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1. Introduction
Model uncertainty quantification is one of the central challenges in successfully utilizing any data assimilation 
method; the optimal combination of forecasts and measurements is critically dependent on the uncertainties 
assigned to each. Model errors can arise from a range of sources, including but not limited to: model discretiza-
tion errors in space and time, unresolved sub-grid processes, and uncertainties in model forcing or input data. 
The lack of complete high resolution and high quality verification data makes model error estimation difficult in 
most real world applications.

Early methods for characterizing model error in a variety of applications involved estimating the size and spatial 
structure of the missing physics (Van Leeuwen, 1999, 2001). In the realm of ensemble data assimilation, inflation 
and localization techniques which involve modifying the sample covariance (e.g., Anderson & Anderson, 1999; 
Hamill et al., 2001; Houtekamer & Mitchell, 2001) have been used extensively. These were initially developed as 
a heuristic remedy for filter divergence in ensemble Kalman filtering, but the increase in forecast variance associ-
ated with inflation also has the added benefit of at least partially accounting for forecast model errors. In additive 
inflation (Anderson & Anderson,  1999) the diagonal of the forecast covariance matrix is increased by some 
additive term λ > 0 whilst in multiplicative inflation (Anderson, 2001), all elements of the covariance matrix are 
multiplied by a λ > 1. The inflation parameter can either be manually tuned, or more objective adaptive inflation 
factor estimation can be used (Anderson, 2007; Liang et al., 2012; Miyoshi, 2011). A more explicit treatment 

Abstract Model uncertainty quantification is an essential component of effective data assimilation. Model 
errors associated with sub-grid scale processes are often represented through stochastic parameterizations 
of the unresolved process. Many existing Stochastic Parameterization schemes are only applicable when 
knowledge of the true sub-grid scale process or full observations of the coarse scale process are available, 
which is typically not the case in real applications. We present a methodology for estimating the statistics of 
sub-grid scale processes for the more realistic case that only partial observations of the coarse scale process are 
available. Model error realizations are estimated over a training period by minimizing their conditional sum 
of squared deviations given some informative covariates (e.g., state of the system), constrained by available 
observations and assuming that the observation errors are smaller than the model errors. From these realizations 
a conditional probability distribution of additive model errors given these covariates is obtained, allowing for 
complex non-Gaussian error structures. Random draws from this density are then used in actual ensemble data 
assimilation experiments. We demonstrate the efficacy of the approach through numerical experiments with 
the multi-scale Lorenz 96 system using both small and large time scale separations between slow (coarse scale) 
and fast (fine scale) variables. The resulting error estimates and forecasts obtained with this new method are 
superior to those from two existing methods.

Plain Language Summary Data Assimilation is an important statistical technique to optimally 
combine model simulations and observations based on their uncertainties. It is crucial for a wide range 
of areas from improving weather forecasts to target tracking. Characterizing uncertainty in both models 
and observations accurately is a fundamental part of effectively implementing data assimilation methods. 
Characterizing model uncertainty is notoriously difficult, here we propose a data driven method to quantify 
uncertainty in systems which are partially observed. We show the efficacy of the method over existing 
approaches through experiments on a two-scale atmospheric toy model.
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of model error involves estimating a forecast bias term, which can be considered as stochastic or deterministic. 
This can be estimated from the difference in mean analyses and forecasts (e.g., Dee, 1995; Saha, 1992), using the 
difference between 2 forecast models of differing resolution (Hamill & Whitaker, 2005) or online within the data 
assimilation system by incorporating a constant additive term to be updated alongside the system states (e.g., Dee 
& Da Silva, 1998). However, these methods are limited in that the focus is only on the first two moments of the 
model error distribution.

More recently, there has been renewed interest in off-line estimation of model error statistics using analysis incre-
ments (i.e., difference between forecast and analysis) from a data assimilation run (Mitchell & Carrassi, 2015; 
Rodwell & Palmer, 2007). These approaches rely heavily on a Gaussianity assumption. Another line of research 
is in time-varying model error estimation (Brasseur et al., 2005; for a marine biogeochemistry model) or in time 
varying parameter estimation (Pathiraja et al., 2018a, 2018b) which is particularly useful when one knows apriori 
that a model parameter is non-constant (e.g., land cover in a hydrologic model). However these approaches cannot 
capture more general model structural errors.

In the variational Data Assimilation literature, model error is often considered by formulating the forecast model 
as a weak constraint in the optimization problem (often referred to as Weak constraint 4D-Var; Tremolet, 2006; 
Zupanski, 1997). One approach to achieve this is through Long-window 4D-Var, where an additive model error 
term is incorporated as a control variable in the 4D-Var formulation, with initial conditions for each window held 
fixed (Fisher et al., 2005, 2011; Tremolet, 2006). These approaches require apriori specification of the model 
error covariance matrix, while our task is to estimate the characteristics of the model error (Zhu et al., 2017). 
Estimated the model error covariance online in a particle filter in a 1000-dimensional Lorenz 1996 model. The 
advantage of a particle filter is, similar to long-window 4D-Var, that the error covariance of the state plays no role 
in the estimation. The method needs a first guess of the model error covariance matrix, which is then updated over 
time, with the restriction that only an additive second order moment is estimated.

More complex methods involve estimating a parameterization on-line using linear regression on a pre-defined 
large set of potential functional forms (e.g., Lang et  al.,  2016). Furthermore, off-line methods from machine 
learning, such as Relevant Vector Machines (Bishop, 2006) and Bayesian Symbolic Regression (Jin et al., 2020) 
have been explored to find structural model errors, and hence missing physics. These methods define a set of 
basic functions and build model equations from these that fit the data best. All these methods have in common 
that they do need to define a set of functional relations, after which the fitting is performed, which limits the 
freedom of structure of model errors. Bonavita and Laloyaux (2020) provide an in-depth investigation of how 
best to integrate machine learning for model error estimation into existing data assimilation methods. See also 
the recent work of (Brajard et al., 2021) where neural networks are used to emulate what is viewed as model error 
from a data assimilation run.

A related line of research involves stochastic parameterization and model reduction methods to account for model 
errors associated with unresolved sub-grid scale processes in data assimilation (e.g., Berry & Harlim, 2014; Lu 
et  al., 2017; Mitchell & Carrassi, 2015; Mitchell & Gottwald, 2012). This is particularly relevant in weather 
and climate modeling where the system dynamics evolve on a wide range of spatial and temporal scales. Such 
model reduction methods involve modeling or parameterizing sub-grid scale processes in a more computation-
ally tractable fashion than solving the true sub-grid differential equations. Often this is achieved through either 
deterministic or stochastic parameterizations which aim to capture the mean effects of small scale processes on 
the resolved variables. Several studies have demonstrated the superiority of stochastic over purely deterministic 
parameterizations in this regard (Buizza et al., 1999; Palmer, 2001).

Methods for stochastic parameterizations of multi-scale systems vary widely; from homogenization methods 
that are suited to systems with large time scale separations (Pavliotis & Stuart, 2008; Wouters et al., 2016) to 
fitting stochastic models to sub-grid tendencies (e.g., Arnold et al., 2013; Wilks, 2005). Methods of the form of 
the latter include that of Crommelin and Vanden-Eijnden (2008), who proposed utilizing a Conditional Markov 
Chain to represent the evolution of sub-grid tendencies given the state of the resolved variable. The transition 
matrices are estimated using realizations of the true sub-grid tendencies. Kwasniok (2012) explored a similar 
approach whereby a clustering algorithm was used to develop a cluster-weighted Markov chain to represent 
the sub-grid tendencies. Arnold et al. (2013) extended the work of Wilks (2005) by examining the potential of 
autoregressive error models to effectively parameterize sub-grid tendencies in the multi-scale Lorenz 96 system. 
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This was further extended in Gagne et al. (2020) where a Generative Adversarial Network was trained on data of 
sub-grid tendencies and coarse scale variables from the 2 scale Lorenz 96 model. Lu et al. (2017) have proposed 
using a non-Markovian non-linear autoregressive moving average model to characterize model error. All of the 
aforementioned approaches require knowledge of the sub-grid scale equations, representative data of the sub-grid 
tendencies and/or full observations of the resolved variables. This reduces their applicability for more realistic 
data assimilation applications where knowledge of the sub-grid scale processes is unavailable and the resolved 
variables are only partially observed.

