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ABSTRACT

Extreme weather events have devastating impacts on human health, economic activities, ecosys-

tems, and infrastructure. It is therefore crucial to anticipate extremes and their impacts to allow

for preparedness and emergency measures. There is indeed potential for probabilistic subseasonal

prediction on timescales of several weeks for many extreme events. Here we provide an overview

of subseasonal predictability for case studies of some of the most prominent extreme events across

the globe using the ECMWF S2S prediction system: heatwaves, cold spells, heavy precipitation

events, and tropical and extratropical cyclones. The considered heatwaves exhibit predictability on

timescales of 3-4 weeks, while this timescale is 2-3 weeks for cold spells. Precipitation extremes

are the least predictable among the considered case studies. Tropical cyclones, on the other hand,

can exhibit probabilistic predictability on timescales of up to 3 weeks, which in the presented cases

was aided by remote precursors such as the Madden-Julian Oscillation. For extratropical cyclones,

lead times are found to be shorter. These case studies clearly illustrate the potential for event -

dependent advance warnings for a wide range of extreme events. The subseasonal predictability of

extreme events demonstrated here allows for an extension of warning horizons, provides advance

information to impact modelers, and informs communities and stakeholders affected by the impacts

of extreme weather events.
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Capsule summary. An assessment and comparison of the subseasonal predictability of case108

studies of the most prominent extreme weather events on a global scale: heatwaves, cold spells,109

precipitation extremes, and cyclones.110

111

1. Subseasonal prediction of extreme events112

Extreme weather events pose threats to humans, infrastructure, and ecosystems. In a changing113

climate, many extremes are projected to increase in strength, frequency, and/or duration, and it is114

therefore increasingly important to anticipate extreme events and their impacts as early as possible.115

A successful prediction several weeks in advance will benefit stakeholders’ decision making for116

emergency management (White et al. 2017; Merz et al. 2020; White et al. 2021). Indeed, there117

is increasing potential for probabilistic subseasonal prediction on timescales of several weeks118

for extreme events (Vitart 2014; Vitart and Robertson 2018; Robertson et al. 2020). Increased119

predictability can arise from remote drivers or long-lived precursor patterns that are conducive to120

the occurrence of extreme events. These drivers include tropical precursors such as the Madden-121

Julian Oscillation (MJO) (e.g. Vitart and Molteni 2010; Rodney et al. 2013) and El Niño Southern122

Oscillation (ENSO) (e.g. Domeisen et al. 2015), surface interactions with snow cover (e.g. Cohen123

and Jones 2011) or sea ice (e.g. Sun et al. 2015), the upper atmosphere (e.g. Domeisen et al. 2020b;124

Domeisen and Butler 2020), or a combination of predictors (Muñoz et al. 2015, 2016; Doss-Gollin125

et al. 2018; Dobrynin et al. 2018). A better understanding of these precursors can contribute to126

increased predictability. At the same time, improvements in the prediction of extremes arises from127

progress in the performance of prediction systems through advancements in process representation,128

coupling, and parameterization, as well as model resolution (Bauer et al. 2015). Merryfield et al.129

(2020) recommended an assessment of the predictability of historical high-impact weather events130
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as a way forward to demonstrate the potential benefits of subseasonal to seasonal (S2S) forecasts.131

Here we discuss extreme event predictability based on a state-of-the-art subseasonal prediction132

system and a range of precursors for selected case studies of high-impact extremes in Europe,133

Africa, Asia, Australia, as well as South, Central, and North America for the most prominent134

extreme events on a global scale: heatwaves, cold spells, heavy precipitation events, and both135

tropical and extratropical cyclones. The following sections provide a brief overview of the physical136

drivers and potential for predictability for these extreme events, while the subsequent sections dive137

into the specific case studies.138

a. Heatwaves139

Heatwaves over land have devastating impacts on human health and ecosystems (Campbell et al.140

2018; Yang et al. 2019), agriculture (Brás et al. 2021), and energy demand (Auffhammer et al.141

2017; Bloomfield et al. 2020). Over the past decades, heatwaves have significantly increased142

in frequency and intensity (Perkins et al. 2012) with further increases predicted for the future143

(Watanabe et al. 2013; Lopez et al. 2018), largely due to anthropogenic global warming (Stocker144

2014; Shiogama et al. 2014). Heatwaves are commonly characterized by temperature and duration145

thresholds (Russo et al. 2014), in addition to humidity and diurnal temperature cycle characteristics146

for applications to human morbidity and mortality (e.g. Raymond et al. 2020).147

Heatwaves are often associated with persistent anticyclonic circulation patterns (Li et al. 2015;148

Freychet et al. 2017) that can sometimes be identified as blocking (Pfahl and Wernli 2012; Schaller149

et al. 2018; Brunner et al. 2018; Carrera et al. 2004; Dong et al. 2018; Li et al. 2019; Yeo et al.150

2019), long-lived Rossby Wave Packets (RWPs, Wirth et al. (2018)), which can contribute to151

predictability (Fragkoulidis et al. 2018; Grazzini and Vitart 2015), or quasi-stationary wave trains152

(Enomoto 2004; Kim et al. 2018; Li et al. 2019). These patterns can be triggered or enhanced153
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by remote effects. For instance, sea surface temperature (SST) anomalies in subtropical and154

extratropical ocean basins can help induce European and North American heatwaves (Wulff et al.155

2017; Duchez et al. 2016; McKinnon et al. 2016; Hartmann 2015), and East Asian heatwaves can156

be triggered by the North Atlantic Oscillation (NAO), Ural blocking, and diabatic heating in the157

eastern Mediterranean (Yasui and Watanabe 2010; Jian-Qi 2012; Wu et al. 2016; Gao et al. 2018;158

Li et al. 2019).159

These remote forcings can enhance the predictability of heatwaves. Recent research has in-160

deed shown potential for the extended-range prediction of heatwaves on sub-seasonal to seasonal161

timescales (Kueh and Lin 2020; Koster et al. 2010; Luo and Zhang 2012; Pepler et al. 2015; Tian162

et al. 2017; Wulff and Domeisen 2019). In addition, heatwaves can also be exacerbated by land-163

atmosphere feedbacks (e.g. Fischer et al. 2007; Mueller and Seneviratne 2012; Miralles et al. 2014;164

Hauser et al. 2016; Seneviratne et al. 2010; Berg and Sheffield 2018; Tian et al. 2016, 2018) and165

improvements in soil moisture initialization can therefore increase the predictability of heatwaves166

(Ferranti and Viterbo 2006; Dirmeyer et al. 2018; Bunzel et al. 2018).167

b. Cold spells168

Cold spells can affect electricity production (Beerli et al. 2017; Gruber et al. 2021; Doss-Gollin169

et al. 2021) and demand (Cradden and McDermott 2018; Bloomfield et al. 2018, 2020), human170

mortality (Charlton-Perez et al. 2019, 2021), and agriculture (Materia et al. 2020a). Similar to171

heatwaves, cold spells are often defined by temperature and duration thresholds (de Vries et al.172

2012). Like heatwaves, cold spells can be related to atmospheric blocking and hence model173

biases in blocking frequency can impair predictions at lead times beyond two weeks (Hamill174

and Kiladis 2014; Quinting and Vitart 2019). Predictability can be gained from tropical drivers175

such as the MJO, and model performance can be enhanced by capturing the predictable signal of176
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large-scale weather patterns such as the NAO at the extended range (Ferranti et al. 2018). Blocking177

associated with the negative phase of the NAO can also be induced through sudden stratospheric178

warming (SSW) events (Thompson et al. 2002; Lehtonen and Karpechko 2016; Charlton-Perez179

et al. 2018; Domeisen 2019), which can induce cold spells both over land (Kolstad et al. 2010)180

and ocean (Afargan-Gerstman et al. 2020). However, not all regions gain predictability skill from181

stratospheric forcing (Domeisen et al. 2020b; Materia et al. 2020a).182

183

c. Precipitation events184

Heavy precipitation events can lead to flooding as well as land- or mudslides, and they are often185

accompanied by strong winds and low temperatures, the combination of which can be detrimental186

to humans, agriculture and infrastructure (Zscheischler et al. 2020). Heavy precipitation events are187

projected to become more frequent in many regions (Donat et al. 2016; Prein et al. 2017) due to188

anthropogenic climate change (Westra et al. 2013; Zhang et al. 2013; Li, Chao et al. 2021). Similar189

to temperature extremes, rainfall extremes arise through persistent atmospheric conditions, which190

can be triggered or maintained by large-scale forcing (e.g. from ENSO and the MJO (Jones et al.191

