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Abstract: Atmospheric turbulence causes the majority of weather-related air-
craft accidents. Climate models project large increases in clear-air turbulence as
the jet streams become more sheared in response to climate change. However,
climate models have coarser resolutions than the numerical weather predic-
tion models that are used to forecast clear-air turbulence operationally, raising
questions about their suitability for this purpose. Here we provide the first rig-
orous demonstration that climate models are capable of successfully diagnosing
clear-air turbulence and its response to climate change. We use an ensemble
of seven clear-air turbulence diagnostics to compare 38 years of historic turbu-
lence diagnosed from climate model simulations and high-resolution reanalysis
data. We find that the differences in turbulence between the climate model and
reanalysis data are much smaller than the spread between the diagnostics. When
using a climate model to calculate the probabilities (and their temporal trends)
of encountering clear-air turbulence of any strength, at any flight cruising level,
and in any season, we find that most of the uncertainty stems from the tur-
bulence diagnostics rather than the climate model. These results confirm the
suitability of climate models for the task of producing future clear-air turbulence
projections. The turbulence increases are generally larger when diagnosed from
the reanalysis data than the climate model, suggesting that previous quantifi-
cations from climate models of the response of clear-air turbulence to climate
change may be underestimates. Our results show that the key to reducing uncer-
tainty in projections of future clear-air turbulence lies in improving the clear-air
turbulence diagnostics rather than the climate models.

K E Y W O R D S

aviation, clear-air turbulence, climate change, climate models, jet streams, reanalysis data,
uncertainty

1 INTRODUCTION

Atmospheric turbulence is a significant hazard to the avi-
ation sector, causing 71% of all weather-related aircraft
accidents experienced by regularly scheduled air carriers

(Gultepe et al., 2019). Turbulence adversely impacts both
passenger safety and airline economics (Golding, 2002),
and it also contributes to the fear of flying for nervous
fliers (Sharman et al., 2012). It has been estimated that
the US air transport sector experiences around 1,000
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turbulence events annually, injuring approximately 1,500
flight attendants and 560 passengers (Lindsey, 2000).
Other studies broadly corroborate these injury rates, esti-
mating at least 790 annual turbulence events for US air
carriers, of which 568 are injury-producing events, result-
ing in 687 minor flight attendant injuries, 38 serious
flight attendant injuries, 120 minor passenger injuries,
and 17 serious passenger injuries (Kauffmann, 2002).
Officially published turbulence injury rates are known
to be underestimates, because reporting to the author-
ities is mandatory only for serious injuries – such as
those requiring hospitalisation for more than 48 hr – and
is optional for minor injuries (Sharman et al., 2006).
Injured flight attendants are often temporarily unable to
work following a turbulence encounter, and their recu-
peration time leads to an estimated 7,000 lost work-
ing days annually for a typical airline (Sharman and
Lane, 2016).

The main physical categories of aviation turbulence
are reviewed by Storer et al., (2019b). They include con-
vectively induced turbulence (CIT; Uccellini and Koch,
1987; Koch and Dorian, 1988), mountain wave turbulence
(MWT; Lilly, 1978), and clear-air turbulence (CAT; Cham-
bers, 1955; Endlich, 1964; Dutton and Panofsky, 1970;
Knox, 1997). CAT, which is defined as high-altitude air-
craft bumpiness in regions devoid of significant cloudi-
ness and away from thunderstorm activity, is the focus
of the present study. About half of all passenger air-
craft encounters with turbulence occur in cloudless skies
(Cowen, 1998). An important source of CAT is vertical
wind shear: changes in wind speed with altitude can cre-
ate Kelvin–Helmholtz shear instabilities, which generate
growing wave modes that eventually overturn and create
turbulent eddies. In some cases, the shear instabilities are
initiated by loss of atmospheric balance and the conse-
quent generation of gravity waves (Williams et al.,, 2003;
2005; 2008), which locally modify the shear and stratifi-
cation (Palmer et al., 1986; Dunkerton, 1997). In addition
to its impacts on the aviation sector, shear-induced CAT
in the upper troposphere and lower stratosphere has also
been implicated in the break-up and subsequent crash
landing of the Challenger Space Shuttle shortly after lift-off
in 1986 (Uccellini et al., 1986).

Although the atmosphere exhibits variability on a wide
range of time-scales and length-scales (Williams et al.,
2017), aircraft respond only to a subset of turbulent eddies
on length-scales of around 100 m to 1 km (Sharman et al.,
2006). These length-scales are usually smaller than the
numerical grid resolution of atmospheric models (except
in high-resolution case-studies; e.g., Lane et al., 2012).
Therefore, it is usually not possible to explicitly simulate
aircraft-affecting turbulence. Instead, this subgrid-scale
turbulence is diagnosed from the resolved flow. Some

CAT diagnostics that are widely used for this purpose
include the Ellrod and Knapp (1992) indices, the Colson
and Panofsky (1965) index, the Brown (1973) index, and
the Lighthill–Ford index (Knox et al., 2008; McCann et al.,
2012).

