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Abstract: Improving energy efficiency and conservation is integral to sustain agricultural growth in
emerging economies. This paper investigates the energy efficiency and energy-saving potential of
the agricultural sector of 27 emerging economies using a stochastic frontier approach and Shephard
distance function, and their determinants are examined using the Tobit quantile regression model.
Results revealed that energy efficiency in the agricultural sector fluctuated during the period from
1998 to 2017. The median average energy efficiency was estimated at 0.74, and the cumulative energy-
saving potential was estimated at 542.80 million tons of oil equivalent (Mtoe), which can be achieved
by eliminating energy inefficiency alone. Differences exist in energy efficiency and energy-saving
potential across continents, with higher potential in Asia and lower potential in Europe. Economic
structure, urbanization and GDP per capita have negative influences on agricultural energy efficiency.
Energy mix and pesticide use are significant drivers of energy efficiency, while the ratio of agricultural
land that has varied influences different quantiles. Policy implications include optimization of the
energy mix, economic structure and pesticide use.

Keywords: energy efficiency; energy saving; emerging economies; stochastic frontier analysis;
Shephard distance function; Tobit quantile regression

1. Introduction

Energy efficiency plays an important role in sustainable development from the per-
spective of natural resource use and greenhouse gas emissions [1]. Due to rapid population
growth and economic development, energy consumption has been increasing continu-
ously [2]. Agriculture contributes about 14% of global greenhouse gas emissions [3]. The
development of agricultural production demands more energy to operate equipment and
machinery, support the production process and produce chemicals and fertilizers. Such an
increasing consumption demand for energy and associated environmental degradation are
prominent due to the lack of environmental sustainability existing in the agricultural sec-
tor [4]. The situation calls for energy conservation by using less energy input. Thus, energy
efficiency improvement and energy saving are conducive to achieving environmentally
friendly economic development [5].

Agriculture is a crucial sector for all economies. Owing to the modernization of
the agricultural sector, both the quality and quantity of agricultural production have
improved [6,7]. Agricultural production requires various inputs, such as land, labor,
capital and technology. With the modernization of agriculture, the use of commercial
energy for agriculture continues to rise, and it is important to ensure that energy used
in agriculture is not wasteful or inefficient [8,9]. Improvement in the energy efficiency
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of the agricultural sector has attracted global attention as the key driver for sustainable
development and has become one of the best strategies to reduce commercial energy
demand and combat climate change [10]. Many evaluations of energy efficiency have
been carried out for various cropping systems at the farm level, e.g., food grains, fruits
and vegetables, etc. [11-13]. A few studies on agricultural energy efficiency investigations
were also conducted at the regional and/or national level with varied estimates [6,14].
Keeping in pace with economic development, energy efficiency in agriculture also changed
but not to the extent desired, thereby leaving scope for further improvement [15,16]. For
example, energy efficiency in maize and wheat farming was estimated with environmental
constraints in Bangladesh [17,18]. Wysokinski et al. [19] found that with socioeconomic
development in European Union (EU) countries, agricultural energy efficiency experienced
sustained growth.

Emerging economies are relatively rapid-growth developing countries driven by
economic liberalization and becoming more engaged with global markets [20]. There is
no commonly agreed parameter by which to classify countries as emerging economies,
but some similar characteristics can be identified. We consider emerging economies as
countries or regions with certain industrial foundations, a certain degree of standardized
commercial market mechanisms and partial conditions and the potential to become mature
market areas. Most of them are traditional agriculture-based countries. The agricultural
energy efficiency in emerging economies is a significant research topic for a number of
reasons. First, the economic growth of many emerging economies is increasing rapidly
with a corresponding increasing demand for energy. According to the International Energy
Agency, developing economies will contribute to 74% of the increase in global energy
demand. Furthermore, the determinants of agricultural energy efficiency are important to
gain a better understanding of how to alter the energy demand in emerging economies in
the future and how to control global greenhouse gas emissions. Potentially, the need to
improve emerging countries’ agricultural energy efficiency is required to achieve their goal
of agricultural sustainability.

Figure 1 shows a substantial increase in energy use in the agricultural sector of emerg-
ing economies from 2003 to 2017. In 2003, commercial energy use in the agricultural sector
was 88,553 kilotons of oil equivalent (ktoe), which increased by 1.44 times to 122,418 ktoe
in 2017. However, the energy use per unit of agricultural GDP fluctuated around 2 tons of
oil equivalent, which reveals that agricultural energy efficiency should be improved and
carbon reduction targets possibly cannot be achieved with the rapid development of the
agricultural sector. In fact, energy efficiency in some emerging economies has declined [21],
and for others, it is rising slowly but is not sufficient [14].
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Figure 1. Agricultural energy use and energy use per unit of agricultural GDP in emerging economies.
Data source: Agricultural total energy from the International Energy Agency and agricultural GDP
from the FAOSTAT database. Energy use per unit of agricultural GDP is calculated by dividing the
agricultural total energy by the agricultural GDP.
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Owing to the stronger economic development in rural areas of emerging economies,
energy use is expected to increase further in the future [14]. Unlike developed countries,
the energy mix in the agricultural sector of emerging economies mainly relies on traditional
energy, namely oil and coal [22]. Thus, improving energy efficiency in the agricultural
sector and devising policies to achieve such a goal are the key factors in global greenhouse
gas mitigation. Although emerging economies have made good progress in agriculture,
they still face many problems, such as increasing demands for agricultural products and a
limited supply of arable land [23]. To some extent, these problems can be resolved, but com-
mercial energy consumption and agricultural expenditures are increasing continuously [6].
The problem is that additional use of energy may not maximize agricultural production
and profit. Therefore, it is crucial to improve energy efficiency and establish energy-saving
policies for the agricultural sector of emerging economies. Strategic energy planning should
be able to lay a solid foundation for the sustainable development of emerging economies
and form an integral part of the agricultural sector. Agricultural energy efficiency is closely
related to the ways of understanding energy, the future funding of projects and policies to
respond to climate change. The energy efficiency measures taken by emerging economies
can help to address their pressing priorities, including economic development, poverty
reduction and access to basic services.