We propose a methodology for model uncertainty estimation that is specifically designed for partially observed 
systems and does not require knowledge of the sub-grid scale processes. The method is suited to systems where 
a locality and homogeneity assumption can be invoked, as this is used to regularize the ill-posed problem of 
estimating model errors from partial observations. In such systems, errors due to sub-grid scale processes are 
dependent only on neighboring states instead of the full resolved state vector, and the error statistics are the same 
at each location in space, or over larger parts of state space with similar physics.

The approach first approximates the conditional probability distribution of additive model errors given some 
informative covariates (e.g., the state of the system). This density is calculated from estimated model error reali-
zations. These are obtained during a training phase by minimizing their variance conditioned on the informative 
covariates, constrained by available observations. Samples from the estimated distribution can then be combined 
with forward model simulations to generate a forecast distribution in any ensemble data assimilation framework. 
The distribution estimate is nonparametric, allowing for the characterization of highly non-Gaussian errors. We 
demonstrate its efficacy through numerical experiments with the multi-scale Lorenz 96 system. The forecast 
model in the assimilation experiment is the single layer Lorenz 96, so that model errors arise from the unresolved 
high frequency fast variables. The proposed approach is compared to two benchmark methods in terms of the 
ability to recover the true model error structure and the impact on assimilation and forecast quality.

The remainder of this paper is structured as follows. In Section 2, we discuss data assimilation methods and 
the Ensemble Transform Kalman Filter (ETKF), which is adopted as the assimilation algorithm in this study. 
Methods for estimating model uncertainty in partially observed systems are discussed in Section 3. The details 
of the proposed method are provided, along with a long window 4D-Var formulation and an ensemble analysis 
increment based method, both of which are adopted as benchmarks. In Section 4 we describe the numerical 
experiments with the multi-scale Lorenz 96’ system. We conclude with a summary of the main outcomes and 
possibilities for future work in Section 5.

2. Data Assimilation Methods
The general problem setting considered in this study is described as follows. Suppose the system of interest can 
be represented by the following discrete time continuous state space equation:

𝒙𝒙𝑗𝑗 = 𝑀𝑀 (𝒙𝒙𝑗𝑗−1) + 𝜼𝜼𝑗𝑗 (1)

where 𝐴𝐴 𝒙𝒙𝑗𝑗−1 ∈ ℝ
𝑁𝑁𝑥𝑥 is the true state vector at time j − 1; 𝐴𝐴 𝐴𝐴 ∶ ℝ

𝑁𝑁𝑥𝑥 → ℝ
𝑁𝑁𝑥𝑥 is a Markov Order 1 forecast model; and 

𝐴𝐴 𝜼𝜼𝑗𝑗 ∈ ℝ
𝑁𝑁𝑥𝑥 is an additive model error at time j capturing deficiencies in the forecast model M.

Noisy partial observations of the state xj are available, given by the following:

𝒚𝒚𝑗𝑗 = 𝐇𝐇𝒙𝒙𝑗𝑗 + 𝜺𝜺𝑗𝑗 (2)

where 𝐴𝐴 𝐇𝐇 ∶ ℝ
𝑁𝑁𝑥𝑥 → ℝ

𝑁𝑁𝑦𝑦 is a Ny  ×  Nx matrix consisting of 1's and 0's only (i.e., state components are either 
directly observed or not at all), 𝐴𝐴 𝒚𝒚𝑗𝑗 ∈ ℝ

𝑁𝑁𝑦𝑦 is the vector of observations at time j, and 𝐴𝐴 𝜺𝜺𝑗𝑗 ∈ ℝ
𝑁𝑁𝑦𝑦 is the observation 

noise at time j, assumed to be temporally uncorrelated Gaussian with zero mean and known covariance matrix 
𝐴𝐴 𝐑𝐑 ∈ ℝ

𝑁𝑁𝑦𝑦×𝑁𝑁𝑦𝑦 . In this study, we focus on the case Ny < Nx, that is, the state vector is partially observed. These 
observations are available at a coarser temporal resolution than the model forecast time step. Throughout the 
manuscript, the notation v [k] is used to refer to the kth element of some vector v; A [k, l] refers to the element at 
the kth row and lth column of some matrix A.
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The aim of data assimilation is to optimally combine observations and prior information (usually from a numeri-
cal model, e.g., Equation 1) based on their respective uncertainties. We focus on ensemble based data assimilation 
methods due to their suitability for dealing with non-Gaussian model errors, which is a particular focus of the 
proposed method. The standard discrete time Kalman filter provides the optimal posterior (in the minimum 
variance sense) for the special case of linear forecast model and observation operator, and for zero mean tempo-
rally uncorrelated Gaussian process and observation noise. Ensemble Kalman Filter (EnKF) methods (amongst 
others) have been developed for high-dimensional systems where the full covariance matrix is too large to store 
in a computer, with an additional benefit for the more general case of non-linear and non-Gaussian problems 
encountered in many applications. The (ETKF; Bishop et al., 2001; Wang et al., 2004) has been widely adopted 
particularly in meteorological data assimilation due to its computational efficiency and accuracy in high dimen-
sional systems with small ensemble sizes when localization is applied. We will therefore use this as the data 
assimilation method in our numerical experiments in Section 4.

The ETKF is an extension of the original EnKF proposed by Evensen (1994). It belongs to the class of ensemble 
square root filters which operate on the square root of the forecast and analysis error covariance rather than the 
full covariance matrices (Tippett et al., 2003; Vetra-Carvalho et al., 2018). Such methods use a deterministic 
transformation to map the forecast ensemble to the analysis ensemble, whose statistics are consistent with the 
Kalman filter update. As noted by Tippett et al. (2003), the linear transformation is not uniquely defined, and 
is the main distinguishing factor between different ensemble square root methods. Here we present the method 
of Wang et al. (2004), which is an updated version of the original ETKF proposed by Bishop et al. (2001) that 
ensures the filter is unbiased. A single cycle of the ETKF is summarized below.

A forecast ensemble at time j (denoted 𝐴𝐴 𝐗𝐗
𝑓𝑓

𝑗𝑗
 ) is generated by propagating the analysis ensemble from the previous 

time through Equation 3:

𝒙𝒙
𝑓𝑓𝑓𝑓𝑓

𝑗𝑗
= 𝑀𝑀

(

𝒙𝒙
𝑎𝑎𝑓𝑓𝑓

𝑗𝑗−1

)

+ 𝜼𝜼
𝑓𝑓
𝑗𝑗 ∀ 𝑓𝑓 ∈ {1𝑓… 𝑓 𝑛𝑛} (3)

𝐗𝐗
𝑓𝑓

𝑗𝑗
=

[

𝒙𝒙
𝑓𝑓𝑓1

𝑗𝑗
𝑓 … 𝑓𝒙𝒙

𝑓𝑓𝑓𝑓𝑓

𝑗𝑗

]

∈ ℝ
𝑁𝑁𝑥𝑥×𝑓𝑓 (4)

where the superscripts f and a denote the forecast and analysis, respectively. The crucial strength of EnKFs is 
that one can avoid the explicit calculation of the state covariance matrices. In the ETKF, the update is achieved 
by writing the analysis ensemble deviation matrix 𝐴𝐴 𝐗𝐗

