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In this paper, we present rule-based fuzzy inference systems that consist of a series of mathematical representations based on fuzzy
concepts in the filtering structure. It is crucial for understanding and discussing different principles associated with fuzzy filter
design procedures. A number of typical fuzzy multichannel filtering approaches are provided in order to clarify the different fuzzy
filter designs and compare different algorithms. In particular, in most practical applications (i.e., biomedical image analysis), the
emphasis is placed primarily on fuzzy filtering algorithms, with the main advantages of restoration of corrupted medical images
and the interpretation capability, along with the capability of edge preservation and relevant image information for accurate
diagnosis of diseases.

1. Introduction

From a biomedical image reconstruction perspective, fuzzy
filtering is particularly useful because it enables the
denoising of extremely corrupted color images [1]. As a
result, future knowledge-based systems for biomedical im-
aging are likely to incorporate fuzzy operators in their
software [2]. Various noise forms impair color pictures in
various approaches, and this poses a major challenge to the
design of multichannel filters [3–6].

In order to successfully address the problem of color
image denoising, the challenge is to (a) trace the origins and
account for the diversity of the noise characteristics and (b)
take into consideration the nonstationary statistics of the
underlying image structures [7]. +e above considerations
have fueled current academic exertions aimed at merging
structure or noise estimation approaches alongside filtering
techniques regarding color image restoration. +ere are
three main objectives that need to be fulfilled when de-
signing filters for color image restoration: noise attenuation,
chromaticity retention, and edge detail preservation [8].

Numerous signal processing issues, particularly those
involving the nonlinearities of the picture creation process,
cannot be successfully treated using linear approaches.
Additionally, one must consider the human visual system’s
nonlinear nature [9]. Fuzzy modelling provides a bridge
between linear and nonlinear techniques by integrating
conventional linear and nonlinear filters with fuzzy logic.
Since information extracted from datamay also be corrupted
by noise, a precise mathematic model of a nonlinear system
is more difficult to establish because it requires a deter-
ministic component in the model and a separate stochastic
one, increasing the number of parameters that need to be
evaluated. Fuzzy reasoning is particularly well suited from
this perspective as it enables the choice of soft thresholds that
can adapt better to the nonlinearities in the model inputs
[9, 10].

+e method of applying fuzzy logic to formulate a
mapping to an output from a given input is fuzzy inference.
+is mapping then serves as a foundation for decision-
making and pattern recognition [11]. In modelling, the fuzzy
rule-based method considers orally defined rules that
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overlap in the parameter space [12, 13]. In the fuzzy
modelling process, the aim is to derive a fuzzy rule base that
is appropriate for the task at hand. As a fuzzy filter takes into
account selected patterns in the neighbourhood of the el-
ement to be processed, the filtered output is capable of
adapting to information present in the vicinity of the pixels
being processed. To restore and correct a corrupted pixel
locally, a window-based fuzzy filter is normally used, where
the fuzzy rule acts directly on the signal elements within the
operational window.

However, a significant number of rules is often needed,
and the designer must strike a balance between rule count
and performance because even a modest processing window
frequently requires a huge number of rules [14]. To address
these issues, data-dependent filters based on fuzzy reasoning
have been developed. To derive fuzzy rules automatically,
two fundamental problems concerning fuzzy system mod-
elling should be addressed: one is fuzzy rule parameter
optimization and the other is the identification of an ap-
propriate system structure in relation to the number of
membership functions and fuzzy rules [15]. A three-step
approach is applied to achieve the fuzzy inference process;
this involves the right choice of membership functions, fuzzy
logic operators, and if-then rules [11].

Concluding, the basic motivation behind this work is not
to elaborate into new ideas in fuzzy logic theory but to use
effectively fuzzy logic techniques into the filtering of mul-
tidimensional data and color images with biomedical ap-
plications. +e presented method can be generalized to any
dimension and can be used effectively to other types of
correlated multidimensional/multichannel data as well.

+is paper is organized as follows. Section 2 addresses
the generation of suitable membership functions for fuzzy
variables. Identification of optimized equation parameters
through fuzzy rule modelling is also reviewed in this section.
Section 3 discusses the use of a membership function to
restore the corrupted pixels in a color image. Section 4
contains various fuzzy filter construction through fuzzy
inferences. Section 5 discusses how the fuzzy reduction
approach may be used to analyze, restore, and repair bio-
medical imaging. Finally, Section 6 provides a concise
summary of the most important aspects in each section.

2. Fuzzy Variables and Fuzzy Rules for a
Color Image

It is widely accepted that color conveys additional infor-
mation beyond that conveyed in greyscale imaging. As a
result, color and multispectral imaging systems are used in
most scientific applications. +e origins of such advantage
may be traced to Fellgett’s multiplex advantage in astron-
omy, which states that a multispectral system has an ad-
vantage over its monochromatic counterpart because of
higher throughput per unit time associated with the different
separate channels conveying the acquired information.
Within the context of acquiring information from different
channels, noise filtering is one of the most common image
processing tasks and forms an essential part of any image
processing system [16, 17].

Instead of adopting traditional vector filters for a fixed
amount of smoothing or noise removal [3], it is possible to
adapt the smoothing criterion to local image statistics. Two
basic assumptions play an important role in filtering tech-
niques development [18]. One is that a noise-free image
should be locally and smoothly varying while at the same
time also separated by edges [19].+e other is that, normally,
a noise pixel possesses a gray value that is much more or
lesser than that of its neighbors [20]. Any fuzzy rule is
associated with a local representation over a region defined
in the input space [21]. A particular window, as illustrated in
Figure 1, can thus be designed to define a region with pixels
corrupted by impulse noise.

To design a fuzzy filter, it is important to clarify where
and how a particular membership function arises, how it is
used and its effect is quantified, and how it can be tailored
according to the imaging problem at hand in order to
provide meaningful results. Different interpretations of
fuzziness result in a multiplicity of solutions to graded
membership and membership definition problems [22]. +e
following sections review some basic concepts and defines
fuzzy (logic) variables concerning color images.+e adopted
approaches to calculating specific fuzzy variables are rep-
resented as special cases tailored to specific problems. +ey
lead to relevant membership functions suitable for achieving
the outputs of the ruled fuzzy filters.

2.1. Adaptive Fuzzy Hybrid Approaches. +e adaptive fuzzy
hybrid multichannel (AFHM) filter [23] provides the generic
framework that incorporates the ideas from the following
three filters: the vector median (VM) filter, the vector di-
rectional (VD) filter, and the identity filter [23].

Let dVM and dξ,VM denote the aggregated Euclidean
distances corresponding to yVM and yξ (the central vector-
valued pixel), respectively. In addition, let dBV D and dξ,BV D

denote the aggregated angular distances corresponding to
yBV D and yξ , respectively. It is obvious that dVM <dξ,VM and
dBV D < dξ,BV D.

Let μ and ] denote two measures as fuzzy varieties for
detecting the possibility whether the central vector-valued
pixel is contaminated or not. A big μ-value suggests the
substantial probability of contamination of the center vec-
tor-valued pixel. A big ]-value indicates the center vector-
valued pixel’s direction to be more possibly a directional
outlier [24]. We define μ and ] as fuzzy varieties, which
satisfy the following equations, respectively.

μ � dVM − dξ,VM


,

] � dBV D − dξ,BV D


.

