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Abstract: The present study applied the Färe–Primont index approach to estimate the total factor
productivity (TFP) growth of world agriculture, covering the period 1969–2013. Overall, the world
agricultural TFP grew at a rate of 0.44% p.a. This growth was mainly contributed to by technological
progress and mix efficiency changes, while the contributions of technical efficiency and scale efficiency
changes were negligible. TFP growth varied across regions, with South Asia at the top of the list
(1.05% p.a.), and East Asia and the Pacific (0.18% p.a.) at the bottom. TFP components exerted
differential influences amongst regions. For instance, mix efficiency played a dominant role in
Sub-Saharan Africa, the Middle East and North Africa, whereas it was technical efficiency change in
Latin America and the Caribbean region. The paper argues for region specific policy interventions
emphasizing technical progress through investment in R&D and price and non-price interventions to
improve economies of scope and scale of operation in the agricultural sector.

Keywords: total factor productivity; Fare-Primont index; technical; scale and mix efficiency changes;
non-parametric linear programming

1. Introduction

Agriculture is not only a source of food, but also a source of vast employment and rural
development; hence, its development and growth have always been and will remain one of the topmost
priority agendas in the development arena, particularly for the policy makers in the least developed
and developing countries. This is because food security is one of the prime goals of the governments
of these countries. Agriculture has a pivotal role in poverty alleviation and economic development [1].
The nexus between agricultural productivity growth and poverty reduction is well documented in the
literature [2,3]. Shane et al. [4] provided empirical evidence that gaining agricultural productivity is
the most effective strategy for poverty alleviation. It is true that, at the global level, the sector has lost
its previous importance, particularly in terms of contribution to GDP and employment generation.
For example, in 2016, the agricultural sector merely contributed 4.00% to the global GDP, but the
contribution is relatively much higher in low-income countries, amounting to an average of 30.00%
of the national GDP. The contribution of agriculture to national economies has decreased over the
years, as countries have moved upward to upper income classes. Still, 26.48% of the world’s total
employment is offered by this sector [5]. Through an extensive review of 25 reports on the incidence of
the global food price hike that occurred during the end of the last decade, Abbott et al. [6] concluded
that the hike was largely fueled by declining agricultural productivity, though Fuglie [7] did not
find empirical evidence that agricultural TFP declined until 2006. This certainly advocates for more
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attention and investment in the agricultural sector, which was neglected by foreign aid donors and the
governments of developing countries [3]. Therefore, it is very important that agricultural productivity
growth should be undertaken as a long-term strategy to address such a crisis of poverty, hunger and
malnutrition. Furthermore, higher agricultural productivity can promote non-agricultural sectors by
diverting scarce resources (e.g., labor and capital) away from agriculture [8].

Increased productivity contributes to lowering food prices, which will certainly benefit the
consumers, particularly the poor, since food expenses occupy a larger share of their total budget [9,10].
But, at the producer level, the effect varies largely depending on the level at which agricultural products
are tradable, and the associated level of price elasticity of demand [11,12]. Furthermore, at the farm
level, the effects vary depending on the individual farmers’ access to resources, inputs and ability to
adopt technology [11]. The debate on this productivity–price complex relationship is also mentioned
as a critical factor hindering the development of agricultural capitalism in the literature explaining
agrarian development history, particularly when the country lacks some comparative advantage in
agriculture in the form of availability of ample productive land, advanced mechanization, specialized
and intensive farming, and infrastructure, etc. [13].

The pioneering works on productivity analysis [14–16] were mostly confined to estimating partial
productivity (land or labor productivity) while ignoring efficiency and technological changes [17].
The second generation studies were mostly cross-country analysis using production function and
meta-production function approaches, including multiple inputs and outputs [18,19]. These studies
explored the Food and Agriculture Organization of the United Nations Statistical Database (FAOSTAT)
database and used index number approaches to estimate total factor productivity (TFP) growth [17].
TFP indices capture the effect of improvements in technology in the form of research and development,
as well as investments in infrastructure, such as irrigation, roads and electricity [20]. Higher TFP
does not only mean higher output from the available technology and given resource base, but also
contributes to rural poverty reduction [21]. The approach has also been used to assess the sustainability
of a specific agricultural production system [22] or crop [23].

A few studies have analyzed agricultural TFP growth at the global level [17,24–28], the majority
of which adopted the Malmquist index (MI) [17,24–26]. The MI is not multiplicatively complete
or transitive, and does not decompose TFP growth components into finer components, which are
important in order to know the actual contributions of associated efficiency measures to TFP [29].
Moreover, like other simple index methods (i.e., Theil), the MI is biased and fails to satisfy transitivity
or the axioms of the index number theory [8,29].