𝑎𝑎′

𝑗𝑗
 in terms of the forecast ensemble deviation matrix 𝐴𝐴 𝐗𝐗

𝑓𝑓 ′

𝑗𝑗
 as

𝐗𝐗
𝑎𝑎′

𝑗𝑗 = 𝐗𝐗
𝑓𝑓 ′

𝑗𝑗
𝐓𝐓 (5)

where 𝐴𝐴 𝐗𝐗
𝑓𝑓 ′

𝑗𝑗
∶=𝐗𝐗

𝑓𝑓

𝑗𝑗
− 𝒙𝒙

𝑓𝑓

𝑗𝑗 𝒌𝒌
𝑇𝑇
∈ ℝ

𝑁𝑁𝑥𝑥×𝑛𝑛 , 𝐴𝐴 𝒙𝒙
𝑓𝑓

𝑗𝑗  is the ensemble mean, k is a vector of ones and 𝐴𝐴 𝐓𝐓 ∈ ℝ
𝑛𝑛×𝑛𝑛 is a transforma-

tion matrix given by

𝐓𝐓 = 𝐔𝐔
(

𝐈𝐈 + 𝚺𝚺𝚺𝚺
𝑇𝑇
)−1∕2

𝐔𝐔
𝑇𝑇 (6)

where U and Σ arise from the SVD of the scaled forecast ensemble observation deviation matrix W, that is,

𝐖𝐖∶=
1

√

𝑛𝑛 − 1

(

[

𝐗𝐗
𝑓𝑓 ′

𝑗𝑗

]𝑇𝑇

𝐇𝐇
𝑇𝑇
𝐑𝐑

−1∕2

)

= 𝐔𝐔𝐔𝐔𝐔𝐔
𝑇𝑇 . (7)

This approach transforms the computations to ensemble space which significantly reduces the required number 
of operations whenever n ≪ Ny (as is typically the case in real world geophysical applications). Finally, the SVD 
of W is utilized to efficiently calculate the analysis ensemble mean 𝐴𝐴 𝒙𝒙

𝑎𝑎
𝑗𝑗 :

𝒙𝒙
𝑎𝑎
𝑗𝑗 = 𝒙𝒙

𝑓𝑓

𝑗𝑗 +
1

√

𝑛𝑛 − 1

𝐗𝐗
𝑓𝑓 ′

𝑗𝑗
𝐔𝐔
(

𝚺𝚺
𝑇𝑇
𝚺𝚺 + 𝐈𝐈

)−1
𝚺𝚺𝚺𝚺

𝑇𝑇
𝐑𝐑

−1∕2

(

𝒚𝒚𝑗𝑗 −𝐇𝐇𝒙𝒙
𝑓𝑓

𝑗𝑗

)

 (8)

We will use this data assimilation method in our data assimilation experiments described in Section 4, after we 
have derived an expression for the model error distribution, as detailed in the next section.
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3. Estimating Model Uncertainty
In the following, we propose a method for estimating model uncertainty in partially observed systems where 
knowledge of the unresolved processes is unavailable. The approach is specifically for use with Monte-Carlo 
based sequential filtering techniques such as Ensemble Kalman methods and Particle methods. Existing meth-
ods for accounting for model errors that are amenable to the partially observed setting are also discussed in 
Section 3.3. We first clarify some important notation that will be used from here onwards.

3.1. Notation

The notation 𝐴𝐴 𝒗𝒗𝑡𝑡1∶𝑡𝑡2 is used to indicate the sequence of vectors 𝐴𝐴 {𝒗𝒗𝑗𝑗}𝑗𝑗=𝑡𝑡1 ,𝑡𝑡1+1,…,𝑡𝑡2
 . Unless otherwise stated, the 

subscript notation is reserved for the time index and the superscript bracket notation x (i) is used to indicate the ith 
iteration in an iterative optimization method. The bracket notation [i] is used to indicate the ith element of a vector 
or set. Similarly [i, j] is used to indicate the element in the ith row and jth column of a matrix and [i, ⋅] is used to 
indicate the ith row. The hat notation ^ is used to indicate an estimate of a variable. We also let S u and S o denote 
the set of indices of the unobserved and observed grid points, respectively. The shorthand notation v [S o] is used 
to denote a vector whose ith entry is given by v [S o [i]].

3.2. Proposed Method

The proposed method utilizes a training period to obtain estimates of model errors using an optimization proce-
dure and knowledge of some informative covariates (e.g., the state of the system). Estimates are generated by 
minimizing the conditional sum of squared deviations of the model errors given the covariates, constrained by 
available observations. These estimates are then used to build a conditional model error probability density using 
kernel density estimation, which allows for the characterization of potentially non-Gaussian features. In actual 
data assimilation experiments such as in Section 4 below, model errors are drawn from this conditional distri-
bution. Since the density estimation is computed off-line the cost of incorporating uncertainty in this fashion is 
kept to a minimum.

The following assumptions are required for the method:

1.  The system states are directly but partially observed, that is, H takes the form as described in Section 2
2.  The additive error at time j and grid point k, ηj [k], is dependent on some informative covariates captured in 

the matrix Zj of size Nx × Nc where Nc is the number of covariates. For instance, if it is assumed that the error 
depends only on the state at the previous time and same location, then Zj = xj−1. Other possibilities include 

𝐴𝐴 𝒁𝒁𝑗𝑗[𝑘𝑘𝑘 ⋅] =
[

𝒙𝒙𝑗𝑗−1[𝑘𝑘]𝑘𝒙𝒙𝑗𝑗−1[𝑘𝑘 − 1]𝑘𝒙𝒙𝑗𝑗[𝑘𝑘 + 1]
]

 if the error is expected to depend on the states in a neighborhood 
of the grid point, and 𝐴𝐴 𝒁𝒁𝑗𝑗[𝑘𝑘𝑘 ⋅] =

[

𝒙𝒙𝑗𝑗−1[𝑘𝑘]𝑘𝒙𝒙𝑗𝑗−2[𝑘𝑘]
]

 if a longer temporal dependence on the states is expected
3.  The magnitude of the measurement errors is small in comparison to the magnitude of the model errors, that 

is, ‖ɛj‖ ≪ ‖ηj‖
4.  Additive error statistics are the same in time and space, that is, p (ηj [k]|Zj [k, ⋅]) ≡ p (ηm [l]|Zm [l, ⋅]) ∀ l, k ∈ {1, 

2, …, Nx}, j, m ∈ {1, 2, …, T}

The key advantages of the proposed approach are it (a) allows for the estimation of complex error structures with 
minimal apriori knowledge and partial observations; (b) requires no assumptions or specification of a parametric 
error distribution (e.g., Gaussian errors) and considers the full range of moments (not just bias and covariance); 
(c) computes all error statistics from data, without the need for numerical tuning; and (d) has sufficient flexibility 
to incorporate a range of covariates that influence error processes, which will generally be problem dependent.

The aforementioned assumptions could be relaxed for larger scale realistic applications. For instance, in many 
applications the model grid and observation locations do not align perfectly. Standard interpolation procedures 
are not likely to be problematic for Assumption (a), so long as the quantities are directly observed. The flexibility 
of Assumption (b) is a strength of the method. A brief exploration of the impact of Assumption (c) is given in 
Section 4.3.2, showing that this assumption can be relaxed to a large extent. As mentioned in the Introduction, 
Assumption (d) could be relaxed by dividing the study area into smaller groups based on certain physical char-
acteristics so that assumption four is valid within each group. These group sizes has to be chosen such that the 
sample size is sufficiently large.



Journal of Advances in Modeling Earth Systems

PATHIRAJA AND VAN LEEUWEN

10.1029/2021MS002564

6 of 23

The methodology consists of two main steps and is discussed in detail for the remainder of this section.