(1)

When both μ and ] are large, this indicates that the
chance of corrupting the center vector-valued pixel yξ is
significantly high. +e aggregated distance between a cor-
rupted vector-valued pixel and the median vector should be
large [23]. When only μ is small, this indicates that yξ is
regarded as an uncorrupted vector by the VM filter but a
corrupted vector by the BVD filter. When only ] is small, the
situation is opposite. When both μ and ] are small, there is
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high possibility that the center pixel is not corrupted by
noise.

2.2. Applications of the Fuzzy Derivative. It has been shown
that fuzzy derivatives are useful for fuzzy filtering. A simple
derivative at the central pixel position (k1, k2) in the di-
rection D(DεDIR � NW,W, SW, S, SE,E,NE,N{ }) is de-
fined as the difference between the pixel at (k1, k2) and its
neighbor in the direction D. +is derivative value is denoted
by ∇D(k1, k2). +is can be expressed as follows:

∇D k1, k2(  � x k1 − 1, k2 − 1(  − x k1, k2( . (2)

+e fuzzy derivative’s principal idea considers this ob-
servation. Assume an edge that runs in the SW − NE di-
rection across the neighborhood of a pixel (k1, k2). +e
derivative gains a big value. Additionally, the derivative
values of nearby pixels perpendicular to the direction of the
edge might be rather considerable. To carry out the edge
detection procedure, one basic gradient value and two as-
sociated gradient values (specified in the same direction) are
generated for each direction. +ese correspond to the two

parameters
∇D(k1, k2),∇D(k1 + 1, k2 − 1),∇D(k1 − 1, k2 + 1), respec-
tively; see Figure 1(b). +e objective is to cancel out the
influence of a single high derivative value caused by noise.
+us, if two of the three derivative values are small, it is
generally reasonable to believe that the considered direction
lacks an edge. +e stated assumption is considered when the
fuzzy rule for computing fuzzy derivative values is developed
[25]. For an overview of how the pixels are used to calculate
the fuzzy derivative for each direction, one can refer to [25].
Figure 1(a) illustrates the neighborhood of a central pixel
(k1, k2). In Figure 1(b), pixel values indicated in gray are
used to compute the “fuzzy derivative” of the central pixel
(k1, k2) for the NW-direction [25].

In [26], the fuzzy gradient (derivative) value, associated
with a noisy component of a center pixel (e.g., the red
component), ∇F

DCR(k1, k2) can be defined according to a
fuzzy fusion function which has a span between the basic
gradient value and the two related gradient values in the
direction D.

∇F
DCR k1, k2( 

noise

� ∇DCR k1, k2( 



S ∩ ∇

.

DCR k1, k2( 



L
∩ ∇

..

DCR k1, k2( 



L
∪ ∇DCR k1, k2( 



L ∩ ∇

.

DCR k1, k2( 



S
∪ ∇

..

DCR k1, k2( 



S
.

(3)

+is way, it is possible to obtain the fuzzy gradient
(derivative) value regarding the free noisy (red) component
of a center pixel in the direction D.

∇F
DCR k1, k2( 

noisefree

� ∇DCR k1, k2( 



L ∩ ∇

.

DCR k1, k2( 



L
∩ ∇

..

DCR k1, k2( 



L
∪ ∇DCR k1, k2( 



S ∩ ∇

.

DCR k1, k2( 



S
∩ ∇

..

DCR k1, k2( 



S
.

(4)
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Figure 1: (a) Illustration of the neighborhood of a central pixel (k) within a 3 × 3 window demonstrated by a thick solid black line. (b)
Illustration of centers for the calculation of the basic and related gradient values in the NW-direction and an example of an edge related to
the local area inside the window. +e latter is represented by a thick dash line.
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+e sign ∇DCR(k1, k2) is the basic gradient value (for the
red component); ∇

.

DCR(k1, k2) and ∇
..

DCR(k1, k2) are the
two related gradient values in the direction D. +e fuzzy sets
large and small are denoted as | · |L and | · |S, respectively.

+e fuzzy gradient (derivative) value regarding the noisy
red component of a center pixel, ∇F

DCR(k1, k2) can also be
defined using a fuzzy set large, small, big positive and big
negative, denoted as |.|L and | · |S, respectively.

∇F
DCR k1, k2( 

L

� ∇DCR k1, k2( 



L ∩ ∇

.

DCR k1, k2( 



S
∪ ∇DCR k1, k2( 



L

∩ ∇
..

DCR k1, k2( 



S
∪ ∇DCR k1, k2( 



BP ∩ ∇

.

DCRCR k1, k2( ∩∇
..

DCR k1, k2(  
BN

∪∇DCRCR k1, k2( 
BN ∩ ∇

.

DCRCR k1, k2( ∩∇
..

DCR k1, k2(  
BP

.

(5)

Further details on the formulation of these fuzzy sets can
be found in [27].

Using fuzzy rules, the red component of a central pixel
CR(k1, k2) can therefore be identified as being corrupted
with impulse noise, if more than half of the fuzzy gradient
values (more than four for a nonborder placed pixel) are part
of a α ∈ (0, 1] (weak) level of the fuzzy set large [28]. +e
application of local directional gradients using fuzzy logic to
detect an outlier pixel and calculate the outputs of such a
fuzzy filter is also discussed by [9].

+e fuzzy derivative method mentioned above can be
used to achieve perform uniformly distributed (random
valued) impulse noise detection [26, 27]. Another approach
for identifying random valued impulse noise pixels is to
investigate the state of the neighborhood around a pixel. +e
detection process requires the construction of suitable fuzzy
sets’ noise for each color component at each position of an
image [26, 27]. +is method achieves random valued im-
pulse noise detection.

In the current method, the mean difference in a H × S

window denoted as g(k1, k2) is calculated:

g k1, k2(  �


H
h�− H 

S
s�− S x k1 + h, k2 + s(  − x k1, k2( 




(2H + 1)(2S + 1) − 1
. (6)

Corrupted impulse noise pixels generally cause large
g(k1, k2) values because impulse noise pixels normally occur
as outliers in a small neighborhood around the pixel. On the
other hand, the g(k1, k2) value could be relatively large in the
case of an edge pixel. +erefore, the following two values
denoted as obs1(k1, k2) and obs2(k1, k2) are considered:

obs1 k1, k2(  �


H
h�− H 

S
s�− S g k1 + h, k2 + s( 

(2H + 1)(2S + 1)
, (7)

obs2 k1, k2(  � g k1 + h, k2 + s( . (8)

If both values obs1(k1, k2) and obs2(k1, k2) are large,
then the pixel can be considered as an edge pixel instead of a
noisy one. So, when the two values obs1(k1, k2) and
obs2(k1, k2) are very similar, it is concluded that the pixel is
noise free. Otherwise, if the difference between obs1(k1, k2)

and obs1(k1, k2) is large, then the pixel is considered as
noisy.

Agrawal et al. [29] conducted fuzzy derivative and fuzzy
smoothing based on fuzzy rules, which make use of
membership functions for removal of narrow-tailed and
medium narrow-tailed noise in medical images. Iteratively
applying the filter significantly reduces background noise.
+e form of the membership functions is modified
depending on the residual level of noise following every
iteration, taking use of the image’s homogeneity distribu-
tion. A statistical model for noise distributionmay be used to
connect the homogeneity of the membership functions to
their adaptation method. Experiments are conducted to
demonstrate the practicality of the suggested technique.
Additionally, these findings are compared to those obtained
from other filters using numerical metrics and ocular
examination.