Many indicators are used to evaluate energy efficiency. Some have defined this as the
production of similar amounts of desirable output with less energy input and undesirable
output [24,25], known as “partial factor energy efficiency” and usually calculated as energy
consumption over gross domestic product (GDP) at the macro level, or energy consumption
over gross value added in a sector [6]. However, this measure does not take into account
the substitution and complementary effects of other inputs, such as labor and capital,
so it may exaggerate the role of energy in production [14]. To overcome this drawback,
Hu and Wang [26] proposed “total factor energy efficiency (TFEE)”, which is defined
as a proportion of minimum to actual energy input in a multifactor framework. TFEE
introduces a comprehensive view of energy technical efficiency and can better reflect
production reality.

Two methods mainly used in efficiency estimation are based on the efficiency fron-
tier: data envelopment analysis (DEA) and stochastic frontier analysis (SFA). DEA, a
nonparametric approach, cannot separate the influence of statistical noise or random error
from inefficiency, easily influenced by data quality, and therefore causes downward or
upward bias in efficiency estimation [27]. In contrast, SFA, a parametric approach, con-
siders deviation from the technological frontier as a combination of both random error
and inefficiency and is able to isolate inefficiency from statistical noise in estimation [28].
Moreover, Coelli [29] recommended the stochastic frontier method for use in most agricul-
tural applications and also pointed out that the stochastic frontier model has the added
advantage of the ability to conduct statistical tests of hypotheses regarding the production
structure and the degree of inefficiency. Therefore, the stochastic frontier model is more
suitable than DEA in this study. The distance function describes alternative representations
of production technologies, with more empirical applications in the field of efficiency
analysis. This paper uses SFA and the Shephard energy distance function to investigate
energy efficiency, energy-saving potential and factors influencing energy efficiency in the
agricultural sector of emerging economies using Tobit quantile regression.

With regard to the factors affecting agricultural energy efficiency, studies first sug-
gested that integrated farming technological progress has improved energy efficiency
by reducing energy input without affecting output [30]. Technologies at the farm level
can promote the optimization of energy utilization in rural areas [22,31]. Second, many
studies found that agro-environmental policy can affect agricultural energy efficiency, and
stricter environmental standards can lead to lower agricultural energy efficiency [15]. Third,
the impact of industrial agglomeration on energy efficiency has received more attention.
Some studies proposed that industrial agglomeration improves the scale and distributional
efficiencies of energy, thereby contributing to increasing energy efficiency [32,33].
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The specific objectives of this study are: (i) to estimate agricultural energy efficiency
and energy-saving potential of emerging economies over time; (ii) to identify factors
influencing energy efficiency changes; and (iii) to explore strategies to improve the energy-
saving potential of emerging economies.

The contributions of this paper are as follows. First, most studies on energy efficiency
in the agricultural sector paid attention to farm and/or national levels, and macrore-
gional attention is largely centered on EU countries, with very few considering emerging
economies [13,14,34]. Agriculture is an essential part of the effective development strat-
egy in emerging economies, which undertake the tasks of economic development and
greenhouse gas emission reduction simultaneously. This study adds to the literature by
explicitly providing an analysis of transboundary characteristics on energy efficiency and
energy conservation for emerging economies. Second, this paper is the first to use an
SFA model based on the distance function with Tobit quantile regression to study the
determinants of energy efficiency in the agricultural sector of emerging economies. It helps
to analyze influencing factors of various endowments and production resources in different
emerging economies.

The remainder of this paper is organized as follows: Section 2 describes the methodol-
ogy, Section 3 presents an overview of the model variables, Section 4 reports the results of
the model, and Section 5 concludes and proposes policy recommendations.

2. Methodology

In this section, we provide an introduction to SFA based on the distance function with
Tobit quantile regression. The Shephard energy distance function presents the distance
of the actual production from the optimum energy input [35]. Tobit quantile regression
provides an efficient way to deal with left-censored data and can be viewed as a linear
quantile regression model, where the data on the dependent variable are incompletely
observed [36]. In this context, Tobit quantile regression is used.

According to Zhou et al. [37], all feasible inputs and the output are included in a
production possibility set (T). In this paper, the three input factors are agricultural labor (L),
fixed capital in agriculture (K) and commercial energy in agriculture (E), while the single
output is gross value added in agriculture (Y). T can be expressed as:

T={(L, K, E, Y): Input (L, K, E) can provide Y} 1)

The Shephard energy distance function with respect to the production frontier is
defined as:
Deg(K, L, E, Y)=sup{«: (K, L, E/a, Y) €T} )

The translog functional specification of the Shephard energy distance function is
given by:

InDg(Ej, Lit, Kit, Yi) = Bo+ BelnEj + BrinLy + BrInK + BylnYy + BrT
+BeL(InEj xInLiy) + Bex (InEjy % InKiy) + Bey (InEj * InYyy ) + Brr (InKip + InLit)
+Byr(InYy * InLiy) + By (InKjy + InYy) + Ber(TInEy) + Brr(TInLy) 3)
+Bxr(TInKy) + Byr(TInYy) + 3Bee(InEy)* + 3Bro(InLy)?
+ 1Bk (InKye)* + 1 Byy (InYi)* + 1 Brr(T)* + Vit

where B is the intercept, B with the subscript letter is the parameter of corresponding
explanatory variable and Vj; is a normally distributed random variable, which is the
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statistical noise component. Equation (3) can be transformed in terms of energy input
because of the linear homogeneity of the Shephard distance function:

InDg(Ejy, Lit, Kit, Yit) = InEjy+ InDg(1, Ly, Ky, Yit)
= InEy + Bo + BrInLiy + BxInKis + BylnYs + BrT
+Bxr (InKy + InLy) + By (InYie x InLy) + Bry (InKi * InYjy) 4)
+Bir(TInLy) + Bxr(TInKy) + Byr(TInYy) + 1o (InLy)
+3Bric(InKir)® + LByy (InYy)* + 1Brr(T)* + Vi

We can then obtain Equation (5) after transposition:

—InEy = o+ BrinLit + BxInKi + BylnYj + BrT + Prr(InK; + InLj)
+Byr(InYy * InLyy) + Bry (InKjy * InY;y) + Brr(TInLy)

5
+Bkr(TInK;;) + ﬁYT(TlnzYit) + %,BLL(ZlnLit)z + 1Brk (InKyy)? ©)
+3Byy (InYy)” + 3Brr(T)" + Vi — Uy
where U; = [nDg(Ej, Ly, Kit, Yjt) is a non-negative variable, which captures

energy inefficiency [38].

Additionally, the time trend variable T, which denotes technological change over time,
a dummy variable of agricultural energy input and its interaction terms, is also taken into
account to check the necessity of the division of energy inefficiency. We can express H = 1
for high-level energy input and M = 1 for middle-level energy input.

Therefore, we modeled the frontier as:

—InE;y; = Bo+ BrinLi + BxInKi + BylnYy + BrT + Brr (InKiy x InLy)
+Byr(InYjs xInLis) + By (InKip x InYyy) + Brr(TInLy)
+Bxr(TInKy) + Byr(TInYy) + A Brr(InLi)® + 1 Brx (InKy)* (6)
+1Byy (InYi)> + YBr7(T)? + BuHit + BuMir + BuyHInY; + BrxHInKy
+BurHInLj + Bpy MInYiy + ByxMInKiy + By MinLy + Vi — Uy

We used two-stage SFA to estimate the agricultural energy efficiency of emerging
economies based on the maximum likelihood estimation by Equation (6). The agricultural
energy efficiency (AEE) at time f can be measured through:

AEEj; = E[exp(—Uit) eit] @)
The energy-saving potential (ESP) can be obtained:
ESPy =Ey(1 — AEEj) 8

and the determinants of estimated energy efficiency by using the following Tobit regression:
yir = AEE;;, if 0 < AEE; < 1, otherwise y;; = 0. Consider the p-th quantile regression
model for AEE;;:

AEEjs = xitBp + €pi 9)

where x is a vector of inefficiency factors, and ¢ is a random disturbance term with mean
zero and variance o2. The Tobit quantile regression that estimates f3,, is expressed as

Bp=argmin y plAEEq —xuPp|+ Y}, (1—p)|AEE; —xuBy|  (10)
AEEitEX,'pr AEE”<XZ"BP

In this study, SFA is estimated by using LIMDEP, and Tobit quantile regression is
conducted using the Package “Brq” in R.
3. Variables

We selected 27 countries (Argentina, Brazil, Bulgaria, China, Colombia, Czech, Domini-
can Rep., Estonia, Greece, Hungary, India, Indonesia, Latvia, Lithuania, Mexico, Pakistan,
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Peru, Poland, Romania, Russia, Slovakia, South Korea, Thailand, Turkey, Ukraine, Uruguay,
Vietnam), which are classified as emerging economies, based on data availability for the
period from 1998 to 2017. We used agricultural value added (in millions of 2010 USD) as
output and the consumption of agricultural fixed capital (in millions of 2010 USD) as capital
and the labor force (in number of persons) as labor input, collected from the FAOSTAT
database (http://www.fao.org/faostat/en accessed on 2 August 2020). There are some
studies in the literature regarding energy efficiency that used the baseline year 2010 for
GDP and capital [39-41], as did we. We used the total energy consumption for agriculture,
forestry and fishing measured in toe as energy input from the International Energy Agency
(https:/ /www.iea.org accessed on 2 August 2020). All these four variables divided by
agricultural land area (square kilometer) were mean corrected and then logged using a
natural logarithm.

Based on the literature and justification thereof, many variables were considered,
such as urbanization, GDP per capita, share of agricultural sector in GDP, energy mix,
pesticides, fertilizers, agricultural land, farmers’ age and educational level [19,42-44].
Subject to data availability, the following variables were selected as determinants of energy
inefficiency: (i) Urbanization (upop): Defined as the proportion of urban population to
total population. Economic development may imply more energy-intensive production
due to rising food demands such as dairy products and meat [31]. Rapid urbanization
has a negative effect on energy efficiency [45]. (ii) GDP per capita (gdppc): High levels
of GDP per capita may improve energy-saving awareness and promote technological
innovations and application, which are the key factors to improve energy efficiency [46].
The energy efficiency of agriculture is rising in successful economies [47]. (iii) Economic
structure (ecostru): Defined as the share of the agricultural sector in GDP. A higher share
indicates more use of energy in agriculture [14]. Higher agricultural energy efficiency will
enable to increase output with the same level of energy input. (iv) Energy mix (enemix):
Various types of energy have different efficiencies. Compared to other energy products,
the efficiency of coal is relatively lower than oil [48], so we used the proportion of oil
consumption to total energy use in agriculture. (v) Pesticide (pesti): Quantities of pesticides
used in the agricultural sector for crop protection. Pesticides as indirect inputs present
significant energy-saving potential at the level of agricultural production, to maintain and
improve soil quality [49]. (vi) Agricultural land (land): Energy use in agriculture increases
sharply due to overpopulation and a limited supply of agricultural land [50]. Economies
with limited natural resources mainly apply land-saving techniques to increase agricultural
output per unit of land [14]. Therefore, we used the proportion of agricultural land in total
land to assess energy efficiency. upop, gdppc, ecostru and land are collected from the WDI
(https:/ /databank.worldbank.org/source/world-development-indicators accessed on 2
August 2020) and pesti from the FAOSTAT database and enemix was calculated using data
from the International Energy Agency.