The turbulence diagnostics that are used to forecast
CAT operationally are demonstrably skilful (Sharman
et al., 2006). However, they each have individual strengths
and weaknesses, and no single diagnostic predictor is capa-
ble of forecasting all CAT events. For example, a diagnostic
that is optimised for calculating CAT generated by unbal-
anced flow may miss CAT generated by frontogenesis. For
this reason, Sharman et al., (2006) combined several CAT
diagnostics to create the Graphical Turbulence Guidance
(GTG) system, which is used operationally. The individ-
ual CAT diagnostics contributing to GTG are optimally
weighted when combined, to maximise the deterministic
forecast skill. GTG has now been updated to forecast MWT
in addition to CAT (Sharman and Pearson, 2017). Recently,
probabilistic forecasts of aviation turbulence, generated
using ensemble prediction systems, have been tested as
a potentially more informative alternative to traditional
deterministic forecasts (Gill and Buchanan, 2014; Storer
et al., 2019a; 2020).

Several recent studies have used an ensemble of tur-
bulence diagnostics to understand how CAT has increased
historically according to reanalysis datasets (Jaeger and
Sprenger, 2007) and how it will increase in future accord-
ing to climate change models (e.g., Williams and Joshi,
2013; Storer et al., 2017; Williams, 2017). In particular,
Williams and Joshi (2013) and Williams (2017) used a bas-
ket of 21 diagnostics to analyse future CAT in the North
Atlantic flight corridor in winter at 200 hPa at the time of
CO2 doubling compared to pre-industrial concentrations.
They found on average 59% more light CAT, 94% more
moderate CAT, and 149% more severe CAT. Storer et al.,
(2017) extended these studies to analyse future CAT glob-
ally in all seasons and at various altitudes, finding that
some midlatitude regions are projected to experience sta-
tistically significant increases of several hundred per cent
more turbulence by the period 2050–2080. For example,
the North Atlantic, North America, and Europe are each
projected to experience at least a doubling of severe CAT
at 200 hPa.

Various direct and indirect lines of observational evi-
dence suggest that CAT has already started to increase
(Jaeger and Sprenger, 2007; Wolff and Sharman, 2008; Lee
et al., 2019). The CAT increases are consistent with the
strengthened vertical wind shear in the midlatitude upper
troposphere and lower stratosphere that is projected by
climate models (Delcambre et al., 2013; Lv et al., 2021).
Indeed, the North Atlantic jet stream has already become
15% more sheared since satellites began observing it in
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1979, according to three different reanalysis datasets (Lee
et al., 2019). Other effects of climate change on aviation
include modified flight routes and journey times result-
ing from changes to the jet stream wind speeds (Irvine
et al., 2016; Williams, 2016) and increased take-off weight
restrictions resulting from hotter air on the runway (Cof-
fel and Horton, 2015; Gratton et al., 2020). Gratton et al.,
(2022) gives a recent review.

It is known that different climate models project a
quantitatively similar CAT response to climate change
(Storer et al., 2017). This finding provides some reassur-
ance that the projected CAT increases are robust. How-
ever, it has not yet been rigorously demonstrated that cli-
mate models are actually capable of successfully diagnos-
ing CAT and its response to climate change. Specifically,
the grid resolution of the simulated atmosphere is much
coarser in climate models than in the numerical weather
prediction models that are used to forecast CAT opera-
tionally. The relatively coarse grid may introduce a bias
into the diagnosis of CAT (which is one of several unre-
solved processes in climate models; Williams, 2005). This
possibility raises questions about the future CAT increases
that are projected by climate models (although the under-
lying physical mechanism responsible for the increases
is supported by other independent lines of evidence; Lee
et al., 2019).

The present study aims to confront the above issues,
by comparing historic CAT diagnosed from climate model
simulations and high-resolution reanalysis data. While
some previous studies (Jaeger and Sprenger, 2007) have
analysed CAT using reanalysis data, and other studies
(Williams and Joshi, 2013; Storer et al., 2017; Williams,
2017) have analysed CAT using climate models, what is
currently missing is a direct quantitative comparison of
historic CAT in reanalysis data and climate models. Such
a comparison is essential to verify the suitability of cli-
mate models for CAT diagnosis and to demonstrate confi-
dence in the future projections, and it is the main novelty
of the present study. Comparisons between climate mod-
els and reanalysis data typically focus on comparing the
large-scale features. However, successfully capturing the
large scales does not guarantee that climate models cor-
rectly capture the scales near the numerical grid spacing,
which are the relevant scales for diagnosing CAT.

The layout of the present study is as follows. Section 2
describes the methodology, including the details of the cli-
mate model simulations and reanalysis data used in the
comparison. It also describes the CAT diagnostics com-
puted, and how they are calibrated to various turbulence
strength categories ranging from light to severe. Section 3
presents the results, first comparing the historic clima-
tologies of the global CAT distribution between the cli-
mate model and reanalysis data, and then comparing the

response to historic climate change over four decades.
Finally, Section 4 concludes the paper with a summary and
discussion.