2004; Kenyon and Hegerl 2010; Muñoz et al. 2015)), atmospheric blocking (Lenggenhager and192

Martius 2019), or monsoon systems (Zhang and Zhou 2019).193

Precipitation extremes tend to be less predictable than temperature extremes such as warm and194

cold spells (de Andrade et al. 2019). The ability of a prediction system to predict rainfall extremes195

beyond deterministic timescales is related to the simulation of the connection between precipitation196

and its large-scale forcing such as ENSO and the MJO (Vigaud et al. 2017; Specq et al. 2020)197

or atmospheric rivers (DeFlorio et al. 2019). Regions with strong ENSO teleconnections exhibit198

better predictability of rainfall extremes, as for example, in Australia (King et al. 2020) or the199
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southwestern U.S. (Gershunov 1998; Pan et al. 2019), if ENSO is correctly simulated (Bayr et al.200

2019). Interference of drivers onmultiple timescales can further modulate the intensity, occurrence201

and predictability of precipitation extremes (Muñoz et al. 2015, 2016).202

d. Tropical Cyclones and Medicanes203

Tropical and extratropical cyclones impact human lives and livelihoods and lead to large envi-204

ronmental impacts and economic losses (Camargo and Hsiang 2015; Hsiang 2010; Hsiang and205

Narita 2012). Anthropogenic climate change affects various properties of tropical cyclones (TC),206

in particular their intensity, as well as the precipitation and storm surge associated with these207

events (Knutson et al. 2019, 2020). While individual cyclones’ genesis, tracks and intensity are208

not predictable beyond deterministic timescales, large-scale drivers can provide predictability in a209

probabilistic sense on S2S timescales. On seasonal timescales, ENSO modifies the characteristics210

of TC frequency, intensity and tracks (e.g., Vitart et al. 2003; Lin et al. 2017; Nicholls 1979; Evans211

and Allan 1992). On subseasonal timescales, TC activity is enhanced (decreased) during and after212

an active (suppressed) MJO (e.g. Camargo et al. 2019), especially in the southern hemisphere213

(e.g. Hall et al. 2001; Camargo et al. 2009), allowing for successful statistical forecasts (Leroy and214

Wheeler 2008). Recently, the performance of dynamical models for forecasting TCs on subsea-215

sonal timescales has significantly improved (Camp et al. 2018; Camargo et al. 2019; Robertson216

et al. 2020; Vitart et al. 2010; Camargo et al. 2021). A successful example is cyclone Hilda, which217

made landfall in northwestern Australia and was predicted 3 weeks in advance (Gregory et al.218

2019). However, this success is not consistent across models, and is likely linked to a successful219

prediction of the MJO (Vitart 2017; Lee et al. 2018, 2020).220

In addition to tropical cyclones, we also consider medicanes (“Mediterranean Hurricanes”), rare221

intense and high-impact extratropical cyclones in the Mediterranean region (Ulbrich et al. 2009;222
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Cavicchia et al. 2014; Mylonas et al. 2018; Flaounas et al. 2021). These events occur on average223

1.6 times / year (Flaounas et al. 2015) and can lead to severe damage in coastal areas associated224

with flooding and high winds.225

2. Data and Methods226

To evaluate the subseasonal prediction of the above extreme events we use both forecasts and227

hindcasts (historical forecasts) from the extended-range operational ensemble prediction system228

(Vitart et al. 2008) from the European Centre for Medium-Range Weather Forecasts (ECMWF),229

which is part of the S2S database (Vitart et al. 2017). The prediction system includes coupling230

with the ocean and sea ice (Buizza et al. 2017). The atmospheric model has a horizontal resolution231

of approximately 36 km and 91 vertical levels with a model lid at 0.01 hPa (at the time of data232

download for this study). Where available, that is, for case studies after June 2015, forecasts from233

the prevailing model version were used (cycles 43R1, 43R3 and 45R1); these ensemble forecasts234

consist of 51 members. For the case studies using hindcasts, the 11-member hindcast ensemble235

from model cycle 46R1 was used. Both forecasts and hindcasts are initialized twice weekly.236

The target weeks are selected for each case study individually based on the week of the most237

extreme anomalies. Since the forecasts are only initialized twice weekly, it is not always possible238

to find a forecast that is initialized exactly the day before week 1. Week-1 lead time for a specific239

case study is therefore chosen such that the target week lies directly on or after the initialization,240

that is, the forecast is initialized either on the first day of week 1 or up to two days earlier. The241

additional forecast lead weeks (weeks 2 - 4) then lie exactly adjacent to week 1.242

To compute anomalies for the subseasonal predictions, a 7-day mean climatology is computed243

based on the 11-member ensemble hindcasts initialized for the same lead time for the corresponding244

available 20-year hindcast period. For example, for the California heatwave on 23 July 2018, the245
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corresponding week-1 climatology is based on the ensemble mean of the hindcast ensemble246

initialized on 23 July for each year from 1998 to 2017. The climatology is computed for each lead247

week separately, yielding a lead-time dependent climatology. Anomalies for the predictions are248

then computed by subtracting the model climatology from each ensemble member. For the earlier249

case studies, the climatology is computed over a 19-year hindcast period excluding the year of the250

case study to simulate an operational prediction setting. Anomalies for reanalysis are computed251

in a consistent way, by subtracting the daily mean climatology computed from reanalysis data for252

the same years that are used for computing the hindcast climatology for each case study. The use253

of anomalies for the model and reanalysis with respect to their respective climatologies provides a254

simple bias correction.255

The temperature predictions are verified against the 2m temperatures from ERA5 reanalysis256

(Hersbach et al. 2020), as temperatures are well represented in reanalysis. Precipitation can257

show greater biases in reanalysis (Alexander et al. 2020), hence precipitation is verified against258

observational datasets from the Australian Water Availability Project (AWAP) 5 km daily gridded259

rainfall analysis (Jones et al. 2009) and the CPC Global Unified Gauge-Based Analysis of Daily260

Precipitation (Chen et al. 2008).261

The temperature extremes case studies compare the probability density functions (PDFs) of the262

ensemble members for different lead weeks. Tercile limits (below-normal, normal, and above-263

normal, as well as the 10th and the 90th percentiles) are computed with respect to the lead264

time-dependent model climatology, based on 11 hindcast members. For the rainfall extremes,265

forecast performance is assessed by measuring the forecast system’s association and discrimina-266

tion attributes, using the Spearman correlation coefficient (Wilks 2019) and the area under the267

Relative Operating Characteristic (ROC, Wilks 2019) curve for the above-normal category, re-268

spectively. The Spearman correlation is a non-parametric measure of how in-phase the forecasts269
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and observations are (correlation values of 1 indicate perfect association), and the ROC area270

for the above-normal category measures how well the forecast system discriminates between the271

above-normal and the other tercile-based categories, with values at 50% indicating a discrimination272

as good as that of climatology-based forecasts, and values above (below) 50% indicating better273

(worse) discrimination than climatology-based forecasts. The precipitation forecasts are calibrated274

according to a pattern-based Model Output Statistics approach using canonical correlation analysis275

(CCA; Tippett et al. (2008)), implemented via PyCPT, a set of Python libraries interfacing the276