3.2.1. Step 1. Offline Additive Error Estimation

Given a training period of length T time steps, the aim is to estimate the sequence of errors η1:T under the assump-
tions stated above. To this end we solve a constrained optimization problem where the objective function is of 
conditional sum of squares type:

�̂�𝜼1∶𝑇𝑇 = argmin
𝜼𝜼1∶𝑇𝑇

𝑁𝑁𝑥𝑥
∑

𝑘𝑘=1

𝑇𝑇
∑

𝑗𝑗=1

(

𝜼𝜼𝑗𝑗[𝑘𝑘] − �̂�𝑚 (𝒁𝒁𝑗𝑗[𝑘𝑘𝑘 ⋅])
)2

 (9)

subject to the constraints

𝒚𝒚𝑗𝑗 = 𝐇𝐇𝒙𝒙𝑗𝑗 ∀ 𝑗𝑗 = 1, 2,⋯ 𝑇𝑇

𝒙𝒙𝑗𝑗 = 𝑀𝑀 (𝒙𝒙𝑗𝑗−1) + 𝜼𝜼𝑗𝑗 .

 (10)

𝐴𝐴 𝐴𝐴𝐴 (𝒁𝒁𝑗𝑗[𝑘𝑘𝑘 ⋅]) is the Nadaraya–Watson Kernel estimator of 𝐴𝐴 𝔼𝔼
(

𝜼𝜼𝑗𝑗[𝑘𝑘]|𝒁𝒁𝑗𝑗[𝑘𝑘𝑘 ⋅]
)

 , given by

�̂�𝑚 (𝒁𝒁𝑗𝑗[𝑘𝑘𝑘 ⋅]) ∶=

∑𝑁𝑁𝑥𝑥

𝑙𝑙=1

∑𝑇𝑇

𝑖𝑖=1
𝐾𝐾𝑏𝑏 (|𝒁𝒁 𝑖𝑖[𝑙𝑙𝑘 ⋅] −𝒁𝒁𝑗𝑗[𝑘𝑘𝑘 ⋅]|) 𝜼𝜼𝑖𝑖[𝑙𝑙]

∑𝑁𝑁𝑥𝑥

𝑙𝑙=1

∑𝑇𝑇

𝑖𝑖=1
𝐾𝐾𝑏𝑏 (|𝒁𝒁 𝑖𝑖[𝑙𝑙𝑘 ⋅] −𝒁𝒁𝑗𝑗[𝑘𝑘𝑘 ⋅]|)

 (11)

where Kb is a kernel function with bandwidth b, both of which must be selected. Common choices for the kernel 
function could be a Gaussian, Uniform or Epanechnikov kernel. Such regularizers are also used in semi-super-
vised learning where they guide the learning method to find models that respect some underlying structure of 
the samples. The Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) algorithm is used as the minimizer.

Optimizing η1:T can be prohibitively expensive especially for large T and Nx. We therefore use a sequential opti-
mization technique over a sliding time window of length τ, as is also employed in Long window weak-constraint 
4D-Var (Tremolet, 2006) and particle smoothing methods (Sarkka, 2013). For a given time t, initial condition 
estimate 𝐴𝐴 �̂�𝒙𝑡𝑡−1 and time window length τ, the optimization problem Equations 9–11 is restricted to j ∈ {t, t + 1, …, 
t + τ} instead of j ∈ {1, 2, …, T}. This process is then repeated by sliding the window of length τ forward one 
time step, so that ηt+1:t+τ+1 is optimized, where the existing estimates from the previous optimization step are used 
as an initial guess. The sliding window procedure allows one to avoid specifying the background error covariance 
matrix or including the initial condition 𝐴𝐴 �̂�𝒙𝑡𝑡−1 in the optimization (Tremolet, 2006) as is needed in standard 4D-Var.

The optimization window τ must not be so large that the optimization procedure is computationally infeasible, 
but large enough to ensure enough points to approximate the conditional variance. Furthermore, it should be large 
enough so that that inclusion of a new observation at the end of the time window does not influence the initial 
condition.

This step of estimating model errors given the observations in the training period is summarized in Algorithm 1 
and 2. A pictorial representation of the optimization over a single time window is provided in Figure 1. It shows 
the estimated errors at various stages of the iterative minimization process for the numerical experiment consid-
ered in Section 4.

3.2.2. Step 2. Conditional PDF Estimation and Sample Generation

The resulting sample of additive error and states estimates 𝐴𝐴 �̂�𝜼1∶𝑇𝑇  and 𝐴𝐴 �̂�𝒙0∶𝑇𝑇−1 from Algorithm 1 is now used to derive 
the conditional probability density for example, p (ηj [k]|xj−1 [k]) for a given grid point k. Kernel conditional 
density estimation methods (Hall et al., 2004; Hyndman et al., 1996) are well suited to such a task, although 
they are generally data-intensive and suffer from the curse of dimensionality. However, they are sufficient for the 
class of problems considered herein where the locality assumption greatly reduces the dimension of the response 
variable and covariates. We adopt the method of Hayfield and Racine (2008) as implemented in the np package 
in R. For a set of N data points 𝐴𝐴 {𝒙𝒙𝑖𝑖, 𝑦𝑦𝑖𝑖}𝑖𝑖=1∶𝑁𝑁 for covariate 𝐴𝐴 𝒙𝒙 ∈ ℝ

𝑑𝑑 and response variable 𝐴𝐴 𝐴𝐴 ∈ ℝ , a Kernel estimate 
of the conditional density is constructed as
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�̂�𝑝(𝑦𝑦|𝒙𝒙) =

∑𝑁𝑁

𝑖𝑖=1
𝐾𝐾𝑏𝑏𝑦𝑦 (𝑦𝑦 − 𝑦𝑦𝑖𝑖)𝐾𝐾𝑏𝑏𝑥𝑥 (|𝒙𝒙 − 𝒙𝒙𝑖𝑖|)

∑𝑁𝑁

𝑖𝑖=1
𝐾𝐾𝑏𝑏𝑥𝑥 (|𝒙𝒙 − 𝒙𝒙𝑖𝑖|)

 

where Kb is a user specified Kernel function with bandwidth b and bx and by refer to the bandwidths selected for 
the covariates and response variable, respectively.

As mentioned earlier, it is also possible to include additional covariates that strongly influence the errors at the 
current time (for example, ηj−1 [k] to capture serial dependence, as demonstrated in the numerical experiments in 
Section 4. The set of covariates is likely to be problem dependent; prior knowledge of the system is required to 
select them appropriately.

3.3. Benchmark Methods

The stochastic parameterization methods for multi-scale systems discussed in Section 1 (e.g., Arnold et al., 2013; 
Crommelin & Vanden-Eijnden, 2008; Kwasniok, 2012; Lu et al., 2017; Wilks, 2005) require knowledge of the 
sub-grid scale processes and/or fully observed resolved variables. These approaches are therefore inapplicable for 
the problem setting considered here. In the remainder of this section, two existing data assimilation based meth-
ods that are amenable to our problem setting are discussed. They are also adopted as benchmarks for comparison 
with the proposed approach.

3.3.1. B1 - Analysis Increment Based Method

Several researchers have investigated the potential of using analysis increments from a data assimilation run to 
characterize model errors, see for example, (Leith, 1978; Li et al., 2009; Mitchell & Carrassi, 2015). We adopt 
the recently proposed ETKF-TV of Mitchell and Carrassi (2015) as a representative method of such approaches 
(hereafter referred to as Method B1). Their method consists of estimating a Gaussian model error distribution by 
calculating the mean and covariance of the analysis increments over a so-called reanalysis period, via:

𝛿𝛿𝒙𝒙𝑎𝑎
𝑗𝑗 =

1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

(

𝒙𝒙
𝑎𝑎𝑖𝑖
𝑗𝑗 − 𝒙𝒙

𝑓𝑓𝑖𝑖

𝑗𝑗

)

 (14)

𝒃𝒃 =
1

𝑇𝑇

𝑇𝑇
∑

𝑗𝑗=1

𝛿𝛿𝒙𝒙𝑎𝑎
𝑗𝑗 (15)

𝐏𝐏 =
1

𝑇𝑇 − 1

𝑇𝑇
∑

𝑗𝑗=1

[

𝛿𝛿𝒙𝒙𝑎𝑎
𝑗𝑗 − 𝒃𝒃

] [

𝛿𝛿𝒙𝒙𝑎𝑎
𝑗𝑗 − 𝒃𝒃

]𝑇𝑇

 (16)

