air-temperature sensors will vary with vehicle make and
manufacturer. Common placements are usually in the air-
flow at the front of the vehicle, such as behind the grill
near the bottom of the vehicle or in the wing mirror
(Tchir, 2016). We note that most vehicles also have a sen-
sor that measures the air temperature inside the vehicle
engine, commonly referred to as the intake air-temperature
sensor. These measurements, however, are contaminated
with heat from the vehicle engine and hence will not be
representative of the true atmospheric conditions.

2.2 | Instrument error

Built-in vehicle sensors are not intended to give high-
quality meteorological information. As such, observations
of air temperature from external air-temperature sensors
are likely to have substantial instrument uncertainty.
There are several sources of instrument uncertainty for
vehicle-based observations of air temperature:

1. The observations may be affected by extraneous influ-
ences (Mahoney III & O'Sullivan, 2013).

2. The sensing instrument may not be as accurate or
precise as required for meteorological applications
(Mahoney III & O'Sullivan, 2013).

3. The ventilation of the sensing instrument may be
inadequate (G. Harrison, 2015).

We now discuss these issues in more detail.
The extraneous influences that vehicle-based observa-

tions of air temperature are subject to include heating
from the vehicle engine or the underlying road surface.
The degree of vehicle influence on the observations will
be determined by the sensors proximity to the vehicle
engine. Mercelis et al. (2020) found that observations of
air temperature from external air-temperature sensors sit-
uated far away from the vehicle engine were consistent
with reliable observations obtained from road weather
information stations. In contrast, observations obtained
from sensors near the vehicle engine had to be discarded
due to sensor biases. While external air-temperature sen-
sor placement is usually chosen to mitigate the influence
of engine heat (Tchir, 2016), radiation reflected from the
road surface can be incident on the sensor. Observations
of air temperature from external air-temperature sensors
in such circumstances may be warmer than the true
ambient conditions.

The precision of an observation will depend on the
number of significant figures available for the digital rep-
resentation of the measured value (the concept we have
called precision is known in metrology as resolution
(BIPM et al., 2012)). The difference between a continuous
variable and its imprecise digital representation is known
as the quantization error (Widrow et al., 1996). As the
sensing instruments used for opportunistic datasets are
not intended to give high-quality meteorological informa-
tion, quantization uncertainty will likely be part of the
instrument uncertainty (e.g., Mirza et al., 2016).

Adequate sensor ventilation is necessary to ensure
accurate observations of air temperature (Harrison & Burt,
2020). Sensor ventilation for external air-temperature sen-
sors is determined by how fast the vehicle is moving (e.g.,
Knight et al., 2010).

2.3 | Representation error

Representation error is defined as the difference between
a perfect observation and a model's representation of that
observation (Bell et al., 2020; Janji�c et al., 2018). The
model's representation of an observation is calculated
using an observation operator. An observation operator is
a function that maps the model state into observation
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space. According to Janji�c et al. (2018), the representation
error consists of three components:

1. The pre-processing error caused by the incorrect
preparation of an observation.

2. The observation operator error due to any incorrect or
approximate observation operators used in the assimi-
lation of an observation.

3. The error due to unresolved scales and processes
when there is a mismatch in scales and processes
observed and modelled.

We now discuss these errors in more detail.
The pre-processing error for vehicle-based observations

of air temperature can be caused by the data collection
and QC procedures. The height of external air-temperature
sensors will vary with vehicle type and sensor-height
metadata will likely be unavailable in the collection of
crowdsourced datasets. Hence, the observations must be
assigned a height that may differ from the true height
resulting in a height assignment error. The QC for the
vehicle-based observations is discussed in Section 3.3.

Since air temperature is usually an NWP variable, the
observation operator for vehicle-based observations may be a
simple interpolation operator. An observation operator error
may result from the misrepresentation of the vehicle-based
observation height by the NWP model. The resolution of
NWP models is likely to be too coarse to represent the eleva-
tion of the vehicle-based observations properly (Waller et al.,
2021). This mismatch in elevation between a surface obser-
vation and a NWP model field is normally accounted for by
correcting the observation to be at the same height as the
model field. As air temperature is expected to change with
altitude in the surface layer (Stull, 1988a), the model height
selected by the observation operator will influence the value
of the model-equivalent observation.

For vehicle-based observations of air temperature, errors
due to unresolved scales and processes are likely to be cau-
sed by deficiencies in the modelling of the local road-surface
energy balance (RSEB). The RSEB describes the relation-
ship between the net radiation into the road surface, the
heating caused by traffic, the ground heat flux density, the
sensible heat flux density, and the latent heat flux density
(Karsisto & Lovén, 2019). The amount of radiation absorbed
by the road will vary across the road due to the sky-view
factor and traffic effects (Chapman & Thornes, 2011). The
sky-view factor indicates the amount of shielding from radi-
ative heating and cooling and may be highly spatially vari-
able due to trees or buildings near the road. Chapman and
Thornes (2011) showed a rural example where the sky-view
factor caused road-surface temperature to vary by almost
3�C. Traffic effects include the generation of turbulence by
vehicles, friction heat dissipation from tyres, sensible heat

flux from vehicle engines, heat and moisture from exhaust
fumes, and the blocking of incoming solar radiation and
outgoing longwave radiation from the road surface
(Chapman & Thornes, 2005; Prusa et al., 2002). Gustavsson
et al. (2001) found that, during morning commuting hours
in urban areas, traffic caused the road-surface temperature
to increase by approximately 2�C.

The materials used for road surfaces have a large heat
capacity such that much of the radiation absorbed by the sur-
face is converted into ground heat flux (Anandakumar,
1999). The remaining turbulent heat fluxes are determined
by the amount of water available at the road surface (Oke
et al., 2017). If the road surface is dry, the remaining energy
is entirely converted to sensible heat, which will result in a
strong vertical air-temperature gradient near the road sur-
face. Conversely, if water is available at the road surface,
some of the remaining energy is converted into latent heat
and the air-temperature profile near the surface will be more
uniform.

A common approach for modelling surface fluxes in
NWP is through tile schemes (Essery et al., 2003). Using
this approach, the surface flux of a grid box is the
weighted average of several different surface fluxes and
hence may differ from the local RSEB substantially.

For road forecasting applications, outputs from NWP
are post-processed in order to take better account of the
road physics (e.g., Clark, 1998; Coulson et al., 2012). For
this initial study, we do not use these post-processing
techniques for simplicity. However, in principle, a more
sophisticated observation operator could use a similar
approach to road forecasting models and reduce the
uncertainty due to unresolved scales.