In addition, Ma et al. [4] proposed an improved version
of the partition filter that takes advantage of partition-based
trimmed vector median, instead of center-weighted vector
median as a fuzzy reference estimate can be considered.
Partition-based trimmed vector median is different from
center-weighted trimmed vector median in that the latter
replaces the threshold value of center-weighted trimmed
vector median with (N − 1)/2. +e resultant algorithm of
this improved version of the fuzzy partition filter simplifies
computation and adapts well to the local properties of image
structures.

As an important extension of fuzzy derivative, the fuzzy
nth-order derivative and fuzzy differential equations of
fractional order using Laplace and integral transforms are
investigated by Ahmadi et al. [30] and Salahshour et al. [31],
respectively. +e most important advantage of this fuzzy
differential procedure is the significantly reduced compu-
tational complexity in dealing with the fractional/nth-order
derivative.

3. Membership Function

One of the most difficult aspects of designing fuzzy systems
is generating appropriate fuzzy variables’ membership
functions [32]. A fuzzy constraint to single parameter is
normally defined by a fuzzy membership function with
values within [0,1] [33]. Each response input and output has
a unique membership function.
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Generally, the membership function μA(x) describes the
membership of the elements x of the base setX in the fuzzy
set A, whereby for μA(x) a large class of functions can be
taken assumed. In other words, a fuzzy set is formed on the
basis of a membership function that generates the mem-
bership degree [34]; this enables the progressive evaluation
of the membership of set components [35].

Membership functions with reasonable membership are
typically piecewise linear functions, including trapezoidal or
triangular functions. Certain applications require continu-
ously differentiable curves and, consequently, smooth
transitions. Smoothness is often achieved using Gaussian
and other bell-shaped membership functions. In addition,
for certain applications, it is also important to define
asymmetric membership functions. Asymmetric and closed
sigmoidal membership functions can be generally synthe-
sized using two sigmoidal functions.

For many other applications, these membership func-
tions mentioned above are insufficient because they are not
accurately representative of the linguistic terms being
modelled; thus, they must be elicited directly from experts,
either through a “statistical” way or through an automatic
generation of specific pass- and reject-band filter shapes.
+is is an emergent topic in the current artificial intelligence
literature, as the aim is to develop automated fuzzy inference
engines. Before discussing such approaches, however, it is
worthwhile to consider traditional (manual) approaches.

3.1. SimilarityMeasurements. Consideration of membership
values as similarity indicators is typically utilized in pro-
totype theory, where membership is defined as the state of
being similar to a category’s representative [36]. +erefore, a
membership function value may be utilized to measure an
element’s degree of resemblance to a given set [22].

3.1.1. Adaptive Color Pixel Similarity Function. Based on [7],
in robust signal processing, sample rank ordering is often
utilized. Recent breakthroughs in fuzzy set theory have
integrated sample rank ordering in the temporal domain or
the spatial ordering of observations [37–41]. Given two color
pixels, x and y, there exists a wide range of functions
[5, 17, 38, 42, 43], μ(x, y), which can be used to assess their
physical similarity and meet the constraints of a fuzzy
membership function; that is,

(i) μ(x, y)⟶ 1 if ‖x − y‖⟶ 0
(ii) μ(x, y)⟶ 0 if ‖x − y‖⟶∞
(iii) μ(x1, y1)≥ μ(x2, y2), ∀

����(x1 − y1)≥ ‖x2 − y2‖

+e objective is to choose an acceptable Gaussian
function to express similarities between two color pixels,
which is facilitated by the exponential nature of perceptual
distance measurements [5, 44]. +e ideal sample spread
associated with each kind of Gaussian function may be
determined using the mean absolute error (MAE) criteria as
described in [45]. Additionally, in [7, 46], a resolution to
noise deviation estimates is proposed.+is strategy is used in

[7], which compares two different forms of Gaussian
functions. +e first is a scalar Gaussian function μ1 based on
the vectors’ Euclidean distance, and the second is a vector of
component-wise Gaussian functions μ2 in the YCbCr or
RGB color space. Compared to the simpler μ1 scalar
function, the μ2 function provides additional flexibility in
modelling the similarity membership, but its performance in
various color spaces is weak in the RGB space, running a risk
of an expensive computation cost due to its component-wise
sample spread. As new expanded color spaces are introduced
by industry, this can be an interesting approach.

3.1.2. A Self-Adaptive Algorithm. A new way of defining the
similarity function is introduced in [17]. +ere is an attempt
to achieve nonascending, convex similarity measures, with
the use of a natural normalization of the similarity function,
satisfying μ(0) � 1, μ(∞) � 0.

+e convex membership functions for the similarity
measures can be treated as kernels of nonparametric density
estimation, as illustrated in [17, 47, 48]. +e expression in
(10) is shown to be particularly effective as discussed in
[17, 49, 50].

μ xi, xj  �
1, −

ρ xi, xj 

h
for ρ xi, xj < h,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

where ρ xi, xj  � ‖xi − xj‖.
+e parameter h is determined on the basis of the image

structure and noise statistics. It influences the severity of the
filtering process so that a decreasing function of h related to
the fraction of pixels is replaced. Compared with the vector
median filter (VMF), corresponding to h � 0, the resultant
filter shows enhanced performance. Performance can be
tuned by specifying positive values of h, compelling the filter
to maintain uncorrupted original pixels to a greater or lesser
extent, while still enabling the removal of corrupted ones.

Using the L2 norm of the Euclidean distance between
two pixels in the RGB color space, it is possible to estimate
the fraction of corrupted pixels. +us, among eight neigh-
boring pixels around a center pixel, there exists at least m

pixels that have a L2 norm less than a predefined constant d.

3.1.3. Fuzzy Color Correlation. An alternative approach to
traditional vector-based approaches is the idea by [51],
which achieves similarity measurements in each color
component between the central pixel x0 and each color
neighbour xk, separately, the approach also assesses whether
the local differences in one, for example, the R component,
neighborhood corresponds to the differences found in the G
and B components. We denote these two memberships with
S1 and S2.

+e aim is to first to develop membership function that
may be used to check these differences of neighbor com-
ponent, which can be represented through a fuzzy set small.

Journal of Healthcare Engineering 5



1 − S(x) � S1 �

1, x≤ α1,

1 − 2
x − c1

c1 − α1
 

2

, α1 < x<
α1 + c1

2
,

2
x − c1

c1 − α1
 

2

,
α1 + c1

2
< x< c1,

0, x> c1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where α1 � 10 and c1 � 70 can achieve experimentally
satisfying results of noise filtering. +e second item element
of equation (10) shows a large membership degree with a
relatively small difference and a slow decrease in the
membership degree. +e third item element is a parameter
used to decrease the membership degree faster for each
larger difference after a certain point. As a result, the
membership function defined in equation (10) is also utilized
to calculate the absolute value of the membership degree
differences in the fuzzy set S1 for the green and red com-
ponents, as well as the blue and red components. If one
denotes the relevant membership function as S2, the
membership function equation (10) is calculated, with α1 �

0.01 and c1 � 0.15.
A further interest in this work is that it enables the

identification of noise-free center pixels in a different color
channel. +e noise-free degree of xR

0 , denoted as NFxR
0
, is

calculated as follows by utilizing the product triangular
norm representing both the fuzzy OR (disjunction) operator
and the fuzzy AND (conjunction) operator.

NFxR
0

� μRμRGμG
+ μRμRBμB

− μRμRGμGμRμRBμB
, (11)

where the standard negation operation is used to derive the
membership degree in the fuzzy set noise free for each color
component. Here, μR and μRG are the conjunction of
S1(ΔFR

k ) and μRG
k in the distance measurement of a red

component and the difference between the membership
degrees in the fuzzy set S1 for the red and the blue com-
ponents. A similar computation can be performed for the
other color components. +e noise-free degrees of blue
NFxB

0
and green NFxG

0
components of the center pixel can

thus be achieved.