2 METHODOLOGY

To diagnose historic CAT from a climate model, we use
the Met Office Hadley Centre HadGEM2-ES model (Jones
et al., 2011), which is part of the fifth Coupled Model
Intercomparison Project (CMIP5) ensemble (Taylor et al.,
2012). This is the same climate model used by Storer et al.,
(2017), so the findings of the present study directly aid
in the interpretation of previous results. The model has a
horizontal grid spacing of 1.25◦ in latitude and 1.875◦ in
longitude, giving an array of 192 × 144 grid boxes globally.
We use 38 years (1968–2005) from the historical climate
simulation, which is driven by previous climate forcings
including CO2.

To diagnose historic CAT from reanalysis data,
we use ERA-Interim from the European Centre for
Medium-Range Weather Forecasts (ECMWF; Dee et al.,
2011). ERA-Interim has a horizontal grid spacing of
0.7◦ in both latitude and longitude, giving an array of
512 × 256 grid boxes globally. This resolution is substan-
tially higher than the HadGEM2-ES climate model and is
approaching (but does not reach) the typical resolutions
of around 0.25◦ that are used to produce operational CAT
forecasts (Sharman and Pearson, 2017). We use 38 years
(1979–2016) from the reanalysis data. Note that this is not
exactly the same period as the climate model (although it
is the same duration) because ERA-Interim does not start
until 1979 and the HadGEM2-ES historical simulation
ends in 2005. Therefore, to make the time series as long
as possible for comparison, the time periods are slightly
offset. The CAT climatologies and trends over 38 years
will be relatively insensitive to this offset, such that most
of the difference between the climate model and reanaly-
sis will be attributable to underlying differences between
HadGEM2-ES and ERA-Interim rather than the offset.

As a sensitivity test to analyse whether different diag-
noses of CAT between HadGEM2-ES and ERA-Interim
are attributable to their different grid resolutions or to
other model differences, part of our analysis uses Iris (Met
Office, 2013) to re-grid the ERA-Interim data through lin-
ear interpolation to have the same horizontal grid and ver-
tical levels as HadGEM2-ES before calculating the turbu-
lence diagnostics. Therefore, when we present our results
in the next section, the inclusion of this sensitivity analysis
leads to a three-way comparison between “climate model”,
“reanalysis”, and “reanalysis (climate grid)”.

From the 21 CAT diagnostics that have been used in
previous climate change studies (Williams and Joshi, 2013;
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Storer et al., 2017; Williams, 2017), we choose to anal-
yse a subset of seven whose diagnostic abilities are sup-
ported by strong observational evidence. Although dozens
of CAT diagnostics have been proposed, when they are
verified using turbulence data from aircraft only a sub-
set are typically found to be skilful enough to be included
in operational forecasting systems. The seven diagnostics
used in the present study fall into this subset: six of them
are used in the operational GTG forecasting system and
are skilful (as measured by the area under the receiver
operating characteristic curve) at diagnosing turbulence
encounters reported by pilots (Sharman et al., 2006). We
include the wind speed multiplied by the directional wind
shear as a seventh diagnostic, because aircraft observa-
tions have shown that CAT is associated with both large
wind speeds and large directional wind shears (Endlich,
1964), so it is logical to take the product of the two as
a CAT diagnostic. The use of this subset of diagnostics
ensures that our results are as reliable and trustworthy
as possible. The seven CAT diagnostics used here are the
following. The Richardson number diagnoses regions of
Kelvin–Helmholtz shear instability (e.g., Endlich, 1964;
Dutton and Panofsky, 1970) and is defined by

Ri = − 1
𝜌𝜃

𝜕𝜃∕𝜕p
(𝜕u∕𝜕p)2 , (1)

where 𝜌 is density, p is pressure, 𝜃 is potential tem-
perature, and u = (u, y) is the horizontal velocity vector.
Because small values of Ri are associated with turbu-
lence, here we use −Ri as the diagnostic, so that larger
(i.e., more positive) values are associated with turbulence.
The Colson–Panofsky index has its origins in the turbu-
lent kinetic energy (TKE) balance equation (Colson and
Panofsky, 1965) and is defined by:

CP = (Δz)2
(
𝜕u
𝜕z

)2 (
1 − Ri

Ricrit

)
, (2)

where z is altitude, Δz is the vertical grid spacing, and
Ricrit = 0.5 is a critical Richardson number. The fron-
togenesis function diagnoses regions where the magni-
tude of the horizontal potential temperature gradient
increases following the flow (Sharman et al., 2006) and is
defined by:

F𝜃 =
D
Dt

(||||𝜕u
𝜕𝜃

||||
2)

, (3)

where t is time, D/Dt denotes the Lagrangian time deriva-
tive, and the partial derivative is taken at fixed horizontal
position using potential temperature as a vertical coordi-
nate. Ellrod’s turbulence index (variant 1) is derived from
a simplified frontogenesis function (Ellrod and Knapp,

1992) and is defined by:

TI1 =
||||𝜕u
𝜕z

||||
√(

𝜕v
𝜕x

+ 𝜕u
𝜕y

)2

+
(
𝜕u
𝜕x

− 𝜕v
𝜕y

)2

, (4)

where x and y are longitude and latitude, respectively.
The wind speed multiplied by the directional wind shear
diagnoses regions of both high wind speed and large direc-
tional wind shear (Endlich, 1964) and is defined by:

√
u2 + v2

||||𝜕𝜓𝜕z
|||| , (5)

where 𝜓 is the horizontal wind direction. The magnitude
of the residual of the nonlinear balance equation diag-
noses regions of strong imbalance (e.g., Knox et al., 2008;
McCann et al., 2012) and is defined by:

UBF = |||−∇2Φ + 2J(u, v) + f 𝜁 − 𝛽u||| , (6)

where ∇2 is the Laplacian operator, Φ is the geopotential,
J() is the Jacobian operator, f and 𝛽 are the Coriolis param-
eter and its latitudinal derivative, respectively, and 𝜁 is the
vertical component of the vorticity. The North Carolina
State University index (version 1) was inspired by a study
of severe turbulence encounters (Kaplan et al., 2005) and
is defined by:

NCSU1 = 1
max(Ri, 10−5)

max
(

u𝜕u
𝜕x

+ v𝜕v
𝜕y

, 0
) |∇𝜁 | , (7)

where max() is the maximum operator and ∇ is the hori-
zontal gradient operator.

We compute the seven CAT diagnostics from both
HadGEM2-ES and ERA-Interim using snapshots (not
time averages) of the zonal and meridional wind and
temperature fields every six hours over the 38 years.
We compute the CAT diagnostics at two pressure alti-
tudes: 200 hPa (corresponding to approximately 12 km or
39,000 ft) and 250 hPa (corresponding to approximately
10 km or 34,000 ft). The horizontal and vertical spa-
tial derivatives are calculated using centred second-order
finite differences. For each CAT diagnostic, we com-
pute the probability of exceeding each of five turbu-
lence strength thresholds every six hours, following
the methodology of Williams (2017) and Storer et al.,
(2017). The strength categories correspond to what would
be experienced as light, light-to-moderate, moderate,
moderate-to-severe, and severe turbulence on a large pas-
senger aircraft. The thresholds are derived with reference
to the cube-rooted eddy dissipation rate, which is propor-
tional to the vertical acceleration of an aircraft experienc-
ing turbulence (MacCready, 1964). The specific thresholds
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for each diagnostic are dependent on the resolution and
other characteristics of the input temperature and wind
data, and therefore separate thresholds are calculated for
the climate model and reanalysis data (and re-gridded
reanalysis data). In each case, the global, annual proba-
bility distribution for each CAT diagnostic is computed
using six-hourly data from the first 20 years of each dataset.
The usage of 20 years for the calibration period is con-
sistent with previous work (Williams and Joshi, 2013;
Williams, 2017) but is arbitrary and the results are insen-
sitive to this choice. Then the diagnostic thresholds are
calculated by taking the top 0.1% (99.9–100%) of the prob-
ability distribution to be severe turbulence; the next 0.1%
(99.8–99.9%) to be moderate-to-severe turbulence; the next
0.2% (99.6–99.8%) to be moderate turbulence; the next 0.5%
(99.1–99.6%) to be light-to-moderate turbulence; and the
next 2.1% (97–99.1%) to be light turbulence. These percent-
ages are consistent with the log-normal distribution of the
cube-rooted eddy dissipation rate, as measured by aircraft
(Williams, 2017). Separate thresholds are calculated at 200
and 250 hPa. Having calculated the thresholds, a turbu-
lence event occurs any time a diagnostic value exceeds a
threshold.

3 RESULTS

3.1 Climatologies of the global CAT
distribution

The global spatial distribution of historic CAT in Decem-
ber, January, and February (DJF) at 200 hPa is shown in
Figure 1. Each map shows the probability of encountering
light CAT at each point on the globe, as diagnosed from
the full 38 years of each dataset. The corresponding maps
for light-to-moderate, moderate, moderate-to-severe, and
severe CAT (not shown) indicate similar spatial patterns
but reduced probabilities, as expected, and similar results
are obtained at 250 hPa (not shown). For most of the seven
diagnostics, visual inspection of Figure 1 indicates good
broad agreement (with absolute differences under 8%) of
the spatial patterns and magnitudes between the proba-
bilities diagnosed from the climate model and reanalysis
data (whether re-gridded or not). The differences are larger
for the Colson–Panofsky index and frontogenesis function,
especially in the Tropics in the Indian Ocean and West
Pacific Ocean. For some diagnostics, the meridional struc-
ture exhibits a single peak in the Tropics. The negative
Richardson number falls into this category, because of the
weak stratification in the Tropics at this altitude. For other
diagnostics, the meridional structure exhibits two peaks
in the midlatitudes of the Northern and Southern Hemi-
spheres. Variant 1 of Ellrod’s turbulence index falls into

this category, because of the large flow deformation and
vertical wind shear in the vicinity of the jet streams.