3 | METHODOLOGY

3.1 | The Met Office trial

From February 20th 2018 to April 30th 2018 the Met
Office ran a proof-of-concept trial to collect vehicle-based
observations of air temperature from 31 volunteers. The
measuring instruments used in this trial are those built-
in by the manufacturer of the vehicle. In this trial, OBD
dongles were used to broadcast reports from the vehicle
engine management interface to an application (app)
installed on a participant's smartphone via Bluetooth.
Additional metadata derived from the smartphone were
appended to the report, and uploaded to the Met Office
Weather Observations Website (Kirk et al., 2021) using
the smartphone's connection to the mobile network (3G,
etc.). A complete description of this trial can be found in
Bell et al. (2021). We now note some of the important
aspects of the trial below.

4 of 19 BELL ET AL.Meteorological Applications
Science and Technology for Weather and Climate



The data collection frequency and GPS update period
were set to 1 min, while the minimum distance for a GPS
update was set to 500 m. We also note that a known fault
that occurred during this trial was for engine-intake tem-
perature (i.e., the air temperature inside the vehicle
engine) to be recorded as air temperature for some obser-
vations. Observations were collected throughout the
United Kingdom, with their locations corresponding to
journeys undertaken by the participants.

The dataset obtained through this trial consists of
67,959 reports. Each report contains some combination of
observations of air temperature, engine-intake tempera-
ture, and air pressure from built-in vehicle sensors. The
observations of temperature have a precision of 1�C,
while the observations of air pressure have a precision of
10hPa. We limit the scope of this study to air temperature
only as engine-intake temperature will not reflect the true
atmospheric-air temperature and air pressure has too low
precision to be useful in NWP (World Meteorological
Organization, 2021b). The metadata for each report
includes vehicle speed (km/h), date-time (given by the
application as date and 24-h clock time), GPS location,
vehicle ID, and a unique observation ID. With the excep-
tion of vehicle speed, which was obtained by the OBD
dongle, all metadata was derived by the smartphone app.

3.2 | Additional datasets used in this
study

3.2.1 | Met Office integrated data archive
system data

Met Office integrated data archive system (MIDAS) tem-
perature data consist of observations of 1.5m-air tempera-
ture, which have a precision of 0.1�C and an uncertainty
of 0.2�C for various locations in the United Kingdom (Met
Office, 2006). We use MIDAS daily maximum and mini-
mum temperature data in our QC procedure described in
Section 3.3. We also use MIDAS hourly temperature data
to provide a comparison with vehicle-based observations
of air temperature that are within 1.5 km of a MIDAS sta-
tion (see Section 4.2). These data are linearly interpolated
to the time of a vehicle-based observation.

3.2.2 | NWP model data

To explore the characteristics of the vehicle-based obser-
vations that pass QC, we use Met Office 10-min UKV
model data (Met Office, 2016). The UKV is a variable-
resolution configuration of the Unified Model whose
domain covers the United Kingdom and Ireland (Lean

et al., 2008). The inner domain has grid boxes of size
1.5 km � 1.5 km and fully covers the United Kingdom
(Milan et al., 2020). Surrounding this is a variable-
resolution grid with boxes whose edges steadily increase
in zonal and/or meridional directions to 4 km in size.

In this study, we use 1.5m-air temperature and sur-
face-air temperature defined as the air temperature at the
boundary with the surface from short model forecasts
known as the background (Milan et al., 2020). The UKV
model data are interpolated to the time and horizontal
location of a vehicle-based observation so that we can
construct two observation-minus-background (OMB)
datasets (i.e., one OMB dataset using surface-air data for
the background and another OMB dataset using 1.5m-air
temperature for the background). Since a vehicle-based
observation and the horizontally interpolated back-
ground are both estimates of the true air temperature,
their difference is equal to the difference of their errors.
If their errors are independent, the variance of their dif-
ferences will be equal to the sum of their individual error
variances. Therefore, examining the statistics of the two
OMB datasets will provide insight into the uncertainty of
the vehicle-based observations. As the height of the exter-
nal air-temperature sensor for each vehicle is unknown,
we are unable to interpolate the model data to the height
of a vehicle-based observation or correct the vehicle-
based observation to be at the height of either UKV
model field. It is likely that the vehicle-based observa-
tions are between the two model heights and are closer to
the surface than the 1.5 m height.

The surface flux for each grid box is determined by
expressing the percentage of land use as a combination of
5 vegetation and 4 non-vegetation tiles (Essery et al., 2003;
Porson et al., 2010). For each grid box, the surface flux is
obtained by calculating the sum of the weighted average
of the fluxes from each tile (where instantaneous interac-
tion between tiles is neglected). The UKV uses the urban
canopy model MORUSES (Met Office-Reading Urban Sur-
face Exchange Scheme) as the urban tile. MORUSES rep-
resents the impervious urban surface through a roof tile
and a canyon tile (Hertwig et al., 2020). However, observa-
tions taken on motorways and major routes will often be
surrounded by rural areas, and so the road fraction of the
UKV grid box will be small. For example, a typical UK
motorway traversing a rural grid box occupies less than 2%
of the total area (Bremner, 2019).

3.2.3 | Roadside weather information station
observations

Vehicle-based observations of air temperature from built-
in sensors are known to be consistent with reliable
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observations obtained from RWISs, provided the external
air-temperature sensor is located away from the engine
block (Mercelis et al., 2020). We therefore use RWIS data
provided by Highways England (2018) to provide a com-
parison with similar point observations for different
weather conditions. There are over 250 RWISs in England
located along major roads and major routes providing var-
ious roadside meteorological information with a temporal
frequency of 10 min (Buttell et al., 2020). In this study, we
use RWIS observations of air temperature that have preci-
sion of at least 0.1�C. To give an indication of the total
uncertainty of these observations, we note that the Met
Office currently assimilates RWIS observations of air tem-
perature into the UKV with an uncertainty of 1�C. We
note that the height that RWISs measure air temperature
is estimated to be between 2 and 3 m, but can be outside
of this range if the site is located on a bank (Highways
England, 2020). Road-state classifiers (i.e., dry, trace
amounts of water, wet) provided by RWISs are used to
indicate the availability of water at the road surface. The
RWIS observations are linearly interpolated to the time
that a vehicle passed a station.

3.3 | Quality control

In this section, we briefly describe the QC process applied
to the vehicle-based dataset. Further details are given by
Bell et al. (2021). We note that, due to the size and spatio-
temporal sparsity of this dataset, we were unable to use
spatial consistency QC tests.

Before the QC process was implemented, an initial fil-
tering of the raw data from the trial was performed to
ensure each observation had an air temperature observa-
tion and the relevant metadata needed for each test. This
filtering removed 35,780 observations (52.6% of original
dataset) due to either a missing air temperature observa-
tion or an invalid speed. The resultant dataset will be
referred to as the filtered dataset.

