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Abstract. We study the impact of applying stochastic forcing
to the Ghil–Sellers energy balance climate model in the form
of a fluctuating solar irradiance. Through numerical simula-
tions, we explore the noise-induced transitions between the
competing warm and snowball climate states. We consider
multiplicative stochastic forcing driven by Gaussian and α-
stable Lévy – α ∈ (0,2) – noise laws, examine the statistics
of transition times, and estimate the most probable transition
paths. While the Gaussian noise case – used here as a refer-
ence – has been carefully studied in a plethora of investiga-
tions on metastable systems, much less is known about the
Lévy case, both in terms of mathematical theory and heuris-
tics, especially in the case of high- and infinite-dimensional
systems. In the weak noise limit, the expected residence time
in each metastable state scales in a fundamentally different
way in the Gaussian vs. Lévy noise case with respect to
the intensity of the noise. In the former case, the classical
Kramers-like exponential law is recovered. In the latter case,
power laws are found, with the exponent equal to −α, in ap-
parent agreement with rigorous results obtained for additive
noise in a related – yet different – reaction–diffusion equa-
tion and in simpler models. This can be better understood
by treating the Lévy noise as a compound Poisson process.
The transition paths are studied in a projection of the state
space, and remarkable differences are observed between the
two different types of noise. The snowball-to-warm and the
warm-to-snowball most probable transition paths cross at the
single unstable edge state on the basin boundary. In the case
of Lévy noise, the most probable transition paths in the two
directions are wholly separated, as transitions apparently take
place via the closest basin boundary region to the outgoing

attractor. This property can be better elucidated by consider-
ing singular perturbations to the solar irradiance.

1 Introduction

1.1 Multistability of the Earth’s climate

The climate system comprises the following five interacting
subdomains: the atmosphere, the hydrosphere (water in liq-
uid form), the upper layer of the lithosphere, the cryosphere
(water in solid form), and the biosphere (ecosystems and
living organisms). The climate is driven by the inhomoge-
neous absorption of incoming solar radiation, which sets up
nonequilibrium conditions. The system reaches an approxi-
mate steady state, where macroscopic fluxes of energy, mo-
mentum, and mass are present throughout its domain, and
entropy is continuously generated and expelled into the outer
space. The climate features variability on a vast range of spa-
tial and temporal scales as a result of the interplay of forcing,
dissipation, feedbacks, mixing, transport, chemical reactions,
phase changes, and exchange processes between the subdo-
mains (see Peixoto and Oort, 1992, Lucarini et al., 2014a,
Ghil, 2015, and Ghil and Lucarini, 2020).

In the late 1960s Budyko (1969) and Sellers (1969) in-
dependently proposed that, in the current astronomical and
astrophysical configuration, the Earth could support two dis-
tinct climates, namely the present-day warm (W) state and
a competing one characterised by global glaciation, usu-
ally referred to as the snowball (SB) state. Their analysis
was performed using one-dimensional energy balance mod-
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184 V. Lucarini et al.: Metastability of the Ghil–Sellers model

els (EBMs), which, despite their simplicity, were able to cap-
ture the essential physical mechanisms in action, i.e. the in-
terplay between two key feedbacks. The Boltzmann feedback
is associated with the fact that warmer bodies emit more
radiation, and it is a negative, stabilising one. Instead, the
instability of the system is due to the presence of the so-
called ice–albedo feedback, whereby an increase in the ice-
covered fraction of the surface leads to a further tempera-
ture reduction for the planet because ice efficiently reflects
the incoming solar radiation. These mechanisms are active at
all spatial scales, including the planetary one (see Budyko,
1969, and Sellers, 1969). Such pioneering investigations of
the multistability of the Earth’s climate were later extended
by Ghil (1976) (see also the later analysis by Ghil and Chil-
dress, 1987), who provided a comprehensive mathematical
framework for the problem, based on the study of the bi-
furcations of the system. The main control parameter defin-
ing the stability properties is the solar irradiance S∗. Below
the critical value SW→SB, only the SB state is permitted,
whereas, above the critical value SSB→W, only the W state
is permitted. Such critical values, which determine the re-
gion of bistability, are defined by bifurcations that emerge
when, roughly speaking, the strength of the positive, desta-
bilising feedbacks becomes as strong as the negative, stabil-
ising feedbacks. Many variants of the models proposed by
Budyko and Sellers have been discussed in the literature, all
featuring by and large rather similar qualitative and quanti-
tative features (Ghil, 1981; North et al., 1981; North, 1990;
North and Stevens, 2006). Furthermore, these models have
long been receiving a great deal of attention from the math-
ematical community regarding the possibility of proving the
existence of solutions and evaluating their multiplicity (Het-
zer, 1990; Díaz et al., 1997; Kaper and Engler, 2013; Bensid
and Díaz, 2019).

Only later were these predictions confirmed by actual
data. Indeed, geological and paleomagnetic evidence sug-
gests that, during the Neoproterozoic era, between 630×106

and 715× 106 years ago, the Earth went, at least twice, into
major long-lasting global glaciations that can be associated
with the SB state (see Pierrehumbert et al., 2011, and Hoff-
man et al., 1998). Multicellular life emerged in our planet
shortly after the final deglaciation from the last SB state
(Gould, 1989). The robustness and importance of the com-
petition between the Boltzmann feedback and the ice–albedo
feedback in defining the global stability properties of the
climate has been confirmed by investigations performed us-
ing higher complexity models (Lucarini et al., 2010; Pierre-
humbert et al., 2011), including fully coupled climate mod-
els (Voigt and Marotzke, 2010). While the mechanisms de-
scribed above are pretty robust, the concentration of green-
house gases and the boundary conditions defined by the ex-
tent and position of the continents have an impact on the
values of SW→SB and SSB→W, as well as on the properties
of the competing states. The presence of multistability has a
key importance in terms of determining habitability condi-

tions for Earth-like exoplanets (see Lucarini et al., 2013, and
Linsenmeier et al., 2015).

Additionally, several results indicate that the phase space
of the climate system might well be more complex than
the scenario of bistability described above. Various studies
(Lewis et al., 2007; Abbot et al., 2011; Lucarini and Bódai,
2017; Margazoglou et al., 2021) performed with highly non-
trivial climate models report the possible existence of addi-
tional competing states, up to a total of five (Brunetti et al.,
2019; Ragon et al., 2022). In Margazoglou et al. (2021), it is
argued that, in fact, one can see the climate as a multistable
system where multistability is realised at different hierarchi-
cal levels. As an example, the tipping points (Lenton et al.,
2008; Steffen et al., 2018) that characterise the current (W)
climate state can be seen as a manifestation of a hierarchi-
cally lower multistability with respect to the one defining the
dichotomy between the W and SB states.

1.2 Transitions between competing metastable states:
Gaussian vs. Lévy noise

Clearly, in the case of autonomous systems where the phase
space is partitioned in more than one basin of attraction of
the corresponding attractors and the basin boundaries, the
asymptotic state of the system is determined by its initial
conditions. Things change dramatically when one includes
time-dependent forcing which allows for transitions between
competing metastable states (Ashwin et al., 2012). In partic-
ular, following the viewpoint originally proposed by Hassel-
mann (1976), whereby the fast variables of the climate sys-
tem act as stochastic forcings for the slow ones (Imkeller and
von Storch, 2001), the relevance of studying noise-induced
transitions between competing states has become apparent
(Hänggi, 1986; Freidlin and Wentzell, 1984). This view-
point, where the noise is usually assumed to be Gaussian
distributed, has provided very valuable insight on the mul-
tiscale nature of climatic time series (Saltzman, 2001) and is
related to the discovery of phenomena like stochastic reso-
nance (Benzi et al., 1981; Nicolis, 1982).

Metastability is ubiquitous in nature, and advancing its
understanding is a key challenge in complex system sci-
ence at large (Feudel et al., 2018). In general, the transi-
tions between competing metastable states in stochastically
perturbed multistable systems take place, in the weak noise
limit, through special regions of the basin boundaries, which
are named edge states. The edge states are saddles, and
the trajectories initialised in the basin boundaries are at-
tracted to them, but there is an extra direction of instabil-
ity, so that a small perturbation sends an orbit towards one
of the competing metastable states with a probability of one
(Grebogi et al., 1983; Ott, 2002; Kraut and Feudel, 2002;
Skufca et al., 2006; Vollmer et al., 2009). In the case the
edge state supports chaotic dynamics, we refer to it as the
melancholia (M) state (Lucarini and Bódai, 2017). In pre-
vious papers, we have shown that it is possible to construct
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M states in high-dimensional climate models (Lucarini and
Bódai, 2017) and to prove that the nonequilibrium quasi-
potential formalism introduced by Graham (1987) and Gra-
ham et al. (1991) provides a powerful framework for explain-
ing the population of each metastable state and the statis-
tics of the noise-induced transitions. In the weak noise limit,
edge states act as gateways for noise-induced transitions be-
tween the metastable states (Lucarini and Bódai, 2019; Lu-
carini and Bódai, 2020; Margazoglou et al., 2021); see also a
recent study on a nontrivial metastable prey–predator model
(Garain and Sarathi Mandal, 2022). The local minima and
the saddles of the quasi-potential 8, which generalises the
classical energy landscape for non-gradient systems, corre-
spond to competing metastable states and to edge states, re-
spectively. In our investigation, the climate system is forced
by adding a random – Gaussian-distributed – component to
the solar irradiance, which impacts, in the form of multiplica-
tive noise, only a small subset of the degrees of freedom of
the system. We remark that such a choice of the stochastic
forcing does not fully reflect the physical realism, as the vari-
ability of the solar irradiance has a more complex behaviour
(Solanki et al., 2013). Instead, noise acts as a tool for explor-
ing the global stability properties of the system, and injecting
noise as fluctuation of the solar irradiance has the merit of
impacting the Lorenz energy cycle, thus effecting all degrees
of freedom of the system (Lucarini and Bódai, 2020). See
also the recent detailed mathematical analysis of the stochas-
tically perturbed one-dimensional EBMs presented in Díaz
and Díaz (2021).