Climate Predictability Tool (Muñoz 2020; Muñoz and Coauthors 2019; Mason et al. 2021), using277

IRI’s “NextGen" forecast approach (Muñoz and Coauthors 2019; WMO 2020). To obtain a robust278

sample size, these metrics were computed using all 8 initializations (20 years per initialization)279

available for the months and target dates listed in Table 1, conducted independently for each rainfall280

extreme case study. For example, for theGuatemala case study (see next section), eight 20-year-long281

hindcasts were used, corresponding to all initializations available for June 1998-2017, providing a282

total of 160 hindcast weeks to compare against the corresponding 160 weeks of observed rainfall.283

For additional details see Materia et al. (2020a).284

For evaluating themodel performance for the cyclones, their observed tracks are compared against285

the probability of cyclone occurrence given by the probability of a cyclone passing within 300 km286

of each grid point using the ECMWF tracker (Vitart et al. 1997) from the 51-member ensemble of287

the prediction system. The observed tropical cyclones data are obtained from the International Best288

Track Archive for Climate Stewardship (IBTrACS) (Knapp et al. 2010). The observed track for the289

medicane is obtained from the ECMWF operational analysis. The medicane is further evaluated290

using ConvectiveAvailable Potential Energy (CAPE), an indicator of atmospheric instability, which291

is a necessary condition for the development of severe weather events. CAPE has been found to292
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be a prominent indicator and potential predictor for tropical cyclones (Huang and Liang 2010; Lee293

and Frisius 2018; Mylonas et al. 2018) but has not been prominently used for medicanes.294

3. Extreme event case studies295

This section presents specific case studies for the four types of extremes. The case studies296

were selected based on their extreme nature and societal impacts. While this selection should297

not be seen as a complete assessment of model performance or inter-comparison of predictability298

between event types or within the same event type, these case studies serve as a representative299

selection of extreme events and their predictability, which can translate into timescales of emergency300

preparedness (White et al. 2021). Table 1 provides an overview of the timing and location of each301

case study.302

a. Heatwaves303

We first examine the predictability of four extreme heatwaves in North America, Europe, and304

East Asia between 2013 and 2019 (Fig. 1). The first two heatwaves are part of the extreme Northern305

Hemisphere heatwave in summer 2018, when heatwaves simultaneously affected North America306

and Eurasia. We focus on the week of July 23-29, 2018, when temperatures over California reached307

51◦C inDeath Valley. California monthlymean temperatures for July surpassed the previous record308

set in 1931 (NOAA 2018) as heatwaves also occurred earlier that month. Similarly in Europe,309

the seasonal mean was strongly affected as the heat arrived in two waves, one from mid-May to310

mid-June and the second from mid-July to the beginning of August.311

The model successfully predicts the concurrent 2018 heatwaves for the target period 3 weeks312

ahead in terms of the spatial structure of the anomalies for both considered regions, although313

with reduced amplitudes, meaning that most ensemble members remain well below the observed314
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anomalies (Fig. 1a-d). For Europe, at lead times of 2 weeks, 49 out of 50 ensemble members315

exceed the upper third of the climatological distribution (Fig. 2b). The forecast probability for the316

upper tercile is still 86% at lead times of 3 weeks and reduces to 60% for lead week 4, but with317

a long tail of the distribution towards extreme heat. For California, the model also predicts the318

extreme heat with some confidence out to 4 weeks (Fig. 2a). The 2-week lead forecast yields the319

most confident prediction, with 29% of ensemble members predicting temperatures above the 90th320

percentile, and 78% predicting above normal temperatures. Interestingly, although the 3-week321

lead forecast distribution is still shifted towards above normal temperatures, it is arguably the322

weakest prediction, with only 12% of members predicting temperatures above the 90th percentile,323

as compared to 24% for week 4.324

Generally, California / western U.S. heat waves tend to be associated with high pressure over the325

Great Plains, low pressure off the California coast, and warm moist air transport from the south.326

There has been an increasing trend in this type of humid heatwave in recent years due to warming327

ocean temperatures (Gershunov and Guirguis 2015). When present, this ocean-atmosphere pattern328

can lead to higher predictability of heat waves, although forecast accuracy over the western U.S. and329

California is on average lower relative to other U.S. regions (Gershunov and Guirguis 2012; Ford330

et al. 2018; Kornhuber et al. 2019). However, July 2018 was atypical in that it was characterized331

by a wave-7 pattern (Kornhuber et al. 2019) associated with a strong and persistent region of high332

temperatures over much of the U.S. in the first half of July, and high pressure anomalies off the333

coast of and over the western U.S. in the last two weeks of July. Land - atmosphere and vegetation334

feedbacks are further suggested to have played a role in the 2018 heatwave, especially over central335

Europe (Liu et al. 2020; Sinclair et al. 2019; Albergel et al. 2019). Finally, the event was made336

more likely due to anthropogenic climate change (Yiou et al. 2019).337
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Less than a year after the devastating 2018 heatwave, another series of heatwaves affected the338

United States in 2019. In lateMay 2019 (we here consider the week ofMay 24 - 30), an early season339

heatwave affected the southeastern U.S., tied to a wavy jet stream pattern with anomalously high340

(low) pressure over the southeastern (southwestern) U.S. (Liberto 2019). The model captures the341

temperature anomalies at 3-week lead time, but it notably underestimates the extreme temperature342

anomalies (Fig. 1e,f), which is also found in the NCEP CFSv2 model (Luo and Zhang 2012). This343

underestimation is evident in the ensemble spread (Fig. 2c).344

A further devastating heatwavewas observed in EastAsia inAugust 2013. The heatwave persisted345

for over two weeks from late July to mid-August, resulting in severe socio-economic losses in the346

region (Duan et al. 2013; Sun et al. 2014; Li et al. 2019). South Korea experienced the hottest347

summer nights and the second hottest summer days since 1954 (Min et al. 2014). In western Japan,348

daily maximum temperature records were broken or tied at 143 weather stations (JMA 2013), many349

of which were broken again during the 2018 heatwave. The extreme persistence and severity of the350

event resulted from the combination of a westward extension of the North Pacific subtropical high351

(Jing-Bei 2014; Li et al. 2015) and a zonal wave train (Yeo et al. 2019) resembling the circumglobal352

teleconnection (Ding and Wang 2005).353

For the considered target week of 5-11 August 2013, a warm anomaly of over 4◦C was observed354

in the large metropolitan areas of eastern China, while the heatwave extended to the Korean355

peninsula and Japan (Fig. 1g). The temperature anomaly was larger in the urban areas than in356

rural areas (Wang et al. 2017), possibly due to the urban heat island effect. The temperature357

distribution is well captured by the model over land at a 3-week lead time, though the magnitude358

is slightly underestimated, while the warm anomaly over the eastern China Sea is not reproduced359

(Fig. 1h). When initialized four weeks before the target period on July 15, more than a third360

of the ensemble members point to below normal temperatures, although twenty percent already361
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predict temperatures above the 90th percentile (Fig. 2d). However, starting at the 3-week lead362

time, essentially all ensemble members predict above normal temperatures, and only one ensemble363

member at 2-week lead time predicts temperatures below the 90th percentile. More importantly, the364

ensemble-mean of these initializations quantitatively well captures the observations (i.e., individual365

ensemble members are well centered about the observed value). This result indicates that the 2013366

East Asia heatwave is quantitatively well predicted by the model at a maximum lead time of three367

weeks.368

b. Cold spells369

Several examples of extreme cold spells in Europe are studied in this section. We start with a370

cold spell in eastern and southeastern Europe in late winter and early spring of 2003 (Levinson371

and Waple 2004) that preceded a record-breaking summer heatwave. The month of February was372

the coldest on record in Albania and Macedonia, and temperatures in southeastern Europe were373

between -2°C and -5°C below normal for much of February and early March (Dittmann et al.374

