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This paper investigates the use of Siamese networks for trajectory
similarity analysis in surveillance tasks. Specifically, the proposed ap-
proach uses an auto-encoder as a part of training a discriminative twin
(Siamese) network to perform trajectory similarity analysis, thus pre-
senting an end-to-end framework to perform an online motion pattern
extraction in the scene with an ability to incorporate new incoming tra-
jectory(ies) incrementally. The effectiveness of the proposed method
is evaluated on four challenging public real-world datasets containing
both vehicle and person targets, and compared with five existing meth-
ods. The proposed method consistently shows better or comparable per-
formance than the existing methods on all datasets.

Introduction: Motion patterns represent spatiotemporal trends of
moving targets in a scene and can be extracted based on the analysis
of motion information [1–4]. Indeed, these extracted patterns of motion
of targets offer useful information that aid in performing activity analysis
[5], behaviour prediction [6], tracking [7], and abnormality detection [8].

Existing motion pattern extraction methods are generally classi-
fied as interframe-motion-based and multiframe-motion-based methods.
Interframe-motion-based methods [9–11] rely on using motion informa-
tion of targets between two consecutive frames to extract motion pat-
terns. These methods generally perform more robustly in crowded sce-
narios but are often considered not suitable for extracting long-range
motion patterns [12]. Multiframe-motion-based methods [1–3, 13] in-
stead use motion information across multiple frames, e.g. short-duration
tracks or complete trajectories, as estimated with video tracking and are
regarded to be more helpful in extracting long-range patterns. These
methods generally involve first estimating tracked trajectories of tar-
gets [1–3, 12], followed by encoding trajectory information into feature
space(s) [2, 13–15], and performing trajectory clustering [1, 2, 4, 13,
14] or classification [3, 15] to determine dominant patterns. Some of
these approaches [2, 4, 13, 14] work in an offline manner as they assume
availability of all estimated trajectories a priori with an inability to incor-
porate new trajectory(ies) at clustering or classification stage incremen-
tally. Online approaches [1, 3, 15] do exist that enable updating extracted
clusters incrementally with incoming trajectory(ies). Recently there has
been a growing focus on the use of deep learning techniques in perform-
ing various vision tasks including those involving trajectory analysis [16,
17] but are not specifically aimed at motion pattern extraction.

This paper presents a framework that is built upon using auto-encoder
architecture as part of training of the Siamese networks to perform tra-
jectory similarity analysis for extracting motion patterns. Unlike ex-
isting methods [2, 4, 13, 14], this paper proposes an online approach
that allows incorporating new incoming trajectory(ies) in an incremen-
tal manner. Moreover, unlike existing online approaches [1, 3, 15], the
proposed method presents an end-to-end deep learning based trained
network without the need for separate explicit feature extraction and
clustering/classification stages; hence no requirement either for an en-
hanced discriminative ability of feature(s) as in [1, 3, 15] or an appro-
priate choice of clustering techniques as in refs. [1, 3]. We show the
effectiveness of the proposed method by evaluating and comparing the
performance with several state-of-the-art methods on four challenging
public real-world datasets with significant variability.

Problem definition: Let X be a set of trajectories estimated by a tracker
in a video sequence, V : X = {X j}J

j=1, where J is the number of es-
timated trajectories. X j is the estimated trajectory for target j: X j =

L1,0 L2,0

L1,1 L2,1

Absolute
Difference

S0 S1
Shared Weights

Fig. 1 Architecture of the full Siamese network with all layers fully connected

(Xk, j )
k j

end

k=k j
start

, where k j
start and k j

end are the first and final frame numbers

of X j , respectively. Xk, j is the estimated state of target j at frame k : k =
1, . . . , K with K as the total number of frames in V . Xk, j = (xk, j, yk, j ),
where (xk, j, yk, j ) denotes at frame k the position of target j on the im-
age plane. The analysis of trajectories (X ) aids in identifying the motion
patterns that refer to the representative spatiotemporal trends of moving
targets (people, vehicles etc.) in a scene.

Neural network architecture: The overall architecture of the neural net-
work is split into two parts: an encoding part trained as an auto-encoder
and a second part containing its extension into a twin (or Siamese) neural
network. The full architecture can be seen in Figure 1. An auto-encoder
was chosen as the first stage as it has been shown to be very effective in
creating a trajectory feature vector to discriminate between clusters [2]
and is therefore expected to be a good discriminator between trajectories
as part of a Siamese network.