A major limitation of this mathematical framework is the
need to rigidly consider Gaussian noise laws, even if con-
siderable freedom is left as to the choice of the spatial cor-
relation properties of the noise. It seems natural to attempt
a generalisation by considering the whole class of α-stable
Lévy noise laws. Lévy processes (Applebaum, 2009; Duan,
2015), described in detail in Appendix A, are fundamentally
characterised by the stability parameter α ∈ (0,2], where the
α = 2 case corresponds to the Gaussian case (which is, in-
deed, a special Lévy process). In what follows, when we dis-
cuss Lévy noise laws, we refer to α ∈ (0,2).

Note that α-stable Lévy processes have played an impor-
tant role in geophysics as they have provided the starting
point for defining the multiplicative cascades also referred
to as universal multifractal. This framework has been pro-
posed as way to analyse and simulate, at climate scales, the
ubiquitous intermittency and heavy-tailed statistics of clouds
(Schertzer and Lovejoy, 1988), rain reflectivity (Tessier et al.,
1993; Schertzer and Lovejoy, 1997), atmospheric turbulence
(Schmitt et al., 1996), and soil moisture (Millàn et al., 2016).
On longer timescales, multiplicative cascades have been
used to interpret temperature records in the summit ice core
Schmitt et al. (1995, see Lovejoy and Schertzer, 2013, for
a summary of this viewpoint). Mathematicians, on the other
hand, have defined a Lévy multiplicative chaos (Fan, 1997;
Rhodes et al., 2014) as a more mathematically tractable al-

ternative to the universal multifractal. Finally, we remark that
fractional Fokker–Planck equations have been proposed by
Schertzer et al. (2001) to investigate the properties of non-
linear Langevin-type equations forced by an α-stable Lévy
noise with the goal of analysing and simulating anomalous
diffusion.

Following Ditlevsen (1999), it has become apparent that
more general classes of α-stable Lévy noise laws might be
useful for modelling noise-induced transitions in the cli-
mate system like Dansgaard–Oeschger events, which are se-
quences of periods of abrupt warming followed by slower
cooling that occurred during the last glacial period (Barker
et al., 2011). The viewpoint by Ditlevsen (1999) was particu-
larly effective in stimulating mathematical investigations into
noise-induced escapes from attractors, where, as stochastic
forcing, one chooses a Lévy, rather than Gaussian, noise
(Imkeller and Pavlyukevich, 2006a, b; Chechkin et al., 2007;
Debussche et al., 2013). Such analyses have clarified that a
fundamental dichotomy exists with the classical Freidlin and
Wentzell scenario mentioned above, even if phenomena like
stochastic resonance can also be recovered in this case (Dy-
biec and Gudowska-Nowak, 2009; Kuhwald and Pavlyuke-
vich, 2016). Whereas, in the Gaussian case, transitions be-
tween competing attractors occur as a result of the very un-
likely combination of many steps all going in the right di-
rection, in the Lévy case, transitions result from individual,
very large and very rare jumps. Recently, Duan and collab-
orators have made fundamental progress in achieving a vari-
ational formulation of the Lévy noise-perturbed dynamical
systems (Hu and Duan, 2020) and in developing correspond-
ing methods for data assimilation (Gao et al., 2016) and data
analysis (Lu and Duan, 2020). In terms of applications, Lévy
noise is becoming a more and more a popular concept and
tool for studying and interpreting complex systems (Grigoriu
and Samorodnitsky, 2003; Penland and Sardeshmukh, 2012;
Zheng et al., 2016; Wu et al., 2017; Serdukova et al., 2017;
Cai et al., 2017; Singla and Parthasarathy, 2020; Gottwald,
2021).

The contribution by Gottwald (2021) is especially worth
recapitulating because of its methodological clarity. There,
the idea is, following Ditlevsen (1999), to provide a con-
ceptual deterministic climate model able to generate a Lévy-
noise-like signal to describe, at least qualitatively, abrupt cli-
mate changes similar to Dansgaard–Oeschger events. A key
building block is the idea proposed in Thompson et al. (2017)
that a Lévy noise can be produced by integrating the so-
called correlated additive and multiplicative (CAM) noise
processes, which are defined by starting from standard Gaus-
sian processes. The other key ingredient is to consider the
atmosphere as the fast component in the multiscale model
and deduce, using homogenisation theory (Pavliotis and Stu-
art, 2008; Gottwald and Melbourne, 2013), that its influence
on the slower climate components can be closely represented
as a Gaussian forcing. Finally, the temperature signal is cast
as the integral of a CAM process.
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186 V. Lucarini et al.: Metastability of the Ghil–Sellers model

We remark that Gaussian and Lévy noise can be associated
with stochastic forcings of a fundamentally different nature.
One might think of Gaussian noise as being associated to the
impact of very rapid unresolved scales of motion on the re-
solved ones Pavliotis and Stuart (2008). Instead, one might
interpret α-stable Lévy noise as describing, succinctly, the
impact of what in the insurance sector are called acts of God
(e.g. an asteroid hitting the Earth, a massive volcanic erup-
tion, or the sudden collapse of the West Antarctic ice sheet).

1.3 Outline of the paper and main results

We consider here the Ghil–Sellers Earth’s EBM (Ghil, 1976),
a diffusive, one-dimensional energy balance system, gov-
erned by a nonlinear reaction–diffusion parabolic partial dif-
ferential equation. We stochastically perturb the system by
adding random fluctuations to the solar irradiance; therefore,
the noise is introduced in a multiplicative form. We study the
transitions between the two competing metastable climate
states and carry out a comparison of the effect of considering
Lévy vs. Gaussian noise laws of weak intensity ε.

The main challenges of the problem are (a) the fact that
we are considering dynamical processes occurring in infinite
dimensions (Doering, 1987; Duan and Wang, 2014; Alharbi,
2021) and (b) the consideration of multiplicative Lévy noise
laws (Peszat and Zabczyk, 2007; Debussche et al., 2013). We
characterise noise-induced transitions between the compet-
ing climate basins and quantify the effect of noise parame-
ters on them by estimating the statistics of escape times and
empirically constructing mean transition pathways called in-
stantons.

The results obtained confirm that, in the weak noise limit
ε→ 0, the mean residence time in each metastable state
driven by Gaussian vs. Lévy noise has a fundamentally dif-
ferent dependence on ε. Indeed, as expected, in the Gaus-
sian case, the residence time grows exponentially with ε−2,
which is, thus, in basic agreement with the well-known
Kramers (1940) law and the previous studies performed on
climate models (Lucarini and Bódai, 2019; Lucarini and Bó-
dai, 2020). Instead, in the case of α-stable noise laws, the
residence time increases with ε−α . We perform simulations
for α = {0.5,1.0,1.5}. The obtained scaling can be explained
by effectively treating the Lévy noise as a compound Poisson
process, and this is in agreement with what is found for low-
dimensional dynamics (Imkeller and Pavlyukevich, 2006a, b)
and for the infinite dimensional stochastic Chafee–Infante
reaction–diffusion equation (Debussche et al., 2013) in the
case of additive noise. This might indicate that such scaling
laws are more general than what has been so far assumed.

Furthermore, we find clear confirmation that, in the case
of Gaussian noise in the weak noise limit, the escape from
either attractor’s basin takes place through the edge state. In-
deed, the most probable paths for both thawing and freezing
processes meet at the edge state and have distinct instantonic
and relaxation sections. In turn, for Lévy noise in the weak

noise limit, the escapes from a given basin of attraction oc-
cur through the boundary region closest to the outgoing at-
tractor. Hence, the paths are very different from the Gaussian
case (especially so for the freezing transition) and, somewhat
surprisingly, are identical regardless of the value of α consid-
ered. These properties can be better understood by studying
the impact of including singular perturbations to the value of
the solar irradiance.

The rest of the paper is organised as follows. In Sect. 2,
we present the Ghil–Sellers EBM and summarise its most
important dynamical aspects and the steady-state solutions
and their stability. The stochastic partial differential equation
obtained by randomly perturbing the solar irradiance in the
EBM is given in Sect. 3, where we also clarify the mathemat-
ical meaning of the solution of the stochastic partial differen-
tial equation. Section 3 also introduces the mean residence
time and most probable transition path between the compet-
ing climate states. The numerical methods are also briefly
presented. In Sect. 4, we discuss our main results. In Sect. 5,
we present our conclusions and perspectives for future inves-
tigations. Finally, Appendix A presents a succinct description
of α-stable Lévy processes, Appendix B sketches the deriva-
tion of the scaling laws for mean residence times presented in
Debussche et al. (2013), Appendix C explores the behaviour
and dynamics of singular Lévy perturbations of different du-
ration, and Appendix D presents a tabular summary of the
statistics of the problem.

2 The Ghil–Sellers energy balance climate model

The Ghil–Sellers EBM (Ghil, 1976) is described by a one-
dimensional nonlinear, parabolic, reaction–diffusion partial
differential equation (PDE) involving the surface tempera-
ture T field and the transformed space variable x = 2φ/π ∈
[−1,1], where φ ∈ [−π/2,π/2] is the latitude. The model
describes the processes of energy input, output, and diffusion
across the domain and can be written as follows:

C(x)Tt =DI (x,T ,Tx,Txx)+DII(x,T )−DIII(T ), (1)

where C(x) is the effective heat capacity, and T = T (x, t)
has boundary and initial conditions, as follows:

Tx(−1, t)= Tx(1, t)= 0, T (x,0)= T0(x). (2)

The equation does not depend explicitly on the time t . The
subscripts t and x refer to partial differentiation. The first
term – DI – on the right-hand side of Eq. (1) can be writ-
ten as follows:

DI (x,T ,Tx,Txx)

=
4

π2 cos(πx/2)
[cos(πx/2)K(x,T )Tx]x , (3)

and describes the convergence of meridional heat transport
performed by the geophysical fluids. The function K(x,T )
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is a combined diffusion coefficient, expressed as follows:

K(x,T )= k1(x)+ k2(x)g(T ), with (4)

g(T )=
c4

T 2 exp
(
−
c5

T

)
. (5)

The empirical functions k1(x) and k2(x) are eddy diffu-
sivities for sensible and latent heat, respectively, and g(T ) is
associated with the Clausius–Clapeyron relation, which de-
scribes the relationship between temperature and saturation
water vapour content of the atmosphere.