2004). The target week of April 3-9 (Fig. 3a) marked the end of this cold period, but was cold375

enough that the month of April registered record minimum temperatures in the Baltic region, the376

Danube watershed, and part of Italy and the Balkans (Dittmann et al. 2004). The extreme cold377

was associated with atmospheric blocking over the UK leading to southward advection of cold378

air masses from the Arctic, reaching southeastern Europe on April 7. The temperature contrasts379

between the frigid air mass and the southern Adriatic Sea caused strong convective precipitation,380

with heavy snowfall along the coasts of western Greece, Albania and southern Italy.381

The model predicts the cold anomaly in central Europe (Fig. 3b), though with a southeastward382

shift and smaller anomalies than observed. The ensemble starts encompassing the observed383

anomaly at the 3-week lead time (March 19 initialization, Fig. 4a), indicating a 51% probability of384
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temperatures in the lower tercile for the target week, and a 29% chance of temperatures below the385

tenth percentile. At the 2-week lead time, the confidence about the occurrence of cold weather is386

clearly increased, with 72% of the ensemble members indicating temperatures below normal, and387

53% below the 10-percentile threshold.388

Another cold spell preceding a hot summer occurred in late February / early March 2018 in389

central and western Europe after an otherwise mild winter. The cold wave was likely linked to a390

major SSW event in mid-February 2018, which enhanced the probability of the negative NAO and391

Greenland blocking during the peak of the cold event (Kautz et al. 2020). The SSW itself was392

anticipated 10 days ahead (Karpechko et al. 2018) – a typical predictability timescale for SSWs393

(Domeisen et al. 2020a). Knight et al. (2021) identified the extreme MJO event of January 2018394

as an important driver of this SSW.395

The blocking associated with this cold spell shows predictability in the ECMWF system (Ferranti396

et al. 2019). The forecast initialized on February 12, 2018, the day of the SSW event (a lead time of397

around 3 weeks), captures the cold anomaly over central Europe and part of the British Isles, but the398

anomaly is significantly underestimated (Fig. 3c,d). Already at 4 weeks lead time (initialization on399

February 5) the most likely category is the below normal tercile ( with 54% of ensemble members)400

for temperature over western Europe (Fig. 4b). Further analysis using North Atlantic weather401

regimes suggests that the sequence of weather regimes before and during the cold spell (positive402

NAO, blocking, followed by negative NAO, as documented in Kautz et al. (2020)) were correctly403

anticipated by the model from the February 12 start date (not shown).404

Another cold spell linked to atmospheric blocking occurred in winter 2016/2017 (Fig. 3e). The405

block over Europe brought warm air to Scandinavia and Arctic air to eastern–central Europe in406

the second week of January (Magnusson 2017). A cut-off low developed, causing exceptionally407

low temperatures in the Balkan Peninsula as well as snowfall in Greece and southern Italy with408
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significant socioeconomic impacts due to the long duration of the event (Anagnostopoulou et al.409

2017). The following week (16-22 January 2017), central Europe was affected by further cold air410

advection due to a tripole in surface pressure, with high pressure from the UK towards the Black411

Sea, and low pressure in the western Mediterranean and to the north of Scandinavia. This tripole412

was consistent with quiescent, cold and dry conditions over central Europe in the region of the413

anticyclone (Fig. 3e).414

The forecast issued on January 2 (3-week lead time) already indicates an enhanced probability of415

below normal temperatures (Fig. 3f). Four weeks before the event, the probability for temperatures416

in the lower tercile already reaches 45% and increases to 63% (89%) at 3 (2) weeks before the417

event (Fig. 4c). The ensemble clearly narrows towards the observed anomaly at shorter lead times.418

The probability of temperature anomalies below the 10th percentile increases closer to the event,419

from 18% (4 weeks before), to 29% (3 weeks before), and finally to 64% 2 weeks before the event.420

The cold spell produced a peak in electricity demand, particularly in France, where most of the421

heating is powered by electricity. The concomitant low wind speeds led to a lower than normal422

wind power generation, and several nuclear power plants in France were under maintenance (RTE423

2017). This combination caused a high-risk situation for France’s energy system that could have424

been better managed given the forecasts, for example through a postponement of the planned425

maintenance operations in the nuclear power plants.426

Another extreme cold spell occurred in late 2010. From late November to early December 2010,427

Germany and France recorded the coldest December in 40 years, while in the United Kingdom428

this was the coldest December in 100 years (Fig. 3g). December 2010 was characterized by an429

unusually strong negative NAO (Maidens et al. 2013) with strong cold air advection from northern430

Europe and Siberia (Prior and Kendon 2011). The cold anomaly over land was accompanied by431

a marine cold air outbreak (MCAO, according to the MCAO index used in Afargan-Gerstman432
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et al. (2020)) in the Norwegian and the Barents Seas. MCAOs can have devastating impacts on433

marine infrastructure and offshore activities, for example by creating favorable conditions for the434

formation of polar lows (Rasmussen 1983; Kolstad et al. 2009; Noer et al. 2011; Landgren et al.435

2019). Indeed, a polar low was detected in satellite imagery in the Norwegian Sea off the coast436

of Norway on the 25th of November 2010, two days before our selected target date, based on the437

STARS database of polar lows (http://polarlow.met.no/), but no records regarding damages438

from this polar low have been found. Although the occurrence of cold air outbreaks in the North439

Atlantic and over northern Europe is often associated with stratospheric weak polar vortex events440

(e.g., Kolstad et al. 2010; Afargan-Gerstman et al. 2020), this event is unlikely to have been driven441

by the stratosphere, possibly reducing its predictability.442

Cold anomalies had been predicted for northern Europe 3 weeks earlier by the hindcast initialized443

onNovember 11, however the prediction clearly underestimates themagnitude of the observed event444

(Fig. 3g,h). Hindcasts for lead times beyond 3 weeks (initialization on Nov 4) already provide445

an indication of the cold anomaly, with probabilities around 20% for temperatures below the446

10th percentile. Hindcasts initialized at lead times of 2 and 3 weeks capture the below normal447

temperatures with a probability of above 90% and 50%, respectively (Fig. 4d). Hence, although448

the probability of a cold extreme is significantly increased already 3 weeks before the event, the449

magnitude of the extreme event is only captured at 2-weeks lead time.450

c. Precipitation events451

In this section we focus on four events with anomalous precipitation in Central and South452

America, Europe, and Australia. The first considered event is analyzed in the context of a volcanic453

eruption, as an example of using subseasonal forecasts for compound events, where the possibility454

of heavy rainfall was of concern. Guatemala’s Volcán de Fuego, a stratovolcano, erupted on June455
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3rd 2018, killing at least 113 people, while more than 300 remained unaccounted for (Program456

2018). Ash plumes and pyroclastic flow material affected communities up to 25 km away from457

the volcano. The pyroclastic flows produced lahars (i.e., mudflow or debris flow) intermittently458

for several weeks, leading to evacuations of the nearby communities and displacing thousands of459

Guatemalans, destroying infrastructure and damaging crops. Overall, the eruption impacted 1.2460

million Guatemalans, and cost more than U.S.D$219 millions (CEPAL 2018; CONRED 2018;461

WorldBank 2018).462

The impacts could have been worse if precipitation, which typically peaks in the region in June,463

had been higher. Intense or persistent rainfall events (a) tend to make lahar viscosity thinner, which464

sustains the flow of pyroclastic debris for a longer duration, potentially causing more damage; (b)465

can remobilize unconsolidated pyroclastic deposits, causing post-eruption lahars; (c) can displace466

hanging slabs of solidifiedmud, debris and boulders down steep slopes, with the potential to destroy467

infrastructure and kill people; and (d) tend to interfere with evacuation, search and rescue, cleaning,468

and rebuilding operations. Due to the activities deployed at the time in Guatemala by the Columbia469