4. Empirical Results
4.1. SFA Model Results

Table 1 shows the maximum likelihood estimation results of three different SFA speci-
fications, including the time trend and energy input dummy variables with interactions.
In the model building process, we first specified the translog function with interaction
effects to assess linear shifts in Model 1 and found that the interaction terms of labor are
insignificant. We then added the time trend and its interaction terms in Model 2 and found
that all coefficients are significant, which means that time influences agricultural energy
efficiency. Based on Model 2, we used the dummy variables to represent the level of energy
input to yield Model 3, which shows that a high-level energy input has more influence.
Finally, in Model 4, the interaction terms of the dummy variables are added to Model 3.
In Model 4, 16 coefficients out of a total of 22 are significantly different from 0 at the 5%
level, implying a good fit. Model 4 has the smallest Akaike information criterion (AIC) and
Bayesian Information Criteria (BIC) values. Therefore, this discussion concentrates on the
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results of Model 4 from now on. Table 1 shows that the estimated value of the parameter y
is 0.84, which indicates that most of the deviations from the input set frontier in emerging
economies are due to inefficiency. The z value of v illustrates that the null hypothesis is
rejected, and the alternative hypothesis is accepted at the 1% confidence level. Because the
model uses mean-corrected variables, the coefficients can be read directly as elasticities on
energy consumption. Results indicate that output and capital input show a significantly
positive relationship with agricultural energy, while labor input is significantly negative.
The estimated output elasticity is 0.32, and capital elasticity is 0.50, which suggests a 1%
increase in output per square kilometer and capital increase energy consumption by 0.32%
and 0.50%, respectively.

Table 1. Results of the estimation.

Variables Model 1 Model 2 Model 3 Model 4
Constant 0.466 *** 1.077 *** 0.303 *** 0.231 ***
InY —0.359 *** —0.071 *** 0.134 0.322 ***
InK 0.667 *** 0.716 *** 0.579 *** 0.503 ***
InL 0.198 *** 0.048 *** —0.080 * —0.292 ***
InY x InY —0.355 ** —0.282 *** —0.527 *** —0.558 ***
InK x InK 0.244 *** 0.228 *** 0.178 *** 0.098 ***
InL x InL 0.009 0.034 ** —0.015 0.025
InY x InK 0.087 * 0.095 *** 0.244 *** 0.359 ***
InK x InL 0.010 0.038 *** —0.183 *** —0.322 ***
InY x InL 0.010 —0.074 * 0.179 ** 0.270 **
T —0.071 *** —0.031 ** —0.038 ***
TxT 0.003 *** 0.001 0.002
T x InY —0.029 *** —0.017 ** —0.014 *
T x InK 0.005 *** 0.001 —0.005
T x InL 0.010 *** 0.009 ** 0.011 ***
H 0.622 *** 0.137 *
M 0.346 *** 0.390 ***
H x InY —1.775 ***
M x InY —0.267 **
H x InK 0.945 ***
M x InK 0.089
H x InL 0.721 ***
M x InL 0.270***
sigma-squared 0.667 *** 0.824 *** 0.362 *** 0.303 ***
gamma 0.947 *** 1.000 *** 0.780 *** 0.835 ***
log likelihood —371.91 —333.86 —298.73 —226.14
AIC 761.82 695.72 629.46 496.28
BIC 800.44 755.80 698.13 590.69

Note: *, ** and *** represent 10%, 5% and 1% significance, respectively.

As seen in Model 4, the coefficient of the interaction term provides the magnitude
and direction of the marginal effect of the use of each variable on the other variables. The
interaction between output and capital has a positive coefficient, which is significantly
different from zero, indicating that with constant capital, a 1% increase in output per square
kilometer will increase energy use by 0.36%. However, the coefficient of the interaction
of capital with labor is significantly negative, which suggests a substitution relationship
between capital and labor. That is to say, more labor lowers the demand for energy input
with constant capital because mechanical farming can substitute agricultural labor use. We
tested for the time trend and found that the linear trend is significantly negative, which
indicates a decreasing trend in energy use over the period and positive technological change.
The time interaction term is significantly positive for labor and shows that the negative
impact of labor on energy use diminished (becoming less negative) over time. As expected,
capital and labor inputs significantly influence energy use in different economies. Contrary
to low-energy-input economies, energy use is significantly higher with an increase in capital
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or labor in high-energy-input economies. The result shows that M-capital interaction is
insignificant. The M-labor interaction coefficient is positive and significant, indicating that
middle-energy-input economies also consume a little more energy than low-energy-input
economies with an increase in labor.