The second term – DII – on the right-hand side of Eq. (1)
describes the energy input associated with the absorption of
incoming solar radiation and can be written as follows:

DII(x,T )= µQ(x) [1−αa(x,T )] , (6)

where Q(x) is the incoming solar radiation, and αa(x,T ) is
the surface reflectivity (albedo), which is expressed as fol-
lows:

αa(x,T )= {b(x)− c1 (Tm+min[T − c2z(x)− Tm, 0])}c, (7)

where the subscript {·}c denotes a cutoff for a generic quan-
tity h, defined as follows:

hc =


hmin h≤ hmin,

h hmin < h < hmax,

hmax hmax ≤ h.

(8)

The term c2z(x) in Eq. (7) indicates the difference between
the sea level and surface level temperatures, and b(x) is a
temperature independent empirical function of the albedo.
The parameterisation given in Eqs. (7)–(8) encodes the pos-
itive ice–albedo feedback. The relative intensity of the solar
radiation in the model can be controlled by the parameter µ.

The last term – DIII – on the right-hand side of Eq. (1)
describes the energy loss to space by outgoing thermal plan-
etary radiation and is responsible for the negative Boltzmann
feedback. It can be written as follows:

DIII(T )= σT
4
[
1−m tanh(c3T

6)
]
, (9)

where σ is the Stefan–Boltzmann constant, and the
emissivity coefficient is expressed as 1−m tanh(c3T

6).
Such a term describes, in a simple yet effective way,
the greenhouse effect by reducing infrared radia-
tion losses. The values of the empirical functions
C(x),Q(x),b(x),z(x),k1(x),k2(x) at discrete latitudes
and empirical parameters c1,c2,c3,c4,c5,σ,m,Tm are
taken from Ghil (1976), as modified in Bódai et al. (2015).
The choice of the empirical functions and parameters are
extensively discussed in Ghil (1976). Of course, one might
reasonably wonder about the robustness of our modelling
strategy. Indeed, a plethora of EBMs analogous to the
one described here have been presented in the literature,

where slightly different parameterisations for the diffusion
operator, for the albedo, and for the greenhouse effect are
introduced. Such models are in fundamental agreement, both
in terms of physical (Ghil, 1981; North et al., 1981; North,
1990; North and Stevens, 2006) and mathematical properties
(Hetzer, 1990; Díaz et al., 1997; Kaper and Engler, 2013;
Bensid and Díaz, 2019).

In this study, we consider µ= 1.05. For this value of µ,
two stable asymptotic states – the W and the SB states – co-
exist (see Fig. 1b). Indeed, a codimension of one manifold
separates the basins of attraction of the W and SB states.
We refer to DW (DSB) as the basin of attraction of the W
(SB state). We refer to B as the basin boundary, which in-
cludes a single edge state M. Therefore, the system has three
stationary solutions TW(x), TSB(x), and TM(x) for the W, SB,
and M state, respectively, as shown in Fig. 1a. In Ghil (1976),
the three stationary solutions were obtained by equating Tt
to 0, and it was shown, through linear stability analysis, that
the stationary solutions TW and TSB are stable, while TM is
unstable. In Bódai et al. (2015) the unstable solution TM was
constructed using a modified version of the edge-tracking al-
gorithm (Skufca et al., 2006).

Following previous studies (Bódai et al., 2015; Lucarini
and Bódai, 2019; Lucarini and Bódai, 2020; Margazoglou
et al., 2021), when visualising our results, we apply a coarse
graining to the phase space of the model. In what follows,
we perform a projection on the plane spanned by the spa-
tially averaged temperature T and the averaged Equator mi-
nus the poles’ temperature difference 1T , which is defined
as follows:

T = [T (x, t)]10, (10)

1T = [T (x, t)]
1/3
0 − [T (x, t)]

1
1/3, where (11)

[T (x, t)]xhxl =

∫ xh
xl

cos(πx/2)T (x, t)dx∫ xh
xl

cos(πx/2)dx
. (12)

Such a representation allows for a minimal yet still phys-
ically relevant description of the system. Indeed, changes
in the energy budget of the system (warming versus cool-
ing) are, to a first approximation, related to variations in
T , while the large-scale energy transport performed by the
geophysical fluids is controlled by 1T . The boundary be-
tween high and low latitude in Eq. (11) is established at
x =±1/3, i.e. at 30◦ N/S. Additionally, in some visualisa-
tions, we consider, as a third coordinate, the fraction of the
surface with a below-freezing temperature (therefore, we ex-
pect 1 for global glaciation and 0 for no ice). We refer to this
variable as I , and it is an attempt to extract an observable that
resembles the sea ice percentage of the Earth’s surface. Thus,
the stationary solutions TW(x), TSB(x), and TM(x), in terms
of 1T and T , correspond to 1TW= 16 K, 1TSB= 8.3 K,
1TM= 17.5 K, TW= 297.7 K, T SB= 235.1 K, TM= 258 K,
IW = 0.2, ISB = 1, and IM = 1.

https://doi.org/10.5194/npg-29-183-2022 Nonlin. Processes Geophys., 29, 183–205, 2022



188 V. Lucarini et al.: Metastability of the Ghil–Sellers model

Figure 1. (a) Stationary solutions TW(x), TSB(x), and TM(x) in Kelvins (K) of the zonally averaged energy balance model Eq. (1). (b) Bi-
furcation diagram of the average temperature T as a function of control parameter µ.

3 Background and methodology

3.1 Stochastic energy balance model

In order to analyse the influence of random perturbations on
the deterministic dynamics of the climate model described
in Sect. 2, we perturb the relative intensity µ of the solar
irradiance by including a symmetric α-stable Lévy process
and rewrite Eq. (1) in the form of the following stochastic
partial differential equation (SPDE):

C(x)Tt = DI (x,T ,Tx,Txx)
+DII(x,T )

(
1+ ε/µL̇α(t)

)
−DIII(T ), (13)

where the boundary and initial conditions defined by Eq. (2)
apply to the stochastic temperature field T . Here the param-
eter ε > 0 controls the noise intensity, and (Lα(t)t≥0) is a
symmetric α-stable process defined in Appendix A. We con-
sider symmetric processes because we want to have a sim-
ple mathematical model allowing for transitions in both the
SB→W and the W direction → SB direction. Instead, a
strongly skewed process would have made it very hard to ex-
plore the full phase space because a lack of symmetry would
invariably favour one of the two transitions. As mentioned
before, we refer to the Lévy case if the stability parameter
α ∈ (0,2), so that we consider a jump process. We recall that
the jumps become more frequent and less intense as α in-
creases.

We define L̇(t)=Q(x)[1−αa(x,T )]L̇α(t), as the gen-
eralised derivative of a stochastic process in a suitably de-
fined functional space. Equation (13) features multiplicative
noise. The research interest on this type of SPDE (Doering,
1987; Peszat and Zabczyk, 2007; Duan and Wang, 2014;
Alharbi, 2021) is mainly focused on defining weak, strong,
mild, and martingale solutions, in specifying under which
conditions these solutions exist and are unique, and in con-
structing numerical approximation schemes for the solutions
(Davie and Gaines, 2000; Cialenco et al., 2012; Burrage and
Lythe, 2014; Jentzen and Kloeden, 2009; Kloeden and Shott,
2001), among other aspects.

First, let us define the concept of a mild solution in this
context. Let (�,F ,P) be a given complete probability space

and H(‖ · ‖, 〈·, ·〉) a separable Hilbert space with a norm ‖ · ‖
and inner product 〈·, ·〉. Equation (13) can be rewritten in the
more general form, as follows:

Tt = A(x) [E(x,T ) Tx]x +F(x,T )+ εG(x,T )L̇α(t),

Tx(−1, t)= Tx(1, t)= 0,
T (x,0)= T0(x), (14)

where A,E,F,G are Lipschitz functions defined on
[−1,1]×H and G(x,T )L̇α(t)= L̇(t). Under certain as-
sumptions (Yagi, 2010), the problem (Eq. 14) is formulated
as a Cauchy problem, for which a local mild solution, a pro-
gressively measurable process T (t), for all t ∈ [0, tF ] and
T0 ∈H has the following integral representation:

T (t)= 9(t)T0+

t∫
0

9(t − s)ϒ(T (s))ds

+ ε

t∫
0

9(t − s)G(T (s))dβ

+ ε

t∫
0

9(t − s)G(T (s))dγ, (15)

where the dependence on x is kept implicit, and β (γ ) is
the Poisson random measure (compensated Poisson random
measure) defined through Lévy–Itô decomposition. Instead,
9(t) with t>0 is the evolution operator having the gener-
alised semigroup property for the family of sector operators
with the bounded inverses, andϒ(T )= T +F(x,T ), T ∈H
is a nonlinear operator, which we assume to be Lipschitz
continuous. Following the abstract theory presented in Yagi
(2010), under certain structural assumptions for the operators
9 and ϒ and for the functional space, one can prove that the
solution Eq. (15) is the unique local mild solution of Eq. (14).

As mentioned above, things are radically different for the
special case α = 2, which corresponds to Gaussian noise.
In this case, we revisit Eq. (14), and we define L̇α=2(t)=

Ẇ (t), where (W(t)t≥0) is a Wiener process. We then de-
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fine Ẇ(t)=G(x,T )Ẇ (t) as the generalised derivative of a
Wiener process in a suitably defined functional space.

3.2 Noise-induced transitions: mean escape times

By incorporating stochastic forcing into the system, its long-
time dynamics change significantly, allowing transitions be-
tween the competing basins. This dynamical behaviour is
called metastability and is graphically captured by Fig. 2,
where, in Fig. 2a and b, a typical spatiotemporal evolution
of the temperature field is shown for the stability parameters
α = 0.5 and α = 1.5, respectively. Instead, in Fig. 2c and d,
the temporal evolution of the global temperature T and of
the averaged Equator and poles’ temperature difference 1T
(as defined in Eqs. 10–11) is correspondingly shown. In what
follows, we investigate the time statistics and the paths of the
transitions between such basins.