The QC process applied to the vehicle-based dataset
began with three tests applied in parallel: the climatologi-
cal range test (CRT), the stuck instrument test (SIT), and
the GPS test. Lastly, observations that passed each of
these tests were then put through a sensor ventilation test
(SVT). The final quality-controlled dataset (QC-dataset)
consisted of all observations that passed the SVT. We
now provide a brief description of each QC test.

The CRT checked if an observation was within a spec-
ified tolerance of a location-specific climatology. For this
dataset, we used MIDAS daily temperature data (Met
Office, 2006) to create monthly climatology datasets.
These datasets were constructed by determining the max-
imum and minimum air temperature of each MIDAS

station active during February–April 2018 from pre-2018
data. The CRT was implemented by comparing the obser-
vation to the nearest (in terms of great circle distance)
MIDAS station monthly climatology dataset. If the obser-
vation was within a 2�C tolerance of the climatological
range of the MIDAS station, then the observation was
passed. The 2�C tolerance was chosen as few observations
were flagged by this test. However, larger tolerances may
be more suitable for other vehicle-based datasets.

The SIT examined portions of vehicle-specific time-
series to check whether the vehicle sensor was stuck on an
air temperature value. This test required a vehicle identifier
to determine observations that came from the same source
(this may be unavailable in other crowdsourced observa-
tion studies due to data privacy concerns). The SIT was
implemented by comparing an observation with all other
observations from the same vehicle that occurred within a
15-min time window. If there was at least one observation
that had a different value of air temperature to the tested
observation, then the tested observation was passed. This
test is essentially a simplified version of a persistence test
(see Zahumenskỳ, 2004 for guidelines) that is able to
account for any short journeys undertaken by participants
during the trial and the low precision of the data.

The GPS test compared the location of an observa-
tion, denoted the test observation, relative to a prior
observation from the same vehicle, denoted the reference
observation, to evaluate the plausibility of the observa-
tion location metadata. The reference observation was at
most 30 min before the test observation. As with the SIT,
a vehicle identifier was required to determine if observa-
tions came from the same source. The GPS test was
implemented by calculating the great circle distance
between the test and reference observations, dtest. Then
dtest was compared with the maximum and minimum
distances estimated using the speed and time metadata
for the vehicle. The maximum distance was estimated by

demax ¼max vtest,vrefð Þ�Δt, ð1Þ

where vtest and vref are the speeds of the test and reference
observations, respectively, and Δt is the time-gap
between the two observations. Similarly, the minimum
distance was estimated by

demin ¼min vtest,vrefð Þ�Δt: ð2Þ

The test observation passed the GPS test provided
Γmind

e
min ≤ dtest ≤Γmaxd

e
max where Γmin = 0.6 and Γmax =

1.3 are minimum and maximum multiplicative tolerance
constants, respectively. For justification of the choice of
Γmin and Γmax, we refer the reader to Bell et al. (2021).
Test observations with Δt<1 min or max(vtest,vref)

6 of 19 BELL ET AL.Meteorological Applications
Science and Technology for Weather and Climate



<25 km/h were passed if dtest ≤Γmaxd
e
max as they were

expected to be close to the reference observation (the spe-
cific choice of 25 km/h is related to the SVT discussed in
the next paragraph). If a test observation did not have an
observation from the same vehicle that occurred at most
30min prior, then it was left unclassified by the GPS test
and became the reference observation for the next test
observation in the vehicle time-series.

The SVT was the final QC test that was applied to the
observations that passed all previous tests. This test
involved checking that the speed metadata for each
observation were above a predetermined sensor ventila-
tion threshold, vsensor. Examining the speed-temperature
pairs of the filtered dataset (not shown) revealed that the
largest air temperatures (above 26�C) occurred for speeds
below 25 km/h. We therefore set vsensor = 25 km/h. An
observation passed the SVT if it had speed greater than
vsensor. Hence, any observations that were passed by the
GPS test with low speeds were flagged by the SVT.

The QC-dataset contains 17,425 observations (25.6%
of original dataset). A summary of the results of each QC
test is provided in Table 1. We note that the SIT and GPS
test could not test every observation in the filtered dataset
due to unavailable or unsuitable reference observations.
The most discriminating test was the GPS test. The
majority of observations flagged by the GPS test were
likely the result of the 500 m update distance default set-
ting on the app. We also note that the SVT was a fairly
discriminating test.

The QC approach taken with this dataset relied
upon range validity and time-series tests. For crowd-
sourced observations, time-series tests may be unsuita-
ble as instrument identification metadata may be
unavailable due to data privacy concerns. This may be
overcome with appropriate encryption techniques
(Verheul et al., 2019) or by performing the QC locally
on the sensing device (Hintz et al., 2019b). Further-
more, the use of spatial consistency QC tests, which do
not require instrument identification, would be a suit-
able replacement for time-series-based tests provided

there is a sufficient density of observations in a given
area (Nipen et al., 2020).

4 | EXAMINATION OF THE QC
DATASET

In this section we, compare the QC-dataset with UKV
model data, RWIS data, and MIDAS hourly data. Illustra-
tive examples of the effect of sunny and rainy weather
conditions on vehicle-based observations are presented in
Section 4.1, analysis of OMB and observation-minus-
observation (OMO) statistics are discussed in Section 4.2,
and vehicle-specific OMB statistics are examined in
Section 4.3. We use UKV model data as the background
in the OMB datasets and MIDAS hourly data in the OMO
dataset.

The effects of different meteorological factors are
quantified through statistical analysis of OMB departures
grouped by sunny, cloudy, and rainy weather conditions
and season. The sunny dataset will consist of observa-
tions that occur between 09:00 and 17:00 on days with at
least 6 sunshine hours and less than 2 mm of rainfall.
Therefore, the observations are likely to be influenced by
solar radiation incident on UK roads. The rainy dataset
will consist of observations that occur between 09:00 and
17:00 on days with at least 5 mm of rainfall and less than
2 h of sunshine. The cloudy dataset will consist of obser-
vations that occur between 09:00 and 17:00 on days with
less 2 h of sunshine and 2 mm rainfall. Here, and
throughout the remainder of this manuscript, the time is
given in UTC. To obtain the weather-specific sub-
datasets, we used the Met Office daily weather summa-
ries (Met Office, 2018). The seasons we consider are win-
ter, defined as all data occurring between February 20th
and March 20th 2018, and spring, defined as all data
occurring between March 21st and April 30th 2018. We
note that these seasons do not conform to the usual defi-
nitions of meteorological winter and spring, but have
been chosen due to the period of the Met Office trial and

TABLE 1 Summary of the results from all QC tests. The observations untested by the stuck instrument test and GPS test are due to a

lack of reference observations. The observations passed by the sensor ventilation test form the QC-dataset.