3.2. Histogram-Based Approaches. In order to establish
connections among different smaller membership functions,
in [52], it is proposed to calculate the slope difference of each
selected intensity value from a color image. +is approach
uses the histogram approach described earlier to establish a
separate membership function (denoted as μnoise

pk
). Given

each selected integer value pk, the membership function can
be expressed as follows:

μnoisepk

0, ∀x≤ ak(  or ∀x≥dk( ,

2
x − ak

bk − ak

 

2

, ∀x ∈ ak,
ak − bk

2
 ,

1 − 2
x − bk

bk − ak

 

2

, ∀x ∈
ak + bk

2
, bk ,

1, ∀x≥ bk, ck ,

1 − 2
x − ck

dk − ck

 

2

, ∀x ∈ ck,
ck + dk

2
 ,

2
x − dk

dk − ck

 

2

, ∀x ∈
ck + dk

2
, dk .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

+e membership function impulse noise (for the red
component) μR

impulse then becomes

μimpulse CR k1, k2( (  � max
k∈ 1,...,n{ }

μnoise/pk
CR k1, k2( ( . (13)

+e parameters used in expression (13) are related to the
slope of each the selected intensity value. +ere exist two
different types of noise histograms. +e histograms con-
taining only peaks normally have a very small slope and the
histograms containing peaks with some other features
normally have a larger slope. +ese are treated as a relation
with the low estimated standard deviation and large esti-
mated standard deviation, respectively. Based on the edge
image produced by the Sobel operator [53], the following
expressions are proposed to calculate these parameters:

ak � p
k

− ϑa,

bk � p
k

− ϑb,

ck � p
k

+ ϑc,

dk � p
k

+ ϑd,

ϑb �
2

3ϑa,
,

ϑc �
2
3ϑd

ϑa � ϑd � min(25, ⌊σ⌋),

(14)

where ⌊σ⌋ is the largest integer value that is smaller than the
standard deviation (variance) σ. +is method of parameter
selection is especially well suited for denoising pictures that
have been damaged by a combination of impulse and
Gaussian noise. When ⌊σ⌋> 20, to prevent overfiltering, ϑa

and ϑd are then restricted to be a value of 20. Further
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discussion regarding the histogram based methods can be
found in [26].

Based on [26], with existing fixed-value impulse noise,
histograms are initially created from most likely corrupted
impulse noise color components. Since pixels that have been
damaged by fixed-value impulse noise are often very dis-
similar to their neighbors, they are usually identified in a
local window by their minimum and maximum intensity
values, denoted as pmax or pmin. In order to calculate his-
tograms for each image component, a two-step process is
involved: (a) the corrupted greyscale images are divided into
small blocks from each color channel, with a suggested block
size of 5 × 5; and (b) the determination of the values of the
two intensity levels pmax or pmin to be adopted for the
calculation of the histogram depends on the following
conditions being simultaneously satisfied:

(i) If pmax is involved, then |m1 − pmax|> |m1 − m2| or
|m2 − pmax|> |m1 − m2|

(ii) If pmin is involved, then |m1 − pmin|> |m1 − m2| or
|m2 − pmin|> |m1 − m2|

(iii) Defining the membership degrees μnoise(pR) for the
intensity value pk

R of a red component in the fuzzy
set noise, if (hnoise

R (k)/255
l�0hnoise

R (l)), then k is a noise
red intensity

In the case of fixed-value impulse noise, at least a single
intensity value with a membership degree of one in the fuzzy
set noise is anticipated; or else, the picture is not damaged by
fixed-value impulse noise. +e random valued impulse noise
detection technique does not need to be used in this
circumstance.

In the case of a random valued impulse noise, the color
difference, between, for example, the red and green com-
ponents, in each direction D of this window around the
center position is calculated and denoted as ϱDRG. For each
color difference ϱDRG, D ∈ [1, 8], bell-shaped membership

functions are defined as ηsmall, ηmedium, and ηlarge that rep-
resent the degree of membership in the corresponding fuzzy
sets small, medium, and large:

ηsmall ϱ
D
RG  �

1, if ϱDRG ≤ c1,

1

1 + ϱDRG − c1/a1 
2
b1

, if ϱDRG > c1k � 1, 2, . . . , 9.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ηmedium ϱ
D
RG  �

1

1 + ϱDRG − c2/a2 
2
b2

, k � 1, 2, . . . , 9,

ηsmall ϱ
D
RG  �

1

1 + ϱDRG − c3/a3 
2
b3

, if ϱDRG ≤ c3k � 1, 2, . . . , 9,

1, if ϱDRG > c3.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

Histogram adaptive filtering in [54, 55] is applied to
achieve a solution to the parameter space. +e parameters
b1 � b2 � b3 � 17 are adopted and experimentally validated.
+ey are set to be excessively larger than c1, c2, and c3,
respectively, in order to adaptively filter out impulsive noise
by the membership functions. +e calculation of the pa-
rameters (a1, c1), (a2, c2), and (a3, c3) takes advantage of
statistics of the estimated histograms, in relation to intensity
differences between red and green values. +e calculation of
the parameters for the other color differences is very similar.
+e following calculations of fuzzy sets regarding centroids
small (denoted as CENRG

small), medium (denoted as
CENRG

medium), and large (denoted as CENRG
large) are the

functions of the total histogram hRG, and two divided his-
tograms P DFRG

part1 and P DFRG
part2 by the splitting point

M � [2(2m − 1) · CENRG
medium − (2m − 1)], where [x] is the

largest integer value smaller than x.

PDFRG(z) �
hRG(z)


2m− 1
k�− 2m − 1( ) hRG(k)

,

CEN
RG
medium(z) � 

2m − 1

k�− 2m − 1( )

k

2m+1
− 1

P DFRG(k), CEN
RG
small(z) � 

M

k�− 2m− 1( )

k

2m+1
− 1

P DF
RG
part1(k), CEN

RG
large(z) � 

2m − 1

k�M+1

k

2m+1
− 1

P DF
RG
part2(k),

(16)

where P DFRG(z) is the potential density function of the
histogram hRG for index z(z ∈ [− (2m − 1), 2m − 1]) (with
mbeing the amount of bits used to store a single intensity
value (mostly m � 8)). +e index k varies from 1 to H × S in
order to select one of the window values.

+e calculation of the mass that corresponds to the
support of a fuzzy set is a function of the subdivided his-
togram hRG with three equal parts.

MASSRGsmall �


M1
k�− 2m − 1( ) hRG(k)


2m− 1
k�− 2m − 1( ) hRG(k)

,

MASSRGmedium �


M2
k�M1+1 hRG(k)


2m − 1
k�− 2m− 1( ) hRG(k)

,

MASSRG
large �


2m − 1
k�M2+1 hRG(k)


2m − 1
k�− 2m− 1( ) hRG(k)

,

(17)
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where M1 � [2(2m − 1) ·CENRG
medium +CENRG

small/2 − (2m − 1)]

and M2 � [2(2m − 1) · (CENRG
medium +CENRG

large/2) − (2m − 1)].
+e values MASS and CEN obtained from the estimated

histogram hRG are, respectively, used for the parameters a

and c, with c1 � CENRG
SMALL, c2 � CENRG

MEDIUM ,
c3 � CENRG

LARGE and a1 � MASSRGSMALL , a2 � MASSRGMEDIUM ,
a3 � MASSRGLARGE. +us, the membership functions are
completely specified.