University World Project “Adapting Agriculture to Climate Today, for Tomorrow” (IRI 2018),470

the International Research Institute for Climate and Society and INSIVUMEH – the Guatemalan471

national meteorological agency – startedworking together immediately after the eruption to provide472

calibrated subseasonal rainfall forecasts from the prediction system to the National Government473

and a wide variety of local institutions.474

Calibrated rainfall NextGen forecasts (Muñoz and Coauthors 2019) initialized on June 4 in-475

dicated low chances of exceeding the weekly median for the following four weeks for most of476

Guatemala ( compare to Fig. 5a,b; Fig. 6a,b), and further analysis for the location of interest helped477

INSIVUMEH advise government institutions on evacuation, search and rescue, and cleaning and478

rebuilding operations. Subsequent weekly forecast updates confirmed the original expected out-479
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comes. These results build evidence on the advantages of using real-time subseasonal rainfall480

forecasts to help decision makers during and after volcanic eruptions, and potentially other seismo-481

logic and compound environmental events. Using a combination of forecasts at multiple timescales482

is suggested to be an optimal practice in these cases, consistent with the “Ready-Set-Go” approach483

(Goddard et al. 2014).484

Another event of interest occurred in January 2016, when a series of heavy precipitation events485

affected Northwestern South America, leading to widespread flooding in coastal northern Ecuador,486

especially in the Province of Esmeraldas. The flood displaced 120 families, left one casualty, and487

was the largest such event in 20 years (Davies 2016). The flooding was associated with an early488

onset of the heavy rainfalls and severe mesoscale convective systems (MCSs) that would normally489

not be expected until annual precipitation peaks in April / May (Mohr and Zipser 1996; Bendix490

et al. 2009). On January 25, convective storms developed into a MCS with an extent of around491

250 km over the western Andes foothills of the Esmeraldas river basin, a region of abundant low-492

level moisture bounded by the Andes. This heavy precipitation event was favored by interactions493

between the very strong El Niño event and an unusually persistent MJO in phases 2 and 3 (Pineda494

et al. 2021).495

Weekly ensemble-mean rainfall anomaly hindcasts represent the spatial pattern of the anomalous496

precipitation extreme over the catchment over all lead times (Fig. 5c,d), with the best event497

identification for week 3 initialized on 28th Dec 2015 (i.e., the week 3 anomaly was closer to498

the observations as compared to week 2 (not shown)). For the Esmeraldas river basin the ROC499

scores for week 3 range from 0.5 to 0.6 (Fig. 6c), indicating low to modest discrimination of the500

above-normal rainfall on January 25th. The Spearman-rank correlations range from -0.25 to 0.25501

(Fig. 6d); thus, based on the hindcast, the model performance is limited for the region where the502

extreme rainfall occurred at a lead time of 3 weeks. However, the positive precipitation anomaly503
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of more than one standard deviation averaged over the grid points closest to the catchment was504

captured for all lead times of 1-3 weeks (Pineda et al. 2021). Therefore, the use of the S2S505

rainfall forecast could have provided decision-makers with useful information about the onset of506

this extreme precipitation event. A timely uptake of the available forecasts 2-3 weeks in advance507

by the National Met-Hydro Service could have allowed for an early warning for this catastrophic508

flood event.509

Another heavy precipitation event affected northwestern Italy (Piedmont and Liguria) in the510

period from 21 - 25 November 2016. Over these 5 days, more than 50% of annual precipitation511

was recorded in several areas, with peaks above 600 mm (ARPA Liguria 2017; ARPA Piemonte512

2017). Severe damage was caused by river floods with flow-rate return times up to 200 years,513

and widespread occurrence of shallow landslides (Cremonini and Tiranti 2018). This episode514

developed in the middle of a persistent drought affecting most of central and western Europe in515

2016/2017 (García-Herrera et al. 2019). The precipitation anomaly is underestimated by the model516

and exhibits a misplaced maximum for the forecast initialized on 7 November 2016 for week 3517

(lead times 15–21 days, Fig. 5e,f). However, the positive anomaly over northwestern Italy is518

reproduced more than 2 weeks in advance. Positive anomalies were also correctly located in the519

Western Mediterranean region. These anomalies are significantly different at the 10% level from520

the ensemble climatology according to a Wilcoxon–Mann–Whitney test (not shown).521

The large-scale mid-tropospheric configuration leading to this precipitation event was charac-522

terized by a persistent low pressure anomaly over the Iberian Peninsula, surrounded by areas of523

high pressure extending from the North Atlantic to Eastern Europe (ARPA Piemonte 2017). This524

dipole in pressure anomalies favors meridional moist advection across the complex orography525

downstream, leading to heavy precipitation in the Mediterranean in this season (e.g., Buzzi et al.526

2014; Khodayar et al. 2018). The anomalous persistence of the large-scale pattern likely favored527
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the predictability of the event (Vitart et al. 2019). Although the verification scores of the week-3528

forecasts for this area (Fig. 6e,f) indicate, on average, a relatively low predictive performance,529

the sufficiently correct representation of the atmospheric dipole in the extended range may have530

enhanced the predictability of precipitation for this event. Similarities are found with the historical531

Piedmont 1994 flood (Davolio et al. 2020), when heavy precipitation was triggered by a similar532

but less persistent large-scale pattern.533

The last precipitation extreme considered here investigates extreme rainfall, strong winds and534

below normal daytime temperatures over tropical northeastern Australia in early February 2019.535

The event caused wide-spread infrastructure damage, coastal inundation to homes, and destroyed536

over 500,000 livestock, predominantly beef cattle (losses were in the dark green areas in Fig. 5g).537

The total economic loss was estimated at $5.68 billion AUD (Deloitte 2019). The extreme538

rainfall was associated with a quasi-stationary monsoon depression that lasted around 10 days,539

with weekly rainfall totals above 1000 mm in some locations, maximum temperatures of 8-12◦C540

below average, and sustained winds between 30 to 40 km/h (Bureau of Meteorology 2019). The541

event was associated with an active MJO that stalled over the western Pacific (Cowan et al. 2019).542

Even though most of the predictability in extreme austral summer precipitation for northeastern543

Australia comes from equatorial Pacific SSTs (King et al. 2014), ENSO conditions were neutral and544

likely did not contribute to this event. Consistent with the neutral ENSO conditions, the Australian545

Bureau of Meteorology issued a monthly rainfall outlook for February with little indication of the546

impending event. Only in the week prior to the event, the Bureau’s dynamical prediction system,547

the Australian Community Climate Earth-System Simulator-Seasonal version 1 (ACCESS-S1),548

predicted a more than doubled likelihood of extreme rainfall (Cowan et al. 2019).549

The operational real-time forecasts initialized on 17 January 2019 (i.e., a week 3 forecast) confirm550

the above analysis (Fig. 5h). The region with the highest observed rainfall accumulations (blue551
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box in Fig. 5g) has a ROC score between 0.4 and 0.6, indicating low model performance (Fig. 6g).552

Likewise, wide-spread Spearman-rank correlations of between 0 and 0.25 (Fig. 6h) provide further553

evidence that the week 3 forecast does not predict the extreme rainfall week. This confirms separate554

results from eleven S2S models that suggest the rainfall event’s very extreme nature could not be555

predicted with certainty more than a week ahead (not shown).556

d. Cyclones557

We here analyze the subseasonal predictability of four cyclones (three tropical cyclones and one558

medicane). While all selected tropical cyclones occurred in different regions, all were associated559

with an active MJO, as discussed below.560

As a first case we investigate tropical cyclone (TC) Claudia (Fig. 7a) in the western part of the561

Australian basin classified as a severe TC in the Australian scale. TCs in the western part of the562

Australian basin represent an important challenge to the oil industry since themajority of Australian563

oil rigs are located in this region. Therefore, the predictability of tropical cyclones a few weeks in564

advance in western Australia has important economic value, as well as societal impact in the case565

of landfall. Climatologically, 5.2 cyclones occur in that sub-basin per season, with 2.6 reaching566

severe TC intensity and 1.2 making landfall in Australia (Chand et al. 2019). The Australian567