To investigate the strength of the annual cycle, the
corresponding analysis for June, July, and August (JJA)
is shown in Figure 2. The spatial patterns and magni-
tudes of the probabilities are broadly similar to those
for the opposite season (Figure 1). For the diagnostics
whose meridional structure exhibits a single peak in the
Tropics, such as the Colson–Panofsky index, the tropical
peak generally moves from south of the Equator in DJF
to north of the Equator in JJA, because the Hadley cir-
culation moves towards the summer hemisphere (Dima
and Wallace, 2003). For the diagnostics whose meridional
structure exhibits two midlatitude peaks, such as variant 1
of Ellrod’s turbulence index, the largest peak is typically
in the Northern Hemisphere in DJF and in the South-
ern Hemisphere in JJA, because the subpolar jet streams
are stronger in the winter hemisphere. The residual of
the nonlinear balance equation behaves differently, being
stronger in the Northern Hemisphere in both seasons and
increasing in magnitude in the Northern Hemisphere from
DJF to JJA. Unexpectedly, the frontogenesis function does
not clearly exhibit the expected midlatitude peaks, espe-
cially in the climate model, perhaps because the resolution
is too coarse to resolve frontogenesis. Similar results are
found for the transitional seasons of March, April, and May
(MAM) and September, October, and November (SON),
with the peaks in intermediate positions, as expected (not
shown).

Because there are seven different CAT diagnostics each
applied to three different datasets, we have an ensemble
of 21 different estimates of the global spatial distribution
of the probability of encountering light CAT at 200 hPa
in DJF (Figure 1) and JJA (Figure 2). We wish to quan-
tify whether the main source of uncertainty within each
21-member ensemble stems from the use of multiple diag-
nostics or multiple datasets. In other words, are the main
differences between the 21 maps in Figures 1 and 2 along
the rows or down the columns? To answer this question,
for each season we take each of the seven CAT diag-
nostics in turn, and at each latitude and longitude we
compute the standard deviation of the probabilities across
the three datasets, before averaging them globally to pro-
duce a global-mean standard deviation. This procedure
yields a quantification of the global-mean inter-dataset
uncertainty for each diagnostic. We also take each of the
three datasets in turn, and at each latitude and longitude
we compute the standard deviation of the probabilities
across the seven CAT diagnostics, before again averaging
them globally. This procedure yields a quantification of the
global-mean inter-diagnostic uncertainty for each dataset.

The results of this analysis are shown in Table 1. Con-
sistent with visual inspection of Figures 1 and 2, the
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F I G U R E 1 Global maps of the probability (%) of encountering light CAT at 200 hPa in DJF. Seven turbulence diagnostics are shown
(one per row). The turbulence probabilities are calculated from 38 years of the HadGEM2-ES historical climate simulation (left column),
38 years of ERA-Interim reanalysis data after re-gridding to have the same resolution as HadGEM2-ES (middle column), and 38 years of
ERA-Interim reanalysis data at its original resolution (right column) [Colour figure can be viewed at wileyonlinelibrary.com]

variability across the datasets for each diagnostic is typ-
ically much smaller than the variability across the diag-
nostics for each dataset. The majority of the uncertainty

within the 21-member ensemble therefore stems from the
use of multiple diagnostics rather than the use of mul-
tiple datasets. In other words, the spread between the

http://wileyonlinelibrary.com
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F I G U R E 2 As Figure 1, but for JJA [Colour figure can be viewed at wileyonlinelibrary.com]

climate model and reanalysis data is much smaller than
the spread between the diagnostics. The two reanalysis
datasets are not strictly independent, because one is a
coarse re-gridding of the other, but ensuring strict inde-
pendence by excluding the reanalysis on the climate grid

from the standard deviation calculations in Table 1 does
not change the overall findings. Close inspection of Table 1
reveals that there is generally slightly less uncertainty
in the transitional seasons (MAM and SON) than the
extremal seasons (DJF and JJA). There is generally slightly

http://wileyonlinelibrary.com
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T A B L E 1 Breakdown of uncertainty sources for the probability of encountering light CAT at 200 hPa

Turbulence diagnostic DJF MAM JJA SON

Negative Richardson number 0.68% 0.61% 0.69% 0.50%

Colson–Panofsky index 1.00% 0.96% 1.06% 0.87%

Frontogenesis function 0.75% 0.62% 0.78% 0.63%

Variant 1 of Ellrod’s turbulence index 0.41% 0.36% 0.48% 0.33%

Wind speed × directional shear 0.38% 0.30% 0.40% 0.32%

Magnitude of residual of nonlinear balance equation 0.22% 0.20% 0.27% 0.24%

Version 1 of North Carolina State University index 0.53% 0.48% 0.50% 0.44%

Climate model 1.46% 1.23% 1.44% 1.22%

Reanalysis (climate grid) 1.46% 1.37% 1.63% 1.36%

Reanalysis 1.75% 1.62% 1.84% 1.56%

Note: For each season (columns), the global-mean inter-dataset standard deviations (i.e., the variability across the three datasets for each diagnostic) are shown
in the top seven rows, and the global-mean inter-diagnostic standard deviations (i.e., the variability across the seven diagnostics for each dataset) are shown in
the bottom three rows.