In a complete probability space (�,F ,P) we define the
first exit time τx of a cádlág mild solution T (·;x) of Eq. (13),
starting at the x ∈DW/SB domain of a W/SB climate stable
state as follows:

τx(ω)= inf
{
t > 0|Tt (ω,x) 6∈DW/SB

}
, ω ∈�, x ∈H. (16)

The mean escape time is then expressed by E[τx(ω)]. In
the case of the infinite dimensional multistable reaction–
diffusion system described by Chafee–Infante equation un-
der the influence of additive infinite-dimensional α-stable
Lévy noise – α ∈ (0,2) – it was shown (Debussche et al.,
2013) that, in the weak noise limit, ε→ 0 the mean es-
cape time from one of the competing basins of attraction
increases as ε−α . In such a limit, the jump diffusion sys-
tem reduces the Markov chain to a finite state, with val-
ues in the set of stable states. Details of this method are
given in Appendix B. Similar results have been obtained
for bistable one-dimensional stochastic differential equations
(SDEs; Imkeller and Pavlyukevich, 2006a, b). The basic rea-
son behind this result is that, in order to study the transitions
between the competing basins of attraction, one can treat the
Lévy noise as a compound Poisson process, where jumps ar-
rive randomly, according to a Poisson process, and the size
of the jumps x is given by a stochastic process that obeys a
specified probability distribution. For a symmetric α-stable
Lévy process, such a distribution asymptotically decreases
as |x|−1−α , as discussed in Appendix A. Let us assume that
positive values of x bring the state of the system closer to
the basin boundary (as in the case of positive fluctuations
of the solar irradiance when studying escapes from the SB
state). Assuming a simple geometry for the basin boundary,
we find that a transition takes place when an event larger than
a critical value xcrit > 0 is realised. The probability of such
an event scales with x−αcrit . A similar argument applies when
considering transitions triggered by negative fluctuations of
the stochastic variable. Small-size events, which occur fre-
quently and correspond to the non-occurrence of jumps, do

not actually play any relevant role in determining the tran-
sitions, while they are responsible for the variability within
each basin of attraction.

We now consider the case α = 2. While the correspond-
ing finite dimensional problem is thoroughly documented in
the literature (Freidlin and Wentzell, 1984) and has been ap-
plied in a similar context by some of the authors (Lucarini
and Bódai, 2019; Lucarini and Bódai, 2020; Ghil and Lu-
carini, 2020; Margazoglou et al., 2021), the treatment of in-
finite dimensional SDEs driven by an infinite dimensional
Wiener process via the Freidlin–Wentzell theory requires fur-
ther extension. In the present context, we refer to Budhiraja
and Dupuis (2000) and Budhiraja et al. (2008) and refer-
ences therein, where the problem of an infinite dimensional
reaction–diffusion equation driven by an infinite dimensional
Wiener process has been addressed.

We assume that steady-state conditions and ergodicity are
met, and we also assume that the analysing system is bistable
and a unique edge state is present at the basin boundary, as
in the case studied here. In the case of Gaussian noise, tran-
sitions between the competing basins of attraction are not
determined by a single event as in the 0< α < 2 case but,
instead, occur as a result of very unlikely combinations of
subsequent realisations of the stochastic variable acting as a
forcing. In the weak noise limit, the transitions occur accord-
ing to the least unlikely (yet very unlikely) chain of events,
whose probability is described using a large deviation law
(Varadhan et al., 1985). One finds that the mean escape time
from either basin of attraction decreases exponentially with
increasing noise intensity ε and is given by a generalised
Kramers’ law, as follows:

E[τW/SB(ε)] ≈ exp
(

218W→M/SB→M(T )
ε2

)
, (17)

where 18W→M =8M(T )−8W(T ) is the height of the
quasi-potential barrier in the W attractor; correspondingly,
18SB→M(T )=8M(T )−8SB(T ) is the height of the quasi-
potential barrier in the SB attractor, and 8 is the Graham
quasi-potential mentioned above (Graham, 1987; Graham
et al., 1991).

3.3 Noise-induced transitions: most probable
transition paths

In the weak noise limit, the most probable path to escape an
attractor is defined by a class of trajectories named instantons
(Grafke et al., 2015, 2017; Bouchet et al., 2016; Grafke and
Vanden-Eijnden, 2019) or maximum likelihood escape paths
(Lu and Duan, 2020; Dai et al., 2020; Hu and Duan, 2020;
Zheng et al., 2020). However, note that different noise laws
result into possibly radically different instantonic trajectories
(Dai et al., 2020; Zheng et al., 2020).

In our case, the theory indicates that, if the stochastic forc-
ing is Gaussian, under a rather general hypothesis, the in-
stanton will connect the attractor W/SB with the edge state
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M, which then acts as gateway for noise-induced transi-
tions. Once the quasi-potential barrier is overcome, a free-
fall relaxation trajectory links M with the competing at-
tractor SB/W. For equilibrium systems, (e.g. for gradient
flows), where a detailed balance is achieved, the relaxation
and instantonic trajectories within the same basin of attrac-
tion are identical. On the contrary, for non-equilibrium sys-
tems, the relaxation and instantonic trajectories will differ
and will only meet at the attractor. (See a detailed discus-
sion of this aspect and of the dynamical interpretation of the
quasi-potential 8 in Lucarini and Bódai, 2020, and Marga-
zoglou et al., 2021). Instead, if the noise is of Lévy type, the
theory formulated for simpler equations suggests that the in-
stanton will connect the attractor with a region on the basin
boundary that is the nearest, in the phase space, to the at-
tractor, as the concept of the quasi-potential is immaterial
(Imkeller and Pavlyukevich, 2006a, b).

In general, the maximum likelihood transition trajectory
TM(t) can be defined (Zheng et al., 2020; Lu and Duan, 2020)
as a set of system states at each time moment t ∈ [0, tf ]
that maximises the conditional probability density function
p( . | . ; . ) of the passage from the origin stable state
φW/SB to the destination stable state φSB/W and is expressed
as follows:

TM(t)

= argmax
x

[
p (T (t)= x | T (0)= x0;T (tf )= xf )

]
=
p
(
T (tf )= xf | T (t)= x

)
·p (T (t)= x | T (0)= x0)

p (T (tf )= xf | T (0)= x0)
, (18)

where x0 (xf ) belongs to the basin of attraction DW/SB

(DSB/W), and p ( . | . ) is the probability density function
evolving according to the Fokker–Planck equation (Risken,
1996). This method is applicable either if efficient numerical
algorithms are available to solve the Fokker–Planck equation
associated to the studied stochastically driven system, or, em-
pirically, when considering a large ensemble of simulations.
Note that this is not an asymptotic approach, i.e. it does not
require a weak noise limit ε→ 0 and is applicable for sys-
tems with either Gaussian or non-Gaussian noise. Yet, in the
weak noise limit, the definition (Eq. 18) leads to constructing
the optimal transition paths described above.

In the following section, for practical purposes, we con-
struct such optimal transition path in the coarse-grained 2D
phase space (T ,1T ) and 3D phase space (T ,1T ,I) of the
variables defined in Sect. 2 by averaging the ensemble of
transitions connecting the two competing states in the weak
noise limit.

3.4 Numerical methods

We solve Eq. (13) through the MATLAB pdepe function,
which is well suited for solving 1D parabolic and elliptic
PDEs. We discretise the 1D space with a regular grid of 201
grid points, following Bódai et al. (2015).

The time span of integration t ∈ [0,Tf ], varies for differ-
ent cases, with Tf ∈ (105,15× 105) years, with a time step-
ping of 1 year. Each year, we consider a different value for the
relative solar irradiance by extracting a random number Zj
(see Eq. 19). To simulate the stochastic noise term εLα(t),
which is added in the parameter µ in Eq. (13), we use the
recursive algorithm from Duan (2015). The process values
Lα(t1), . . .,L

α(tN ) at each moment tj , j ∈ N are obtained via
the following:

Lα(tj )= L
α(tj−1)+ (tj − tj−1)

1
αZj , j = 1, . . .,N, (19)

where the second term is an independent increment, and
Zj are the independent standard symmetric α-stable random
numbers generated by an algorithm in Weron and Weron
(1995, see also Grafke et al., 2015, for a detailed explana-
tion of the steps above). For illustrative reasons, some sam-
ple solutions of Eq. (13) for different values of α are shown
in Fig. 2a and b.

For the numerical simulations discussed below, we con-
sider α = (0.5,1.0,1.5,2) and ε ∈ (0.0001,0.3). We select ε
in such a way that the noise intensity is strong enough to in-
duce at least an order of 10 transition, given our constraints
in the time length of the simulations, and weak enough that
we are not far from the weak noise limit, where the scal-
ing laws discussed above apply and transitions paths are well
organised. Our simulations are performed by taking the Itô
interpretation for the stochastic equations.

We remark that, when we consider Lévy noise, it does hap-
pen that, for some years, the solar irradiance has negative val-
ues. Of course these conditions bear no physical relevance,
and are a necessary result of considering unbounded noise.
Nonetheless, we have allowed for this to occur in our simu-
lations in order to be able to stick to the desired mathemat-
ical framework. We remind the reader that this study does
not aim at capturing, with any high degree of realism, the de-
scription of the actual evolution of climate. At any rate, as
can be understood from the discussion below in Sect. 4.2.2
and from what is reported in Appendix C, were we to con-
sider longer-lasting (e.g. 2 years vs. 1 year) fluctuations of the
solar irradiance, a satisfactory exploration of the transitions
between the competing W and SB states would be possible
with a greatly reduced occurrence of such unphysical events,
and the basic reason for this being the presence of a larger
factor (tj − tj−1)

1
α in Eq. (19).

4 Results and discussion

In what follows, we aim at addressing three main ques-
tions: (1) what are the temporal statistics of the SB→W
and W→ SB transitions? (2) What are the typical transition
pathways? (3) What are the fundamental differences between
transitions caused by Gaussian vs. Lévy noise? A summary
of the results of the numerical simulations is given in Ta-
ble D1 in Appendix D, including the sample size, i.e. number
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Figure 2. The metastable behaviour of the solution path of a stochastic energy balance model (Eq. 13), for ε = 0.04, T0= 300 K, and
t ∈ (0,300) years, for (a) α = 0.5, (b) α = 1.5, and the (c) temperature average T and (d) temperature contrast at low and high latitudes.1T ,
for ε = 0.01, α = 0.5,andα = 1.5. Red, green, or blue dash-dotted lines portray the stationary climate states of TW/TM/T SB, respectively.

of transitions, point estimates for mean escape time, and their
0.95 confidence intervals for exits from both the W and SB
basins. See the data availability section for information on
how to access the supplement (Lucarini et al., 2022), which
contains the raw data produced in this study and some illus-
trative animations portraying noise-induced transitions be-
tween the two competing metastable states.