+e procedure of the histogram estimation hRG can be
used to estimate the histograms of all the other color dif-
ferences (red-green, red-blue, and green-blue). +e histo-
gram estimation ranges between − 255 and +255. Each red-
green difference (i.e., RG(i, j)), for example, is included in
the histogram hRG if and only if the membership degree in
the fuzzy set noise for both components is zero, in other
words if μnoise(CR(i, j)) � 0 and μnoise(CG(i, j)) � 0.

+e fuzzy set noise μnoise is represented by a membership
degree as follows:

μnoise CR(i, j)(  �
ηnoise CR(i, j)( , if cond1,

0, otherwise,
 (18)

with

cond1 � 
D∈ N,...,S{ }

τD
noise ≥ τ

D
free. (19)

+e overall membership degrees to the fuzzy sets
τD
noise(CR(i, j)) and τD

noise(CR(i, j)) are calculated on the
basis of the eight membership degrees in the relevant fuzzy
sets impulse noise-free for the eight directions around a
certain central pixel position (i, j), respectively. +e
membership function of a fuzzy set τnoise(CR(i, j)) is il-
lustrated in Figure 2. +e parameters a and b are equal to

a �


H
h�− H 

S
s�− S g k1 + h, k2 + s(   − g k1, k2( 

(2H + 1)(2S + 1) − 1
, (20)

where g satisfies (6).

b � 1.2a. (21)

+e standard negatorNs(x) � 1 − x is used to calculate a
fuzzy set impulse noise-free.

If cond1 is satisfied, the membership function
ηnoise(CR(i, j)) has a similar shape to Figure 2, but with
minh∈ − H,...,H{ };s∈ − S,...,S{ }g(i + h, j + s). +is is used to define a
central pixel CR(i, j) with fuzzy set large, and define ηnoise;
that is, ηnoise(CR(i, j)) � μlarge(obs1 − obs2). In this figure,
the horizontal axis corresponds to all possible differences
between obs1 and obs2. Detailed explanation regarding
(obs1 − obs2) can be found in equations (7) and (8).

+emost homogeneous region around CR(i, j) results in
the g(i + k, j + l) value, which corresponds to a. +is region
has the smallest amount of impulse-noise corrupted pixels.
Experimental results have shown that the best choice for
parameter b is b � 1.2a, the larger the parameter ais, the
larger the uncertainty interval (a, b) should be.

Several fuzzy rules are used in the aforementioned
algorithm:

(i) Membership degrees for the elements ϱDRG in the
fuzzy set noise-free:

IF (CRD is not noise) AND ((CRD is not noise)
THEN ϱDRG is noise-free

(i) A corrupted central pixel CR(i, j) with impulse noise:

IF obs1 − obs2 is large
THEN the central pixel CR(i, j) is an impulse noise
pixel

Two additional fuzzy rules related to the central pixel
CR(i, j) that is defined as an impulse noise and impulse free
pixel in the direction D are represented in equations (3) and
(4). +e other two noise-corrupted color channels have
analogous fuzzy rules. +e second fuzzy rule can be trans-
ferred used to calculate the third via fuzzy rule from the
evaluation of the relevant histograms.

Histogram-based fuzzy color filter is particularly effec-
tive for reducing high-impulse noise in digital images while
preserving edge sharpness. Different from applying a
greyscale algorithm on each color component separately,
vector-based filtering methods can overcome artefacts in-
troduced especially on edge or texture pixels when dealing
with noisy color images [26]. +e major improvement
achieved by the histogram-based fuzzy color filter (HFC) is
demonstrated in Figure 3. +is figure illustrates the visual
performance of a magnified part of the “Lena” image with
20% salt-and-pepper noise. It is clearly observed that HFC
shows the best performance in the noise removal and detail
preservation; meanwhile, it does not introduce new colors
(especially in texture elements of an image) in contrast to
many of the compared filters, including the fuzzy impulse
noise detection and reducing method (FIDRM), the adap-
tive-weighted fuzzy mean filter (AWFM) from [56], the
histogram adaptive fuzzy filter (HAF), dual-step fuzzy in-
ference ruled by else-action filter (DSFIRE) [57], the tristate
median filter (TSM) from [58], and vector mean filter
(VMF). An objective evaluation is performed using the peak
signal-to-noise ratio (PSNR) (Figure 4).

3.3. Fuzzy Peer Group-Based Algorithms. Following the
traditional peer group filters, the authors in [59] claim that
traditional methods adopt crisp ways to calculate distance
threshold d; however, the similarity measurements are not
that easy. Furthermore, the number of peer group members
is determined using Fisher’s linear discriminant (FLD),
which often turns out not to be a desired peer group since

1

0 a b

large

membership degree

Figure 2: Illustration of the membership function large.
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more than the necessary number of clusters is always
obtained.

To overcome this problem, a similarity membership
function μ is introduced:

μ1 xi, xj  � e
− xi − xj

����
����/Ψ 

, for i, j � 0, . . . , n
2

− 1 , (22)

where Ψ> 0 is a fuzzy matrix [60, 61], and μ1 � 1 if x0 � x(i)

so that

μ1(x0, x(0))≥ μ1(x0, x(1))≥ · · · ≥ μ1(x0, x(n2− 1)). And an
accumulated similarity (fuzzy distance) metric dPG(x0, x(i))

between x0 and xi is used:

dPG x0, x(i)  � 
i

k�0
μ1 x0, x(k) , for i � 0, . . . , n

2
− 1 ,

(23)

where 1≤ dPG(x0, x(i))≤ n2, for i � 0, . . . , n2 − 1 .

(a) (b) (c)

(d) (e) (f)

Figure 3: (a) Original image, (b) classical error diffusion (MSE� 67.4), (c) fuzzy error diffusion (MSE� 48.3), (d) L-filter with common
memberships (MSE� 50.5), (e) L-filter with four fixed membership values (0.82, 0.14, 0.03, and 0.01) (MSE� 49.8), and (f) L-filter with two
fixed membership values (0.85 and 0.15) (MSE� 51.8) [65].

(a) (b) (c) (d) (e)

(f ) (g) (h) (i)

Figure 4: From top left to bottom right, (a) a part of the original colored Lena image and (b) the part corrupted with 20% salt-and-pepper
noise (PSNR: 12.29). (c) After the proposed HFC (PSNR: 46.84). (d) After the FIDRM (PSNR: 34.97). (e) After the AWFM (PSNR: 30.58). (f )
After the HAF (PSNR: 29.19). (g) After the DSFIRE (PSNR: 30.75). (h) After the TSM (PSNR: 28.05). (i) After the VMF (PSNR: 29.12) [26].
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A fuzzy set large (·)L is used to represent the fuzzy
variable dPG(x0, x(i)) large:

dPG x0, x(i)  
L

� μ2 dPG x0, x(i)  

� −
1

n
2

− 1 
2 dPG x0, x(i)  − 1 

× dPG x0, x(i)  − 2n
2

+ 1  ,

for i � 0, . . . , n
2

− 1 .

(24)

In order to better distinguish between noisy and noise-
free pixels, it is more appropriate in establishing peer group
cardinality differences. A quadratic function is normally
used as it shows sensitivity in low values of cardinality more
than in the high values. In the determination of membership
function, there is no need to adjust further the parameter of
the membership function.