TC season typically lasts from November to April, with a peak in January to March. Claudia’s568

characteristics (e.g., lifetime, latitude of genesis, maximum intensity and dissipation) were very569

typical of western Australia TCs (Chand et al. 2019). Claudia developed over Indonesia’s Maluku570

Island on 4 January 2020 and moved south-westward along the northwestern coast of Australia for571

about 2 weeks (including a period as a tropical depression) (Fig. 7a,b). It reached a peak intensity572

of 968 hPa (140 km/h) on January 13.573
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The prediction system initialized on 30 December 2019 predicted probabilities of up to 40% for574

a TC north-west of Australia for lead times of 15-21 days (week 3) (Fig. 7b) – significantly higher575

than the climatological probability (about 5%) for this season. Although the observed TC track576

is located slightly north of the area of maximum probability, this result suggests that the forecast577

could have provided a useful early warning for this TC. While other models from the S2S database578

also predicted an increased risk of TC activity in this region, the multi-model ensemble probability579

of TC strike was only around 10-20%. Claudia coincided with an exceptionally intense MJO (3580

standard deviations above climatology of the RMM index (Wheeler and Hendon 2004)) over the581

Maritime Continent and warm SST anomalies over the eastern Indian Ocean. This combination is582

likely to have contributed to make this intense and long-lasting tropical cyclone more predictable583

than usual.584

Another recent example of a well-predicted system is cyclone Belna (Fig. 7c) just a few months585

earlier. Belna formed to the north of the Mozambique channel and eventually moved southward.586

Cyclones occur in the channel on average twice per year (Kolstad 2021). Over recent years, multiple587

tropical cyclones made landfall in that region (Idai and Kenneth in 2018/19 and Chalane, Eloise,588

Guambe and Iman in 2020/21), leading to devastating floods in Mozambique and neighboring589

countries (Emerton et al. 2020).590

For cyclone Belna (Fig. 7c), the model prediction initialized on 18 November predicts a prob-591

ability of cyclone occurrence of up to 30% in the Mozambique Channel at the remarkable lead592

time of four weeks (Fig. 7d). On 5 December, 17 days after forecast initialization, the system593

was upgraded to a tropical storm and named. On 7 December it attained hurricane intensity, and594

a day later it passed near the Mayotte Islands in the northernmost part of the Channel. It made595

landfall in Madagascar on 9 December, to the east of the predicted path (Fig. 7d), and it dissipated596

over land two days later. A reason for the successful long-range prediction of Belna is likely the597
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strong MJO envelope within which Belna formed (letter B in Fig. 8c), although the MJO was not598

successfully predicted thereafter. The model forecast (Fig. 8d) indicates enhanced convection in599

that area, particularly in early December when Belna developed. The very intense TC Ambali600

(marked "A" in Fig. 8c) also formed near the MJO envelope just to the east of Belna.601

Another TC associated with an intenseMJO event occurred during a period of unusually high TC602

activity in the West Pacific. In early June 2015, an MJO convective envelope developed over the603

Indian Ocean, intensified and propagated eastward reaching an amplitude of 2.58 in the Realtime604

OLR MJO Index (ROMI) (Kiladis et al. 2014). Only two other MJO events during June and July605

in the period 1979-2018 reached this amplitude. This MJO event provided favorable conditions606

for TC formation leading to the genesis of typhoons Linfa, Chan-hom (Fig. 7e), and Nangka over607

the Western North Pacific, exemplified by the observed OLR anomalies and MJO-filtered OLR608

anomalies (Fig. 8a). Typhoons Linfa, Chan-hom, and Nangka (denoted by letters C, L, and N)609

in late June and early July formed soon after the passage of the MJO envelope. All three storms610

would go on to make landfall; Chan-hom was responsible for the second highest damages (1.5611

billion U.S.D) in the West Pacific that season (Camargo 2016). Additional TCs in both the Indian612

Ocean and West Pacific were associated with this MJO event (Fig. 8a).613

The ensemble forecast initialized on June 15, 2015 (0000Z, Fig. 7f) indicates the increased614

probability of a TC during week 4 of the forecast (valid July 7-13) in this area. The tracks of615

typhoons Linfa, Chan-hom, and Nangka (from west to east) overlap this area of enhanced TC616

formation probability. The forecast also captures the eastward propagation of the MJO envelope617

(Fig. 8b), although the MJO amplitude is weaker than observed.618

As a last case we investigate a medicane, specifically the Mediterranean Cyclone 2018 - M02619

Zorbas (Fig. 7g). The medicane developed on September 27, 2018 in the eastern Mediterranean620

Sea between Sicily and Southern Greece and gradually intensified, developing characteristics of a621
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tropical cyclone. As for many medicanes, its origin was related to a potential vorticity streamer622

(Miglietta et al. 2017). On September 29, the storm made landfall at peak intensity in Kalamata,623

Peloponnese, Greece, with a pressure of 989 hPa and sustained winds of 120 km/h (approx. 33624

m s−1). The event was associated with a Dvorak number of T4.0 (Service 2019; ECMWF 2019),625

corresponding to a marginal category 1 hurricane.626

The initialization on September 13, 2018 predicts a region of formation shifted to the west627

compared to the actual area of event formation (Gulf of Sirte, Libya) (Fig. 7h). While the low628

probability of formation is an indication of the difficulty of predicting such a rare event, the629

climatological probability of cyclone formation in the model in this region is less than 1%, hence630

the displayed chance of a cyclone in this region is clearly above the expected probability. In631

addition, the prediction shows low probability for the event to follow the observed path (black632

line) towards Greece. One of the reasons for the limited predictability of the event was likely the633

uncertainty in the initial conditions near an upper-level jet streak over the Gulf of Saint Lawrence634

(Portmann et al. 2019).635

However, predictability may potentially be improved using CAPE (see section 2). For an636

initialization of the model as early as August 30, 2018 and a validation on September 26, 2018,637

very high values of CAPE are found in the formation region of medicane Zorbas (Fig. 8). Hence,638

CAPE provides evidence of a medicane 3-4 weeks prior to its formation. Further analysis is needed639

to assess the full predictability capabilities of CAPE for medicanes.640

4. General Discussion and Outlook641

We have here demonstrated subseasonal predictability for selected case studies of some of the642

most prominent and impactful extreme events globally, namely heatwaves, cold spells, precipitation643

events, and cyclones. Heatwaves tend to be the most predictable among the extreme events644
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considered. The prediction system can often anticipate the anomalous temperature 3-4 weeks in645

advance, though often with a reduced amplitude. Cold spells also often show an indication of646

predictability, generally at lead times of 2-3 weeks. Precipitation events tend to be less predictable,647

but if the large-scale circulation associated with a large-scale driver (e.g., an active MJO) is648

successfully captured, predictability of 2-3 weeks can be obtained. For tropical cyclones, their649

formation region and tracks can often be anticipated 3 weeks in advance provided a successful650

prediction of strong MJO events. Furthermore, CAPE shows promise for indicating tracks and651

formation regions for extratropical cyclones. Note that these conclusions are based on the here652

documented case studies, and although the predictability and conclusions obtained here agree with653

other published results, it is likely that individual events may be much more or less predictable654

depending on the region, type, and amplitude of the event. Therefore, in addition to differences in655

predictability between different types of extremes there are important differences in predictability656

within the same event type. In the here demonstrated case studies, these inter-event differences hint657

at different processes and precursors responsible for forcing, modulating, or amplifying certain658

extreme events of the same type, including remote drivers such as the MJO.659

Wewould like to emphasize that the case studies presented here do not represent a comprehensive660

evaluation, hence the predictability shown for these events may differ from a systematic evaluation661

across a larger number of events. Hence, while this study only investigates a limited number of662