Figure 1. Representative example of the minimization process for a single window. An iterative minimization algorithm is used starting with an initial guess of zero for 
unobserved variables. Results are shown at various stages (a - initial guess, (b) intermediate and (c) final). The aim is to minimize the deviation of the errors from the 
nonparametric estimate of the conditional mean, subject to the constraint that the estimated states match the observations. Notice how the spread of the errors gradually 
becomes smaller from (a) to (c).
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where 𝐴𝐴 𝒙𝒙
𝑎𝑎𝑎𝑎
𝑗𝑗
 and 𝐴𝐴 𝒙𝒙

𝑓𝑓𝑓𝑓

𝑗𝑗
 refer to the ith ensemble member at time j obtained from the reanalysis assimilation run for 

the analysis and forecast respectively. Note Equations 14-16 are derived assuming the analysis interval length 
is the same in the reanalysis and experimental run (as is the case in this study). This model error distribution is 
then used to draw model error samples for the the actual data assimilation experiments. Since this estimate of 
the model error is corrupted by various sources of error (including from the data assimilation algorithm used to 
generate the analysis increments), the authors include a tuning parameter α leading to a model forecast of the 
form:

𝒙𝒙
𝑓𝑓𝑓𝑓

𝑗𝑗
= 𝑀𝑀

(

𝒙𝒙
𝑎𝑎𝑓𝑓

𝑗𝑗−1

)

+ 𝛼𝛼𝜼𝜼𝑓𝑓𝑗𝑗 (17)

𝜼𝜼
𝑖𝑖
𝑗𝑗 ∼ 𝑁𝑁

(

𝒃𝒃,𝐏𝐏

)

 (18)

3.3.2. B2 -Error Estimation Using Long Window Weak Constraint 4D-Var

As discussed in Section 3.2, the proposed method for estimation of additive errors relies on ideas from Long 
window weak-constraint 4D-Var (Tremolet, 2006) to avoid specification of the background covariance matrix. 
However, it differs in the specification of the cost function, as the 4D-Var method provides the least squares 
solution for the model error control variable. The second benchmark (Method B2) is taken to be the same as the 
proposed approach, but with Step 1 (see Section 3.2.1) replaced by Long window weak constraint 4D-Var esti-
mates for the model error. The probability density estimation (Step 2) remains unchanged. It is worth noting that 
this is not exactly a ”standard” method in its entirety, but is investigated to examine the benefit of the conditional 
sum of squared deviation minimization aspect of the proposed method. The long window weak constraint 4D-Var 
method is discussed below.

In variational data assimilation model errors are accounted for using weak constraint 4D-Var. In the formulation 
where the initial state and model errors are considered as control variables, this amounts to minimizing the 
following cost function over a time window of length τ (Tremolet, 2006):

Algorithm 1. Model Error Estimation Over Training Period With Sliding Window

1 : Set:
 •  window size, τ
 •  initial state, 𝐴𝐴 �̂�𝒙0

 •  total time series length, T
 •  initial guess for errors on unobserved variables, 𝐴𝐴 𝜸𝜸

(0)

1∶𝑇𝑇

2 : for t = 1: T do
3 : if t ≤ T − τ − 1 then
4 : 𝐴𝐴 𝜸𝜸

(𝑡𝑡)

𝑡𝑡∶𝑡𝑡+𝜏𝜏
←kernelopt

(

�̂�𝒙𝑡𝑡−1, 𝜸𝜸
(𝑡𝑡−1)

𝑡𝑡∶𝑡𝑡+𝜏𝜏

)

5 : 𝐴𝐴 𝜸𝜸
(𝑡𝑡)

𝑡𝑡∶𝑡𝑡+1+𝜏𝜏
←

{

𝜸𝜸
(𝑡𝑡)

𝑡𝑡∶𝑡𝑡+𝜏𝜏
, 𝜸𝜸

(0)

𝑡𝑡+𝜏𝜏+1

}

6 : 𝐴𝐴 �̂�𝜼𝑡𝑡 [𝑆𝑆
𝑢𝑢
]←𝜸𝜸

(𝑡𝑡)

𝑡𝑡

7 : else
8 : 𝐴𝐴 �̂�𝜼𝑡𝑡 [𝑆𝑆

𝑢𝑢]←𝜸𝜸
(𝑇𝑇−𝜏𝜏−1)

𝑡𝑡

9 : end if
1 0: 𝐴𝐴 �̂�𝜼𝑡𝑡 [𝑆𝑆

𝑜𝑜]←𝒚𝒚𝑡𝑡 −𝐇𝐇𝑀𝑀 (�̂�𝒙𝑡𝑡−1)

1 1: 𝐴𝐴 �̂�𝒙𝑡𝑡←𝑀𝑀 (�̂�𝒙𝑡𝑡−1) + �̂�𝜼𝑡𝑡

1 2: end for
1 3: return 𝐴𝐴 �̂�𝜼1∶𝑇𝑇  ; 𝐴𝐴 �̂�𝒙0∶𝑇𝑇−1
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𝐽𝐽 (𝒙𝒙0, 𝜼𝜼) =
1

2
(𝒙𝒙0 − 𝒙𝒙𝑏𝑏)

𝑇𝑇
𝐁𝐁

−1 (𝒙𝒙0 − 𝒙𝒙𝑏𝑏)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽𝐽𝐵𝐵

+
1

2

𝜏𝜏
∑

𝑗𝑗=1

𝜼𝜼
𝑇𝑇
𝑗𝑗 𝐐𝐐

−1
𝑗𝑗 𝜼𝜼𝑗𝑗

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐽𝐽𝑄𝑄

+
1

2

𝜏𝜏
∑

𝑗𝑗=0

(

𝐇𝐇𝒙𝒙𝑗𝑗 − 𝒚𝒚𝑗𝑗

)𝑇𝑇
𝐑𝐑

−1
(

𝐇𝐇𝒙𝒙𝑗𝑗 − 𝒚𝒚𝑗𝑗

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽𝐽𝑂𝑂

 (19)

where xb is the background estimate of the initial state x0; B is the background error covariance matrix associated 
with xb; Q is the model error covariance matrix; and xj = M(xj−1) + ηj for j ∈ {1, …τ}. The assimilation cycle is 
repeated by then considering the next assimilation window {τ + 1, 2τ}. However, in the long window approach, 
minimization is performed by shifting the interval by one observation interval rather than the full assimilation 
window of length τ. This allows one to neglect the background term JB from the cost function after a suitable 

Algorithm 2. kernelopt

1 : Set:
 •  state estimate at time t − 1, 𝐴𝐴 �̂�𝒙𝑡𝑡−1

 •  best guess for unobserved errors for time t to t + τ, 𝐴𝐴 𝜸𝜸
(𝑡𝑡−1)

𝑡𝑡∶𝑡𝑡+𝜏𝜏

 •  stopping criterion Jstop

 •  Kernel function and bandwidth Kb and b respectively
 •  maximum no. of iterations maxiter (to prevent excessive computations when convergence to reaching Jstop is 

too slow)
2 : Initialize:
 •  m ← 1
 •  𝐴𝐴 𝜸𝜸

(𝑡𝑡)

𝑡𝑡∶𝑡𝑡+𝜏𝜏
←𝜸𝜸

(𝑡𝑡−1)

𝑡𝑡∶𝑡𝑡+𝜏𝜏

3 : while m < maxiter do
4 : for j = t: t + τ do
5 : 𝐴𝐴 �̂�𝜼𝑗𝑗 [𝑆𝑆

𝑜𝑜]←𝒚𝒚𝑗𝑗 −𝐇𝐇𝑀𝑀 (�̂�𝒙𝑗𝑗−1)