A further idea discussed in that work is to calculate the
parameter r of the peer group of the filter using fuzzy logic.
So, the best number of members r corresponds to the value
r � 0, . . . , n2 − 1  that maximizes the certainty of the
resulting expression. By using the product T-norm as the
conjunction operator, the certainty C(r) of r that corre-
sponds to the best number of members for P(x0, r, d)

satisfies the following fuzzy reasoning argument:

C(r) � μ1 x0, x(r)  dPG x0, x(r)  
L

, (25)

where C(r) represents the certainty of “x0 is similar to x(r)”;
μ1 x0, x(r)  represents the extent to which the farthest pixel
in P(x0, r, d) is similar to the center pixel x0; and
(dPG(x0, x(i)))

L gives the certainty of “(dPG(x0, x(r))) is
large”.+e best number r of members forP(x0, r, d) is given
by the function

r � argmax
r∈ω

, forω � 1, . . . , n
2

− 1 . (26)

+is reasoning is used to check for each value r, whether
the increment from (dPG(x0, x(r− 1))) to (dPG(x0, x(r))) is
sufficiently large to include in the fuzzy peer group. Since the
proposed method allows the operator to ignore the number
of clusters in the particular neighborhood, which are always
the results from Fisher’s linear discriminant approach, this is
in its essence a statistics based algorithm for designing peer
group filters.

Finally, the fuzzy peer group is formulated by a similarity
fuzzy set fP(x0, x(i)) � μ1( x0, x(i) ), with peer group
members x(0), x(1), . . . , x(r).

For summarization, membership functions characterize
the fuzzy sets. In a fuzzy logic system (FLS), membership
functions are associated with terms that appear as the ante-
cedents or the consequences of fuzzy rules. FLS is one of the
tools used to model a multi-input, multioutput system. Type-1
membership functions have been the focus in this paper.

One important issue is the derivation of membership
functions that achieve fuzzy similarity measurements of the
color pixels of an image. According to [7], the rank ordering

of samples approach is a good starting point. A Gaussian
function may be used to describe the similarity between two
color pixels; this approach is more commonly adopted
mainly due to its extensive use in fuzzy ranked filters.

Another way of evaluating the similarity function is
introduced by [17]. A number of convex membership
functions for evaluating the degree of similarity have been
introduced in their works. A simple linear similarity func-
tion with parameter h is only required to be determined,
which reflects the similarity of image structure. Compared to
the vector median filter (VMF) approach, the resultant filter
shows enhanced performance.

Exploring color similarity measurements is discussed in
[51]. It is claimed that a membership function is applied to
firstly achieve color component correlation; this includes
both the Euclidean distance measurements associated with
each color component and the measurements of the Eu-
clidean distance difference from different pairs of color
components.

As mentioned, histogram-based approaches have been
developed to also derive membership functions. One interest
is to link small membership function depending on slope
varieties of each selected intensity value [52]. Another ap-
proach in [26] has the following two focal points: one is to
establish a membership function with adaptation to a fixed-
value impulse-noise, and the other is to establish a mem-
bership function to random-value impulse-noise. In the
fixed-value impulse-noise case, the extreme values are
compared with mean values for noise detection. For a
random-value impulse-noise, the histogram algorithm
achieves parameter estimation for membership function
constructions.

4. Fuzzy Filters’ Design

If a color pixel or component is considered noisy (not noise-
free), it should be filtered or smoothed proportionally. +e
estimated value is computed using the information of its
local neighbourhood or the other color components of the
filtered pixel in order to better estimate the original value
while preserving edge information without introducing
color artefacts.

4.1. Proposed L-Filter. +e work carried out by [62] presents
a switching rule-based filter that can be switched between the
identity filter (denoted as yξ) and a modified L-filter design
(denoted as yLmod

). Following the detecting method, this is
utilized to calculate the ideal output for the pixel’s intensity
and color. +e suggested filter is distinguished from most
L-filters because it integrates just two pixels from the vector
ordered set; this significantly decreases the time required for
both output calculation and coefficient training. +e fol-
lowing is the expression for the switching scheme filter.

yi �
yξ , if clean,

yLmod
, otherwise,

⎧⎨

⎩ (27)

where yi denotes the intermediate output with index i in a
color image, corresponding to intensity or color. +e
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switching operation is finally carried out by a combination of
the outputs between intensity |υ| and color θ with optimal
magnitude and optimal direction:

yi � υi


θi, (28)

where

υi


 � y

2
Ri + y

2
Gi + y

2
Bi 

1/2
,

θi � cos− 1 yRi · yGi · yBi

υi




 ,

(29)

where yRi, yRi, and yRi denote the red, green, and blue
components of the intermediate pixel vector.

+e suggested L-filter is constructed by combining two
pixels from the vector median ordered set linearly.

yLmod
� 

2

i�1
ciyji

. (30)

Here ci corresponds to the i th coefficient in the vector
median ordered set. +e subscript j denotes the index of the
pixel selected from the ordered set. For a n × n filter window
with the center position at C � (n × n + 1)/2, j1 will be C − 2
and j2 will be C − 1. In the calculation, the center pixel is
considered to be noise from the detection result, without
being included as a possible output.

+e constrained least mean square (LMS) algorithm
optimized the coefficients using a set of target and purposely
distorted pictures supplied by the user [63]. Optimization is
performed to reduce the direction and amount of the
inaccuracy in the color and intensity values, respectively. For
more details related to the LMS algorithm, one needs to refer
to [63].

In [64], through the fuzzy model, an l2 − l∞ filter has
been constructed for nonuniformly sampled nonlinear
systems. Compared with the classical filter (i.e., Kalman
filter), the l2 − l∞ filter is more applicable because the
requested peak value of the estimation error for the external
noise is less than a certain level that often requires to be
satisfied. Hence, it shows the advantage of the fuzzy mod-
elled filter in achieving a prescribed noise attenuation level.

While the error-diffusion dither produces a relatively
high-quality image, it is computationally expensive. In [65],
a new approach to error diffusion dithering through a fuzzy
error diffusion algorithm is proposed. To speed up the fuzzy
error diffusion process, an L-filter approach is developed by
determining a fixed set of membership values. +e fuzzy
error diffusion algorithm is performed to achieve drastic
improvements of color images quality, resulting in superior-
quality dithered images and significantly lower mean
squared error values (MSE). Figure 3(c) illustrates the result
of fuzzy error diffusion and compares it with the classical
approaches in Figures 3(d) and 3(e) along with classical error
diffusion that has been used to produce the image in
Figure 3(b). +e original image is given in Figure 3(a). Color
impulses are observed as white dots on uniformly gray
colored regions. +e result of the fuzzy error diffusion al-
gorithm is given in Figure 3(c), where fuzzy error diffusion

reduces the occurrence of color impulses drastically. A
significantly lower MSE value for the fuzzy error diffusion
algorithm is 48.3 for Figure 3(c) versus 67.4 for Figure 3(b).

4.2. Fast Adaptive Similarity Filter. Considering the infor-
mation associated with the central pixel, [17] proposed the
design of nonlinear filters to establish similarity measures in
a fast, adaptive manner on the basis of the correlation be-
tween the different image channels. +e algorithm benefits
from a lower computational complexity than that of the
vector median filter.

Following Section 3.1.2, according to equation (9), a
modified cumulative distance functionRk can be established:

Rk �

− h + 
n

j�1
ρ xk, xj , for k � 0,



n

j�1
ρ xk, xj  for k � 1, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(31)

For convenience of representation, here we relabel the
center pixel as x0 in this equation. +e filter construction is
quite similar to the standard VMF. +e major difference is
the omission of the central pixel x0 when calculating xk,
k> 0.