A contemporary method for computing a productivity index, which is based on two indices from
Färe and Primont [30], known as Färe–Primont index (FPI), was proposed by O’Donnell [31]. The index
specifies the production technology (through distance functions for both) without making any restrictive
assumptions about the underlying production technology and returns to scale, firms’ optimizing
behavior, the market structure under which the firms operate and/or price information. In other words,
it does not need the specification of any functional form of the underlying production technology, e.g.,
Cobb–Douglas or a more flexible translog, which is essential in a parametric approach. Most importantly,
the index complies with all other regularity conditions of index numbers, including multiplicative
completeness and transitivity [32]. Le Clech and Castejón [28] compared both MI and FPI on the same
global database and concluded the superiority of the latter approach. Global TFP estimates using MI
and growth accounting approaches are available in the works of Ludena et al. [25] and Fuglie [27],
respectively. However, both Fuglie [27] and Le Clech and Castejón [28] used only one aggregate output,
defined as the gross agricultural output at constant international dollars, which raises concerns as
input and output aggregation have implications for productivity and efficiency measurements [25].
The aggregation of variables was not suggested as a preferred strategy [33] because the effects of the
aggregation of input and output variables are ambiguous. For similar reasons, Rao and Coelli [34]
suggested to avoid country level aggregation, where scale issues are a problem.
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Given this backdrop, the present study aims to analyze agricultural productivity and associated
efficiency measures at the global scale, covering large number of countries (i.e., 104 in total) for
a 45-year period (1969–2013). The contribution of this study to the existing literature is two-fold.
First, we have adopted the FPI approach proposed by O’Donnell [32], which circumvents all the
methodological weaknesses identified above. Though this approach is adopted in a couple of earlier
studies in estimating the productivity growth of world agriculture [27,28], we suspect that their results
may be misleading due to the aggregation of output into a single index. Second, we have estimated and
reported six finer TFP components (i.e., technical change, technical efficiency change, scale efficiency
change, mix efficiency change, residual mix efficiency change and residual scale efficiency change)
which were not reported in earlier studies. Thus, this study offers a greater insight on the sources of
growth and enables us to draw a wider range of policy implications.

2. Materials and Methods

2.1. Measuring TFP and Its Different Components

Inspired by the theoretical superiority of the FPI [29,31,32] over other competitive index methods
(e.g., Hicks–Moorsteen index (HMI) proposed by Bjurek, [35]), we adopt the FPI approach, which is
developed with distance function as the aggregator function. Based on the economic connotations
of related efficiencies, it is possible to decompose FPI into the product of technological progress (i.e.,
movements in the production frontier), technical efficiency (i.e., change is a measure of movements
towards the frontier), scale efficiency (i.e., measures of movements around the frontier surface to
capture economies of scale) and residual mix efficiency changes (i.e., measures of movements around
the frontier surface to capture economies of scope), which are not sensitive to measurement units.
That is, inputs and outputs can be measured either in physical quantities or in monetary values at
constant prices, or a combination of both, because the computed results are ratios, which are unit free.

The FPI is based on two indices from Färe and Primont [30], and is defined as the ratio of an
aggregate output (q) to an aggregate input (x):

TFP =
Q(q)
X(x)

(1)

Following O’Donnell [31], the aggregated outputs and inputs can be estimated as

Q(q) = Do(x0, q, t0) (2)

X(x) = Di(x, q0, t0) (3)

The above two equations are Shephard output and input distance functions, respectively, which are in
nature linearly homogenous, always positive and non-decreasing [36], and represent the production
technology available in period t. The FPI score for firm i in period t relative to firm h in period s is [31]

TFPhs, jt =
D0(x0, qit, t0)

D0(x0, qhs, t0)

D1(xhs, q0, t0)

D1(xit, q0, t0)
(4)

We have worked out the following finer measures of efficiency changes by decomposing
output-oriented TFP changes, which are counterparts of the input-oriented technical efficiency
measures (details of input-oriented TFP measures are available at [29]. The output-oriented technical
efficiency, OTE, is defined as the maximum possible aggregate output produced while holding the
input vector and output mix fixed (Figure 1). Other relevant output-oriented components are presented
in Figure 1 [8,29,37,38]. These efficiency measures are defined and described with reference to two
production frontiers: a mix-restricted production frontier (when the combination of outputs and inputs
are supposed to be fixed) and unrestricted production frontier (when both input and output mixes
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are allowed to be different), where each point refers to a combination of aggregate input and output
(Figure 1, adapted from [37,38]).
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The OTE estimates the productivity shortfall associated with operating below the production
frontier; the OME defined by (6) measures productivity shortfalls associated with diseconomies of
scope [8,29,37,38]. OME is the change in productivity when the assumptions about input and output
mixes are relaxed, and is estimated as the ratio of restricted and unrestricted production function (i.e.,
slope OCslope OV in Figure 1) [29,37,38]. OSE (= slope OCslope OD in Figure 1) is the typical measure
of output-oriented scale efficiency, which is the productivity difference between TFP at a technically
efficient point and the maximum attainable TFP whilst holding the output and input mixes fixed [29,37].
The residual output-oriented scale efficiency, ROSE (= slope OVslope OE in Figure 1), is the difference
between TFP at an output-mix-efficient point and the maximum possible TFP [29,37]. However, the
term ‘residual’ here means that, although all points on the unrestricted frontier are mix efficient, each
has different input and output mixes. Finally, residual mix efficiency, RME (= slope ODslope OE in
Figure 1), allows probable changes in scale, estimated as the difference between TFP at a scale-efficient
point and the maximum possible TFP [29,37,38].