4.2. Energy Efficiency in Emerging Economies” Agricultural Sector

Based on the model results presented above, energy efficiency in the agricultural sector
of emerging economies was calculated. It reflects the degree of gap between minimum
energy input and actual energy at a given output level. If the value equals one, there is
no room for energy saving from the use of inputs. If it is less than one, energy-saving
potential exists. Because the distribution of energy efficiency is left skewed, we used the
median as the average. During 1998-2017, the median of agricultural energy efficiency in
27 emerging economies fluctuated around 0.74, and the sample median deviation was 0.11,
which indicates the existence of a relatively large degree of inefficiency.

Based on the continental groups, Figure 2 exhibits continental variations in energy
efficiency in the agricultural sector of emerging economies from 1998 to 2017. The overall
energy efficiency is maintained at a relatively high level. The rank from high to low is:
Europe, Asia and Latin America. For Europe, in the beginning, energy efficiency decreased
slightly. However, the average agricultural energy efficiency of Latin American emerging
economies experienced a slight growth. In 2008, possibly affected by the U.S. subprime
mortgage crisis and the subsequent global financial crisis, energy efficiency dropped a
little. Since then, it fluctuated a little, showing that the economic recession has a limited
impact on the agricultural sector. Deepak [51] concluded that although the global economic
slowdown has led to mass unemployment in many other sectors, the agricultural sector
remained stable with few job losses.

&
>

>
>

S &L FS
L S S S

M Asia M Europe WM Latin America

Figure 2. Comparison of energy efficiency in different continents. Data source: energy efficiency
from the estimation according to Equation (7).

Table 2 shows energy efficiency in the agricultural sector of each emerging economy
and the average for each continent. Energy efficiencies of Asian countries, except Indonesia
and Pakistan, are relatively high, and the values are higher than the overall median of 0.74.
Among the eight Asian countries, Thailand, Vietnam and India showed the best energy
efficiency performance and enhanced overall competitiveness of agricultural products. It is
important to develop the agricultural sector in these three economies, which are among the
world’s top ten rice producers.
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Table 2. Energy efficiency in the agricultural sector of emerging economies (1998-2017).

. Ener Ener, Latin Ener
Asia Efﬁcie%l);y Europe Efﬁcie%l};y America Efﬁcie%l};y
China 0.723 Bulgaria 0.810 Argentina 0.754
India 0.761 Czech 0.833 Brazil 0.597
Indonesia 0.430 Estonia 0.865 Colombia 0.564
Pakistan 0.494 Greece 0.591 DO’E;;‘C” 0.740
South Korea 0.749 Hungary 0.693 Mexico 0.747
Thailand 0.875 Latvia 0.641 Peru 0.644
Turkey 0.741 Lithuania 0.678 Uruguay 0.512
Vietnam 0.764 Poland 0.783
Romania 0.716
Russia 0.783
Slovakia 0.626
Ukraine 0.795
Median 0.744 Median 0.750 Median 0.644

The average energy efficiency in Europe is a little higher than the overall median
estimate of 0.74, which is higher than that observed in Asia and Latin America. In Europe,
the energy efficiency of Estonia ranks first, followed by the Czech Republic. The agricultural
energy efficiency in Greece is the lowest, estimated at only 0.59. Energy efficiencies of five
European countries (Greece, Hungary, Latvia, Lithuania and Slovakia) are less than 0.70,
implying that there is high potential to improve energy efficiency. This result is similar to
the conclusion by Vlontzos et al. [15], who, using the nonradial DEA model, found that
Slovakia, Latvia and Lithuania have lower agricultural energy efficiencies in Europe.

Energy efficiencies in Latin America are relatively low, which indicates that the agri-
cultural sector in Latin America is in the phase of inefficient use of agricultural energy.
Argentina’s energy efficiency is the highest in Latin America, as Viglizzo and Frank [52] found
that although the consumption of fossil energy increased, there was a noticeable improvement
in Argentina’s energy efficiency, compared with other Latin American countries.

4.3. Analysis of National Differences

In order to explore the differences in agricultural energy efficiency in emerging
economies, we classified the 27 countries by the two indicators, energy input and en-
ergy efficiency. To start with, the countries were divided into three groups according to
agricultural energy consumption. The mean was 4534 ktoe, the median was 772 ktoe and
the maximum was 44,460 ktoe. Thus, the three groups were divided into (0, 800), [800,
4500) and [4500, 45,000]. On the other hand, in each group, the countries were divided by
agricultural energy efficiency. The overall median of energy efficiency was 0.74 and the
deviation was 0.11. We adopted 0.60 and 0.80 to separate the countries into three levels:
high efficiency ([0.80, 1]), middle efficiency ([0.60, 0.80)) and low efficiency ([0.40, 0.60)).
All 27 countries within 9 categories are displayed in Table 3.

Table 3. Classification discussion of emerging economies.

High Input [4500, 45,000] Middle Input [800, 4500) Low Input (0, 800)

High efficiency [0.8, 1]
Middle efficiency [0.6, 0.8)

Low efficiency [0.4, 0.6)

Thailand Bulgaria, Czech, Estonia,
Dominican Rep., Hungary,
Latvia, Lithuania, Peru,
Romania, Slovakia, Vietnam

Brazil Colombia, Greece, Indonesia Pakistan, Uruguay

Argentina, Mexico, Poland,

China, India, Russia South Korea, Turkey, Ukraine

First, the BRIC countries, as large agricultural producers, require high energy con-
sumption. Agricultural energy efficiencies of China, India and Russia are relatively high.
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Brazil’s energy efficiency is relatively low and reached 0.597, which is close to the thresh-
old of the middle energy efficiency level. Almost all European countries achieved at
least a middle energy efficiency level in agriculture. In the category of middle efficiency,
compared to China, India and Russia, European countries have middle and low energy
input levels, which denote that they are more efficient than the BRIC countries. The main
reason is that Europe promoted agricultural intensification earlier and more widely than
Asia and Latin America and is supported by the EU’s Common Agricultural Policy and
Cohesion Policy [53].