4.1 Mean escape time

Our analysis confirms that there is a fundamental dichotomy
in the statistics of mean escape times between Lévy noise
and Gaussian noise-induced transitions.

Figure 3a shows the dependence of the mean escape time
from either attractor on ε and α for the Lévy case. The red
circles (blue squares) correspond to escapes from the W (SB)
basin (see Lucarini et al., 2022, for additional details). The
scaling ∝ ε−α presented in Eq. (B6) is shown by the dot-
ted black line for each value of α. We also portray the best
power law fit of the mean residence time with respect to ε
for each value of α; the confidence intervals of the exponent
are shown in Table 1. Our empirical results seem to indicate,
at least in this case, an agreement with the ε−α scaling pre-
sented and discussed earlier in the paper. This points at the

possibility that the ε−α scaling might apply in more general
conditions than what has been, as of yet, rigorously proven,
and this is specifically the case when multiplicative Lévy
noise is considered. The stochastically perturbed trajectories
forced by Lévy noise consist of jumps, and the probability
of occurrence of a high jump, which can trigger the escape
from the reference basin of attraction, is polynomially small
in noise intensity ε.

The Gaussian case – where no jumps are present – is por-
trayed in Fig. 3b. We show, in semi-logarithmic scale, the
mean residence time versus 1/ε2. We perform a successful
linear fit of the logarithm of the mean residence time in either
attractor versus 1/ε2, and using Eq. (17), we obtain an esti-
mate of the local quasi-potential barrier 18W/SB→M, which
is half of the slope of the corresponding straight lines of the
linear fit (see the last column of Table 1). We conclude that,
for µ= 1.05, the local minimum of 8 corresponding to the
W state is deeper than the one corresponding to the SB state.

4.2 Escape paths for the noise-induced transitions

We now explore the geometry of the transition paths asso-
ciated with the metastable behaviour of the system. We first
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Figure 3. Estimates of the mean escape time E(τ ) (in years) from the W (blue circles) and SB (red squares) states, as a function of the noise
intensity ε. (a) Lévy noise for α = 0.5, 1.0, and 1.5, with the dotted line being the corresponding prediction from Eq. (B6), while the straight
green (SB) and dashed black (W) lines are the fittings of Eq. (B6) of the relevant dataset. (b) Gaussian noise, with straight green (SB) and
dashed black (W) lines being the fit of Eq. (17), is shown.

Table 1. Estimates of the exponent α via the fitting of Eq. (B6)
for the Lévy case (three first columns) and of the energy barrier
18W/SB→M via the fitting of Eq. (17) for the Gaussian case (last
column). In parenthesis, the estimated error of the last digit is
shown.

Lévy Gaussian

α 0.5 1.0 1.5 2
W 0.50(2) 1.00(2) 1.50(1) 18W→M = 0.068(1)
SB 0.47(2) 0.97(2) 1.52(4) 18SB→M = 0.048(3)

discuss the case of Gaussian noise because it is indeed more
familiar and more extensively studied.

4.2.1 Gaussian noise

We estimate the transition paths by averaging among the
escape plus relaxation trajectories using the run performed
with the weakest noise (see Table D1). We first perform our
analysis in the 2D-projected state space defined by (T ,1T ).
We prescribe two small circular-shaped regions enclosing the
two deterministic attractors and search the time series of the
portions of the whole trajectory that leave one of these re-
gions and reach the other one. This creates two subsets of our
full dataset from which we build a 2D histogram for each of
the SB→W and W→ SB transitions in the projected space.
We then estimate the most probable transition paths by find-
ing, for each bin value of T , the peak of the histogram in the
1T direction. The distributions are very peaked, and almost
indistinguishable estimates for the instantonic and relaxation
trajectories are obtained when computing the average of1T
according to the 2D histogram conditional on the value of T .

In the background of Fig. 4a, we show the empirical esti-
mate of the invariant measure in the 2D-projected state space
defined by (T ,1T ). Additionally, we indicate the position of
the deterministic attractors, where the blue (red) circle corre-

sponds to the SB (W) state and of the M state (green square).
In the inset of Fig. 4a, we present the ensemble of W→ SB
(SB→W) transitions as deep blue (red) contours. The most
probable transition paths are shown in blue for the W→ SB
and in red for the SB→W. The instantonic portion of the
blue (red) line is the one connecting the W (SB) attractor to
the M state and is portrayed as a solid line, while the relax-
ation portion, connecting the M state with the SB (W) at-
tractor, is portrayed as a dashed line. Within each basin of
attraction, the instantonic and relaxation trajectories do not
coincide, and, instead, only meet at the corresponding attrac-
tor and at the M state. This is particularly clear for the W
state. The presence of such a loop, proving the existence of
non-vanishing probability currents and the breakdown of de-
tailed balance, is a signature of non-equilibrium dynamics,
which was also observed in Margazoglou et al. (2021) and
has, instead, gone undetected in Lucarini and Bódai (2019)
and Lucarini and Bódai (2020). See Lucarini et al. (2022) for
some illustrative simulations of the transitions.

Let us provide some physical interpretation of how the
transitions occur. Looking at the SB→W most probable
path, the escape includes a simultaneous increase in T and
1T . In practice, a SB→W transition takes place when,
starting at the SB state, one has a (rare) sequence of positive
anomalies in the fluctuating solar irradiance µ̃, i.e. µ̃ > µ.
While the planet is warming globally, the Equator is warm-
ing faster than the poles, resulting in a positive rate 1̇T > 0,
because it receives, in relative and absolute terms, more in-
coming solar radiation. Considering that the Equator also in
the SB state is warmer than the poles, the melting of the ice
conducive to the transition occurs first at the Equator, with
a subsequent decrease in the albedo in low latitudes. Once
the system crosses the M state, and supposing that persistent
µ̃ < µ do not appear at this stage, the system will relax to-
wards the W state. The relaxation includes a consistent global
warming of the planet but with a change in sign in the rate
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Figure 4. (a) Invariant measure in the 2D-projected state space defined by
(
T ,1T

)
. The coloured points indicate the deterministic attractors

of the SB (blue), M (green), and W (red) states, and the blue (red) line is the stochastically averaged transition paths for the W→ SB
(SB→W) transitions. Dashed (solid) lines are the relaxation (instantonic) trajectories. The arrows show the direction of transitions. The top
left inset shows that the dark blue (red) contours portray the ensembles of the transition paths between W→ SB (SB→W). Here, the system
is driven by Gaussian noise with ε = 0.14. (b) The invariant measure and most probable transition paths (W→ SB in blue and SB→W
in red) in the 3D-projected state space are defined by

(
T ,1T ,I

)
. The darker brown shading indicates a higher probability density for the

corresponding isosurface. The 2D projections on the
(
T ,I

)
, and (1T ,I) planes are shown. The location of the M state is given by a pink

square. Here, the system is driven by Gaussian noise, with ε = 0.16.

of 1̇T , and a subsequent decrease in 1T , implying that as
soon as the temperature at the Equator has risen enough, the
poles will then warm at a faster pace because the ice–albedo
effect kicks in.

The global freezing of the planet associated with the W→
SB transition is qualitatively similar but not identical to the
reverse SB→W process. Notice a considerable overlap of
the transition paths ensembles in both basins of attraction,
shown as red and blue contours in the inset of Fig. 4a. This
implies the presence of less extreme non-equilibrium condi-
tions compared to what was observed in Margazoglou et al.
(2021), where the W→ SB and SB→W transitions oc-
curred through fundamentally different paths (see the discus-
sion therein, especially regarding the role of the hydrological
cycle).

Figure 4b presents the optimal transition paths W→ SB
and SB→W in a three-dimensional projection, where we
add, as a third coordinate, the variable I, which indicates
the fraction of the surface that has subfreezing tempera-
tures (T < 273.15 K). On the sides of the figure, two two-
dimensional projections on the (T ,1I) and on the (1T ,I)
planes are shown. Here, darker brown shadings indicate the
higher density of points and the red and blue dots sample
the highest probability for the SB→W and W→ SB tran-
sitions paths, respectively. One could argue that the presence
of an intersection between the SB→W and W→ SB high-
est probability transition paths in Fig. 4a could have been a
simple effect of 2D projection. Instead, we see here that the
SB→W and W→ SB most probable transition paths also

cross in the 3D projection in a well-defined region, which
indeed corresponds to the M state (pink square).

4.2.2 Lévy noise

There is scarcity of rigorous mathematical results regarding
the weak noise limit of the transition paths between compet-
ing states in metastable stochastic systems forced by multi-
plicative Lévy noise. Indeed, the derivation of analytical re-
sults for this type of system largely remains an open problem.
Recently, for stochastic partial differential equations with ad-
ditive Lévy and Gaussian noise, the Onsager–Machlup action
functional has been derived in Hu and Duan (2020), lead-
ing to a precise formulation of the most probable transition
paths. Hence, we do not have solid mathematical results to
interpret what we describe below, where, instead, we need to
use heuristic arguments. As far as we know, this is the first
attempt to estimate the most probable transition pathway be-
tween the metastable states in infinite stochastic systems with
multiplicative pure Lévy process.

A striking feature in Fig. 5 is that the invariant measure and
the structure of the most probable transition paths (SB→W
and W→ SB), in the weak noise limit, are fundamentally
different between the Lévy case and the Gaussian one. The
invariant measure is highly peaked (dark red in the colour
scheme) in a small region around the deterministic attrac-
tors, as, most typically, the Lévy noise fluctuations of µ̃ are
very small. Additionally, the most probable transition paths
depend very weakly on the chosen value for the stability pa-
rameter α. This suggests that the geometry of most proba-
ble path of transitions does not depend on the frequency and
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Figure 5. A two-dimensional projection of the invariant measure on
(
T ,1T

)
for different choices of α for Lévy noise. (a) α = 0.5 and

ε = 0.0001, (b) α = 1 and ε = 0.004, and (c) α = 1.5 and ε = 0.01. The blue (red) line corresponds to the W→ SB (SB→W) most
probable transition path, and the arrows show the direction of the transitions. The coloured points indicate the deterministic attractors of the
SB (blue), M (green), and W (red) states. In the inset of the left top corner plot in panels (a–c), the dark blue (red) contours are the ensembles
of the transition paths between W→ SB (SB→W).

height of the Lévy diffusion jumps but rather on the quali-
tative fact that we are considering jump processes. Note that
each panel of Fig. 5 is computed using data coming from the
weakest noise considered for the corresponding value of α
(see Table D1).