6 : 𝐴𝐴 �̂�𝜼𝑗𝑗 [𝑆𝑆
𝑢𝑢
]←𝜸𝜸

(𝑡𝑡)

𝑗𝑗

7 : 𝐴𝐴 �̂�𝒙𝑗𝑗←𝑀𝑀 (�̂�𝒙𝑗𝑗−1) + �̂�𝜼𝑗𝑗

8 : end for
9 : Calculate: 𝐴𝐴 �̂�𝒁𝑗𝑗[𝑘𝑘𝑘 ⋅] using 𝐴𝐴 �̂�𝒙𝑡𝑡−1∶𝑡𝑡+𝜏𝜏 for all j, k
1 0:     

�̂�𝑚(�̂�𝒁𝑗𝑗[𝑘𝑘𝑘 ⋅])←

∑𝑁𝑁𝑥𝑥

𝑙𝑙=1

∑𝑡𝑡+𝜏𝜏

𝑖𝑖=𝑡𝑡
𝐾𝐾𝑏𝑏

(

|

|

|

�̂�𝒁 𝑖𝑖[𝑙𝑙𝑘 ⋅] − �̂�𝒁𝑗𝑗[𝑘𝑘𝑘 ⋅]
|

|

|

)

�̂�𝜂𝑖𝑖[𝑙𝑙]

∑𝑁𝑁𝑥𝑥

𝑙𝑙=1

∑𝑡𝑡+𝜏𝜏

𝑖𝑖=𝑡𝑡
𝐾𝐾𝑏𝑏

(

|

|

|

�̂�𝒁 𝑖𝑖[𝑙𝑙𝑘 ⋅] − �̂�𝒁𝑗𝑗[𝑘𝑘𝑘 ⋅]
|

|

|

) ( 12)

1 1:     

𝐽𝐽
(

𝛾𝛾
(𝑡𝑡)

𝑡𝑡∶𝑡𝑡+𝜏𝜏

)

←

𝑁𝑁𝑥𝑥
∑

𝑘𝑘=1

𝑡𝑡+𝜏𝜏
∑

𝑗𝑗=𝑡𝑡

(

�̂�𝜂𝑗𝑗 [𝑘𝑘] − �̂�𝑚
(

�̂�𝒁𝑗𝑗 [𝑘𝑘𝑘 ⋅]
))2

 ( 13)

1 2: if J > Jstop then
1 3: Calculate: new guess 𝐴𝐴 𝜸𝜸

(𝑡𝑡)

𝑡𝑡∶𝑡𝑡+𝜏𝜏
 based on 𝐴𝐴 𝐴𝐴

(

𝜸𝜸
(𝑡𝑡)

𝑡𝑡∶𝑡𝑡+𝜏𝜏

)

 as per chosen optimization scheme
1 4: m ← m + 1
1 5: else
1 6: m ← maxiter
1 7: end if
1 8: end while
1 9: return 𝐴𝐴 𝜸𝜸

(𝑡𝑡)

𝑡𝑡∶𝑡𝑡+𝜏𝜏
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warm up period. The estimate xb would have already converged due to the many iterations of the minimization 
algorithm from the overlapping windows, meaning its uncertainty is negligible in comparison to the other terms. 
The window length should also be chosen to be sufficiently long, such that the inclusion of a new observation 
at the end of the time window does not affect the initial state (this is relevant for the proposed approach also).

In summary, the B2 method is defined as being the same as the proposed approach, but with the cost function in 
Equation 9 replaced by minimization of the following cost function for any given time t:

𝐽𝐽
(

𝜼𝜼𝑡𝑡∶𝑡𝑡+𝜏𝜏 , �̂�𝒙𝑡𝑡−1

)

=
1

2

𝑡𝑡+𝜏𝜏
∑

𝑗𝑗=𝑡𝑡

𝜼𝜼
𝑇𝑇
𝑗𝑗 𝐐𝐐

−1
𝑗𝑗 𝜼𝜼𝑗𝑗

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐽𝐽𝑄𝑄

+
1

2

𝑡𝑡+𝜏𝜏
∑

𝑗𝑗=𝑡𝑡

(

𝐇𝐇𝒙𝒙𝑗𝑗 − 𝒚𝒚𝑗𝑗

)𝑇𝑇
𝐑𝐑

−1
(

𝐇𝐇𝒙𝒙𝑗𝑗 − 𝒚𝒚𝑗𝑗

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽𝐽𝑂𝑂

 (20)

where xj = M(xj−1) + ηj for j ∈ {t, …t + τ} and the initial condition is given by 𝐴𝐴 �̂�𝒙𝑡𝑡−1 . The estimated model error 
distribution is derived in the same way as for the proposed method, as detailed below.

The Levenberg-Marquardt algorithm is again used as the minimizer, for the sake of comparison with the proposed 
approach. Notice that unlike the proposed approach, the errors in the entire state vector (not just unobserved 
states) must be optimized.

4. Numerical Experiments
4.1. Multi-Scale Lorenz 96

Here we investigate the efficacy of the proposed method and benchmarks discussed in Section 3 through synthetic 
experiments using the multi-scale Lorenz 96 model. This system has been used extensively as a toy model of the 
atmosphere to test new algorithms and to study model errors due to unresolved sub-grid processes. It consists of 
a coupled system of equations representing the evolution of an atmospheric quantity discretized over a latitude 
circle at different scales:

𝑑𝑑𝑿𝑿[𝑘𝑘]

𝑑𝑑𝑑𝑑
= −𝑿𝑿[𝑘𝑘 − 1](𝑿𝑿[𝑘𝑘 − 2] −𝑿𝑿[𝑘𝑘 + 1]) −𝑿𝑿[𝑘𝑘] + 𝐹𝐹 + 𝑼𝑼 [𝑘𝑘]; 𝑘𝑘 ∈ {1,… , 𝑁𝑁𝑥𝑥} (21)

𝜉𝜉
𝑑𝑑𝑽𝑽 [𝑙𝑙𝑙 𝑙𝑙]

𝑑𝑑𝑑𝑑
= −𝑽𝑽 [𝑙𝑙 + 1𝑙 𝑙𝑙](𝑽𝑽 [𝑙𝑙 + 2𝑙 𝑙𝑙] − 𝑽𝑽 [𝑙𝑙 − 1𝑙 𝑙𝑙]) − 𝑽𝑽 [𝑙𝑙𝑙 𝑙𝑙] + ℎ𝑧𝑧𝑿𝑿[𝑙𝑙]; 𝑙𝑙 ∈ {1𝑙… 𝑙 𝑁𝑁𝑧𝑧} (22)

The 𝐴𝐴 {𝑿𝑿[𝑘𝑘]}
𝑁𝑁𝑥𝑥

𝑘𝑘=1
 variables represent quantities evolving continuously in time on a coarse spatial scale with low-fre-

quency large amplitude fluctuations, where the subscript k refers to the kth grid point on the latitude circle. 
Each X [k] variable is coupled to Nz small-scale variables V [l, k] that are characterized by a high frequency and 
relatively small amplitude evolution. The variables are driven by a quadratic term that models advection, a linear 
damping, constant forcing (F) and coupling terms that link the two scales. The system is subject to periodic 
boundary conditions, so that X [k] = X [k + Nx], V [l, k] = V [l, k + Nx] and V [l + Nz, k] = V [l, k + 1]. The effect 
of the unresolved fast variables on the slow variables is denoted by the so-called sub-grid tendency U [k]:

𝑼𝑼 [𝑘𝑘] =
ℎ𝑥𝑥

𝑁𝑁𝑧𝑧

𝑁𝑁𝑧𝑧
∑

𝑙𝑙=1

𝑽𝑽 [𝑙𝑙𝑙 𝑘𝑘] (23)

we use the formulation of the Lorenz 96 Equations 21–22 as provided in (Fatkullin & Vanden-Eijnden, 2004) 
which makes the time-scale separation between the slow and fast variables (measured by ξ) explicit. Note that 
this formulation is equivalent to the system originally proposed by Lorenz with the following parameter conver-
sions: 𝐴𝐴 𝐴𝐴 =

1

𝑐𝑐
 where c = time scale ratio; 𝐴𝐴 𝐴𝑥𝑥 =

−𝐴𝑐𝑐𝑐𝑐𝑧𝑧

𝑏𝑏2
 where b = spatial scale ratio and h is the coupling constant; 

and hz = h.