Second, countries within the same region and climate usually have similar agricultural
energy efficiency, e.g., Mexico and the Dominican Republic. However, there are also some
exceptions, e.g., the three Baltic countries. Compared with Lithuania and Latvia, Estonia
has a higher degree of agricultural intensification [54]. These two neighboring countries
are still in the era of peasant economy. The agricultural sector in Estonia, Lithuania and
Latvia all account for small portions of GDP. Estonia employs a similar percentage of
its workforce in the agricultural sector as compared to the sector’s contribution to GDP,
whereas Lithuania and Latvia have a much higher percentage of employment in agriculture
as compared to the sector’s contribution to GDP.

4.4. Energy-Saving Potential in Emerging Economies’ Agricultural Sector

Energy-saving potential measures the quantity of agricultural energy input that can
be saved by moving toward the production frontier. The total energy-saving potential
and energy-saving potential per agricultural value added in each country are presented
in Table 4. China has the largest level of energy-saving potential. As China’s energy
consumption in agriculture is relatively high, it will be conducive to global greenhouse
emission reduction and environmental protection by improving its energy efficiency. Thus,
there is an urgent need to improve its energy efficiency. The BRIC countries consume far
more energy to cultivate vast areas of agricultural land and face heavy demand to produce
a high level of agricultural output. Indonesia, Pakistan and Uruguay have the lowest
agricultural energy efficiency and also have small energy-saving potential. However, the
countries that have a higher energy efficiency have small energy-saving potential, e.g.,
Bulgaria, Czech and Estonia. The reason is that these countries have very low energy input.
This only goes to show that energy-saving potential is related to both energy use and
energy efficiency. To save energy and reduce greenhouse gas emissions, we should also
control the total amount of energy consumption. The energy-saving potential in Europe is
generally small, exceeding 10 Mtoe only in Poland and Russia. The energy-saving potential
of Estonia is the smallest. The energy-saving potentials in Latin American countries are
also relatively low, except for Brazil.

Table 4. Energy-saving potential in the agricultural sector of emerging economies (1998-2017).

Continents Countries ESP (Mtoe) ESP per Agricultural Land (toe/sq.km)
Asia China 175.53 1.55
Asia India 88.91 2.47
Asia Indonesia 30.64 2.96
Asia Pakistan 7.79 1.55
Asia South Korea 11.00 3.16
Asia Thailand 8.11 1.90
Asia Turkey 18.35 2.31
Asia Vietnam 2.75 1.34

Europe Bulgaria 0.82 0.83
Europe Czech 1.91 2.34
Europe Estonia 0.27 1.61
Europe Greece 5.25 3.45
Europe Hungary 3.42 3.01

Europe Latvia 0.97 2.83
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Table 4. Cont.

Continents Countries ESP (Mtoe) ESP per Agricultural Land (toe/sq.km)
Europe Lithuania 0.69 1.23
Europe Poland 17.22 5.49
Europe Romania 2.08 0.78
Europe Russia 43.55 091
Europe Slovakia 1.14 3.04
Europe Ukraine 7.58 0.89

Latin America Argentina 15.21 0.48
Latin America Brazil 68.90 1.52
Latin America Colombia 8.74 1.09
Latin America ~ Dominican Rep. 0.60 1.25
Latin America Mexico 16.19 0.67
Latin America Peru 3.17 0.67
Latin America Uruguay 2.01 0.68

Furthermore, we measured the energy saving of emerging economies calculated as
units of ESP per unit of agricultural land shown in Table 4. The higher value indicates
higher potential to save energy per unit of agricultural land. Uruguay, Pakistan and
Colombia have a lower value of ESP per unit of agricultural land but low energy efficiency
shown in Table 3. Thus, countries with relatively low values of ESP do not necessarily have
high energy efficiency.

Table 5 presents the median energy efficiency and total energy-saving potential of
the agricultural sector in emerging economies in the classification of energy efficiency
during 1998-2017. The total energy use in the agricultural sector is 2066.96 Mtoe, and the
energy-saving potential is 542.80 Mtoe. In other words, the total energy-saving potential
accounts for about 26.26% of the total agricultural energy use. The ESP in high-efficiency
and middle-efficiency countries fluctuated at 0.56 Mtoe and 20.42 Mtoe, respectively, with
a slight fluctuation in their energy efficiency. However, the ESP of low-efficiency countries
shows a downward trend, which is reducing faster than their energy efficiency.

Table 5. Agricultural energy efficiency and energy-saving potential in the classification of energy efficiency (1998-2017).