QC test
Number of tested
observations

Number of passed
observations

Number of flagged
observations

Number of untested
observations

Climatological range test 32,179 32,129 50 0

Stuck sensor test 32,179 30,124 2008 47

GPS test 32,179 20,162 11,181 836

Sensor ventilation test 19,094 17,425 1669 0
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so that the winter and spring datasets each contain a sim-
ilar number of observations.

4.1 | Case studies on the effect
of sunny and rainy weather conditions
on vehicle-based observations

We now show three time-series of vehicle-based observa-
tions of air temperature, 10-min UKV 1.5m-air-temperature,
and surface-air-temperature model data, and RWIS observa-
tions of air temperature. The routes traversed in each time-
series began and ended in suburban areas and were pre-
dominantly on major roads and major routes in rural areas,
which occasionally crossed urban areas. The location of
each time-series is shown in Figure 1. We denote the time-
series shown in Figure 2 as S1, Figure 3 as S2, and Figure 4
as R1. S1 and S2 are illustrative examples of the effect of
sunny weather and R1 is an illustrative example of the
effect of rainy weather on vehicle-based observations of air
temperature. We note that the same vehicle produced the
observations in S1 and R1, but a different vehicle produced
the observations in S2. We also note that the large data gaps
in the three time-series are due to breaks in the journeys,
and the two small data gaps in S2 are due to observations
removed by the QC procedure.

For clarity, we will refer to the OMB data using 1.5m-
air temperature for the background as aOMB and using
surface-air temperature data for the background as
sOMB. Furthermore, we denote the bias (mean) and stan-
dard deviation of an aOMB dataset as μa and σa, respec-
tively and the bias (mean) and standard deviation of a
sOMB dataset as μs and σs, respectively.

Figure 2 shows data from sunny weather conditions
on March 25th 2018, including the time-series S1, UKV,
and RWIS data. The OMB summary statistics for S1 are
shown in Table 2. The sun rose at 06:52 and set at 18:22
on this day. The RWIS stations included in this time-
series recorded a dry road-state when the vehicle passed
the station. As a result of these conditions, we expect the
sensible heat flux emitted by the road to be large and the
road surface to have a noticeable heating effect on the air
temperature above (see Section 2.3). Additionally, we
expect the surface-air temperature to be larger than the
1.5m-air temperature as the sensible heat flux emitted by
the UKV surface will also be large. The mean difference
between the interpolated RWIS observations and the
nearest-in-time UKV model data reveals that RWIS
observations are in most agreement with 1.5m-air tem-
perature and in least agreement with surface-air tempera-
ture. There is a clear separation between UKV 1.5m-air
temperature and surface-air temperature at the start of
the time-series that gradually decreases as the net

radiation absorbed by the UKV surface decreases. The
vehicle-based observations generally lie between the
model fields as seen by the difference in sign between the
biases. The vehicle-based observations on average agree
most with surface-air temperature as jμsj < jμaj. This is
consistent with the height of the vehicle sensor, which is
likely to be between the model field heights of 0 and
1.5 m but closer to 0 m than 1.5 m. Calculating the stan-
dard deviation of the sOMB and aOMB departures shows
that the sOMB departures are more variable as σa < σs.
We hypothesize that the variability of the UKV sensible
heat flux induced by the sunny weather conditions is the
mechanism responsible for the larger sOMB variability.

FIGURE 1 Map of the United Kingdom showing the location

of the three time-series discussed in Section 4.1. The red squares

show the location of cities passed by or near to the routes travelled

in the three time-series. The black diamonds show the location of

the roadside weather information station stations passed on each

journey. The two orange lines correspond to the sunny weather

time-series and the blue line corresponds to the rainy weather time-

series. The time-series S1 began near Exeter and travelled north

towards Manchester. The time-series R1 travelled the same initial

route as S1, but headed east from Birmingham towards Cambridge.

The time-series S2 began in Edinburgh and travelled along the

coast to Newcastle-upon-Tyne and then the vehicle travelled

further inland and south towards Nottingham.
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Figure 3 shows data from sunny weather conditions
on April 5th 2018, including the time-series S2, UKV,
and RWIS data. The OMB summary statistics for S2 are
shown in Table 2. The sun rose at 05:27 and set at 18:40
on this day. The RWISs included in this time-series
recorded a dry road-state when the vehicle passed the sta-
tion. Similarly to the data in Figure 2, the RWIS observa-
tions are in most agreement with the UKV 1.5m-air
temperature and in least agreement with surface-air

temperature. The surface-air temperature is larger than
the 1.5m-air temperature for the first half of this time-
series. From approximately 17:00 we see that 1.5m-air
temperature is greater than surface-air temperature. We
hypothesize that this is due to the stabilization of the
boundary layer (Stull, 1988b). In contrast to S1, the
vehicle-based observations are closest to UKV 1.5m-air
temperature at the beginning of the time-series even
though the sensible heat flux emitted from the road sur-
face is expected to be greatest during this period. Possible
reasons for this include cool breezes from the North Sea
influencing the vehicle-based observations during the
beginning of the time-series (see route map in Figure 1) or
because the air temperature is measured by a different

FIGURE 2 Time-series S1 of 212 vehicle-based observations of

air temperature (blue circles) from a single vehicle driving along

the M5 motorway on March 25th 2018 during sunny weather. Also

shown are UKV 1.5m-air temperature (purple triangles) and UKV

surface-air temperature (orange diamonds) linearly interpolated to

the time and horizontal location of the vehicle-based observations,

and RWIS observations of air temperature (red squares) linearly

interpolated to the time the vehicle passed a station. The 1�C RWIS

error bar represents the uncertainty used to assimilate RWIS

observations into the UKV.

FIGURE 3 Time-series S2 of 193 vehicle-based observations of

air temperature (blue circles) from a single vehicle driving along

the A1 and the M1 motorway on April 5th 2018 during sunny

weather. Also shown are UKV 1.5m-air temperature (purple

triangles) and UKV surface-air temperature (orange diamonds)

interpolated to the time and horizontal location of the vehicle-

based observations, and RWIS observations of air temperature (red

squares) interpolated to the time the vehicle passed a station. The

1�C RWIS error bar represents the uncertainty used to assimilate

RWIS observations into the UKV.

FIGURE 4 Time-series R1 of 259 vehicle-based observations of

air temperature (blue circles) from a single vehicle driving along

the M5 and M42 motorways and the A5 on March 30th 2018 during

rainy weather conditions. Also shown are UKV 1.5m-air

temperature (purple triangles) and UKV surface-air temperature

(orange diamonds) interpolated to the time and horizontal location

of the vehicle-based observations and RWIS observations of air

temperature (red squares) interpolated to the time the vehicle

passed a station. The 1�C RWIS error bar represents the uncertainty

used to assimilate RWIS observations into the UKV.