The behavior of the system can vary considerably depending on the values assigned to the parameters in Equa-
tions 21-22. We consider two dynamical regimes to study the robustness of the proposed approach to differ-
ent model error structures, summarized in Table 1. We first consider a case with large time scale separation 
(ξ ≈ 0.008) studied by Fatkullin and Vanden-Eijnden (2004). The sub-grid tendency has a complex non-linear 
dependence on the resolved variable, making it of interest to this study. However, such large time scale separations 
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are not representative of the real atmosphere. We therefore consider a second case that has a much smaller time 
scale separation (ξ ≈ 0.7) and stronger coupling (hx = −2) than cases considered in previous studies (where ξ is 
typically 0.4 or 0.5 and hx = 1; e.g., Arnold et al., 2013; Crommelin & Vanden-Eijnden, 2008; Lu et al., 2017). 
Smaller values of ξ (i.e., larger time scale separation) are generally considered more difficult to parameterize, and 
the larger magnitude of the coupling term amplifies the effect of model errors. In both case studies, the dynamics 
are chaotic and give rise to complex non-Gaussian conditional error densities, as shown by the variation of U [k] 
with X [k] in Figure 2.

4.2. Experimental Setup

The available forecast model is the single scale Lorenz 96 model Equation 24, where the forcing term is known 
perfectly but knowledge of the sub-grid processes V [l, k] is unavailable:

𝑑𝑑𝑿𝑿[𝑘𝑘]

𝑑𝑑𝑑𝑑
= −𝑿𝑿[𝑘𝑘 − 1](𝑿𝑿[𝑘𝑘 − 2] −𝑿𝑿[𝑘𝑘 + 1]) −𝑿𝑿[𝑘𝑘] + 𝐹𝐹 ; 𝑘𝑘 ∈ {1,… , 𝑁𝑁𝑥𝑥} (24)

our aim is to first characterize the uncertainty in model simulations due to missing physics that is, the subgrid 
term in Equation 23, where the resolved variables are partially observed. Then we study the effects of uncertainty 
characterization on forecasts and assimilation.

Parameter Case Study 1 Case Study 2

 Lorenz 96 parameters ξ 𝐴𝐴
1

128
≈ 0.008 0.7

hx −0.8 −2

hz 1 1

Nz 128 20

Nx 9 9

F 10 14

 Observation density Observation frequency (MTU) 0.02 0.04

Location of Observed X [k] S o = {3, 4, 8, 9} S o = {1, 2, 5, 6}

Note. That 1 𝐴𝐴 MTU =
1

Δ𝑡𝑡
time steps and the model equations are discretized with Δt = 8 × 10 −4

Table 1 
Multi-Scale Lorenz 96 Parameters for the Two Different Case Studies.

Figure 2. Sub-grid tendencies for the two different regimes of the multi-scale Lorenz 96 system considered in this study: (a) 
Case 1 - large time scale separation; (b) Case 2 - small time scale separation. For both cases, points are sampled at an interval 
of 0.3 MTU.
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4.2.1. Training Period

A truth run for the training period was first generated by numerically integrating the full multi-scale system Equa-
tions 21-22 using a fourth-order Runge-Kutta scheme with time step Δt = 0.0008. Similar to (Arnold et al., 2013), 
we use MTU to denote model time units, where 𝐴𝐴 1MTU =

1

Δ𝑡𝑡
 .

Partial observations of the resolved slow variables were then developed by perturbing the true values with zero 
mean, temporally and spatially uncorrelated Gaussian noise:

𝒚𝒚𝑗𝑗 = 𝐇𝐇𝒙𝒙𝑗𝑗 + 𝜺𝜺𝑗𝑗

𝜺𝜺𝑗𝑗 ∼ 𝑁𝑁(0,𝐑𝐑)

 (25)

where H is a non-square matrix with H [i, S o [i]] = 1, for all i = {1, 2, …, Ny} and 0 otherwise (see details of S o in 
Table 1), xj is the true state at time j where xj [k] is equivalent to the time discretized value of Xk in Equation 21, 
and 𝐴𝐴 𝐑𝐑 = 10−7𝐈𝐈𝑁𝑁𝑦𝑦

 where 𝐴𝐴 𝐈𝐈𝑁𝑁𝑦𝑦
 is the identity matrix of size Ny. R was chosen such that measurement errors are 

negligible in comparison to model errors.

The resolved variables are partially observed in space in all experiments (approx. 50% observed, see Table 1), 
and observations are available at 0.02 and 0.04 MTU for Case Studies 1 and 2 respectively. Based on the work of 
Lorenz (2006), this corresponds to an observation interval of 2.5 and 5 hr respectively (1 MTU is approximately 
equivalent to 5 days). These interval lengths where chosen to reflect a realistic observation network whilst also 
maintaining complex non-Gaussian error structures.

The proposed approach was then applied to the training data. The forecast model Equation 24 was integrated 
using a time step of Δt = 8 × 10 −4. We estimate the following probability densities:

Case Study 1 ∶ 𝑝𝑝(𝜂𝜂𝑗𝑗 [𝑘𝑘] |𝑥𝑥𝑗𝑗−1 [𝑘𝑘]) 

Case Study 2 ∶ 𝑝𝑝(𝜂𝜂𝑗𝑗 [𝑘𝑘] |𝑥𝑥𝑗𝑗−1 [𝑘𝑘] , 𝑥𝑥𝑗𝑗−1 [𝑘𝑘 − 1] , 𝜂𝜂𝑗𝑗−1 [𝑘𝑘]) 

Note the inclusion of the past value of the model error in Case Study 2, which is related to the presence of time 
correlations in errors in the Lorenz 96 system (as identified by e.g., Arnold et al. (2013)). In a real system, such 
choices would be informed by expert knowledge of the error processes.

Window lengths equal to τ = 25 and 50 observation intervals were selected for Case Study 1 and 2, respectively. 
This was sufficiently long to capture a range of dynamical states and also longer than the system decorrelation 
time, so that the sliding window approach can be utilized to ignore the background term in the cost function (as 
discussed in Section 3.3.2). To ensure temporal independence the data for the nonparametric conditional density 
estimation was generated by sampling the estimated error and states at an interval of 0.3 MTU, where autocorrela-
tion is approximately zero. A Gaussian Kernel function was adopted throughout using the data-driven bandwidth 
estimation procedure as detailed in (Hayfield & Racine, 2008). The np package in R was used for the bandwidth 
estimation and the in-built Levenberg-Marquardt algorithm in Matlab was used for optimization. To avoid issues 
related to bandwidth specification and data sparsity in high dimensions, outlier points in the covariate space were 
removed from the data used for density estimation in Case Study 2.

This training data was also used in the benchmark methods. For method B2 we used the same window length and 
density estimation algorithm as for the proposed approach. The process error covariance matrix Q was estimated 
by calculating the sample covariance of the true errors over the training period. For the B1 method, the inflation 
parameter used in the ETKF which provides the analysis increments was tuned based on the analysis Root Mean 
Squared Error (RMSE), whilst the correction factor α (see Equation 17) was selected by evaluating the spread 
versus RMSE relationships, as it has a greater impact on ensemble spread than accuracy. The optimal value was 
found to be 0.8; the fact that it is less than one is because the model error spread is overestimated due to the 
inability of the method to resolve the complicated non-Gaussian error structure (see Figure 3). Localization was 
not required due to the large ensemble size (n = 1000) relative to the state dimension.