High-Efficiency Countries Middle-Efficiency Countries Low-Efficiency Countries
Year AEE Total ESP (Mtoe) AEE Total ESP (Mtoe) AEE Total ESP (Mtoe)
1998 0.839 0.64 0.739 20.02 0.478 7.94
1999 0.852 0.59 0.745 19.82 0.491 7.98
2000 0.852 0.58 0.711 21.92 0.497 7.88
2001 0.886 0.56 0.698 21.04 0.511 7.79
2002 0.893 0.52 0.714 22.04 0.525 7.52
2003 0.889 0.53 0.707 21.39 0.545 7.30
2004 0.886 0.50 0.738 19.94 0.563 7.31
2005 0.879 0.52 0.732 18.43 0.569 7.13
2006 0.880 0.51 0.731 17.57 0.573 6.68
2007 0.870 0.50 0.729 17.18 0.568 6.27
2008 0.835 0.53 0.716 17.59 0.586 5.73
2009 0.808 0.56 0.691 19.17 0.591 6.08
2010 0.813 0.55 0.692 19.93 0.588 5.29
2011 0.831 0.56 0.733 17.81 0.601 4.98
2012 0.827 0.57 0.729 19.06 0.565 5.18
2013 0.828 0.55 0.739 19.48 0.487 4.69
2014 0.827 0.55 0.731 20.50 0.476 4.39
2015 0.826 0.54 0.740 23.03 0.490 4.27
2016 0.807 0.60 0.754 25.31 0.470 4.52
2017 0.800 0.66 0.746 27.14 0.456 4.39
AEE 0.74 Cumulative ESP (Mtoe) 542.80
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Figure 3 illustrates energy-saving potential in different continents and suggests that:

Energy saving potential in Asia
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Figure 3. Energy-saving potential in different continents. Data source: energy-saving potential from
the estimation according to Equation (8).

(i) The energy-saving potential in Asia presents an increasing trend, conveying that
with technological innovation and economic development, an increase of energy efficiency
can be attributed to energy-saving technologies used in agriculture. In 2000, the energy-
saving potential in Asia increased, but the total energy input decreased, indicating that
agricultural energy efficiency was lower. The decrease in total agricultural energy input
in Asia in 2000 was mainly due to the sharp reduction in China’s agricultural energy con-
sumption compared with the previous year. It could be related to China’s implementation
of returning farmland to forests in 1999 [55]. It is noteworthy that although Asia performs
well in agricultural energy efficiency, the absolute amount of its energy input is much larger
than Europe and Latin America.

(ii) Energy efficiency is relatively lower in Latin America, implying that they face the
problem of energy saving. Though agricultural energy efficiency in Europe was higher
than that in Latin America, the absolute amount of energy-saving potential in Europe
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during 1998-2017 was less than that in Latin America with a difference in agricultural
energy input in these two regions. Agricultural energy input in Europe is showing a
downward trend, but its energy-saving potential is not significantly reduced, indicating
that energy efficiency in Europe needs to be optimized. However, agricultural energy input
in Latin America is on the rise, while the energy-saving potential is decreasing. According
to Dutra et al. [56], most energy in the agricultural sector was consumed in machinery
and fertilizer production. So, it indicates that agricultural production in Latin America is
expanding and energy efficiency improved gradually though at a low level.

4.5. Factor Analysis for Agricultural Energy Efficiency (AEE)

We proceed with the factors affecting AEE. The energy efficiency scores are not
normally distributed, as informed by a Chi-square value of 64.365 in the Jarque—Bera test.
To accommodate upper censoring and account for the skewed distribution in the data, we
employed Tobit quantile regression to investigate the influencing factors of agricultural
energy efficiency of emerging economies. The results estimated at the 10th, 25th, 50th, 75th
and 90th quantiles are reported in Table 6.

Table 6. Result of the Tobit quantile model.

Variables Quantiles
0.10 0.25 0.50 0.75 0.90
Intercept 0.915 0.919 0.953 0.883 0.890
[0.789, 1.050] [0.829, 1.010] [0.842, 1.048] [0.814, 0.958] [0.818, 0.954]
oo —0.429 —0.308 —0.326 —0.124 —0.047
pop [—0.554, —0.308]  [—0.403, —0.206]  [—0.428, —0.224]  [—0.201, —0.053] [~0.111, 0.017]
4 ~1.074 —0.791 ~0.199 —0.235 —0.244
sppe [—1.546, —0.537]  [—1.219, —0.447] [—0.426, 0.011] [—0.426, —0.026]  [—0.400, —0.085]
ccostru —1.941 —1.459 ~1.320 —0.837 —0.396
[—2.415, —1.492] [—1.818, —1.115]  [—1.610, —0.999]  [—1.184, —0.494]  [—0.655, —0.111]
enemix 0.005 0.132 0.204 0.167 0.118
[—0.062, 0.092] [0.066, 0.195] [0.157, 0.250] [0.122, 0.209] [0.086, 0.153]
. ~0.029 0.035 0.035 0.010 ~0.015
pesti [—0.083, 0.027] [—0.017, 0.077] [0.011, 0.056] [—0.008, 0.033] [—0.030, 0.005]
land 0.250 ~0.003 ~0.044 ~0.033 —0.061
[0.146, 0.357] [—0.080, 0.094] [~0.112, 0.028] [—0.087,0.016] [—0.110, —0.012]
Pseudo R2 0.083 0.093 0.093 0.063 0.074

Note: 95% credible intervals in parentheses. The bold indicate that the posterior probability is nonzero to select variables.

The regression estimates show that both urbanization and GDP per capita have nega-
tive influences on agricultural energy efficiency, but their impacts vary at different quantiles.
This result implies that economic growth impedes improvements in energy efficiency. It
is contradictory with the findings that an increase in GDP per capita would cause higher
agricultural energy efficiency but is consistent with the findings that urbanization has a
significantly negative effect on energy efficiency [45]. The different results may be caused
by regional heterogeneity and the sample period. Due to the complexity of the long pro-
cess, urbanization has complex connections with energy use. Reasons for the negative
impact of urbanization can be analyzed from different perspectives, such as agricultural
modernization, a shift in economic structure, the application of energy-saving technical
measures and green energy consumption preferences [57].