+e condition for retaining the original image pixel is
R0 <Rk, k � 1, . . . , n, which leads to the condition

− h + 
n

j�1
ρ x0, xj ≤ 

n

j�1
ρ xk, xj . (32)

+at means

R0 ≤Rkifh≥ 

n

j�1
ρ x0, xj  − ρ x0, xj  , (33)

where k � 1, . . . , n.
+is technique, which is based on the basic leave-one-out

strategy, is the new algorithm’s most significant feature. +e
central pixel is only replaced when it is really noisy; this
approach aims to preserve as much as possible the original
information in the images.

As is commonly known, the VMF method has the
problem of replacing an excessive number of uncorrupted
picture pixels. +is problem is addressed in the existing filter
design by specifying positive h values, compelling the filter to
retain as many uncorrupted, original pixels as possible while
still allowing for the removal of corrupted ones. Addi-
tionally, h may be fine-tuned further based on noise statistics
and image structure.

+e filtering process follows three steps. (a)+e fractions
of corrupted pixels are estimated. As mentioned in Section
3.1.2, it is possible to find two “close” pixels among its eight
neighbors and a filtered center located pixel, according to a
predefined L2 distance constant d and the number of pixels
m within the distance range. Outside that distance range, the
pixel is considered noisy. (b) An optimal value of his found.
Consequently, the constant h is established to the value that

Journal of Healthcare Engineering 11



results in the filter changing the same proportion of pixels as
the predicted noise fraction p.

To quickly create a filter, the well-known bisection ap-
proach may be employed [66]. +is approach permits the
root of an equation g(x) � 0 in [a, b] to be determined,
provided that g(x) is continuous and g(a)g(b)< 0. In the
case considered here,

g(h) � λ(h) − p, (34)

where λ(h) is the fraction of pixels changed by the filter,
depending on h. For the majority of standard color images, a
sufficiently long interval is considered as [0, 4], where
g(0)g(4)< 0. (c) Filtering of an image using the obtained
optimal value of h is subsequently performed.+e algorithm
incorporates the following steps: (1) Set r: � a, s: � b. (2)
Set z: � (r + s)/2. (3) If g(z) � 0, then output β � z and
exit. In any other case, (a) if g(z)g(r)< 0, then set s: � z

and go to 2. (b) If g(z)g(r) > 0, then set r: � z and go to 2.
Although the described process may be of infinite length and
may not give an exact value, it provides a sufficiently good
approximation of β, after a limited number of iterations.

4.3. Histogram-Based Fuzzy Color Filter. Referring to his-
togram adaptive filtering in [54, 55], the differences between
intensity values in the different components can be trans-
formed from the unit interval into the [− (2m + 1), +(2m +

1)] interval for a real gray intensity distribution. We denote
this as △′. +e filtering procedure only processes those
components that have a nonzero membership degree in the
fuzzy set noise (i.e., for the red components
μnoise(CR(k1, k2))> 0). +e filtering method distinguishes
four different cases, which can be illustrated for a noisy red
component pixel (CR(k1, k2)) (i.e., μnoise(CR(k1, k2))),
where yR(k1 ,k2) denotes the filtered output value.

Case 1. μnoise(CG(k1, k2))> 0 and μnoise(CB(k1, k2)>
0yR(k1,

k2)) � (
9
k�1(1 − μnoise(CGk))CRk/

9
k�1(1 − μnoise(CGk))).

Case 2. μnoise(CG(k1, k2)) � 0 and μnoise(CB(k1, k2)) > 0yR
(k1, k2) � CG(k1, k2) +△RG′C(k1, k2).

Case 3. μnoise(CG(k1, k2))> 0 and μnoise(CB(k1, k2)) � 0yR
(k1, k2) � CB(k1, k2) +△RB′C(k1, k2).

Case 4. μnoise(CG(k1, k2)) � 0 and μnoise(CB(k1, k2)) � 0yR
(k1, k2) � 0.5(CG(k1, k2) +△RG′C(k1, k2)) + 0.5(CB(k1,

k2) +△RB′C(k1, k2)).
In the first case it is possible that 

9
k�1(1 − μnoise(CRk)) �

0 (which is exceptional). In this situation, the output value
FR(k1, k2) is assumed to be equal to the median of all the
associated pixel intensity values.

Additionally, Fotinos et al. [67] designed a multidi-
mensional filtering technique using fuzzy logic ideas and
based on local statistics, the maximum and minimum of the
histogram as parameters for signal shape description. Ex-
perimental results, conducted in true color images, show
improved performance in the suppression of different types

of noise and the preservation of the image details compared
with other popular filtering techniques in literature, such as
the arithmetic mean filter (AMF), vector median filter
(VMF), the mean filter, and the fuzzy multichannel filter
[68].

5. Fuzzy Filters in the Restoration of Medical
Images and Signals

+e large number of sensors and hyperspectral imaging
modalities adopted in medical imaging leads to different
types of noise [69, 70], which may coexist when the images
are the result of data fusion procedures. Noise that is not
informative may impair visual interpretation process and
affect the fidelity of automated analysis source [71]. Nu-
merous fuzzy techniques have been investigated for re-
storing corrupted magnetic resonance imaging (MRI) data,
including those from the brain and the heart [72–77].

5.1. Filtering Heart MRI Data. In [72], a unique post-
processing approach is introduced via considering phase-
contrast magnetic resonance imaging. Automatic vessel
segmentation is accomplished using active contours [78, 79],
while the segmented velocity field is filtered by applying
multidimensional fuzzy adaptive vector median filtering.
Accordingly, the processed MRI data is from children born
with congenital single-ventricle heart abnormalities. +e
study demonstrates the algorithm’s capability of visualizing
and quantifying hemodynamics, as well as identifying pa-
tients with heart failure risks.

Random noise is introduced during segmentation as a
consequence of a fuzzy vessel edge. A hybrid multichannel
filter architecture is suggested to identify and replace this
noise.

y( k
→

) � μ( k
→

)x( k
→

) +(1 − μ( k
→

))M( k
→

), (35)

where x denotes the input vector, k
→

(k1, k2) signifies the
pixel coordinate vector, M is the selected filter value to
replace the vector’s noisy component, and μ denotes a
continuous fuzzy membership determining the extent of x

being a flow pixel. Vector median filtering is presented for
the analysis of a segmented PC MRI dataset, a vector field
having three components for each data point. Due to the
physical properties of flow and noise, the parameters used to
establish these rules are as follows: (i) VDH or vector di-
rection homogeneity; (ii) DVM or the distance of the given
pixel from the vector median within the interrogation
window; (iii) MI or magnitude image intensity; and (iv) SD
or the standard deviation of the vector field. As a result, a set
of generic principles for characterizing flow and noise may
be defined as follows.

(i) Rule 1. DVM is high for noise and low for flow
(ii) Rule 2. VDH is low for noise and high for flow
(iii) Rule 3. SD is high for noise and low for flow
(iv) Rule 4. MI is low for noise and high for flow
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+en, using fuzzy fusion, a membership function μ is
assessed to estimate the chance of a pixel being noise.
Figure 5 shows an example of noise used in active contour-
based segmentation. Along the vessel walls, noise vectors are
readily visible inside this segmented vessel, as shown by the
oval [72].