T A B L E 2 For 21 different estimates of the probability of encountering CAT, calculated from three datasets using seven diagnostics, this
table shows the ratio of the average global-mean inter-diagnostic standard deviation to the average global-mean inter-dataset standard
deviation, for each season, pressure altitude, and strength category

DJF MAM JJA SON

Strength category 200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa

Light 2.76 2.58 2.80 2.65 2.77 2.40 2.90 2.46

Light-to-moderate 2.36 2.32 2.35 2.27 2.51 2.29 2.56 2.26

Moderate 2.10 2.13 2.14 2.08 2.31 2.16 2.38 2.10

Moderate-to-severe 1.94 2.01 2.00 1.97 2.15 2.06 2.22 2.00

Severe 1.81 1.86 1.88 1.80 1.89 1.87 2.09 1.86

less agreement between the diagnostics for the reanalysis
data at its original resolution than for either the climate
model or the reanalysis data interpolated onto the climate
model grid, suggesting that the use of higher-resolution
input fields increases the inter-diagnostic uncertainty. The
best agreement between the climate model and reanalysis
data evidently occurs for the purely dynamical diagnos-
tics (i.e., Ellrod’s turbulence index, wind speed × direc-
tional shear, and nonlinear balance equation residual),
whereas the worst agreement occurs for the diagnostics
explicitly involving a thermodynamic component (i.e.,
Richardson number, Colson–Panofsky index, frontogene-
sis function, and North Carolina State University index).
The inter-diagnostic uncertainty would be reduced if only
the dynamical (or only the thermodynamic) diagnostics
were included in the ensemble, but we have included both
categories to fairly reflect the diversity of CAT generation
mechanisms.

To summarise how much larger the inter-diagnostic
variability is than the inter-dataset variability, we

calculate the ratio of the global-mean inter-diagnostic
standard deviation averaged over the three datasets (i.e.,
averaged over the bottom three rows in Table 1) to the
global-mean inter-dataset standard deviation averaged
over the seven diagnostics (i.e., averaged over the top
seven rows in Table 1). These ratios are shown in Table 2
for each season, pressure altitude, and strength category.
In all cases, the inter-diagnostic variability is around 2–3
times larger than the inter-dataset variability. Therefore,
when using a climate model to calculate the probabil-
ity of encountering turbulence of any strength, at any
flight cruising level, and in any season, most of the
uncertainty stems from the turbulence diagnostics rather
than the climate model. The ratio of inter-diagnostic to
inter-dataset variability generally decreases as the turbu-
lence strength increases, such that the inter-diagnostic
variability is typically nearly three times as large as the
inter-dataset variability for light turbulence, but only
around twice as large for severe turbulence. Never-
theless, diagnostic uncertainty dominates over model
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uncertainty, for all turbulence strengths from light to
severe.

3.2 Response to climate change

We next perform a similar analysis for long-term trends in
the global spatial distribution of historic CAT. After divid-
ing the 38 years for each dataset into two equal periods of
19 years each, we count the number of turbulence events
(i.e., threshold exceedances) at each latitude and longitude
in each period, and we then find the percentage change
from the first period to the second. The climate will have
changed between the two periods, potentially increasing
the frequency of occurrence of turbulence. However, given
the relatively short time periods under consideration, we
expect these increases to be smaller than those that have
been found to result from doubling the CO2 concentra-
tion (e.g., 149% more severe CAT over the North Atlantic
at 200 hPa in winter; Williams, 2017) or from compar-
ing the period 2050–2080 to pre-industrial conditions (e.g.,
181.4% more severe CAT over the North Atlantic at 200 hPa
annually; Storer et al., 2017). Nevertheless, we note that
other studies have previously identified and analysed CAT
trends over relatively short periods (e.g., 44 years; Jaeger
and Sprenger, 2007).

The global spatial distribution of the change in his-
toric CAT between the two periods at 200 hPa in DJF and
JJA is shown in Figures 3 and 4, respectively. Each map
shows the relative (not absolute) change over time in the
probability of encountering light CAT at each point on
the globe, as diagnosed by comparing the first and second
halves of each dataset. The corresponding maps at 250 hPa,
and for the other turbulence strengths, are similar (not
shown). For each of the seven diagnostics, visual inspec-
tion of Figures 3 and 4 indicates lower levels of agreement
between the climate model and reanalysis data than was
the case for the basic climatological maps in Figures 1 and
2. In all cases, there is a global-mean increase in turbu-
lence over time as the climate changes, consistent with
previous studies (Jaeger and Sprenger, 2007; Williams and
Joshi, 2013; Storer et al., 2017; Williams, 2017). However,
the magnitude of the increase tends to be larger in the
reanalysis data than the climate model. For each of the
seven diagnostics, the two reanalysis maps (both on the
original reanalysis grid and after re-gridding to match the
climate model grid) are remarkably similar, indicating that
the cause of the stronger turbulence increase in the reanal-
ysis dataset compared to the climate model is not the finer
grid resolution.

Having taken 38 years of historic data and computed
an ensemble of 21 different estimates of the changing
probability of encountering light CAT at 200 hPa in DJF

(Figure 3) and JJA (Figure 4), we wish to quantify whether
the main source of uncertainty in the estimates stems
from the use of multiple diagnostics or multiple datasets.
We follow the same approach taken in Section 3.1. The
global-mean inter-dataset uncertainty for each diagnos-
tic and global-mean inter-diagnostic uncertainty for each
dataset are shown in Table 3. The variability across the
datasets for each diagnostic is again typically smaller than
the variability across the diagnostics for each dataset,
but only slightly smaller this time (compared to the cor-
responding breakdown in Table 1) because of the pro-
nounced difference between the climate model and reanal-
ysis data. The best agreement between the climate model
and reanalysis data evidently occurs for the North Carolina
State University index and the worst agreement occurs for
the Colson–Panofsky index, consistent with visual inspec-
tion of Figures 3 and 4. There is no strong seasonality.