TABLE 2 Summary of the observation-minus-background

statistics for the three time-series shown in Figure 1 using UKV

1.5m-air temperature and surface-air temperature as the background.

The uncertainty in the mean for each time-series is less than 0.1�C.

Summary statistics

Time-series

S1 S2 R1

Number of observations 212 193 259

μa (�C) 1.4 0 0.7

σa (�C) 0.7 0.9 0.7

μs (�C) �0.5 �0.3 0.4

σs (�C) 1.2 1.7 0.6
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vehicle's instrument. Furthermore, the difference between
the biases μa and μs is large for S1 and small for S2. This,
however, is likely due to the large number of observations
that occurred during the evening for S2 when the tempera-
ture gradient between the surface and 1.5 m is expected to
be small. Considering the observations from the first 3 h of
S2 only, when the net solar radiation absorbed by the road
and UKV surface is expected to be large, we find that the
difference between the biases μa and μs is more profound.
We note that the standard deviations σa and σs are larger
for S2 than S1. This is likely due to the following two rea-
sons. The first reason is the relatively long temporal length
of the S2 time-series. The second reason is the possible
transition to the nocturnal boundary layer as the surface
layer starts to become stably stratified. However, it is also
plausible that the placement of the external air-
temperature sensors on the two vehicles is contributing to
this behaviour.

Figure 4 shows data from rainy weather conditions
on March 30th 2018, including the time-series R1, UKV,
and RWIS data. The OMB summary statistics for R1 are
shown in Table 2. The RWIS stations included in this
time-series recorded either a wet road-state or trace
amounts of water at the road surface when the vehicle
passed the station. As a result of these conditions, we
expect the sensible heat emitted by the road to be small
and the road surface to have a reduced effect on the air
temperature above (see Section 2.3). We note that the
drop in air temperature between 12:30 and 13:30 is cau-
sed by an increase in altitude and an occluded front. The
mean difference between the interpolated RWIS observa-
tions and the nearest-in-time UKV data reveals that
RWIS observations are now in greater agreement with
surface-air temperature than 1.5m-air temperature. The
two UKV model fields are similar throughout the time-
series with multiple segments where the vehicle-based
observations are greater than both fields. The vehicle-
based observations are on average greater than the UKV
model data as the biases μa, μs > 0�C but agree more with
surface-air temperature as μa > μs. This indicates that
there are additional factors affecting the vehicle-based
observations. Potential explanations for this behaviour
are given in Section 4.2.4. We note that while the aOMB
departures are more variable than the sOMB departures
(i.e., σa > σs), they are similar in size.

We hypothesize that the effect of the sensible heat
emitted by the road and UKV surfaces can be observed
through comparison of the S1 and R1 time-series shown
in Figures 2 and 4, respectively. In sunny weather, the
sensible heat emitted by the road and UKV surface will
be large, resulting in a stronger vertical air-temperature
gradient between the surface and the 1.5 m height. In
rainy weather, the sensible heat emitted by the road and

UKV surface will be small, leading to a vertical air-
temperature profile that is more uniform. This suggests
that the difference between the biases μa and μs will be
larger in sunny weather conditions than rainy weather
conditions. The OMB standard deviations calculated for
each time-series show a negligible difference for σa and a
noticeable difference for σs between the two time-series.
For the sOMB standard deviation σs, we see that it is
smaller for rainy weather and larger for sunny weather.
A possible reason for this is that the variability of the sen-
sible heat emitted by the UKV surface will be greater in
sunny weather than rainy weather. However, there may
be other contributing factors such as the difference in
observation operator error between the two time-series.

4.2 | Statistical analysis of observation-
minus-background and observation-minus-
observation departures

In this section, we investigate the uncertainty present in
the QC-dataset through statistical analysis of OMB and
OMO departures. The OMB datasets will be partitioned
into weather-specific and seasonal sub-datasets so that
we may examine how the OMB uncertainty changes with
weather conditions and season. As there are only 347
observations within 1.5 km of a MIDAS station, we will
not split the OMO dataset into weather-specific and sea-
sonal sub-datasets. We now discuss the characteristics of
each dataset.

4.2.1 | QC-dataset OMB and OMO statistics

The OMB and OMO statistics and the number of
datapoints corresponding to the QC-dataset are given in
Table 3. Examining the OMB statistics shows that the
vehicle-based observations are in poorer agreement with
1.5m-air temperature than surface-air temperature as
the biases satisfy jμaj = 0.7�C > jμsj = 0.1�C. This is
expected as external air-temperature sensors likely mea-
sure air temperature nearer to the surface than to a
height of 1.5 m. As μa = 0.7�C > 0�C and μs =

0.1�C > 0�C, vehicle-based observations are on average
warmer than both UKV model fields despite measuring
the air temperature between them. Possible reasons for
this behaviour are discussed in Section 4.2.4. For the
standard deviations, we have that σa = 1.2�C < σs =

1.6�C, showing that the sOMB dataset is more variable
than the aOMB dataset. This is also visible in the aOMB
and sOMB distributions shown by the histograms in
Figure 5a. While the distributions overlap substantially, a
higher peak is seen for the aOMB distribution, whereas
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the sOMB distribution has a larger left tail. It is likely
that the background uncertainty of surface-air tempera-
ture is greater than 1.5m-air temperature due to the sim-
plifying assumptions made by the UKV in modelling the
SEB of a grid box (see Section 3.2.2).

Examining the OMO statistics reveals that vehicle-
based observations are on average warmer than MIDAS
observations. Comparing the OMO departure bias, μm =

0.3�C, with the biases μa = 0.7�C and μs = 0.1�C obtained
from the QC-dataset OMB departures, we find that
μs < μm < μa. Hence, the vehicle-based observations on
average agree more with MIDAS data than 1.5m-air tem-
perature but still agree most with surface-air tempera-
ture. While it is plausible that vehicle-based observations
will generally agree more with MIDAS data than the
UKV 1.5m-air temperature model data, we note the fol-
lowing two issues with these calculations. Firstly, the
MIDAS data were not interpolated to the location of the
vehicle-based observations and there will likely be differ-
ences in elevation between the two. As air temperature is
expected to change with elevation in the surface layer
(Stull, 1988a), the omission of any vertical interpolation
may cause a bias. Secondly, while the variability of the
OMO dataset is less than the variability of any OMB
dataset shown in Table 3, it is calculated with far fewer
observations making the statistic less reliable.

4.2.2 | Weather-specific OMB datasets

The OMB statistics and the number of datapoints for each
weather-specific dataset are given in Table 3. For all

weather types, the bias μa is positive, showing that vehicle-
based observations are on average warmer than UKV
1.5m-air temperature regardless of weather conditions.