In order to generate the feature vector f j for a trajectory X j , an auto-
encoder, also known as auto-associator or Diabolo network [18], is first
trained to reproduce the set of trajectories X . Once a network has been
trained, the output of its smallest layer is used as the feature vector f j.
A separate network has to be trained for each dataset due to the varying
length of the input vectors described above. A network consisting only
of fully-connected layers cannot handle input vectors of varying sizes
without introducing further methods of normalisation. Due to this reason
as well as the difference in scenes of different datasets, we opted to use
separate networks.

An auto-encoder is an arrangement of a neural network where the out-
put, once trained, is an estimation of the provided input vector. Outputs
of any of the layers in a trained network can be used as a representation
of the input, due to the ability of rest of the network to reproduce the
input vector. In this case, the input is the vectorisation of the data of X j

and is denoted as VX j : VX j = [xk, j, yk, j]
k j

end

k=k j
start

. A neural network is a

combination of small units called neurons that are built up into multiple
layers. The type of neuron used in this paper is based on the McCulloch–
Pitts neuron [19]; this multiplies a single-dimensional input vector with
a weight vector summed with a bias node, and outputs a single value:
yl,n = ∑Il

i (wi,nxl,i) + bn, where yl,n denotes the output of pre-activation
function y of the neuron n in layer l. Il is the length of the input vec-
tor Xl for a particular layer, wi and xl,i is a value in the weight vector
and input vector, respectively, and b is the bias value. The weight vec-
tor is initialised to random values. A sigmoidal function is used for the
activation function:

Yl,n = 1

1 + e−yl,n
, (1)

where Y is the output of the neuron. The neurons are then placed along-
side each other as a layer. The output of a layer l can be described as
follows: Ll = [Yl,1, . . . ,Yl,Il ], where the layer Ll is a vector containing
all of the outputs of the neurons in the layer. The next layer is then pro-
vided with the output of the previous one as its input vector (known as
a fully-connected layer), excluding the first layer (l = 1) for which the
input vector is the vectorised trajectory VX j rather than a previous layer:

Xl =
{

VXj , if l = 1;
Ll−1, if l > 1.

(2)
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Table 1. The hidden layer sizes of auto-encoder for different
datasets

Dataset Input L1 size L2 size

Traffic Junction 358 35 17

Parking Lot 1092 109 54

Train Station 1462 146 73

Students003 994 99 49

The architecture of this type of network contains two stages: an en-
coding and a decoding stage. For encoding, the number of neurons in
each layer decreases so that the dimensionality of the original input vec-
tor is effectively reduced when passed through the network. The decod-
ing stage is the opposite: a set of layers incrementing in size up to the
original length of the input vector. Both of these stages consist of one or
more layers. As mentioned above, this method uses pre-defined scales
based on the length of the original feature vector to determine the num-
ber of neurons in each layer in the encoding stage. Two layers are used:
the first is 10% of the length of the vector, the second 5% of the vector.
Only one layer is used in the decoding stage of the same size as the orig-
inal vector. These scales are static across all of the datasets used in this
study. The values of layer sizes are listed in Table 1.

The concept of a Siamese network [20] is to create a network of two
parts. The network takes two inputs (VX j 0 and VX j 1) through the pre-
viously trained feature network (excluding the final decoding layer) to
produce two outputs, in this case: L2,0 and L2,1. For the purposes of train-
ing and testing, L2,1 is an average of all the trajectories in L2,0’s class. A
depiction of the full network can be seen in Figure 1. The absolute differ-
ence of the two vectors is calculated for the input of the Siamese layer:
D = |L2,0 − L2,1|. The input is then forwarded into a layer equal to the
size of L2, S0, into a single layer of a single neuron S1. Both layers use a
sigmoidal activation function as in Equation 1.

The datasets are split into various sets with the following ratios: train-
ing 0.4, validation 0.2, testing 0.4. There are two stages for training the
overall network. Both parts of training use the normalised direction pre-
serving ADAM optimiser (ND-ADAM) [21] using Pytorch [22].

At the first stage, an initial pre-training is performed at encoding
part of the network before moving on to train the Siamese network as a
whole. Specifically, it involves training the auto-encoder separately to the
rest of the network. As described in the “Auto-Encoder” section above,
the auto-encoder is trained to reproduce its input. This was trained for
20,000 epochs with a learning rate of 1e−3 with a weight decay of 5e−6—
these values have been previously validated as optimal values for this
phase of training via a grid search on parameters. The mean squared
error (MSE) is used as the loss function, with the validation set being
monitored at each epoch.