The economic structure is also negative and significant at all quantiles, suggesting that
an increase in the share of the agricultural sector in GDP would lead to lower agricultural
energy efficiency. Yang et al. [14] have the same opinion on the negative impact of economic
structure. The negative influences in the lower-quantile countries are greater than those
in the higher-quantile countries. The absolute values of the coefficients are a little larger
than the coefficients of other variables, indicating a relatively higher influence than other
variables on energy efficiency.
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The energy mix has a significantly positive effect on agricultural energy efficiency at
the 25th, 50th, 75th and 90th quantiles, indicating that an increase in the percentage of oil
consumption to total agricultural energy would lead to higher agricultural energy efficiency.
Dutra et al. [56] drew the same conclusion and found the reason that machinery is the main
consumer of energy in the agricultural sector. Agricultural energy mainly consists of coal,
gasoline and diesel. The corresponding standard conversion coefficients of coal equivalent
are 0.714 kg standard coal/kg, 1.471 kg standard coal/kg and 1.457 kg standard coal/kg.
Therefore, diesel- and gasoline-powered machinery are more fuel efficient, powerful and
productive, making it a key foundation of sustainable farming [58]. Additionally, the effect
of the percentage of oil consumption on energy efficiency is approximately twice at the
50th quantile (0.20) than at the 90th quantile (0.12). The influence of the energy mix is more
extensive at the median level.

The positive impact of pesticide use on agricultural energy efficiency is shown at the
50th quantile, indicating that increasing the use of pesticides can improve agricultural
energy efficiency, possibly because it is beneficial in increasing crop yields. It is also
observed when Lechenet et al. [59] studied the impacts of pesticide use on crop productivity
in arable farms. However, the absolute value of the coefficient is the smallest, indicating
that it has little impact because pesticide use should be controlled to a minimum necessary
dosage to avoid possible environmental contaminants and reduce the level of toxic residues
remaining on food [60].

The coefficient of the proportion of agricultural land in the country’s land is positive
at the 10th quantile but negative at the 90th quantile. This is different from the conclusion
drawn by Chen and Zhang [61], who suggested that the land factor has a significantly
negative influence on the total factor energy efficiency, so it is not easy to predict the
influence of land on energy efficiency in agriculture.

5. Conclusions and Policy Implications

We applied the SFA method, Shephard distance function and Tobit quantile regression
to investigate energy efficiency, energy-saving potential and their determinants in the
agricultural sector of 27 emerging economies. Energy efficiency was calculated by the
ratio of the actual energy input to the energy input of the frontier. On the basis of the
above empirical analysis, the results can be summarized as follows: (1) the median energy
efficiency of the agricultural sector of emerging economies fluctuated at 0.74, the cumulative
energy-saving potential was 542.80 Mtoe, and the average annual energy-saving potential
was 27.14 Mtoe during 1998-2017; (2) agricultural energy efficiency is relatively high in
Thailand, Estonia, Czech and Bulgaria, while it is relatively low in Indonesia, Pakistan,
Uruguay and Colombia; (3) the average energy efficiency in Europe is the highest, while
it is the lowest in Latin America; (4) energy mix and pesticide use are conducive to
energy efficiency improvement, and GDP per capita, urbanization and economic structure
have a negative effect, while the ratio of agricultural land has different influences at
different quantiles.

The policy implications for improving energy saving in the agricultural sector of
emerging economies are as follows:

(i) From the estimation results of the Tobit quantile regression, energy mix and pes-
ticide use are important efficiency factors that positively influence agricultural energy
efficiency. The availability of fuel oil has proven to be necessary to increase the productivity
of the agricultural sector in emerging economies. It is based on the guidance that expensive
production factors (such as manpower and land) can be replaced by cheap production
factors (such as petroleum, machinery and pesticides). Meanwhile, it is noted that pol-
icymakers should consider trade-offs when addressing certain issues, such as choosing
between pesticide use and food safety.

(ii) Encouraging the proportion of agricultural GDP and economic development can
decrease energy efficiency, which relies on promoting scientific progress and technical
innovation, as well as improving farming management and operations. Governments
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should train skilled agricultural workers and continue to promote good practices in the use
of agricultural mechanization for cultivation, irrigation and harvesting purposes in order
to maximize output per unit of energy input. After all, reducing energy input minimizes
greenhouse gas emissions but may also lower productivity and is rarely beneficial to
farmers. Additionally, it is worth noting that adopting energy-saving technologies will be
an expensive undertaking and add expenses for farmers because renewable energy and
labor are more expensive than using fossil fuel. The trade-offs between energy consumption
preferences and energy efficiency and environmental performance also need to be taken
into consideration.

(iii) The government should implement feasible land-use policies for agricultural
production, subject to urban planning, climate and other factors in its own country. If it is
not appropriate to expand agricultural land, governments can develop fishery, agricultural
product processing or import products. For example, BRIC economies, which have high
agricultural energy input, should focus on the comparative advantages and production
of high value-added agricultural products. Additionally, although agricultural energy
efficiency in Asia is a little higher, there are still large amounts of energy-saving potential.
Thus, governments should support the development of the main agricultural production
areas to increase the volume of production and improve industrial agglomeration.

In summary, energy efficiency and energy-saving potential are significant factors in
national sustainable development strategies. Although energy efficiency in the agricultural
sector of emerging economies has experienced considerable improvement, the energy-
saving potential is still very high. Therefore, based on local conditions, government
policies should be geared toward improving agricultural energy efficiency and achieving
maximum energy saving in individual economies. The limitation of this study is the lack of
data for more emerging countries, and undesirable output variables were not considered.
To assess the robustness of the conclusions, future improvements of the study should
include expanding the time span and use of other variables that influence energy efficiency,
taking into account undesirable output variables.
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