For the sunny and cloudy datasets, the bias μs is nega-
tive, whereas for the rainy dataset μs is positive. This
agrees with the results of the three time-series discussed
in Section 4.1. This also suggests that the vehicle-based
observations studied in this paper may be colder on aver-
age than UKV surface-air temperature in dry conditions.
The smallest differences between the biases occur for the
rainy dataset (μa = 0.6�C and μs = 0.3�C), while the larg-
est difference occurs for the sunny dataset (μa = 1.1�C
and μs = �0.8�C), which is also seen in the S1 and R1
time-series discussed in Section 4.1. For the rainy dataset
biases, we have that μa = 0.6�C > 0�C and μs = 0.3�C >
0�C, which indicates the vehicle-based observations are
on average warmer than the two UKV model fields. This
suggests that there are other influencing factors on the
vehicle-based observations that are not represented in the
UKV as vehicles measure the air temperature between
these two heights. Potential explanations for this behav-
iour are discussed in Section 4.2.4.

Inspection of the weather-specific standard deviations
reveals that, for sunny (σa = 1.2�C and σs = 1.9�C) and clo-
udy (σa = 1.4�C and σs = 1.7�C) weather conditions, the
sOMB dataset is noticeably more variable than the aOMB
dataset. This difference in variability is shown in the histo-
grams for the sunny dataset (Figure 5b) and the cloudy
dataset (Figure 5c). The sunny aOMB distribution is
unimodal and the sunny sOMB distribution is bimodal.
The bimodal structure may be due to intermittent cloud
cover on the days with less sunshine hours or the relatively

TABLE 3 Summary of the OMB

and OMO departure statistics for each

dataset. The uncertainty in the mean

for each dataset is less than 0.1�C.

OMB and OMO statistics

Dataset Number of observations Departure Mean (�C) SD (�C)

QC-dataset 17,425 aOMB 0.7 1.2

sOMB 0.1 1.6

347 OMO 0.3 1.0

Sunny 1878 aOMB 1.1 1.2

sOMB �0.8 1.9

Cloudy 2366 aOMB 0.8 1.4

sOMB �0.1 1.7

Rainy 840 aOMB 0.6 1.0

sOMB 0.3 1.0

Winter 7798 aOMB 0.5 1.3

sOMB 0.3 1.6

Spring 9627 aOMB 0.8 1.2

sOMB 0 1.6
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small size of the sunny dataset. Similarly to the QC-dataset,
the cloudy aOMB and sOMB distributions overlap substan-
tially, but a higher peak is seen for the aOMB distribution
and a larger left tail is seen for the sOMB distribution. For
rainy weather conditions, the standard deviations σa =

1.0�C and σs = 1.0�C are equal to one decimal place lead-
ing to similar aOMB and sOMB distributions as shown in
Figure 5d.

Overall, the variability for the weather-specific datasets
agrees with the variability calculated for the time-series dis-
cussed in Section 4.1. We also find that the standard devia-
tion is larger for the sunny sOMB dataset (σs = 1.9�C) than
for the cloudy sOMB dataset (σs = 1.7�C). This behaviour is
likely the result of the increased variability of the sensible
heat emitted by roads and the UKV surface during sunny
weather conditions due to the larger amount of solar

radiation absorbed by the two surfaces. This also suggests
that the uncertainty of vehicle-based observations may be
greatest in sunny weather conditions due to the combina-
tion of the radiative effects on the vehicle sensor and the
representation uncertainty. Conversely, the aOMB standard
deviation is largest for the cloudy dataset (σa = 1.4�C) and
not the sunny dataset (σa = 1.2�C). This, however, may be
due to changes in the sky-view factor due to variable cloud
cover or because the cloudy dataset has more observations
than the sunny dataset. We hypothesize that the rainy
dataset standard deviations σa = 1.0�C and σs = 1.0�C are
similar for the following three reasons. Rain increases the
availability of water at the UKV surface, which reduces the
emitted sensible heat flux, and hence the vertical air-
temperature profile will be more uniform. There is also little
to no sun at the times and locations of the vehicle-based

FIGURE 5 OMB histograms datasets corresponding to the datasets in Table 3. Bins of width 0.5�C have been used for each histogram.

The blue bars correspond to the aOMB bins and the orange bars correspond to the sOMB bins.
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observations in the rainy dataset resulting in negligible radi-
ation reflected by the road surface incident on the vehicle
temperature sensor. Finally, the rainy dataset is the smallest
of our three weather-specific datasets and so the OMB statis-
tics are the least robust.

4.2.3 | Seasonal OMB datasets

The OMB statistics and the number of datapoints for the
seasonal datasets are given in Table 3 and the histograms
are plotted in Figures 5e (spring) and f (winter). We include
information on the seasonal datasets to provide a baseline
for the vehicle-specific analysis in Section 4.3. For the sea-
sonal datasets, the vehicle-based observations are on aver-
age greater than the UKV model fields except for surface-
air temperature in spring where they are approximately the
same. Comparing the biases of the seasonal datasets, we
see that the sOMB bias is smaller and the aOMB bias is
greater in spring (μs = 0�C and μa = 0.8�C) than in winter
(μs = 0�C and μa = 0.8�C). Inspection of the standard devi-
ations of the seasonal datasets reveals that the sOMB vari-
ability is larger than the aOMB variability in both winter
(σs = 1.6�C and σa = 1.3�C) and spring (σs = 1.6�C and σa
= 1.2�C).

4.2.4 | Discussion of the uncertainty
exhibited by the OMB datasets

In this section, we discuss several possible contributions
to the uncertainty exhibited in the OMB statistics shown
in Table 3.

• The vehicle-based observations of air temperature
are precise to 1�C. The details of the observation
processing by the OBD system and app are
unknown. However, an indication of the expected
size of the processing errors can be obtained by
considering the quantization error from a typical
procedure that rounds to the nearest integer. In this
case, the root-mean-squared quantization error isffiffiffiffiffiffiffiffiffiffi
1=12

p �C and may be a positive or negative error
(Widrow et al., 1996).

• As discussed in Section 2.2, the external air-
temperature sensors may exhibit a warm bias from
extraneous sources. For instance, the sensor may be in
close proximity to the vehicle engine or the location of
the sensor may be inadequate for sensor ventilation. A
rough estimate of the bias due to the vicinity of the
engine is 5–25�C (Mercelis et al., 2021). However, there
are several other factors that may be influencing this
estimate (e.g., differing vehicles).

• In many makes and models of vehicle with on-board
temperature sensors, there is an algorithm that delays
the change of air temperature to avoid flickering or
quick changes on the display for the driver. If the air
temperature is obtained after the algorithm is applied,
this could cause an issue in areas with strong tempera-
ture gradients.