extreme events as case studies, systematic studies of inter-event differences in predictability will663

be required to better understand the role of the identified drivers. In particular, extreme events with664

a common remote driver could be cross-compared in order to more clearly evaluate the driver’s665

role (or, in fact, its absence). These studies should also include an investigation of false alarms,666

that is, extreme events triggered by remote drivers and predicted in the model that do not verify in667

observations.668
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An improved process understanding of the drivers of extremes and their representation in predic-669

tion systems as well as the development of post-processing techniques will continue to significantly670

benefit the subseasonal prediction of extreme events. On the other hand, evenwith significantmodel671

improvements, many extremes will retain an inherent unpredictability related to the chaotic na-672

ture of the climate system. Still, understanding why and when certain extreme events are more673

predictable than others will help to identify and use windows of opportunity, that is, atmospheric674

states with enhanced predictability. Event-based and region-specific knowledge of the level of675

predictability of the relevant processes and the related extreme events will significantly benefit676

stakeholders and users of extreme weather data.677

While this study has focused on a single prediction system from the ECMWF, an increasing678

number of multi-model studies for the prediction of specific extremes are currently becoming679

available (e.g. Li et al. 2021;Materia et al. 2020b; Domeisen et al. 2020b), highlighting inter-model680

differences rather than inter-event differences, which were the focus of this study. Furthermore,681

bias correction and calibration methodologies that refine the forecast’s statistical properties based682

on a reference period will further enhance these forecasts. In this study we used anomalies in order683

to correct the systematic bias and model drift, keeping in mind that this might affect the chance of684

the model to predict, for example, hot versus cold spells, especially for longer lead times. However,685

region- and process-specific biases and drifts are likely still present in our analysis. In addition,686

standard bias-correction applied here is ”unfair” (Risbey et al. 2021), since it uses observed data687

that would not be available to a real-time forecast: in fact, in several cases the observations used688

for the climatology occur after the forecast starts, and the hindcast therefore contains artificial skill.689

This can be misleading for users who must take decisions using real forecasts, which are likely to690

exhibit lower forecast skill than what is commonly shown in research studies.691
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In addition, a wider range of model evaluation and bias correction techniques are available,692

with the most relevant choices depending on the variable and on the desired characteristics for the693

output (see Torralba et al. (2017) and Manzanas et al. (2019) for a comparison of methodologies694

for seasonal predictions and Wernli et al. (2008); Dorninger et al. (2018) for forecast evaluation695

techniques on deterministic timescales). Although some standard methods and tools are starting to696

be used more widely (Muñoz 2020; Muñoz and Coauthors 2019), implementation at subseasonal697

timescales is non-trivial and requires a robust climatological reference to be successful (Manrique-698

Suñén et al. 2020). One of the challenges is the limited amount of model data available for the699

reference period (short hindcast periods and few ensemblemembers). Examples of implementation700

of bias-correction methodologies for subseasonal predictions can be found in Monhart et al. (2018)701

and Manrique-Suñén et al. (2020). These statistical adjustments are of particular importance in702

sectoral applications (Materia et al. 2020a; DeMott et al. 2021; DiSera et al. 2020), when S2S703

predictions are used as input in impact models to calculate sector-relevant indicators or derived704

variables (e.g., energy production or agricultural yield (White et al. 2021)). As S2S predictions705

increasingly make their way into risk-based decision-making contexts, a continued development706

and assessment of subseasonal models, calibration techniques, and combination with other tools707

will significantly benefit these applications (Goddard et al. 2014; White et al. 2021).708

Lastly, it remains difficult to quantify the economic value of S2S forecasts. In fact, even for709

very skillful forecasts, there can be significant economic losses that depend on factors beyond the710

forecasts themselves, involving the emergency response and preparedness of the affected region.711

However, it is clear that skillful forecasts on sub-seasonal to seasonal timescales can indeed add712

economic value, as has been shown for both temperature and cyclone predictions (Dorrington et al.713

2020; Emanuel et al. 2012).714
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In summary, this work is meant to showcase the importance of subseasonal forecasts in the715

development and improvement of a large variety of climate services. Therefore, it is difficult716

to homogenize across event type, forecast quality metrics, and prediction format (deterministic717

versus probabilistic). By their own nature, distinct events in different locations of the world require718

different verification tools, and time aggregations must be meaningful to users. This study goes719

towards this direction by starting to address the recommendations for advancing the S2S forecast720

verification practices recently highlighted byCoelho et al. (2019): Appropriate verificationmethods721

to deal with extreme events, novel verification measures specifically adapted for S2S forecasts, and722

enlargement of the sample size to address sampling uncertainties. All of these techniques are723

meant to build knowledge about the strengths and weaknesses of forecasts, and eventually increase724

confidence in S2S products among forecasters and users (Coelho et al. 2018).725

As the performance of prediction models for extreme events at subseasonal lead times continues726

to increase with improvements in the understanding of extreme events and their representation727

in models, the here documented extreme events can be viewed as demonstrations and examples728

of this progress, which reaches far beyond these case studies, contributing to build or strengthen729

(depending on the case) a robust ecosystem of climate services (Goddard et al. 2020).730
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Table 1. Overview of the case studies evaluated in this study.

Location / target region Forecast target period

HEATWAVES

Western U.S. (California) (235 - 250◦E, 32 - 48◦N) 23-29 July 2018

Central / northeastern Europe (10 - 20◦E, 50 - 60◦N) 23-29 July 2018

Southeastern U.S. (92 - 70◦W, 25 - 45◦N) 24-30 May 2019

East Asia (eastern China, Korea, Japan) (105 - 130.5◦E, 30 - 40.5◦N) 5-11 August 2013

COLD SPELLS

Southeastern Europe (10.5 - 30◦E, 37.5 - 54◦N) 3-9 April 2003

Central / northern Europe (12.5◦W - 30◦E, 37.5 - 65◦N) 26 February - 3 March 2018

Southwestern Europe (France) (4.5◦W - 7.5◦E, 43.5 - 49.5◦N) 16-22 January 2017

Northern Europe (UK, Germany, Scandinavia) (10◦W - 30◦E, 45 - 65◦N) 27 November - 3 December 2010

PRECIPITATION EVENTS

Volcán de Fuego, Guatemala (91 ◦W, 14.5 ◦N) 18-24 June 2018

Northwestern Ecuador (79 ◦W, 0 ◦N) 21-27 January 2016

Northwestern Italy (6.5 - 10◦E, 43.5 - 46.5◦N) 21-27 November 2016

Northeastern Australia (138◦-147◦E, 18◦-22◦S) 31 January - 6 February 2019

CYCLONES

Western Australia: Cyclone Claudia (no landfall) 5 January 2020 (formation) / 18 January 2020 (dissipation)

Mozambique Channel: Cyclone Belna (landfall: Madagascar) 2 December 2019 (formation) / 9 December 2019 (landfall)

Western North Pacific: Typhoon Chan-hom (landfall: China) 29 June 2015 (formation) / 11 July 2015 (landfall)

Mediterranean: Medicane Zorbas (landfall: Peloponnese, Greece) 27 September 2018 (formation) / 29 September 2018 (landfall)
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Fig. 1. Heatwaves: (a,c,e,g) 2m temperature anomalies for the target week (indicated in the panel1385

titles) from ERA5 data and (b,d,f,h) predicted by the ECMWF week 3 forecasts (hindcasts1386

prior to 2016), initialization dates indicated in panel titles. (a,b) California heatwave, (c,d)1387

European heatwave, (e,f) U.S. heatwave, (g,h) East Asia heatwave. White boxes indicate the1388

averaging areas used for Fig. 2. All case studies use model version CY45R1, except for the1389
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Fig. 2. Heatwaves: The PDF distribution of the predicted 2m temperature anomalies from themodel1391
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wave 2018, (c) southeastern U.S. heat wave 2019, and (d) east Asia heatwave 2013. Tercile1395
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Fig. 3. Cold spells: Same as Figure 1 but for the cold spell case studies: (a,b) Southeastern Europe1401

cold spell in 2003 (model version CY46R1), (c,d) central / northern European cold spell in1402