The common measures of efficiency used in economic literature are derived as ratios of different
TFP measures [31]. For instance, an alternative output-oriented measure can be shown as [37]:

TFPEnt = OTEnt ×OSEnt ×RMEnt (5)

TFPEnt = OTEnt ×OMEnt ×ROSEnt (6)

where output-oriented technical efficiency (OTE) is the conventional efficiency measure that measures
the shortfall in productivity associated with operating below the production frontier, as noted by
O’Donnell [32], i.e., the difference between aggregated output that a firm produces utilizing the given
resource base at the maximum attainable output possible from that resource base. The output-oriented
scale efficiency (OSE) and output-oriented mix efficiency (OME) account for productivity shortfalls
associated with diseconomies of scope, which arises when a multiple output producing firm is less
efficient than the specialized firms producing a single product. The measure of residual output-oriented
scale efficiency (ROSE) is the ratio of TFP at a technically and mix-efficient point to the maximum TFP
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that is possible, where higher TFP is certainly a scale effect since the improvement is essentially a shift
towards higher mix-efficient point along the unrestricted production frontier [37]. O’Donnell used
the term residual since different points on the unrestricted frontier represents different input-output
mixes, though all are mix-efficient [37]. The residual mix efficiency (RME) is the remaining component
after accounting for pure technical and pure scale efficiency effects [31], which can be obtained as
the difference in TFP between the point of MIOS (i.e., the optimal point on the restricted frontier)
and the point where productivity is maximum (i.e., the optimal point on the unrestricted frontier),
the difference between which is a mix effect [37].

Finally, following O’Donnell [8,29,37,38], the overall TFP can be estimated as

TFPEit =
TFPit
TFP∗i

= OTEit X OSMEit (7)

O’Donnell [29,37] decomposes the multiplicatively complete TFP index when the output distance
function is well-defined and the maximum TFP possible in each period is finite and non-zero.
The resulting equation, where the first term on the right-hand side is a measure of technical change
and the remaining terms indicate efficiency changes, can be written as

TFPksit =
(

TFP∗t
TFP∗s

)( TFPEit
TFPEks

)
=

(
TFP∗t
TFP∗s

)( OTEit
OTEks

)( OSMEit
OSMEks

) (8)

where TFP∗i is the maximum TFP possible with the available technology and given input bundle, Xit;
Qit = Qit/D0(xit, qit, t) is the maximum aggregate output produced by keeping input vector and output
mix fixed, and Q̂it represents the maximum aggregate output that is produced when only the input
vector is fixed and there are no restrictions on output mix.

We have used the DPIN 3.0, which uses a Data Envelopment Analysis (DEA) linear programming
(LP) technique, to describe the production technology (and associated measures of productivity and
efficiency) [31]. The details are available in the Appendix A. We have used eight output and six input
variables to determine TFP. The input–output variables. along with their estimation techniques and
sources. are available in Table 1.

Table 1. Output-input variables and their estimation procedures.

Variables Estimation Procedure

Output

Crops (output)

Eight output variables are included in TFP calculation: (i) cereals (includes rice, wheat,
barley, maize, millet, sorghum, etc.); (ii) fibers (including agave fibers, bast fibres, cotton
lint, ramie, sisal, manila fiber, jute, hemp tow waste, etc.); (iii) fruits (includes all types of
fresh, citrus, tropical fruits such as apples, apricots, avocados, bananas, different types of
berries and cherries, carobs, currants, dates, kiwi, grape, lemon and limes, mangoes,
quinces, watermelon, etc.); (iv) pulses (includes all types of peas and beans, lentils, etc.);
(v) oil crops (e.g., castor oil seed, coconuts, cottonseed, groundnuts, karite nuts, linseed,
melon seed, mustard seed, palm, olives, palm kernels, poppy seed, rapeseed, safflower
seed, sesame seed, soybeans, tung nuts, etc.); (vi) roots and tubers (includes cassava,
chicory roots, potatoes and sweet potatoes, yams, etc.); (vii) cash crops (includes tea, coffee,
gums, rubber, tobacco, etc.); and (viii) vegetables (all types, e.g., cauliflowers and broccoli,
cabbages and other brassicas, lettuce and chicory, tomatoes, pumpkins, squash, gourds,
cucumbers and gherkins, eggplants, green beans, carrots and turnips, okra, etc.).
Cereals, roots and tubers, fibers and pulses are measured in physical quantity (i.e., metric
tons). For the other four outputs (fruits, oil crops, cash crops, and vegetables), gross
production value is used where 2004–2006 (1000 I$) is the base period.
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Table 1. Cont.

Variables Estimation Procedure

Inputs

Machinery (HP)

Total horse power of all the agricultural machinery including tractors (40 HP) [39],
combine harvesters and threshers (25 HP) [40], pedestrian controlled tractors (single axle
tractors) (2 HP), ploughs (both reversible (0.864 HP) and non-reversible ploughs (0.576 HP)
[41] and threshing machines (12 HP) [42].

Livestock (cattle
equivalent

animal power)

Livestock is the aggregate number of animals in ‘cattle equivalents’, and includes cattle,
camels, water buffalos, horses and other equine species (asses, mules and hinnies),
small ruminants (sheep and goats), pigs, and poultry species (chickens, ducks, and
turkeys), with each species weighted by its relative size. The weights for aggregation are
based on Hayami and Ruttan [43]: 1.38 for camels, 1.25 for water buffalo and horses,
1.00 for cattle and other equine species, 0.25 for pigs, and 0.13 for small ruminants.

Labour Total economically active population (000) working in agriculture.
Gross cropped

area
Gross cropped area (GCA) is the summation of the total area (000 ha) under all types of
crops in a country in a year.

Fertilizer

Total consumption of the major three nutrients (N, P and K) in metric tons from all types of
fertilizers (e.g., urea, single superphosphate, triple superphosphate, diammonium
phosphate, muriate of potash, etc.) is estimated. Nutrient consumption figures for the
years 2002-2013 were available in the FAOSTAT. For the earlier years, the physical
quantities of different fertilizers were collected from the FAOSTAT, and were converted to
actual nutrient quantity.