The second stage involves training the network as a twin neural net-
work. As described previously, the final layer of the auto-encoder is re-
moved and a new layer is added for the similarity output. The layers
of the auto-encoder are frozen so no further optimisation is performed,
and training occurs for 10,000 iterations on the singular output neu-
ron after the differencing of feature vectors. The training of the over-
all Siamese network is approached with a one-shot approach [23] over
multiple epochs, also known as a few-shot due to training over multiple
iterations. In every iteration, for each class a random trajectory is cho-
sen to be compared to both another of the same class, as well as random
trajectory from another class. Rather than training on all the data in a
traditional epoch, this few-shot methodology mitigates overfitting to any
one class as each class gets equal training.

A Bayes optimisation search is performed on the learning rate and
weight decay for the training of the second stage. Rather than a grid
search as above, this was chosen due to the much larger training time
of the “Siamese” part of the network. The best network is chosen based
on the largest validation set F1-score across all models for each dataset.
As mentioned above, both training phases extract the best state of the
network based on the validation set. This is another method to attempt
to reduce overfitting to the training set.

Experimental validation and analysis: In this section, we present the
experimental validation of the proposed method by first describing the

Table 2. Summary of the datasets used in the study

Dataset Frame size Frame count Trajectory count FPS

Traffic Junction 540 × 960 16,154 162 30

Parking Lot 1080 × 1920 9517 37 30

Students003 576 × 720 5405 301 25

Train Station 480 × 720 46,009 379 23

Fig. 2 Sample frame for each dataset

Table 3. Evaluation of the output of Siamese network with model
trained on each dataset

Traffic junction Parking lot Students003 Train station

Model P R F1 P R F1 P R F1 P R F1

Traffic junction 1.00 1.00 1.00 0.73 0.77 0.72 0.66 0.61 0.60 0.53 0.54 0.50

Parking lot 0.95 0.88 0.90 0.96 0.94 0.94 0.45 0.47 0.43 0.63 0.54 0.50

Students003 0.92 0.85 0.85 0.87 0.77 0.75 0.91 0.91 0.91 0.61 0.51 0.49

Train station 0.92 0.77 0.81 0.74 0.82 0.77 0.53 0.52 0.50 0.95 0.94 0.94

datasets and evaluation criteria followed by an analysis and comparison
of the results with existing approaches.

In order to show the effectiveness of the proposed approach, we
used four challenging publicly available real-world datasets (Table 2,
Figure 2), namely Traffic Junction [13], Parking Lot [13], Train Sta-
tion [6], and Students003 [24]. Traffic Junction and Parking Lot are
recorded from a mobile aerial platform and contain vehicle and person
targets. Real trajectories are used with the induced camera motion al-
ready compensated for both datasets, as provided by the original authors
[13]. Train Station and Students003 are recorded from a top-down(ish)
fixed camera, offering scenes that are highly crowded with people mov-
ing in varying directions inside a train station and an outside square.
For both datasets we used the available trajectories by respective au-
thors [6, 24]. In Train Station we use longer trajectories (length>600) as
this dataset also contains short-duration tracklets generated by repeated
tracker initialisations that are not within the scope of this work.

As for preparing a trajectory dataset, there are multiple ways to do
so [25]. Broadly, these come under four categories: transformation, re-
sampling, substitute or adding additional features. In this paper, we used
a re-sampling methodology to achieve a static overall size per dataset
based on the mean average trajectory length of its dataset. The x and y
co-ordinates are also normalised between 0 and 1 based on the minimum
and maximum of the dataset’s original co-ordinate space.

For evaluating the performance of the extracted motion patterns, we
use the precision (P), recall (R) and F-score (F1) measures. P provides
the assessment by penalising the correct (true positive) patterns with re-
spect to incorrect (false positive) patterns. R provides the assessment
by penalising the correct (true positive) patterns with respect to missed
(false negative) patterns. If an extracted pattern belongs to a ground-
truth cluster, it is deemed correct. We used the ground truth as pro-
vided by authors [13]. Figure 3 provides a visualisation of the extracted
patterns in terms of the predicted clusters on each dataset by the pro-
posed method.