• In unstable atmospheric conditions, the vertical air-
temperature gradient between the surface and the
1.5 m height will be negative. When the sensible heat
emitted by the road and UKV surfaces is large, the ver-
tical air-temperature gradient will be large. Therefore,
surface-air temperature will be warmer on average
than vehicle-based observations, which likely measure
air temperature between 20 and 100 cm above the road
surface. Similarly, 1.5m-air temperature will be cooler
on average than vehicle-based observations.

• The vehicle-based observations have not been corrected
to the elevation of the model grid box. In NWP, it is
common to correct surface observations using a stan-
dard adiabatic lapse rate of 0.0065�C/m (Cosgrove
et al., 2003; Dutra et al., 2020).

• The UKV simulation of the diurnal cycle is not perfect
and may contribute to the OMB uncertainty. For
example, Boutle et al. (2016) studied a number of fog
cases where the diurnal temperature range was under-
estimated by the UKV. However, since then, the UKV
surface scheme has been updated. Warren et al. (2018)
studied the new scheme by comparing model forecasts
to observations in urban areas. The new scheme is
much improved. In particular, it has better timing for
the morning transition and better vertical mixing.

• The road-surface temperature is highly variable due to
sky-view factors and traffic (Chapman & Thornes,
2011). As noted in Section 2.3, these factors can change
the local temperature by as much as 2�C or 3�C.

• The difference in sensible heat emitted by the road sur-
face and the UKV surface may contribute to the OMB
biases. As discussed in Section 3.2.2, these model errors
will vary depending on the land surface (e.g., urban/rural)
but are difficult to quantify.

4.3 | Vehicle-specific observation-minus-
background departure distributions

Throughout the Met Office trial, 31 vehicles were used
to produce vehicle-based observations. To investigate
whether error statistics differ with vehicle, we plot OMB
histograms for each of the 12 vehicles with the most obser-
vations between 09:00 and 17:00 in the QC-dataset in Fig-
ure 6. We use only observations between 09:00 and 17:00
so that the boundary layer is likely to be unstable
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(i.e., UKV surface-air temperature is greater than the
1.5m-air temperature). This is to avoid the complications
of interpreting the OMB statistics experienced with the S2
time-series discussed in Section 4.1 and so that more obser-
vations can be classified into the weather-specific data

types discussed in Section 4.2. The OMB statistics are
summarized in Table 4. Also included in Table 4 is the
percentage of observations for each vehicle occurring in
each weather-specific and seasonal dataset discussed in
Section 4.2. We note that it is difficult to draw definitive

FIGURE 6 OMB histograms for the 12 vehicles with the most observations between 09:00 and 17:00 in the QC-dataset. The aOMB

distributions are shown by the blue bins, the sOMB distributions are shown by the orange bins, and the overlap in distributions is shown by

the composite. The same bins of width 0.5�C have been used for each histogram. Information on the statistics and observation

meteorological conditions for each vehicle is given in Table 4.

TABLE 4 Summary of the OMB statistics for each vehicle in Figure 6. The uncertainty in the mean is at most 0.1�C for each vehicle

OMB dataset. Also shown is the percentage of observations from a specific vehicle that appear in the weather-specific and seasonal datasets

discussed in Section 4.2. Observations that do not appear in any of the weather-specific datasets are accounted for in the unclassified field on

this table.

Summary statistics

Vehicle

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii)

Number of observations 1533 1522 910 904 780 593 562 502 497 421 342 212

μa (�C) 0.4 1.2 0.9 0.4 0.4 0.9 1.8 0.6 1.5 �0.6 0.6 1.6

σa (�C) 0.9 1.1 0.9 1.1 0.8 0.9 1.0 1.0 1.0 1.0 0.9 1.2

μs (�C) �0.4 0.4 0.1 �0.8 0.4 �1.9 0.8 �0.9 0.3 �1.2 �1.0 0.4

σs (�C) 1.2 1.2 1.0 1.3 1.0 1.2 1.2 1.4 1.2 1.1 1.3 1.2

Sunny percentage 0% 23% 22% 3% 34% 64% 13% 9% 36% 16% 22% 43%

Cloudy percentage 25% 23% 44% 18% 7% 10% 31% 26% 12% 47% 35% 38%

Rainy percentage 3% 10% 27% 20% 0% 0% 6% 11% 10% 6% 9% 0%

Unclassified percentage 72% 44% 7% 59% 59% 26% 54% 54% 42% 30% 34% 19%

Winter percentage 63% 41% 1% 47% 98% 10% 28% 47% 19% 47% 68% 0%

Spring percentage 37% 59% 99% 53% 2% 90% 72% 53% 81% 53% 32% 100%
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conclusions in this examination for two reasons. Firstly,
many of the vehicles experience different weather condi-
tions and there are many observations that we are unable
to classify into a weather type. Secondly, there are only
12 vehicles with an acceptable number of observations
that we can examine.

The majority of histograms shown in Figure 6 resem-
ble normal distributions. The aOMB and sOMB distribu-
tions of vehicles (ii), (iii), (iv), (x), and (xii) are
qualitatively similar with the visual distinction between
them as a result of the difference in means. The
remaining vehicles have noticeably different aOMB and
sOMB distributions.

Examining the biases of the vehicle-specific OMB dis-
tributions shows that there are some vehicles that agree
more with UKV 1.5m-air temperature than surface-air
temperature as jμaj < jμsj. For these vehicles it is possible
that the external air temperature sensor is located closer
to 1.5 m height than the road surface or there are addi-
tional unknown factors affecting the vehicle-based obser-
vations as in S2 discussed in Section 4.1. The values of
the biases μa and μs also vary substantially between vehi-
cles. The sign of μs also varies with vehicle, whereas only
vehicle (x) has negative μa, which suggests that some ele-
ment of the vehicle's external air-temperature sensor or
processing procedure may have a cold bias.

Except for vehicle (xii), we find that the aOMB dataset
is less variable than the sOMB dataset (i.e., σa < σs) for all
vehicles, which agrees with the results obtained in Sec-
tions 4.1 and 4.2. The values of the standard deviations σa
and σs also vary substantially between vehicles. When
stratifying the vehicles by seasonal contribution, we are
able to find some agreement between the OMB dataset
variability. This can be seen between the groups of vehi-
cles (ii) and (vii), vehicles (iv), (viii), and (x), and vehicles
(i) and (xi). Each vehicle in these groups contains similar
ratios of winter to spring observations. For vehicles (iii),
(vi), (ix), and (xii), which contain predominantly spring
observations, we see that the aOMB standard deviation σa
is similar except for vehicle (xii), and the sOMB standard
deviation σs is similar except for vehicle (iii). This shows
that vehicles may have similar OMB uncertainty if they
have similar ratios of seasonal observations.