The ratio of the inter-diagnostic variability to the
inter-dataset variability globally is summarised in Table 4
for each season, pressure altitude, and strength cate-
gory. In all cases, the inter-diagnostic variability is around
40–60% larger than the inter-dataset variability. Therefore,
when using a climate model to calculate the impacts of
climate change on the probability of encountering tur-
bulence of any strength, at any flight cruising level, and
in any season, most of the uncertainty stems from the
turbulence diagnostics rather than the climate model.
The ratios are systematically smaller in Table 4 than
in Table 2, however. The ratio of inter-diagnostic to
inter-dataset variability generally slightly increases as the
turbulence strength increases from light to severe, and
also as the altitude increases from a pressure level of 250
to 200 hPa.

The turbulence percentage changes presented in
Figures 3 and 4 are quantified in Table 5, averaged over
the globe, the year, and the seven CAT diagnostics. Each
entry in the table is positive, indicating more turbulence in
each strength category, at each altitude, and in both the cli-
mate model and reanalysis data. The percentage increases
in the reanalysis data (whether re-gridded or not) are typ-
ically 4–5 times as large as those in the climate model.
There is no obvious systematic difference between the
changes in the two reanalysis datasets (both on the original
reanalysis grid and after re-gridding to match the climate
model grid), as noted previously based on visual inspec-
tion of Figures 3 and 4, but now confirmed quantitatively.
The relative increases are systematically larger at 200 hPa
than 250 hPa in all three datasets, consistent with previ-
ous findings (Storer et al., 2017). The relative increases also
generally increase when moving through the turbulence
strength categories from light to severe in the reanalysis
data, but this trend appears to be absent (or even opposite)
in the climate model.
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F I G U R E 3 Global maps of the change over time in the probability (%) of encountering light CAT at 200 hPa in DJF. Seven turbulence
diagnostics are shown (one per row). The changes are calculated from 38 years of the HadGEM2-ES historical climate simulation (left
column), 38 years of ERA-Interim reanalysis data after re-gridding to have the same resolution as HadGEM2-ES (middle column), and 38
years of ERA-Interim reanalysis data at its original resolution (right column). In each case, the change in probability is calculated by
comparing the second half of the dataset to the first half, and is expressed as a relative (not absolute) change [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 4 As Figure 3, but for JJA [Colour figure can be viewed at wileyonlinelibrary.com]

4 SUMMARY AND DISCUSSION

This study has provided the first rigorous answer to the
question of whether climate models are capable of success-
fully diagnosing CAT and its response to climate change.

We have found relatively good agreement between his-
toric CAT diagnosed from climate model simulations and
high-resolution reanalysis data, where “relatively good
agreement” means that the climate model and reanaly-
sis data are closer together than the diagnostics are. This

http://wileyonlinelibrary.com
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T A B L E 3 Breakdown of uncertainty sources for the change over time in the probability of encountering light CAT at 200 hPa

Turbulence diagnostic DJF MAM JJA SON

Negative Richardson number 20.92% 20.63% 23.33% 26.49%

Colson–Panofsky index 32.12% 43.91% 38.47% 46.82%

Frontogenesis function 23.19% 27.59% 30.00% 30.16%

Variant 1 of Ellrod’s turbulence index 25.10% 30.16% 29.75% 32.46%

Wind speed × directional shear 27.29% 21.88% 27.34% 22.65%

Magnitude of residual of nonlinear balance equation 23.61% 27.17% 32.57% 29.20%

Version 1 of North Carolina State University index 15.38% 14.49% 16.63% 15.07%

Climate model 29.05% 25.90% 30.88% 28.85%

Reanalysis (climate grid) 37.10% 43.90% 44.39% 44.52%

Reanalysis 43.12% 54.77% 56.25% 59.56%

Note: For each season (columns), the global-mean inter-dataset standard deviations (i.e., the variability across the three datasets for each diagnostic) are shown
in the top seven rows, and the global-mean inter-diagnostic standard deviations (i.e., the variability across the seven diagnostics for each dataset) are shown in
the bottom three rows.

T A B L E 4 For 21 different estimates of the change over time in the probability of encountering CAT, calculated from three datasets
using seven diagnostics, this table shows the ratio of the average global-mean inter-diagnostic standard deviation to the average global-mean
inter-dataset standard deviation, for each season, pressure altitude, and strength category

DJF MAM JJA SON

Strength Category 200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa

Light 1.52 1.42 1.56 1.42 1.55 1.47 1.53 1.41

Light-to-moderate 1.53 1.49 1.59 1.49 1.55 1.51 1.56 1.49

Moderate 1.58 1.51 1.63 1.52 1.58 1.53 1.64 1.52

Moderate-to-severe 1.59 1.52 1.64 1.54 1.63 1.54 1.65 1.54

Severe 1.60 1.62 1.57 1.61 1.61 1.63 1.61 1.64

T A B L E 5 Global-mean annual-mean change over time in the probability of encountering five strengths of CAT at two pressure levels