We tested the generalisation ability of the proposed method by
training the Siamese network separately with the model correspond-
ing to each dataset and then evaluating the performance across all other
datasets (Table 3). Expectedly, the proposed method has shown the best
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Table 4. Evaluation results of methods in terms of P, R and F1 scores; the higher the score, the better. Top two methods are shown in bold

Dataset DFTfeat [1] MULTfeat [14] DWTfeat [13] DEEPfeat [2] Movelets [26] Proposed

Traffic
Junction

P 0.67 0.40 0.52 0.80 1.00 1.00

R 0.27 0.33 0.50 0.50 1.00 1.00

F1 0.38 0.36 0.51 0.61 1.00 1.00

Parking Lot

P 0.48 0.63 0.65 0.38 0.64 0.96

R 0.53 0.33 1.00 0.83 0.71 0.94

F1 0.51 0.43 0.79 0.52 0.68 0.94

Students003

P 0.90 0.60 0.58 0.64 0.96 0.91

R 0.40 0.28 0.51 0.60 0.96 0.91

F1 0.55 0.38 0.54 0.62 0.96 0.91

Train Station

P 0.60 0.35 0.45 0.47 0.93 0.95

R 0.18 0.18 0.50 0.56 0.89 0.94

F1 0.28 0.24 0.47 0.51 0.90 0.94

Fig. 3 Visualisation of the extracted patterns in terms of the predicted clus-
ters. The predicted clusters are shown on planes along z-axis in each plot.
The colour of a trajectory corresponds to the relevant ground truth class as
indicated in the legend. The darker side of a trajectory indicates the start of
the trajectory

performance when trained and tested on the same dataset. When trained
on Traffic Junction and Parking Lot each, the performance deteriorated
significantly more both for Train Station and Students003 that is un-
derstandable as the latter datasets offer substantially different scenarios
and challenges.

It is however interesting to note that when trained on Train Station
and Students003, the performance degradation is comparatively lesser
(F1 = 0.94 on Train Station reduces to F1 = 0.81 and F1 = 0.77 on
Traffic Junction and Parking Lot, and F1 = 0.91 on Students003 re-
duces to F1 = 0.85 and F1 = 0.75 on Traffic Junction and Parking Lot),
thus showing a greater generalisation with these model training. This
could be due to a larger number of similar classes in the Students003
and Train Station dataset a—thus the network trains to be better at sepa-
rating the class clusters. Another point to mention is that when trained on
Train Station (Students003), the performance substantially degrades on
Students003 (train station); F1 = 0.94 (F1 = 0.91) on train station (stu-
dents003) decreases to F1 = 0.50 (F1 = 0.49) on Student003 (Train
station). This is likely due to the dissimilarity in two scene types: Train
Station offers an indoor crowded scenario, whereas Students003 is an
outdoor crowded scene.

To further demonstrate the usefulness of the proposed method, we
also compared the performance with five state-of-the-art approaches,
namely DFTfeat [1], MULTfeat [14], DWTfeat [13], DEEPfeat [2] and
Movelets [26]. Table 4 summarises the evaluation results of all meth-
ods in terms of P, R and F1 scores on all datasets. On Traffic Junc-
tion, the proposed method and Movelets have outperformed existing ap-
proaches based on P, R and F1 scores. On Train Station, the proposed

method again shows the best performance based on P, R and F1, fol-
lowed by Movelets. On Parking Lot, the proposed method is the best
based on P and F1, and shows slightly lower R = 0.94 than DWTfeat
(R = 1.00). It is important to note that while R is a bit higher for DWT-
feat than that of the proposed method, the former has a significantly
lower P = 0.65 (due to a much higher number of false positives) that
the latter with P = 0.96. On Students003, Movelets showed the best per-
formance (P = R = F1 = 0.96), with the proposed method actually also
showing a comparable performance (P = R = F1 = 0.91). This slight
inferior performance is apparently attributed to the fact that the pro-
posed method has mostly categorised trajectories belonging to the three
clusters (clusters 1–3 in Figure 3c) as a single cluster. Indeed, evidently
the motion patterns in these three clusters are largely similar in terms of
their length and shape (all spanned horizontally across the image). Seem-
ingly, the proposed method relying on the Siamese network is compara-
tively much better suited for detecting longer patterns than distinguish-
ing among alike patterns differing slightly only in vertical placement.

Conclusion: We presented an end-to-end deep learning framework
based on trained Siamese networks, which enabled trajectory analysis-
based extraction of dominant motion patterns in an online manner allow-
ing an incremental incorporation of new incoming trajectory(ies). We
performed an experimental validation and comparison of the proposed
method on four challenging publicly available real-world datasets. The
results show that the proposed method has outperformed existing meth-
ods on three datasets (Traffic Junction, Parking Lot, Train Station), while
achieving a comparable performance on the fourth one (Students003).
Future work aims to not only look into testing on more datasets with dif-
ferent scenarios, but also extending the few-shot methodology to train
across multiple datasets as this is expected to generalise the network
even better.
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