5 | CONCLUSION

In this work, we have examined a novel low-precision
vehicle-based observation dataset obtained from a Met
Office proof-of-concept trial. An overview of the quality
control (QC) applied to the vehicle-based observations
was given. The data that passed QC were examined and
compared with UKV 1.5m-air-temperature and surface-

air-temperature model data, roadside weather informa-
tion station (RWIS) data, and hourly MIDAS data. Using
these datasets, we explored the characteristics of the
vehicle-based observations that passed QC.

The QC procedure consisted of four tests that assessed
different aspects of the vehicle-based observations. Reports
that did not have an observation of air temperature or the
necessary metadata to be tested were removed prior to the
QC procedure. The climatological range test (CRT), stuck
instrument test (SIT), and global positioning system (GPS)
test were applied in parallel. Both the SIT and GPS test
required vehicle identification, which may be unavailable
in other crowdsourced and opportunistic datasets due to
privacy concerns. While the majority of observations pas-
sed the CRT and SIT, a substantial number of observations
were flagged by the GPS test due to unsuitable GPS update
settings on the smartphone application and poor GPS sig-
nal. The observations that passed these three QC tests were
put through a final sensor ventilation test (SVT) that
flagged observations from vehicles driving below a pre-
determined sensor-ventilation-threshold speed. The SVT
flagged a sizeable amount of data relative to the amount
tested. The final quality-controlled dataset (QC-dataset)
consisted of 25.6% of the observations obtained from the
Met Office trial. Despite the high percentage of observa-
tions that failed QC, a large number of observations were
obtained with a small number of participants in the Met
Office trial. With more participants and the use of con-
nected and autonomous vehicles, vehicle-based observa-
tions of air temperature have the potential to be the largest
source of surface-based air-temperature data (Mahoney
III & O'Sullivan, 2013). Use of vehicle-based observations
in an operational setting would require an improved collec-
tion protocol to increase the percentage of observations
that pass QC. Recommendations for future data collection
and QC include correcting the smartphone application to
record necessary metadata for all observations and reduc-
ing the requirements needed for the smartphone GPS
update (Bell et al., 2021).

Using the QC-dataset, we investigated the uncertainty
present in vehicle-based observations by analysing two OMB
datasets. One dataset used UKV 1.5m-air temperature as the
background (aOMB) and the other dataset used UKV
surface-air temperature as the background (sOMB). Examin-
ing the OMB statistics of the QC-dataset, we found that the
vehicle-based observations of air temperature were on aver-
age greater than the UKV model data and agreed more with
surface-air temperature than 1.5m-air temperature. This is
expected as the vehicle-based observations likely measure
air temperature nearer to the surface than to a height of
1.5 m. However, there are several possible contributing fac-
tors to this result such as the quantization error, the differ-
ence in height between the vehicle-based observations and
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the UKV grid box, or heat from the vehicle engine contami-
nating the vehicle-based observations. We also found that
the sOMB uncertainty is greater than the aOMB uncertainty
for the QC-dataset. This is likely because the UKV surface-
energy balance has a much stronger influence on surface-air
temperature than 1.5m-air temperature.

To examine how the vehicle-based observation uncer-
tainty changes with weather conditions, we grouped the
OMB datasets by sunny, cloudy, and rainy weather. For
the sunny and cloudy OMB datasets, UKV surface-air
temperature was on average greater than the vehicle-
based observations, with the magnitude of the sOMB bias
greatest for the sunny dataset when the vertical air-
temperature gradient near the surface is large. However,
as shown in an illustrative time-series example, vehicle-
based observations can be in greater agreement with
1.5m-air temperature than surface-air temperature in
sunny weather conditions. Possible explanations for this
include the vehicle location (e.g., sea breeze effects) or
the placement of the sensor used by the vehicle. For the
rainy OMB dataset, when the vertical air-temperature
gradient near the surface is small, we found that the
vehicle-based observations were on average warmer than
both UKV model fields. Inspecting the variability of the
OMB datasets, we found that the sOMB variability is
greatest in sunny weather conditions and smallest in
rainy weather conditions. The aOMB variability was
larger for the cloudy dataset than for the sunny dataset
but still smallest for the rainy dataset. The large aOMB
variability for the cloudy dataset may be due to changes
in the sky-view factor caused by variable cloud cover or
because it was the largest of the weather-specific datasets.
These results strongly suggest that the uncertainty of
vehicle-based observations of air temperature is weather-
dependent. In particular, the uncertainty of vehicle-based
observations will be largest in sunny weather conditions
and smallest in rainy weather conditions.

To determine the effect of different vehicles on vehicle-
based observations, the OMB datasets were grouped by
vehicle. Due to the large number of observations with
unclassified weather conditions and the different propor-
tions of weather conditions experienced by vehicles, we
were unable to distinguish between meteorological and
vehicle effects on the vehicle-specific OMB distributions
effectively. However, we note that vehicles with similar pro-
portions of seasonal data may exhibit similar OMB variabil-
ity. In order to determine the influence of the vehicle on the
OMB statistics, further investigations into vehicle-based
observations using a larger dataset must be conducted.

Vehicle-based observations are a potentially abundant
source of low-cost, high-resolution meteorological
information that can help improve the spatial coverage
of surface-based observations (World Meteorological

Organization, 2021a). Furthermore, vehicle-based obser-
vations and other crowdsourced datasets can provide
information on microscale variations that MIDAS obser-
vations and other gridded datasets are unable to, such as
urban heat islands (Chapman et al., 2017; Droste et al.,
2017; Knight et al., 2010; Meier et al., 2017) and hail-
storms (Clark et al., 2018). Improved understanding of
microscale variations through high-resolution observa-
tional data is fundamental to the development of theory
and numerical weather prediction (NWP) models with
grid lengths of O 100ð Þm (Barlow et al., 2017).

There are several issues regarding data collection and
privacy in addition to the uncertainty characteristics,
which must be addressed before vehicle-based observa-
tions may be utilized. We first note that an increase in
precision of the vehicle-based observations will allow
improved QC, understanding of the characteristics of the
data, and value for NWP. Additionally, higher precision
data will allow for improved exploration of vehicle-based
observation characteristics and the observed meteorologi-
cal dynamics (Mercelis et al., 2020). For QC, an alterna-
tive to vehicle identification must be used such that
privacy concerns are mitigated. For assimilation, the
uncertainty and bias associated with each observation
must be sufficiently evaluated. This will require further
trials to assess the effect of local meteorological condi-
tions and the vehicle sensing instrument. Provided there
are enough data in reasonable proximity in future stud-
ies, it would be useful to calculate and compare the sensi-
ble heat flux of the road and a convection-permitting
NWP model surface. Despite these issues, vehicle-based
observations are a promising opportunistic dataset for
convection-permitting data assimilation.
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