Irrigation Proportion of land under irrigation is taken from the FAOSTAT. The missing information
was filled by interpolation or extrapolation through the simple linear trend method.

Some manipulation tasks had to be undertaken because there were missing data points. Missing
data were extrapolated using the average growth rate in Fuglie [44], and Rahman and Salim [45] used a
standard linear trend interpolation model for the missing data. The following manipulation techniques
were followed:

1. Data manipulation was performed only on the finalized output–input groups, e.g., cereals, pulses,
etc. and not on individual crops. This was done to keep the level of adjustments to a minimum.

2. For countries with complete set of missing data for some of the input–outputs, an arbitrary scalar
of 10 was inserted throughout so that we can still include the country in the analysis. As we
followed non-parametric procedure, this scalar value has no influence on the calculation of the
frontier whose values are invariably larger than 10 in all cases.

3. For interpolation of the missing data, the average annual change between two available data
points was estimated and then that rate of annual change was applied to the missing years,
which is a standard practice.

4. For extrapolation, we estimated the annual growth rate from the available data series. Then,
that growth rate was applied from the actual data available next to the missing data point, to fill
and create the extrapolated series.

While conducting the extrapolation (both for extrapolating backward or forward), if the
extrapolated values went below 10 (as happens when negative growth rates were used to extrapolate
the missing series), extrapolation was stopped at the year with the value nearest to the scalar 10.
Then, that extrapolated value was replicated for the remaining missing years. This was done to avoid
negative values when extrapolating missing data backwards, or even forwards with a negative growth
rate estimated from actual data points, as by definition inputs and outputs cannot be negative in
an economy.

Since we examine the differences and changes in TFP and its finer components across 104 countries
over 45 years, technological heterogeneity across countries and over time is an important issue. Alvarez
and del Corral [46] criticized the popular trend in the literature which assumes homogenous technology
for all the producers, and applied a latent class model approach to empirically prove that such simplified
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assumptions result in biased estimates. Similarly, Cillero applied a latent class model to investigate the
consequences of differences in production technology on Irish beef farms [47], whereas few studies
have applied random parameter models [48,49]. A very similar one to ours is the work of Baráth
and Fertő [50], who applied O’Donnell’s FPI index framework and estimated TFP parameters and
convergence to European agriculture. In the process, to acknowledge the productivity consequences of
technological heterogeneity across European farms, the authors applied a cluster analysis. However,
a cluster analysis requires additional information about farm production environments and weather
conditions for grouping [50]. Since we are dealing with large number of countries covering a long period,
gathering such information was difficult, and even after admitting the importance of technological
heterogeneity, we had to proceed with the assumption of homogenous technology. However, further
research acknowledging technological heterogeneity will provide more in-depth understanding of
TFP dynamics.

2.2. The Study Countries and Time Period

We have selected those countries where agriculture contributed more than 4% of the total GDP,
and/or countries where at least 4% of the total employment was in the agricultural sector in 2013.
This resulted in a total of 137 countries. However, due to the unavailability of the required input–output
data in the FAOSTAT database, only 104 countries could be included in the analysis (please refer to
Appendix A Table A1 for the list of selected countries). The FAOSTAT reports input–output data from
1961. Many countries have several missing data for the earlier years (prior to 1969). Hence, for the
sake of consistency, it was decided to cover 45 years (1969–2013).

3. Results

3.1. TFP Change and Its Components: Global Level Estimates

At the global level, the level of TFP, i.e., the ratio of aggregate output to aggregate input,
was estimated at 0.20, implying that more aggregate inputs are needed to produce one unit of aggregate
output, whereas the estimated technical efficiency of 0.91 implies that aggregate output could be
increased by about 10% by removing inefficiency in production alone (Table 2). The estimated almost
unitary values of pure technical and scale efficiency (0.97) scores, and the relatively lower values of the
pure mix efficiency index (0.78), imply that world agriculture has done well in terms of pure technical
and scale efficiencies, but lacks the ability to derive economies of scope by changing optimal input
and output mixes (Table 2). The relatively lower residual mix efficiency, which is estimated to be
0.29 (Table 2), implies that countries are not doing well in terms of reaping the benefits of economies
of scope. This suggests that there has been an upward shift in the production possibility frontier,
most likely driven by innovation and the adoption of technologies, such as the Green Revolution
technologies (i.e., a combination of high yielding varieties of rice/wheat/maize and inorganic fertilizers
with supplementary irrigation and drainage controls) that created world-wide impact during 1980s,
arguing that farmers are rationally adjusting the scale but lag behind in terms of deriving economies of
scale. During the period under consideration, TFP grew at a rate of 0.44% p.a., which is relatively low
(Figure 2). However, an important and encouraging feature is that world agriculture has maintained
this growth rate of TFP for a period of four and half decades.

A summary of some influential related studies is presented in Table 3. To estimate TFP changes,
Coelli and Rao [24], Ludena et al. [25], Ludena [26] and Headey et al. [17] applied MI. Ludena et al. [25],
who incorporated three outputs (crops, ruminants and non-ruminants) and nine inputs (feed, animal
stock, pasture, land under crops, fertilizer, tractors, milking machines, harvesters, threshers and labor)
in their analysis of 116 countries and reported that, during the period 1961-2001, the annual TFP growth
rate was 0.72%. Ludena [26] estimated that at the global level agricultural productivity growth rate was
1.7% p.a. between 1961 and 2007. The author included 26 Latin American and Caribbean countries and
considered two outputs (crops and livestock), and five inputs (animal stock, land, fertilizer, tractors
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and labor). Headey et al. [17] used two outputs (crops and livestock) and five inputs (land, tractors,
labour, fertilizer, and livestock) for 88 countries, and estimated the annual TFP growth to be 1.7% and
1.4%, according to the SFA and DEA model. Coelli and Rao [24] estimated a 2.1% annual growth rate in
agricultural productivity for 93 countries over the period of 1980 to 2000.They considered two outputs
(crops and livestock) and six inputs (area, tractor, labour, fertilizer, livestock and irrigation). Due to
differences in methodology and the disaggregation of outputs into specific crop groups, our estimated
figures are not comparable with the literature. The main source of difference may also be due to the
aggregation of all types of outputs into one single index and/or use of livestock output in those studies.