2018 (model version CY43R3), (e,f) France cold spell in 2017 (model version CY43R1),1403
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Fig. 4. Cold spells: Same as Figure 2 but for the cold spell case studies: (a) Southeastern Europe1405
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Fig. 5. Precipitation events: Accumulated precipitation anomalies over the target week (week 3,1408

indicated in the panel titles) for (a,c,e,g) observations and (b,d,f,h) the ECMWFmodel predic-1409

tion (initialization date indicated in the panel title). (a,b) Guatemala, (c,d) western Ecuador1410

(e,f) northwestern Italy, and (g,h) northeastern Australia. The blue boxes or dots, respec-1411

tively, indicate the target location for each case study, as indicated in Table 1. Observations1412

are from (a,c,e) CPC and (g) AWAP. . . . . . . . . . . . . . . . . 711413

Fig. 6. Precipitation extremes: Predictability scores for week 3, (a,c,e,g) assessed through the1414

area under the ROC curve for the above-normal category, and (b,d,f,h) Spearman’s rank1415

correlation coefficient. The results were interpolated to the CPC unified grid. For details1416

of the scores see section 2. (a,b) Guatemala, (c,d) western Ecuador (e,f) northwestern Italy,1417

and (g,h) northeastern Australia. The blue boxes or dots are as in Figure 5. . . . . . . 721418

Fig. 7. Cyclones: Satellite images at a time close to the maximum intensity of the storms for (a) cy-1419

clone Claudia on January 13, 2020 [NOAA] (c) cyclone Belna onDecember 7, 2019 [NASA],1420
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Fig. 8. Cyclones: Outgoing longwave radiation (OLR) anomalies (shaded,Wm−2) andMJO-filtered1430

OLR anomalies (red contours, every 15 W m−2 for negative values) from (a,c) observations1431

averaged over 0-10◦N and 0-10◦S with tropical cyclone tracks (black lines) and names (first1432

letter of the cyclone name in red circle) and (b,d) ECMWF ensemble forecasts initialized1433

on 15/06/2015 and 18/11/2019. MJO-filtering is performed using a wavenumber-frequency1434

filter that selects for wavenumbers 0-9 and periods of 20-100 days. MJO-filtered OLR1435

was calculated by padding the forecast with observations prior to initialization following1436

the methodology described in Janiga et al. (2018). (e) CAPE (J kg−1) from the ECMWF1437

ensemble forecast initialized on 30/08/2018, valid on 26/09/2018. . . . . . . . . 741438
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Fig. 1. Heatwaves: (a,c,e,g) 2m temperature anomalies for the target week (indicated in the panel titles) from

ERA5 data and (b,d,f,h) predicted by the ECMWF week 3 forecasts (hindcasts prior to 2016), initialization dates

indicated in panel titles. (a,b) California heatwave, (c,d) European heatwave, (e,f) U.S. heatwave, (g,h) East Asia

heatwave. White boxes indicate the averaging areas used for Fig. 2. All case studies use model version CY45R1,

except for the East Asia heatwave, which uses CY46R1.
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Fig. 2. Heatwaves: The PDF distribution of the predicted 2m temperature anomalies from themodel ensemble

averaged over the target week (indicated in table 1) for the heatwave case studies, averaged over the white boxes

in Fig. 1 and initialized at (panels from left to right) 4, 3, and 2 weeks before the start of the target week. (a)

California heat wave 2018, (b) European heat wave 2018, (c) southeastern U.S. heat wave 2019, and (d) east

Asia heatwave 2013. Tercile limits (below-normal: blue, normal: gray, and above-normal: red) are computed

with respect to the lead time - dependent model climatology. Values above the 66th percentile (below the 33rd

percentile) are represented by red (blue) shading. Grey shading represents values between these terciles. The

yellow dots indicate the ensemble members that were used to construct the PDF (51 for forecasts, 11 for hindcasts)
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a) 2003-04-03 to 2003-04-09 b) initialization: 2003-03-19

c) 2018-02-26 to 2018-03-04 d) initialization: 2018-02-12

e) 2017-01-16 to 2017-01-22 f) initialization: 2017-01-02

g) 2010-11-27 to 2010-12-03 h) initialization: 2010-11-11
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Fig. 3. Cold spells: Same as Figure 1 but for the cold spell case studies: (a,b) Southeastern Europe cold spell

in 2003 (model version CY46R1), (c,d) central / northern European cold spell in 2018 (model version CY43R3),

(e,f) France cold spell in 2017 (model version CY43R1), (g,h) northern European cold spell in 2010 (model

version CY46R1).
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Fig. 4. Cold spells: Same as Figure 2 but for the cold spell case studies: (a) Southeastern Europe cold spell

in 2003, (b) European cold spell in 2018, (c) France cold spell in 2017, and (d) the northern European cold spell

in 2010.
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Fig. 5. Precipitation events: Accumulated precipitation anomalies over the target week (week 3, indicated in

the panel titles) for (a,c,e,g) observations and (b,d,f,h) the ECMWFmodel prediction (initialization date indicated

in the panel title). (a,b) Guatemala, (c,d) western Ecuador (e,f) northwestern Italy, and (g,h) northeastern

Australia. The blue boxes or dots, respectively, indicate the target location for each case study, as indicated in

Table 1. Observations are from (a,c,e) CPC and (g) AWAP.
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a) b)

c) d)

e) f)

g) h)

Fig. 6. Precipitation extremes: Predictability scores for week 3, (a,c,e,g) assessed through the area under

the ROC curve for the above-normal category, and (b,d,f,h) Spearman’s rank correlation coefficient. The results

were interpolated to the CPC unified grid. For details of the scores see section 2. (a,b) Guatemala, (c,d) western

Ecuador (e,f) northwestern Italy, and (g,h) northeastern Australia. The blue boxes or dots are as in Figure 5.
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Fig. 7. Cyclones: Satellite images at a time close to the maximum intensity of the storms for (a) cyclone

Claudia on January 13, 2020 [NOAA] (c) cyclone Belna on December 7, 2019 [NASA], (e) typhoon Chan-hom

on July 10, 2015 [SSEC/CIMSS, University of Wisconsin–Madison], and (g) medicane Zorbas (2018M02) on

September 29, 2018 [MODIS NASA]. (b,d,f,h) Probability of cyclone occurrence for (b) Claudia initialized

on 30/12/2019 for lead times of 15–21 days, (d) Belna initialized on 18/11/2019 for lead times of 22–28 days,

(f) Chan-hom initialized on 15/06/2015 for lead times of 22–28 days, and (h) medicane Zorbas initialized on

13/09/2018 for lead times of 0–32 days. Black lines indicate the observed cyclone tracks during the verification

period, and the names of the cyclones corresponding to the tracks are indicated. The different choice of lead

times for the case studies refers to the furthest lead time for which the events were possible to be predicted.
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Fig. 8. Cyclones: Outgoing longwave radiation (OLR) anomalies (shaded, W m−2) and MJO-filtered OLR

anomalies (red contours, every 15 W m−2 for negative values) from (a,c) observations averaged over 0-10◦N and

0-10◦S with tropical cyclone tracks (black lines) and names (first letter of the cyclone name in red circle) and

(b,d) ECMWF ensemble forecasts initialized on 15/06/2015 and 18/11/2019. MJO-filtering is performed using a

wavenumber-frequency filter that selects forwavenumbers 0-9 and periods of 20-100 days. MJO-filteredOLRwas

calculated by padding the forecast with observations prior to initialization following the methodology described

in Janiga et al. (2018). (e) CAPE (J kg−1) from the ECMWF ensemble forecast initialized on 30/08/2018, valid

on 26/09/2018.
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