5.2. Filtering Brain MRI Data. Additionally, [80] included a
switch mode fuzzy adaptive median filter (SMFAMF), which
is used to reduce noise in MR images distorted by significant
impulse (salt and pepper) noise without damaging picture
edges and features. +e authors next examined the same
issue using a fuzzy adaptive median filter with adaptive
membership parameters (FAMFAMP) [81]. It was discov-
ered that it outperformed the SMFAMF when it came to
suppressing salt-and-pepper noise and other noise of im-
pulse type.

Bappy and Jeon [82] restored medical X-ray pictures
using total variation (TV) minimisation and a hybrid me-
dian filter (HMF), with the goal of preserving edges and
essential image information for accurate illness identifica-
tion by doctors or radiologists. +e resulting experiment
demonstrates increased convergence speed and the resto-
ration of high-quality medical X-ray pictures, with the
staircase effect and spurious edges erased.

5.3. Filtering Multimodality Medical Images. Today there
have been several medical imaging modalities, including
structural modalities and functional modalities. Functional
modalities include single-photon emission CT (SPECT),
positron emission tomography (PET), and functional
magnetic resonance imaging (fMRI) images that provide
more information about functional tissues like blood flow in
a vein. On the other hand, structural modalities include
magnetic resonance imaging (MRI) and computed to-
mography (CT) that render high-resolution structural in-
formation about an organ. Each modality has its respective
advantages and disadvantages.

Ullah et al. [83] coupled Sum-Modified-Laplacian (SML)
algorithms and local featured fuzzy sets in the non-
subsampled Shearlet Transform (NSST) domain to develop
color medical picture fusion that effectively restrains color
distortion and improves visual quality. +e technique in-
volves decomposing two registered pictures of the same
scene into a single Low-Frequency Subband (LFS) and
numerous High-Frequency Subbands (HFS). On the LFS,
the weights of each pixel are determined using Fuzzy Pixel-
based fusion algorithms. To extract more meaningful in-
formation, merged HFS coefficients are chosen based on the
SML coefficients of each HFS. Finally, the appropriate fused
picture is obtained using inversed NSST. To evaluate per-
formance, 256 × 256 MRI, PET, and SPECT images are
picked for the fused MRI/PET and MRI/SPECT images. +e
obtained results demonstrate that the proposed approach is
not only better in terms of contour and edge detection, visual
feature recognition, and computing performance, but also in
terms of quantitative parameters when compared to other
state-of-the-art offered systems, such as Fuzzy Transform

with uniform sinusoidal membership fusion [84], PCNN
model [85, 86] for the fusion of LFS and HFS, local Laplacian
filtering (LLF) [87] for image decomposition, contourlet
transform (COT) [88], nonsubsampled contourlet trans-
form (NSCT) [88], moving frame based decomposition
framework (MFDF) [89], and sparse representation (SR)
based approach [90].

5.4. Fuzzy Rule-Based Methods for Earlier Cancer Diagnosis.
Currently, Fuzzy rule-based systematic approaches have
been developed for early cancer diagnosis with the analysis
of medical images. Mammogram images are being acquired
to aid the breast cancer diagnosis of the suspected patients.
Rao et al. [91] implemented fuzzy rules with minimum
phases for the analysis of mammographic images that consist
of 320 images coming from 160 patients with each of 1024 ×

1024 resolutions. We calculate statistical metrics such as the
Correct Detection Ratio (CDR), the Undersegmentation
Error (USE), and the Similarity Index (SI). +e suggested
method gives quicker, more accurate findings that are more
helpful in diagnosing and classifying aberrant tumors or
masses while incurring less processing costs.

Tiwari et al. [92] defined medical entities as fuzzy sets and
reasoning as rule-based systems in order to explore the like-
lihood of incidence of lung infection. It is regarded to be a safe
and cost-effective method of treating lung disorders. Addi-
tionally, fuzzy logic implementation gives a set of approaches
for obtaining dependable solutions. Kumar et al. [93] created a
Combined Fuzzy-Rough-Set-Based F-Information and Water
Swirl Algorithm with the goal of automating the discovery of
cancer-associated genes (FRFI-WSA). +ere are two phases of
gene selection: filtering and embedding, which are used to
identify prospective genes and the most important cancer
genes. +e suggested technique is assessed on 9 binary and 13
multicategory cancer gene expression datasets. In the global
cancer map with repeated measurements (GCM-RM) dataset,
FRFI-WSA identified the 16 most significant genes linked with
cancer with the fewest possible compact rules and the maxi-
mum classification accuracy of 96.45%.

Figure 5: An example of noise being embedded into active con-
tour-based segmentation [72].
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For an extended application in biomedicine, Harsha and
Vajpai [94] illustrate a Fuzzy Inference System that is used
for the analysis and classification of electroencephalogram
(EEG) signals. Statistical analysis of dynamical properties of
the EEG signals is performed and the outcome of this
analysis is used to create a fuzzy inference model. +e final
aim is to differentiate between brain states and zones they
belong to, for example, healthy zone, epileptic zone, and
nonepileptic zone. Encouraging results have been obtained
from this pilot project. Further generalization of the rules is
possible with the help of more data and inputs from neu-
rophysiological experts.

6. Conclusion

+is paper is focused on fuzzy filtering with type-I fuzzy
reasoning, using some well-known fuzzy filter design ap-
proaches. Different fuzzy variable designs using different
fuzzy rules were considered. Furthermore, different mem-
bership functions with optimized parameters were also
discussed. Advances in the design of multichannel hybrid
filters originally proposed in [23] have been considered, and
their evolution all the way until the development of fuzzy
peer group filter designs, which were introduced in 2009
[59], has been summarized. +ese designs have over the
years been gradually simplified and evolved to variants
requiring less computational complexity. What must be
stressed out, however, is that these ideas form an important
intellectual scaffolding for further developments in this field.
Finally, within the context of biomedical imaging applica-
tions, what is particularly attractive is that these filters can be
adapted to provide resilient energy-to-peak filter designs for
each pixel or voxel, when nonlinearities in the image need to
be preserved after assuming a Takagi–Sugeno fuzzy model
where the designed filter is assumed to have additive gain
variations [95]. Furthermore, these designs complement well
existing wavelet parametrizations with adaptive filtering
[96, 97], so it is thus envisaged that the fuzzy filtering
techniques may also be soon applied to wavelet parame-
trizations (at different decomposition levels) so as to sig-
nificantly improve filtering and signal reconstruction. Fuzzy
filters are especially promising in MRI image denoising and
have applications to hyperspectral imaging, and in cases
when combining terahertz (THz) imaging with images from
different parts of the electromagnetic spectrum (e.g., near
infrared, visible, or ultraviolet parts of the spectrum). In
addition, they have applications in magnetic resonance
imaging (MRI) [73, 75, 97–103], retinal fundus photography
[104, 105], face recognition [106], and video analysis [107].

Furthermore, they have important applications in optical
coherence tomography and fundus imaging [108], in elec-
troencephalogram (EEG) analysis [109, 110], and in other
tomographic applications (e.g., in 3-dimensional recon-
struction of brain images [111] or X-ray computed axial
tomography [112] or ultrasound [113, 114]). +e collective
discussion of the various fuzzy filtering approaches in this
article should lead to a better understanding of what has
been achieved so far by the fuzzy filtering community and
provides some further directions for research. From an

applications perspective, an adaptation and evaluation of
these algorithms for the different biomedical imaging mo-
dalities mentioned is urgently needed.
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[81] I. Güler, A. Toprak, A. Demirhan, and R. Karakiş, “MR
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