Le Clech and Castejón [28] applied both MI and FPI using the same USDA-ERS database,
and reported that TFP estimation is sensitive to the methods applied. The results are also sensitive to
the time period covered. For instance, by applying the FPI index, Le Clech and Castejón [28] reported
a 1.70% annual TFP growth rate during 1980–2000, which was reduced to 1.40% p.a. during the
period 1975–2007, which they justified through lower growth rates prior to 1980. By applying the
growth accounting method, Fuglie [27] estimated that the overall annual agricultural TFP grew by
0.18%, 0.60%, 0.62%, 1.65% and 1.84% during the periods 1961–1970, 1971–1980, 1981–1990, 1991–2000
and 2001–2009, respectively. Using MI, Nin-Pratt and Yu [51] noted that the overall annual TFP of
Sub-Saharan African grew at an annual rate of 1.45%, with 1.06% growth in the first half of the period
(1984–1995), which accelerated to 1.88% on average between 1996 and 2006.

There are two sources of differences in TFP growth rates between ours and the three mentioned
studies above, though all utilized the FAOSTAT database. Firstly, the same time period and input-output
items are not covered across the studies. Secondly, Fuglie [27] applied the ‘growth accounting’ approach,
and converted all the crops and livestock items into a single output measured in constant prices.
Le Clech and Castejón’s [28] work is based on the data from Fuglie [27], with an update on later years
supplied by the USDA-ERS. But such aggregation of output data may affect estimated values [25].
Finally, Nin-Pratt and Yu [51] employed MI to estimate TFP growth and used agricultural production
as a single output.

The Green Revolution brought modern science to tackle the widening Asian food crisis in the
1960s. For this purpose, Bangladesh adopted several agricultural policies for robust technological
progress, leading to the widespread farm-level dissemination of paddy-based GR technology packages.
As a result, the growth in TFP was not uniform. Prior to 1985, TFP grew at a relatively slower pace,
which then accelerated and went through several cycles of fluctuations (Table 3). Rahman [52] termed
the era after 1985 as the mature stage of GR technology adoption. A similar pattern of TFP growth
rate was observed not only in country specific studies for Bangladesh [45] and India [53], but also in
regional level studies [54] for Asia, for Latin America and the Caribbean region [26] and at the global
level [17,25,27].

Technological progress and mix efficiency changes were the two major drivers behind the growth
in TFP (Figure 2). The dominant role of technology in agricultural development and growth is well
documented in the literature [20,25,52]. The changes in both technical efficiency and scale efficiency
were almost negligible, estimated to be 0.05% and 0.04% p.a., respectively (Figure 2). The implication
is that, though world agriculture has managed to maintain positive change in technical efficiency and
scale efficiency, the contribution of these two components to TFP growth are almost negligible.

3.2. TFP Change and Its Components: Regional Level Estimates

The estimated changes in TFP and its components for different regions are presented in Figure 3a–f,
whereas the associated geomean and growth rates are presented in Figures 4 and 5 respectively.
South Asia (SA) was the best performer in terms of TFP growth rate (1.05% p.a.), followed by the
Middle East and North Africa (MENA; 0.70% p.a.), Sub-Saharan Africa (SSA; 0.66% p.a.), Europe and
Central Asia (ECA; 0.57% p.a.) and Latin America and the Caribbean (LAC; 0.40% p.a.). East Asia and
the Pacific (EAP) was the worst performer, with an annual TFP growth rate of only 0.18% p.a.
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Coelli and Rao [24] reported that Asia recorded the highest TFP growth, followed by North
America (consisting of USA and Canada), Australasia, Europe, Africa and South America. Avila and
Evenson [55] also noted that Asia (2.21%) had the highest TFP growth, followed by LAC (1.85%) and
Africa (1.44%) during the period of 1961–2001. However, this contrasts with Headey et al. [17] who
observed that TFP growth was fastest in MENA and East Asian regions, unstable in LAC and SSA,
and generally quite low in SA during the period 1970–2000. On the other hand, the TFP growth rate for
SSA is consistent with Fuglie and Rada [56]. Their estimation of TFP growth for the region was 0.59%,
while ours is 0.66%; a negligible difference of 0.07%. The present study estimated negligible decline
in technical, scale and mix efficiency in SA, whereas technological progress was the main driver of
TFP growth during 1969–2013. This result is partially consistent with Anik et al. [57], who reported
that the four SA countries experienced little or no variation in technical, scale and mix efficiency
changes during the period 1980–2013. The findings are also consistent with the findings of Rahman
and Salim [45] on the TFP growth of Bangladeshi agriculture. This growth pattern of technological
progress (0.23% p.a.) is similar for all other regions. Therefore, we did not find any evidence of
global or regional technological regress. The principal source of TFP growth was efficiency change (or
‘catch-up’). However, according to Fuglie [27], Africa was the continent with the highest TFP growth
rate, followed by South America, North America, Australasia and Asia. Europe was at the bottom
of the list. Baráth and Fertő [50] reported that, although there are considerable differences across
countries, the agricultural TFP in the EU countries during 2004-13 showed a decreasing trend.