The W→ SB most probable transition path is charac-
terised by the simultaneous decrease in both T and1T . This
implies that the jump leads to a rapid and direct freezing of
the whole planet. The stochastically averaged path crosses
the basin boundary far from the M state. The most probable
SB→W transition follows, instead, a path that is somewhat
similar to the one found for the Gaussian case. We then argue
that the closest region in the basin boundary to SB attractor
is not too far from the M state. Further insight on difference
between the Gaussian and Lévy case can be found by looking
at the animations included in Lucarini et al. (2022).

4.2.3 Lévy noise – singular perturbations

Based on what is discussed in Sect. 3.2, we expect that
the transitions occur through the nearest region to the out-
going attractor in the basin boundary. We now try to clar-
ify the properties of the most probable escape paths in the
Lévy noise case by considering an additional set of simu-
lations, taking inspiration from the edge-tracking algorithm
(Skufca et al., 2006). The idea is to exploit the fact that large
jumps drive the transitions in the Lévy noise case. Starting
from the deterministic SB state, we apply, in Eq. (6), sin-
gular perturbations of the form µ→ µ+ κδ(t) and bracket
the critical value κSB→W

crit , leading to a transition to the
W state as κSB→W

crit ∈ [κ
SB→W,s
crit ,κ

SB→W,u
crit ], where the sim-

ulation performed with the supercritical (subcritical) value
of κ = κSB→W,u

crit (κ = κSB→W,s
crit ) asymptotically reaches the

competing (comes back to the initial) steady state. We ob-
tain κ

SB→W,s
crit ≈ 1.149 y and κ

SB→W,u
crit ≈ 1.1492 y. Start-

ing from the W state, we follow a similar procedure and

find κW→SB
crit ∈ [κ

W→SB,u
crit ,κ

W→SB,s
crit ]. We obtain κW→SB,s

crit ≈

−1.3458 y and κ
W→SB,u
crit ≈−1.346 y. In both cases, the

value of κ of the supercritical and subcritical paths differs
by δκ ≈ 0.0002 y.

The projections on the 2D phase space spanned by
(T ,1T ) of the supercritical and subcritical paths corre-
sponding to the SB→W (W→ SB) transition are shown in
Fig. 6a (Fig. 6b), using the thick and thin black dashed lines,
respectively. The basin boundary is indicated by a cyan (ma-
genta) line for the SB→W (W→ SB) transition. The steps
to estimate the basin boundary are presented in Appendix C.
Note that we are using, as background, the invariant measure
and the subset of transitions referring to Lévy noise simu-
lations performed using α = 1.0. Nonetheless, what is dis-
cussed below would apply equally well had we chosen to
consider as background, instead, data coming from the sim-
ulation performed with α = 0.5 or α = 1.5. Indeed, for the
link we propose between transitions due to the Lévy noise
and the case of singularly perturbed trajectories, what mat-
ters depends on the discontinuous nature of the Lévy noise.

In Fig. 6a (Fig. 6b) the supercritical and subcritical paths
are superimposed on the ensemble of the trajectories of the
SB→W (W→ SB) transitions due to Lévy noise. The lines
are better visible in the insets. By construction, after the per-
turbation is applied, the supercritical and subcritical orbits
are close to the basin boundary. Hence, they are attracted
towards the M state before being repelled towards the final
asymptotic state. For comparison, we also portray, for both
the SB→W and the W→ SB case, an additional pair of
supercritical and subcritical paths that are constructed using
values of κ that differ by δκ = 0.3 y, which is a much larger
difference than the one mentioned previously (for the dashed
lines). The paths depicted as thick (thin) solid lines cross (do
not cross) the basin boundary. When looking at the W→ SB
transitions due to Lévy noise, we understand that, if the per-
turbation sends the orbit near the basin boundary, then the
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Figure 6. Comparison between the supercritical and subcritical paths that are constricted, using singular perturbations and the ensemble of
trajectories corresponding to Lévy noise-induced transitions. (a) SB→W transitions. (b) W→ SB transitions. Singular perturbations are
where the subcritical paths are depicted as thin solid and dashed lines. The supercritical paths, leading to transition, are depicted as thick
solid and dashed lines. See the text for further details. Here, α = 1.0 and ε = 0.004.

Figure 7. Same as Fig. 6, respectively, using the same 3D projection, lines, and colour coding as in Fig. 4. The subcritical and supercritical
paths are depicted as thin and thick solid lines, respectively. The corresponding dashed lines shown in Fig. 6 are not reported here, for
simplicity. Here, α = 1.0 and ε = 0.004.

subsequent evolution of the system follows the supercritical
paths. Of course, the Lévy perturbation often overshoots the
basin boundary. In this case, after the transition, the orbit
is not necessarily attracted towards the M state, whereas it
converges directly to the final SB state. The signature of the
attracting influence of the M state persists in the stochasti-
cally averaged transition trajectory. Note the bending towards
higher values of 1T before the eventual convergence to the
SB state. In the case of the SB→W transitions, a similarly
good correspondence between the supercritical path and the
stochastically averaged transition trajectory is found.

Further support to the viewpoint proposed here is given
by Fig. 7a and b, which are constructed along the lines of
Fig. 4b and portray the supercritical and subcritical paths
and the stochastically averaged transition trajectory realised
via Lévy noise, with α = 1.0 for the SB→W and W→ SB
case, respectively.

The transitions shown in Figs. 6 and 7 have been obtained
by considering a discrete approximation of Dirac’s δ, where

the forcing acts at a constant value for 1 y. Specifically,
Dirac’s δ(t) is approximated as 1τ (t), where 1τ (t)= 1/τ ,
if 0< t < τ , and vanishes elsewhere. The results are virtu-
ally unchanged if one considers τ < 1 y because the main
dynamical processes of the re-equilibration of the system act
on longer timescales. The effect of the negative feedbacks
of the system starts to become apparent when considering
slower perturbations, lasting 2 or more years. Indeed, the re-
silience of the system to transitions is reduced when, ceteris
paribus, faster perturbations are considered (see the analyses
in this direction dealing with stability of the large-scale ocean
circulation; Stocker and Schmittner, 1997; Lucarini et al.,
2005, 2007; Alkhayuon et al., 2019). Nonetheless, also in
this case, the agreement with the results presented in Figs. 6
and 7 is considerable. We remark that considering longer-
lasting perturbations allows one to observe W→ SB transi-
tions without using, at any time, (unphysical) negative val-
ues for the solar irradiance. This is reassuring in terms of the
robustness and of the physical sense of our results. Further
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details on the impact of considering different values of τ are
reported in Appendix C.

5 Conclusions

It is a well-known that, as a result of the competition be-
tween the Boltzmann stabilising feedback and the ice–albedo
destabilising feedback, under current astronomical and astro-
physical conditions, the climate system is multistable, as at
least two competing and distinct climates are present, i.e. the
W and the SB. More recent investigations indicate that the
partition of the phase space of the climate system might be
more complex, as more than two asymptotic states might be
present, some of them, possibly, associated with small basins
of attraction.

For deterministic multistable systems, the asymptotic state
of an orbit depends uniquely on the initial condition, and,
specifically, on which basin of attraction it belongs to. The
presence of stochastic forcing allows for transitions to oc-
cur between competing basins, thus giving rise to the phe-
nomenon of metastability. Gaussian noise as a source of
stochastic perturbations has been widely studied by the sci-
entific community in recent years and provided very fruitful
insight into the multiscale nature of the climatic time series.
However, it has become apparent that more general classes
of α-stable Lévy noise laws might also be suitable for mod-
elling the observed climatic phenomena. In this regard, it is
important to achieve a deeper understanding of the possible
noise-induced transitions between competing stable climate
states under α-stable Lévy perturbations and compare them
with the Gaussian case.

As a starting point in this direction, we have studied the
influence of different noise laws on the metastability proper-
ties of the randomly forced Ghil–Sellers EBM, which is gov-
erned by a nonlinear, parabolic, reaction–diffusion PDE. In
the deterministic version of the model, we have three steady-
state solutions, i.e. two stable, attractive climate states and
one unstable saddle, corresponding to the edge state. The
stable states correspond to the well-known W and SB cli-
mates. There is a fundamental dichotomy in the properties
of the noise-induced transitions determined by whether we
consider a stochastic forcing of intensity ε with a Gaussian
versus an α-stable Lévy noise law. Note that, instead, the spa-
tial structure of the noise is unchanged. This indicates that
the phenomenology associated with the metastable behaviour
depends critically on the choice of the noise law. Not many
studies have investigated, numerically or through mathemati-
cal theory, the properties of transitions in metastable systems
driven by multiplicative Lévy noise, as done here.

First, in the weak noise limit ε→ 0, the mean residence
times inside either competing basin of attraction for diffu-
sions driven by Gaussian vs. Lévy noise have a fundamen-
tally different dependence on ε. Our results show that the
logarithm of the mean residence time for Gaussian diffusions

scales with ε−2, while, instead, a much weaker dependence
is found for the Lévy case. Indeed, we find that the mean
residence time is proportional to ε−α , where α is the stabil-
ity parameter of the noise law. This result is in agreement
with what has been proven in some special cases for additive
Lévy noise and might indicate that these scaling properties
are more general than usually assumed. We propose a sim-
ple argument based on approximating the Lévy noise as a
composed Poisson process to support the applicability of the
result in general circumstances, but, clearly, detailed mathe-
matical investigations in this direction are needed.

Second, the results obtained for the most probable tran-
sition paths confirm that, in the weak noise limit, escapes
from basins of attraction driven by Gaussian noise take place
through the edge state. Additionally, instantonic and relax-
ation portions within each basin of attraction are clearly
distinct, indicating nonequilibrium conditions that are, yet,
qualitatively similar. In turn, Lévy diffusions leave the basin
through the boundary region closest to the outgoing attrac-
tor, which seems to be the vicinity of the edge state when
the thawing transition is considered. The freezing transition,
instead, proceeds along a path that is fundamentally differ-
ent. Finally, the most probable transition paths for the Lévy
case appear to depend very weakly on the value of the stabil-
ity parameter α, but seem, instead, to be determined by the
nature of the Lévy noise of being a jump process. Indeed,
we suggest that these properties can be better understood by
considering that, to a first approximation, the transitions due
to the Lévy diffusion correspond to supercritical paths as-
sociated with Dirac’s δ-like singular perturbations to the so-
lar irradiance. This viewpoint seems of general relevance to
other problems where Lévy noise is responsible for exciting
transitions between competing metastable states.