Climate model Reanalysis (climate grid) Reanalysis

Strength Category 200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa

Light +8.4% +7.4% +29.3% +22.9% +27.7% +21.8%

Light-to-moderate +8.6% +7.7% +36.2% +29.1% +37.1% +24.4%

Moderate +7.5% +6.3% +41.2% +30.6% +41.2% +25.6%

Moderate-to-severe +6.5% +5.6% +38.9% +27.9% +40.2% +25.8%

Severe +7.2% +6.3% +42.5% +27.4% +45.8% +29.6%

Note: The changes are averaged over all seven CAT diagnostics. The changes are calculated from 38 years of the HadGEM2-ES historical climate simulation
(“climate model”), 38 years of ERA-Interim reanalysis data after re-gridding to have the same resolution as HadGEM2-ES (“reanalysis (climate grid)”), and 38
years of ERA-Interim reanalysis data at its original resolution (“reanalysis”). The change in probability is calculated by comparing the second half of the dataset
to the first half, and is expressed as a relative (not absolute) change.

is a stringent test for a climate model, because to pass
it the model has to capture both the planetary-scale and
grid-scale features correctly. Our analysis proceeded by
calculating seven CAT diagnostics from three datasets

every six hours over 38 years, to analyse five turbulence
strengths at two pressure altitudes in four seasons. The
spread between the climate model and reanalysis data
was generally found to be much smaller than the spread
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between the diagnostics. Therefore, when using a climate
model to calculate the probabilities (and their temporal
trends) of encountering turbulence of any strength, at any
flight cruising level, and in any season, most of the uncer-
tainty stems from the turbulence diagnostics rather than
the climate model. It is well established that climate mod-
els project increases in CAT in response to climate change,
and the present study confirms the suitability of climate
models for this task.

One of our main findings is that the turbulence
increases are generally larger when diagnosed from the
reanalysis data than the climate model. This result sug-
gests that previous quantifications from climate models
of the response of CAT to climate change (Williams,
2017; Williams and Joshi, 2013; Storer et al., 2017) may
be underestimates. The time offset between the climate
model (1968–2005) and reanalysis data (1979–2016) could
account for part of these differences if the changes in CAT
are nonlinear in time. The weaker global response to cli-
mate change in the climate model than the reanalysis data
stems partly (but not fully) from the climate model incor-
rectly capturing the changes in the Tropics (assuming the
reanalysis can be regarded as truth). However, the main
area of interest for CAT is within and around the mid-
latitude jet streams, so this apparent model bias may be
largely inconsequential. On the other hand, we note that
there are considerable inconsistencies in Figures 3 and 4
between the climate model and reanalysis data in the mid-
latitudes, so biases beyond the Tropics may nevertheless be
impacting the resulting projections.

Our results show that the limiting factor that is pre-
venting the reduction of uncertainty in projections of
future CAT is not the climate models, but the CAT diag-
nostics. Therefore, to reduce these uncertainties, further
research is needed to improve and refine the diagnos-
tics. The development of new CAT diagnostics is ongoing
and welcome, but may actually increase inter-diagnostic
uncertainty if the new diagnostic lies outside the spread
of the existing ensemble. On the other hand, increased
inter-diagnostic spread may lead to better reliability in
operational CAT forecasts. What would perhaps be more
useful is further insights into the circumstances in which
each diagnostic does (and does not) add useful informa-
tion to the diagnosis of CAT, so that a diagnostic may be
down-weighted or eliminated from the ensemble on those
occasions when it is merely adding noise. Gaining these
insights will likely require further improvements to our
fundamental understanding of the sources and dynamics
of CAT.

Repeating the present study using additional climate
models and reanalysis datasets should be a priority for
future work. However, given the stark differences in spread
between the diagnostics and gridded datasets found in

our study, it seems unlikely that our qualitative findings
and conclusions will be affected by the inclusion of new
datasets. Furthermore, it has been shown that different
climate models behave similarly in terms of their quan-
titative response of CAT to climate change (Storer et al.,
2017), providing some reassurance that our findings are
likely to be robust and that our conclusions are unlikely
to be modified by the inclusion of additional climate mod-
els. Separately analysing the inter-diagnostic uncertainty
arising from the dynamical and thermodynamic diagnos-
tics should also be a priority, as should using other com-
parison metrics to evaluate the CAT diagnostics and the
climate models. Other avenues for future research include
an assessment of the response of the other forms of tur-
bulence apart from CAT (i.e., CIT and MWT) to climate
change. In particular, it is plausible that CIT could evolve
as climate change increases deep convection, particularly
in the Tropics (Price and Rind, 1994; Reeve and Toumi,
1999). Also currently lacking is an understanding of the
impacts on CAT of some of the modes of natural variabil-
ity, such as the El Niño Southern Oscillation (ENSO). For
example, it is possible (but currently unproven) that the
observed spike in pilots encountering turbulence over the
USA in winter 1997–1998 was caused by a strong El Niño
event (Wolff and Sharman, 2008). We call for future work
to explore these areas.
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