Mix efficiency is the major driver behind TFP growth in the SSA and MENA, implying that
both regions successfully changed their input-output mixes through policy adjustment to derive
economies of scope (Figure 3a–f). TFP in LAC was driven by technical efficiency change. Among all the
regions, LAC was observed to have the highest annual growth rate (0.21% p.a.) of technical progress
(Figure 3d). Lachaud et al. [58] also found that technological progress has been the key driver of
agricultural productivity growth in LAC. They also stated that investment in R&D to facilitate access
to the best available technologies is critical in the region, and investments in training and education
to enhance the absorptive capacity of existing and/or new technologies are also important. Similarly,
in the neighboring US states, technical progress was the major driver behind TFP change, with high
and stable technical efficiency levels, but the scale-mix efficiency levels were relatively lower and
fluctuating [29]. SA and EAP experienced declines in technical efficiency change, though the rate was
negligible in SA (−0.01% p.a.) and high for EAP, estimated at −0.11% p.a. (Figure 3b,e). Both these
regions also observed declining scale efficiency. Mix efficiency declined annually by 0.02% p.a. in SA,
indicating the inability of the region to derive economies of scope (Figure 3b). These findings show
that EAP and SA deviated from the available technological level; however, LAC moved closer to the
available technological frontier.
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Table 2. Global total factor productivity and efficiency levels (Geometric means 1969–2013).

Year Max-TFP Level
(TFP*)

Technical
Efficiency Level

(OTE)

Scale Efficiency
Level (OSE)

Mix Efficiency
Level (OME)

Residual Scale
Efficiency Level

(ROSE)

Scale-Mix
Efficiency Level

(OSME)

Total Factor
Productivity
Level (TFP)

1969 0.86 0.91 0.96 0.73 0.32 0.23 0.18
1970 0.86 0.90 0.96 0.73 0.31 0.23 0.18
1971 0.63 0.91 0.98 0.76 0.42 0.32 0.18
1972 0.65 0.90 0.97 0.75 0.42 0.31 0.18
1973 0.64 0.90 0.97 0.76 0.42 0.32 0.18
1974 0.66 0.91 0.97 0.75 0.41 0.31 0.19
1975 0.66 0.91 0.96 0.75 0.42 0.31 0.19
1976 0.66 0.91 0.97 0.75 0.41 0.31 0.19
1977 0.65 0.91 0.97 0.76 0.42 0.31 0.19
1978 0.66 0.90 0.97 0.77 0.41 0.31 0.19
1979 0.67 0.90 0.95 0.76 0.41 0.31 0.19
1980 0.73 0.88 0.96 0.77 0.38 0.29 0.19
1981 0.71 0.89 0.96 0.76 0.39 0.30 0.19
1982 0.69 0.89 0.97 0.79 0.39 0.31 0.19
1983 0.71 0.88 0.96 0.77 0.39 0.30 0.19
1984 0.70 0.89 0.96 0.78 0.40 0.31 0.19
1985 0.72 0.91 0.96 0.76 0.39 0.30 0.20
1986 0.69 0.91 0.97 0.78 0.41 0.32 0.20
1987 0.73 0.90 0.97 0.77 0.39 0.30 0.20
1988 0.72 0.92 0.97 0.76 0.40 0.30 0.20
1989 0.73 0.92 0.98 0.78 0.38 0.30 0.20
1990 0.71 0.92 0.97 0.78 0.39 0.30 0.20
1991 0.72 0.90 0.96 0.78 0.39 0.31 0.20
1992 0.74 0.89 0.96 0.77 0.38 0.29 0.19
1993 0.76 0.91 0.97 0.78 0.37 0.29 0.20
1994 0.77 0.91 0.97 0.78 0.36 0.28 0.20
1995 0.76 0.90 0.98 0.77 0.37 0.29 0.20
1996 0.78 0.92 0.98 0.79 0.36 0.29 0.21
1997 0.78 0.92 0.98 0.79 0.37 0.29 0.21
1998 0.78 0.92 0.98 0.78 0.36 0.28 0.20
1999 0.80 0.93 0.99 0.80 0.35 0.28 0.21
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Table 2. Cont.

Year Max-TFP Level
(TFP*)

Technical
Efficiency Level

(OTE)

Scale Efficiency
Level (OSE)

Mix Efficiency
Level (OME)

Residual Scale
Efficiency Level

(ROSE)

Scale-Mix
Efficiency Level

(OSME)

Total Factor
Productivity
Level (TFP)

2000 0.82 0.93 0.99 0.77 0.35 0.27 0.20
2001 0.86 0.92 0.98 0.78 0.34 0.26 0.21
2002 0.82 0.91 0.98 0.78 0.33 0.26 0.20
2003 0.75 0.92 0.99 0.82 0.35 0.28 0.20
2004 0.86 0.92 0.98 0.80 0.32 0.26 0.20
2005 0.85 0.92 0.99 0.81 0.32 0.26 0.20
2006 0.84 0.92 0.99 0.80 0.33 0.27 0.20
2007 0.81 0.92 0.99 0.79 0.34 0.27 0.20
2008 0.83 0.92 0.99 0.80 0.34 0.27 0.21
2009 0.82 0.93 0.98 0.81 0.34 0.27 0.21
2010 0.84 0.94 0.99 0.81 0.33 0.27 0.21
2011 0.87 0.93 0.98 0.80 0.33 0.27 0.21
2012 0.87 0.93 0.98 0.82 0.33 0.27 0.22
2013 0.88 0.93 0.98 0.83 0.33 0.27 0.22

Geomean 0.75 0.91 0.97 0.78 0.37 0.29 0.20
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Table 3. Selected studies of total factor productivity analysis.