Our findings provide strong evidence that choosing noise
laws other than Gaussian leads to fundamental changes in the
metastability properties of a system, both in terms of statis-
tics of the transitions between competing basins of attrac-
tion and most probable paths for such transitions. Leaving
the door open for general noise laws might be relevant, both
for interpreting observational data and for performing mod-
elling exercises for the climate system and complex systems
in general.

Let us give an example of the impact of making a wrong
assumption on the nature of the acting stochastic forcing.
Were we to naively interpret one of the panels in Fig. 5 as re-
sulting from the dynamics of a dynamical system perturbed
by Gaussian noise, then we would have to conclude that the
unperturbed deterministic system possesses at least two edge
states on the basin boundary separating the competing basins
of attraction (see Margazoglou et al., 2021, for a case where
this situation applies). Hence, we would infer fundamentally
wrong properties on the geometry of the phase space. Ad-
ditionally, we would infer fundamentally different properties
for the drift term.
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Recent developments in data-driven methods based on the
formalism of the Kramers–Moyal equation allow one to test
accurately whether data are compatible with the hypothe-
sis that stochasticity in the dynamics enters as a result of
Gaussian noise or more general form of random forcing (Ry-
din Gorjão et al., 2021b; Li and Duan, 2022). Indeed, we
point the reader to the recent contribution by Rydin Gor-
jão et al. (2021a), which shows that the analysis of proxy
climatic datasets indicates the need to go beyond Langevin
equation-based modelling, as they discover that it is neces-
sary to treat noise as the sum of continuous and discontinuous
processes. This indicates the need to consider, in future mod-
elling exercises, the possibility of investigating the properties
of metastable systems where the stochastic forcing comes as
the result of simultaneous Gaussian and α-stable Lévy noise
perturbations.

Appendix A: Stochastic perturbations of Lévy type

In this section, we provide a summary of the basic properties
of a symmetric α-stable Lévy process in a Hilbert space in
which the solutions to SPDE (Eq. 13) are defined. We also
repeat some properties in the Rn space that are more familiar
to a wide audience of readers. It is pertinent to refer to the dis-
tribution law of Lévy increments, its characteristic function,
the Lévy–Itô decomposition, and the Lévy jump measure for
a deeper study of the metastable behaviour of the stochastic
climate system (Eq. 13). Let (�,F ,P) be a given complete
probability space andH(‖·‖, 〈·, ·〉) a separable Hilbert space
with the norm ‖ · ‖ and inner product 〈·, ·〉. A stochastic pro-
cess (Lα(t)t≥0) is a symmetric α-stable Lévy process in H
if it satisfies the following:

1. Lα(0)= 0, almost surely.

2. Independent increments – for any n ∈ N and 06t1 <
t2 < · · ·< tn−1 < tn, the vector is as follows:

(Lα(t1)−L
α(t0), . . .,L

α(tn)−L
α(tn−1)), (A1)

where there is a family of independent random vectors
in H .

3. Stationary increments – for 06 l < t random vectors
Lα(t)−Lα(l) andLα(t−l) have the same law L(.) inH ,
as follows:

L(Lα(t)−Lα(l))= L(Lα(t − l)). (A2)

This law in Rn is a symmetric α-stable distribution
L(.)= Sα((t − l)

1
α ,0,0), i.e. zero skewness and shift

parameters, with a stability parameter α ∈ (0,2] and a
scaling parameter (t−l)

1
α . The stable distribution by the

generalised central limit theorem (Schertzer and Love-
joy, 1997) is a limit in the distribution as n→∞ of the

normalised sum Yn =
1
Bn

n∑
i=1
(Xi−Mn) of n independent

identically distributed random variablesXi , with a com-
mon probability distribution function F(x), which does
not necessarily have to have moments of both the first
and second order. A necessary and sufficient condition
for this is as follows (Keller and Kuske, 2000; Burnecki
et al., 2015):

F(x)= [c1+ r1(x)] |x|
−α, x < 0,

= 1− [c2+ r2(x)] x
−α, x > 0, (A3)

with 0< α ≤ 2, c1, and c2 positive constants, r1(x)→ 0
as x→−∞ and r2(x)→ 0 as x→+∞. When this
condition holds and α = 2, then we can set Bn = h(n),
where h(n) satisfies h2

= n lnh, and the stable distribu-
tion is just the Gaussian law.

4. Sample paths are continuous in probability, i.e. for any
t>0 and η > 0, as follows:

lim
l→ t

P(‖Lα(t)−Lα(l)‖> η)= 0. (A4)

For α ∈ (0,2) the symmetric α-stable Lévy process in
Rn has a characteristic function of the following form:

E
[
ei〈u,L

α(t)〉
]
= e−C(α) t ||u||

α

, u ∈ Rn, t ≥ 0, (A5)

where C(α)= π−1/2 0((1+α)/2)0(n/2)
0((n+α)/2) , and 0(.) is the

Gamma function. In the case where α = 2, we set
C(2)= 1/2 and (A5) becomes the characteristic func-
tion of a standard Brownian motion. However, the
Brownian motion cannot be seen as a weak limit of α-
stable Lévy process because of the divergence C(α)→
∞ as α→ 2. The properties of the sample paths of
Lα(t) are, in fact, quite different for α = 2 and α <
2. First, the α-stable Lévy process is a discontinu-
ous, pure jump process, while the Brownian motion
has continuous paths. Second, the Brownian motion
has moments of all orders, whereas E |Lα(t)|γ <∞
if γ < α. It can also be proved that the tails of Lα(t)
are heavy, i.e. P (Lα(t) > u)∼ u−α, u→∞ , which
is quite the opposite of the exponentially light Gaus-
sian tails. Moreover, for α ∈ (0,1), the path variation in
Lα(t) is bounded on finite time intervals and unbounded
for α ∈ [1,2).

Although neither the incremental nor the marginal distri-
butions of a Lévy process in general are representable by the
elementary functions, the Lévy motion is completely deter-
mined by the Lévy–Khintchine formula, which specifies the
characteristic function of the Lévy process.

If Lα(t) is a symmetric α-stable Lévy process in H , then,
in the following:
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1. The characteristic function of the Lévy–Khintchine for-
mula is as follows:

3t (h)= E
[
ei〈h,L

α(t)〉
]
= etψ(h), h ∈H, t ≥ 0,

where, in the following:

ψ(h)=

∫
H

(
ei〈h,y〉− 1− i〈h,y〉1{0<‖y‖61}

)
ν(dy), (A6)

where 1S is the indicator function for a set S, taking
1 on S and 0, otherwise, and ν is a Borel measure
(also called the Lévy jump measure) in H , for which∫
H

(1∧‖y‖2)ν(dy) <∞ with 1∧‖y‖2 =min{1,‖y‖2}.

A Borel measure, in addition, can be defined as the ex-
pected value of the number of jumps of specified size
Q in the unit time interval, i.e. ν(Q)= EN(1,Q)(ω),
ω ∈�.

2. In the Lévy–Itô decomposition, for any sequence
of positive radii rn→ 0 and On = {y ∈H | rn+1 <

||y||6rn}, there exists a sequence of independent com-
pensated compound Poisson processes (L̄n(t))t>0, n>0
in H , with jump measures νn(B)= ν(B ∩On) for B ∈
B(H), the Borel σ -algebra in H , and n>1, which sat-
isfy P, almost surely for all t>0 as follows:

L(t)=

∞∑
n=1

L̄n+L0(t), (A7)

L̄n(t)= Ln(t)− t

∫
H

yνn(dy), n>1. (A8)

If Lα(t) is a symmetric α-stable Lévy process in Rn
with the generating triplet (0,0,να), then there exists an
independent Poisson random measureN on R+×(Rnr
{0}) (quantifying the number of jumps of Lα(t)), such
that, for each t>0, the following applies:

Lα(t)=

∫
‖y‖<1

yÑ(t,dy)+
∫
‖y‖>1

yN(t,dy), (A9)

where Ñ(dt,dx)=N(dt,dx)− να(dx) dt is the com-
pensated Poisson random measure, and να(dx) is the
jump measure. The small ‖ y ‖< 1 (large ‖ y ‖>1)
jumps are controlled by Ñ(t,dy) ( N(t,dy) ).

3. Its Lévy jump measure ν is symmetric in the sense that
ν(−Q)= ν(Q) for Q ∈ B(H) and has the following
specific geometry:

ν(Q)=

∫
Q

ν(dy)=
∫
Q

dr
r1+α σ(ds), (A10)

where r = ‖y‖ and s = y/‖y‖ and σ : B(∂B1(0))→
[0,∞) is an arbitrary finite Radon measure on the unit
sphere of H . The jump measure for a symmetric α-
stable Lévy motion Lα(t) in Rn is defined by the fol-
lowing:

να(du)= c(n,α)
du
||u||n+α

, (A11)

with the intensity constant c(n,α)= α0((n+α)/2)
21−απn/20(1−α/2) ,

where 0(.) is the Gamma function (see Duan, 2015, and
Applebaum, 2009).

One can come to a more intuitive interpretation of the sta-
bility parameter α ∈ (0,2) variation. For smaller values of
α, the process is characterised by higher jumps with a lower
frequency. As α increases, jumps decrease in height, and the
frequency of their occurrence increases.

Appendix B: Probabilistic theory for the Lévy
noise-induced escape

We briefly recapitulate here the main ideas behind the proof
given in Debussche et al. (2013) of how the mean residence
time in the competing metastable states of stochastically per-
turbed Chafee–Infante reaction–diffusion PDE scales with
the intensity ε of the additive L(t) α-stable Lévy noise that
acts as stochastic forcing.

One proceeds by considering the decomposition in the
driving Lévy process by regularly varying the jump mea-
sure ν into small ξ ε and large ηε jump components. Let
1tL= L(t)−L(t−) denote the jump increment of L at time
t>0, and 1

ερ
for ε, ρ ∈ (0,1) the jump height threshold of L.