Author(s) Years
Studied

Number of
Countries Chosen Method Major Findings

Fuglie [7] 1961–2005 171

Multifactor
productivity

indices to estimate
input cost shares

Globally agriculture output grew at about 2%
p.a. with regional variations.

Headey et
al. [17] 1970–2001 88 MI, SFA, DEA TFP growth rate for the SFA and DEA models

are 1.7% p.a. and 1.4% p.a. respectively.

Ludena et
al. [25] 1961–2001 116 MI

Average annual agricultural TFP growth
increased from 0.6% to 1.29% between

1961–1980 and1981–2001.

Fuglie [27] 1961–2009 171

Multifactor
productivity

indices to estimate
input cost shares

Annually agricultural TFP grew by 0.18%,
0.60%, 0.62%, 1.65% and 1.84% during the

periods 1961–70, 1971–80, 1981–90, 1991–00
and 2001–09 respectively.

Le Clech and
Castejón [28] 1975–2007 93 MI and FPI

1.70% p.a. TFP growth rate during 1980–2000,
which reduced to 1.40% p.a. during the

period 1975–2007.

Nin-Pratt and
Yu [51] 1984–2006 26 MI

TFP in Sub-Saharan Africa grew at an annual
rate of 1.45%, with much faster rate between

1996 and 2006.

Avila and
Evenson [55] 1962–2001 78 Growth accounting

for cost shares

After 1981, annual TFP growth rates for all
regions increased. During 1981–2001.

Asia had the highest growth rate (around
2.5% p.a.) followed by LAC and Africa.
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4. Conclusions and Policy Implications

The present study assessed the productivity growth of world agriculture (104 countries) for
a 45 year period (1969–2013) by applying the Färe–Primont TFP index to the FAOSTAT database.
The study decomposed the TFP index into six finer components (i.e., technical change; technical,
scale and mix efficiency changes; and residual scale and residual mix efficiency changes). The global
level TFP was estimated at 0.20, technical efficiency level at 0.91, scale efficiency level at 0.97, mix
efficiency level at 0.78, residual scale efficiency level at 0.37 and residual mix efficiency level at 0.29,
respectively. The estimated levels imply that, although world agriculture has done well in terms of
pure technical and scale efficiencies, there are deficiencies in the ability to derive economies of scope by
changing input and output mixes to optimal levels. The annual TFP growth rate was estimated at
0.44% p.a. The growth rate varied over time, but accelerated after 1985. The major two contributors
to TFP growth were technological progress and mix efficiency change, whereas the contributions of
technical efficiency and scale efficiency changes were minimal.

Notable differences exist in regional TFP growth rates and their drivers. The highest TFP growth
rate was observed in SA (1.05% p.a.), followed by MENA (0.70% p.a.), SSA (0.66% p.a.), ECA (0.57% p.a.)
and LAC (0.40% p.a.). EAP was at the bottom of the list, with a growth rate of only 0.18% p.a. The TFP
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growth in SSA and MENA were largely driven by mix efficiency change, whereas it was technical
efficiency change for LAC region. The LAC region is the world leader in terms of technical efficiency
change. SA and EAP showed a declining trend in both technical efficiency and scale efficiency changes.

The estimated low level of TFP growth highlights that the sector needs special attention in order
to fulfil the basic requirement of food and fibre for the growing global population. Appropriate
economic-policy instruments have to be designed so that world agriculture can derive economies
of scope by changing optimal input and output mixes. Several policy implications can be derived
from the results of this study, though the specific prescription should be region specific, based on their
respective TFP and efficiency performances. Firstly, policies for enhancing technical efficiency and
scale efficiency changes in the form of increasing investment in R&D and human capital should be
prioritized, particularly in EAP, MENA and SSA countries. Second, regions lagging behind in mix
efficiency (e.g., SA) need to adopt both price (e.g., procurement programme, tax and/or subsidy, etc.)
and non-price policies (e.g., agricultural extension and advisory services, etc.) so that farmers can
utilise optimal input and output mixes. Third, policies for enhancing scale efficiency should be in
the priority list of ECA and LAC countries. Countries should emphasize the rational allocation of
agricultural inputs, particularly capital investment, so that they can avoid over-investment associated
with adverse impacts from diseconomies of scale. Fourth, access to markets (both domestic and
international) will help the producers in many instances, particularly against the odds associated with
the reciprocal relationship between productivity and price.

Along with the bio-physical dimension, TFP has economic and social dimensions and is thus
critical for the sustainability of any production system [59]. We could not incorporate this into our
study since this is beyond the scope of the present study, but research on this dimension is highly
required from both a policy and academic perspective. Additionally, we recommend an in-depth
analysis of the potential determinants of differences across regions.
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Appendix A

DEA Estimation Technique

In DEA the (local) output distance functions in period t demonstrating the available technology
can be expressed as [60]

D0(xit, qit, t) = (qitα)/(γ+ xitβ) (A1)

The output-oriented solution requires the unidentified parameters of the input oriented technical
efficiency to diminish technical efficiency: OTE−1

it = D0(xit, qit, t)−1. The resulting linear program is

D0(xit, qit, t)−1 = OTE−1 =
min
α,γ, β

{
γ+ x′itβ : γl + X′β ≥ Q′α; q′itα = 1;α ≥ 0; β ≥ 0

}
(A2)

where Q is a J ×Mt matrix of observed outputs, X is a K ×Mt matrix of observed inputs, t is an Mt × 1
unit vector, and Mt denotes the number of observations used to estimate the frontier in period t [31].
To calculate Färe–Primont aggregates, DPIN 3.0 uses a variant of this LP that begins by solving the
following [31]:

D0(x0, q0, t0)
−1 =

min
α,γ, β

{
γ+ x′0β : γl + X′β ≥ Q′α; q′0α = 1;α ≥ 0; β ≥ 0

}
(A3)
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Following this, the aggregated outputs and inputs of the FPI can be derived as [25]

Qit =
(
q′itα0

)
/(γ0 + x′0β0) (A4)

Xit =
(
x′itη0

)
/
(
q′0Φ0 − δ0

)
(A5)

where α0, β0, Φ0 and η0 are solved at sample mean vectors as representative output and input vectors.
According to O’Donnell [46], the Färe–Primont TFP index is:

TFPhs,it =
D0(x0, qit, t0)

D0(x0, qhs, t0)

D1(xhs, q0, t0)

D1(xit, q0, t0)
(A6)

The representative technology in this LP is the technology achieved under the assumption of no
technical change, which permits the technology to demonstrate variable returns to scale (VRS). In a
case where technology is assumed to exhibit constant returns to scale (CRS), DPIN 3.0 sets δ = 0 [61].

In DEA, there is an issue of the curse of dimensionality. Although our sample size is much larger
than the rule of thumb dictates (i.e., max

{
k > 3 [m + n]; k > m ∗ n

}
) [57], there may be issues related to

using too many inputs and outputs. Therefore, in order to check the robustness and stability of our
results, we conducted a sensitivity analysis by reducing the number of outputs to five by aggregating
fruits, vegetables, oilseeds and cash crops into one cash value output, and inputs to five by adding
livestock inputs (after converting into horsepower) with the machinery input. The results show very
little difference in TFP levels over time (see Figure A1). Therefore, we are confident that using a large
number of inputs and outputs did not pose any problems, because we had very large sample size to
begin with. The curse of dimensionality is more of an issue if the number of samples is relatively small.
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Table A1. Countries and regional groupings included in the TFP Analysis.

Sub-Saharan Africa Latin America & Caribbean Asia Pacific

Angola
Benin

Burkina Faso
Burundi

Côte d’Ivoire
Cabo Verde
Cameroon

Chad
Comoros

Congo
Democratic Republic

of the Congo
Gambia
Ghana
Guinea

Guinea-Bissau
Kenya

Lesotho
Liberia

Madagascar
Malawi

Mali
Mauritania
Mauritius

Mozambique
Namibia

Niger
Nigeria
Rwanda
Senegal

Sierra Leone
Somalia

South Africa
Swaziland

Togo
Uganda
Zambia

Zimbabwe

Argentina
Belize

Bolivia (Plurinational
State of)
Brazil
Chile

Colombia
Costa Rica

Cuba
Dominican Republic

Ecuador
El Salvador
Guatemala

Guyana
Haiti

Honduras
Jamaica
Mexico

Nicaragua

Paraguay
Peru

Suriname
Uruguay

Venezuela
(Bolivarian
Republic of)

Cambodia
China

Fiji
Indonesia

Japan
Lao People’s

Democratic Republic
Malaysia
Mongolia
Myanmar

New Zealand
Papua New Guinea

Philippines
Republic of Korea
Solomon Islands

Thailand
Timor-Leste

Tonga
Viet Nam

Europe and Central Asia Middle East and North Africa South Asia

Albania
Austria
Bulgaria
Greece

Hungary
Poland

Portugal

Romania
Spain

Turkey

Algeria
Egypt

Iran (Islamic
Republic of)

Lebanon
Morocco

Saudi Arabia

Syrian Arab
Republic
Tunisia
Yemen

Afghanistan
Bangladesh

Bhutan
India
Nepal

Pakistan
Sri Lanka

Table A2. Descriptive statistics of the input–output variables.

Variables Mean Std. Dev. Min Max

Cereals 10,933,066.1 2,982,856.6 6,014,337.9 16,959,814.5
Fibres 161,367.4 36,565.3 107,535.2 242,209.8
Fruits 1,181,295.0 515,139.0 566,133.5 2,274,134.9

Oil Crops 652,304.2 337,381.3 240,776.8 1,380,743.8
Pulses 604,543.4 355,082.0 186,726.8 1,387,817.0

Roots and Tubers 365,519.3 60,982.9 285,664.1 534,843.8
Cash crops 235,466.6 69,551.0 131,359.5 379,155.1
Vegetables 971,000.4 578,093.1 334,212.7 2,144,484.0
Machinery 4,698,743.2 2,444,382.8 1,120,998.3 10,281,803.7
Livestock 11,288,780.5 1,468,453.2 8,818,822.2 13,659,008.8

Gross cropped area 7,673,161.3 860,742.1 6,448,045.2 9,499,882.1
Labour 24,901.9 2953.6 18,805.0 27,969.8

Fertilizer 503,866.8 447,353.8 58,365.9 1,366,817.0
Irrigation 18.8 3.8 13.0 24.8
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