The process ηε is a compound Poisson process consisting of
all jumps of height ‖1tL‖> ε−ρ , with the following inten-
sity:

βε = ν

(
1
ερ
Bc1(0)

)
≈ εαρ, (B1)

and the jump probability measure outside the ball 1
ερ
B1(0) is

as follows:

ν

(
· ∩

1
ερ
Bc1(0)

)
/βε, (B2)

where B1(0) is a ball of unit radius in H centred at the ori-
gin. The occurrence time of a kth large jump is defined re-
cursively by the following:

Z0 = 0, Zk = inf{t > Zk−1 | ‖1tL‖> ε
−ρ
}, k>1. (B3)

The waiting times between successive ηεt jumps have an
exponential distribution Zk −Zk−1 ∼ Exp(βε).

Small jump processes ξ ε = L− ηε, due to the symmetry
of Lévy measure ν, are a mean zero martingale in H with fi-
nite exponential moments. Probabilistic events causing small
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jumps in the stochastic solution of the system are not able
to overcome the force of its deterministic stable state, and
therefore, do not contribute to the exit from the basin of at-
traction. Formally, during the time between two large jumps
tk = Zk−Zk−1, the solution of Eq. (13), following the deter-
ministic path (Eq. 1), returns to a small vicinity of the stable
equilibria φW/SB, as follows:

sup
x ∈DW/SB

sup
Zk−16t6Zk

‖T (t)− T (t)‖→ 0 for ε→ 0.

(B4)

When a first large jump occurs, the solution process moves
to the neighbouring domain of attraction with the following
probability:

P
(
φW/SB

+ ε1tiL 6∈D
W/SB

)
= P

(
1tiL ∈

1
ε

[(
DW/SB

)c
−φW/SB

])

=

ν
(

1
ε

[
(DW/SB)c−φW/SB]

∩
1
ερ
Bc1(0)

)
ν( 1
ερ
Bc1(0))

≈ εα(1−ρ). (B5)

This is the probability that, at time ti , there will be a jump
increment1tiL that exceeds the distance between the attrac-
tor and its domain of attraction boundary, as expressed by the
jump probability measure (Eq. B2). In the zero-noise limit,
the mean residence time in a basin of attraction is given by
the following:

E[τ(ε)]

≈

∞∑
i=1

E[Zi] P
[
inf
{
j : φW/SB

+ ε1tjL 6∈D
W/SB

}
= i
]

≈ E[t1] P
(
φW/SB

+ ε1t1L 6∈D
W/SB

)
·

∞∑
i=1

i
(

1−P
[
φW/SB

+ ε1t1L 6∈D
W/SB

])i−1

≈
1
εαρ

εα(1−ρ)
(

1
εα(1−ρ)

)2

=
1
εα
, (B6)

that is, by the sum of all the mean values of a large jump
occurrence time times the probability that the minimum of
a sample of size i of jump increments is sufficiently large
to reach into the neighbouring domain of attraction. Thus, at
the random time instant of large jumps, the solution process
transitions, in an abrupt move, from one attractor to another.
Such behaviour of the random dynamical system is known as
a metastability.

In Debussche et al. (2013), it was proven that, in the
timescale λ(ε)= ν

(
1
ε
Bc1(0)

)
, ε > 0 the metastable shifting

of the diffusion process between neighbourhoods of the two
attractors represents a continuous time Markov chain in a

Table C1. Values of supercritical κ ...,ucrit for SB→W (second col-
umn) and W→ SB (third column) for different approximations
1τ (t) of Dirac’s δ(t).

τ κ
SB→W,u
crit (y) κ

W→SB,u
crit (y)

1 month 1.105 −1.284
6 months 1.125 −1.313
1 year 1.1492 −1.346
2 years 1.199 −1.410
4 years 1.287 −1.542

state space {φSB,φW
}, with a transition rate matrix Q, as fol-

lows:

Q=
1

µ
(
Bc1(0)

) (−µ((DSB
−φSB)c) µ((DSB

−φSB)c)

µ((DW
−φW)c) −µ((DW

−φW)c)

)
, (B7)

where µ(·) is the limit measure of ν.

Appendix C: Transitions induced by singular
perturbations

In Sect. 4.2.3, and in particular Figs. 6 and 7, we have studied
the effect of singular perturbations of a Lévy kick. The idea
is that transitions in a system perturbed by Lévy noise are pri-
marily driven by rare large jumps. By applying a singular per-
turbation of the form µ→ µ+ κδ(t) (where µ= µ0 = 1.05
throughout), we have been able to bracket the critical val-
ues κW↔SB,s

crit allowing for transitions between the two at-
tractors. The expression κδ(t) is approximated as κ1τ (t),
where 1τ (t)= 1/τ if 0< t < τ and vanishes elsewhere. In
Sect. 4.2.3 the results are shown for τ = 1 year.

We performed additional simulations to locate the super-
critical and subcritical values of κ for τ = 1 month, 6 months,
2 years, and 4 years. The corresponding supercritical values
of κSB→W,u

crit and κW→SB,u
crit are shown in Table C1. In Fig. C1,

we plot the corresponding supercritical transition trajectories
for the values of Table C1 at different durations. Notice that
now we use coloured solid lines for the supercritical cases.
To estimate the basin boundary, we record the final point of
when the forcing was active, in the (T ,1T ) projected space,
for each duration. This point for each case is particularly vis-
ible, in the insets of Fig. C1, as a rapid reflection of the tra-
jectory, which then follows closely the basin boundary (de-
picted as a thick black line). The basin boundary we can ex-
plore through this procedure is then estimated by linking the
points obtained when considering various values of τ . No-
tice that the estimated basin boundaries are slightly different
when looking at the two SB→W and W→ SB transitions,
as the basin boundaries have folds than cannot be captured in
the sampled 2-dimensional projection used in Fig. C1.

Finally, as stated earlier, from the third column of Ta-
ble C1, we remark that, when considering forcings with du-
rations of, for example, 2 years and longer, transitions from
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Figure C1. Comparison between the supercritical paths constructed using singular perturbations of different duration τ , where, in the legend,
m stands for month and y stands for years. (a) SB→W transitions. (b) W→ SB transitions. Different values of τ correspond to different
coloured lines. The basin boundaries are now depicted as thick black lines. Here, α = 1.0 and ε = 0.004.

the W to the SB state can be achieved while retaining, at all
times, a positive value for the solar irradiance because, while
the forcing is active, its value is µ+ κ/τ .

Appendix D: Estimates for the mean escape time

We report in Table D1 a summary of the statistics of the es-
cape times from the W state and from the SB state for various
choices of the noise law.

Table D1. Estimates and 95 % confidence intervals for the mean escape time τ from the W state and from the SB state, for Lévy noise
with (a) α = 0.5, (b) α = 1.0, (c) α = 1.5, and (d) Gaussian noise. No indicates the average number of transitions occurring in 105 years of
temporal evolution.

(a)

ε 0.0001 0.0003 0.0005 0.0007 0.0009 0.0011 0.0013 0.0015 0.0017 0.0019
No SB→W 74 121 162 193 191 218 239 264 286 307
No W→ SB 74 121 162 194 191 218 239 265 287 307
E [τ SB] 715 457 348 290 299 255 218 216 208 178
CI 0.95 [τ SB] [627,803] [409,504] [298,397] [246,333] [263,335] [222,288] [190,245] [191,241] [185,232] [158,198]
E [τ W] 618 367 265 226 224 203 200 160 139 146
CI 0.95 [τ W] [540,695] [329,404] [221,310] [189,263] [191,256] [177,229] [172,228] [141,179] [124,154] [130,162]

(b)

ε 0.004 0.006 0.01 0.014 0.018 0.022 0.026 0.03 0.034 0.038
No SB→W 35 50 90 121 152 186 224 255 273 328
No W→ SB 35 51 90 121 152 187 224 256 273 329
E [τ SB] 1461 1029 568 388 344 265 249 202 189 160
CI 0.95 [τ SB] [1235,1687] [872,1186] [482,654] [336,441] [306,382] [230,301] [216,281] [178,227] [166,211] [143,176]
E [τ W] 1357 925 531 431 313 270 197 187 177 144
CI 0.95 [τ W] [1124,1589] [782,1067] [461,600] [382,481] [279,347] [232,307] [171,223] [164,211] [156,197] [127,161]

(c)

ε 0.01 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095
No SB→W 5 8 21 37 57 78 118 142 170 231
No W→ SB 5 9 22 37 58 79 118 142 170 231
E [τ SB] 7226 4410 2025 1383 800 629 418 308 282 191
CI 0.95 [τ SB] [5473,8979] [3458,5362] [1526,2525] [1103,1664] [677,923] [529,729] [366,470] [256,361] [242,323] [165,217]
E [τ W] 9544 6199 2418 1249 904 637 425 395 304 241
CI 0.95 [τ W] [7402,11686] [4772,7625] [1877,2959] [1033,1464] [770,1037] [546,727] [363,487] [329,460] [259,350] [207,276]

(d)

ε 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
No SB→W 1 9 27 64 109 155 217 269 360
No W→ SB 1 10 27 64 109 156 217 269 359
E [τ SB] 5038 1838 908 394 307 222 187 137 109
CI 0.95 [τ SB] [2378,7698] [1138,2538] [745,1071] [328,460] [268,345] [198,246] [164,210] [120,154] [99, 119]
E [τ W] 25870 7700 2656 1153 605 418 273 234 168
CI 0.95 [τ W] [15339,36401] [4991,10410] [2121,3191] [942,1364] [524,686] [377,459] [238,308] [208,259] [151,186]
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Data availability. All the data used to produce the figures
contained in this paper are publicly available in the sup-
plement (Lucarini et al., 2022) through the data repository
https://doi.org/10.6084/m9.figshare.16802503.

Video supplement. Illustrative animations portraying noise-
induced transitions can be found in Lucarini et al. (2022,
https://doi.org/10.6084/m9.figshare.16802503). We, furthermore,
uploaded the relevant material to YouTube at the following:
https://youtu.be/2l77YZ9VKlo (last access: 5 May 2022),
which is the Lévy SB→W; https://youtu.be/aRe-g0KYevU
(last access: 5 May 2022), which is the Lévy W→ SB;
https://youtu.be/qrL9A2QNYZs (last access: 5 May 2022), which
is the Gaussian SB→W; and https://youtu.be/zIzNX9gkCTo (last
access: 5 May 2022), which is the Gaussian W→ SB.
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