4.2.2. Assimilation Period

Model errors generated using the proposed method and two benchmarks were then assessed in assimilation 
experiments using the ETKF. The forecast model in the assimilation experiment was also the single scale Lorenz 
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96 Equation 24; spatio-temporal observation frequency was the same and observations were generated also using 
Equation  25. Assimilation was undertaken for 30 independent runs of length 100 observation intervals with 
independent initial conditions. Truth runs were first generated using the same approach as for the training period. 
The initial conditions were generated by selecting 30 values on the attractor at intervals of 12,500 time steps, 
which is sufficient to ensure that the autocorrelation in the resolved variables is close to zero (also adopted by 
Arnold et al. (2013)). Perfect initial conditions were adopted in all experiments as the focus is on the effects of 
model error. Similarly, a large ensemble size (n = 1000) was adopted to minimize the effects of sampling error 
and to avoid the use of localization methods. Furthermore, we can avoid the use of inflation for the assimilation 
experiments with the model errors generated from the proposed method.

4.3. Results and Discussion

4.3.1. Model Error Estimation

In both case studies, the proposed approach recovers the true error estimates from partial observations more 
accurately than the benchmark methods. This is demonstrated qualitatively in Figure 3, which shows the sample 
set of additive errors ηj [k] against the spatial covariates (resolved variable at the previous observation time, xj−1 
[k] for Case Study one; and xj−1 [k − 1] and xj−1 [k] for Case Study 2). In Case Study 1, the B2 method manages 
to at least partially recover the non-linear relationship between ηj [k] and xj−1 [k], but is less precise than estimates 
from the proposed method (compare Figures 3b and 3c). In Case Study 2, it more closely reflects the true error 
structure, although an overestimation and underestimation of error values is apparent in key regions of the covar-
iate space (compare Figures 3e–3g). Method B1 produces poor quality error estimates in both case studies; errors 
are grossly overestimated and the dependence structure between the errors and covariates is poorly represented.

The model error estimation techniques considered here can also be considered as stochastic parameterizations 
of the sub-grid dynamics. The ability of the methods to replicate key characteristics of the full 2-scale Lorenz 
96 model when used in this manner is also assessed. For each case the single-layer Lorenz 96 system is run for 

Figure 3. Sub-grid tendencies for the two different regimes of the multi-scale Lorenz 96 system considered in this study: (a) to (d) Case Study 1, that is,.large time 
scale separation; (b) to (h) Case Study 2, that is, small time scale separation. For both case studies, points are sampled at an interval of 0.3 MTU.
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10 5 time steps with a Δt = 8 × 10 −4, adding draws from the model error pdfs at the observation intervals used to 
construct these pdfs, that is, 0.02 and 0.04 MTU for Case Study 1 and 2, respectively. We calculate the autocor-
relation function of Xk, the cross-correlation function between X [k] and X [k + 1], and the marginal probability 
density of X [k] (see Figure 4). The correlation functions approximate the dynamical transitions of the slow vari-
ables whilst the marginal probability density approximates the invariant measure. Again, Method B1 performs 
poorly in all aspects, particularly in Case Study 2 where temporal correlations are not reproduced, meaning 
that the dynamical transitions are poorly represented. The results are similar to those from using inflation and 
localization only, in case studies with a similar time scale separation (e.g., Lu et al., 2017). Improvements of the 
proposed method over Method B2 are more distinct in Case Study 1 than in Case Study 2, consistent with the 
greater similarity in error estimates in this case study (see Figure 3). The Proposed Method reproduces all three 
features relatively accurately in both case studies, and even compares favorably with other methods that rely on 
data of the sub-grid processes (cf. Figures 5–7 in Crommelin and Vanden-Eijnden (2008) and Figure 1 in Lu 
et al. (2017)).

The superior performance of the proposed method is attributed to two aspects (a) the formulation of the cost 
function which aims to minimize the conditional sum of squared deviations of the estimated errors; and (b) 
optimization of errors over a time window (as is performed in traditional 4D-Var and smoothing methods). First, 
minimizing the conditional sum of squared deviations of the errors allows one to estimate more complex state 
dependent error structures, as opposed to the 4D-Var type approach in Method B2 where dependence information 

Figure 4. Autocorrelation function, cross-correlation function and marginal density of a resolved variable for both case 
studies using different parameterization approaches.
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is not taken into account. The error estimates from Method B2 give JQ terms 
(see Equation  20) that are most often lower than JQ of the true data (see 
Figure 5), meaning that estimates are obtained by minimizing an inappro-
priate cost function for this setting. Furthermore, the proposed approach has 
the added benefit of avoiding the specification of a model noise covariance 
matrix, which is needed in Method B2.

Second, optimization over a time window allows one to more effectively 
constrain the range of possible errors in the partially observed setting, 
particularly when errors are time correlated. This partly explains the poor 
performance of Method B1, which is based on increments from a filter). 
Furthermore, the error estimates from Method B1 are heavily influenced by 
the quality of the assimilation algorithm (ETKF with inflation). Poorly spec-
ified prior uncertainty in the unobserved variables from the inflation proce-
dure can lead to large incremental updates in observed variables at future 
times. This ultimately corrupts the error estimates, as the increments are now 
dominated by initial condition errors in the unobserved variables.

4.3.2. Model Error Estimation With Non-Negligble Observation Error

In the aforementioned experiment, negligible observation errors 
𝐴𝐴

(

𝐑𝐑 = 10−7𝐈𝐈𝑁𝑁𝑦𝑦

)

 were considered, consistent with assumption 3. This assump-
tion is clearly a limitation for real world applications, and future work will examine how this assumption can be 
relaxed. As a first step in this direction, we examined the robustness of the procedure by repeating the error esti-
mation procedure described in Section 3.2 for Case Study 1, but with larger observation error 𝐴𝐴 𝐑𝐑 = 2 × 10−5𝐈𝐈𝑁𝑁𝑦𝑦

 . 
With this choice, the model error standard deviation is approximately 3 times the observation error standard 
deviation.

Figure 6 shows that although error estimates from the Proposed method are not as precise as in the previous 
experiment, they still capture the underlying error structure more effectively than method B2. Both are superior 
to method B1 even in the presence of negligible observation error (cf. Figure 3d). In cases where the observation 
error variance is of similar or greater magnitude than the model error variance, the performance of the Proposed 
method will degrade because of the hard constraint in Equation  10. Future research will involve developing 
methods to deal with this scenario whilst maintaining the flexibility of being able to detect non-Gaussian error 
structures.

4.3.3. Forecast Skill

The superior error estimates from the proposed approach leads to improved forecasts compared to the benchmark 
methods. Representative results of one-step-ahead forecasts for both case studies are provided in Figure 7 and 
Figure 8. They show the relative histograms of the ensemble anomalies (forecast - truth) for both an observed (left 

Figure 5. Snapshot of JQ values (see Equation 20) for method B2, proposed 
and the true data for Case Study 2.

Figure 6. Sub-grid tendencies for Case Study 1 with increased observation error.
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column) and unobserved (right column) variable for a single assimilation run of 100 cycles. In both case studies, 
relatively large systematic errors can be seen when using Method B1 compared to the other approaches, which 
is unsurprising given the results in Figure 3. One step ahead forecasts of the observed variables are relatively 
similar between the proposed method and the B2 method, although the forecast variance is considerably lower, 
particularly in Case Study 1. This is a direct consequence of the more precise additive model error estimates 
obtained from the proposed approach.

Resolving bimodality of the transition errors allows one to generate more accurate analyses (hence initial condi-
tions for subsequent time steps) and forecasts, even in an EnKF setting. This is demonstrated in Figure 9 where 
initial conditions and forecasts in Method B2 have greater variance than in the proposed method, as it is unable 
to precisely resolve the two modes of the error density. Differences between forecasts from the proposed and B2 
method are much more pronounced for the hidden variables, where both bias and variance are much lower when 
using the proposed method in both case studies. The conditional sum of squared deviations minimization proce-
dure allows for a more accurate representation of the spatial dependence structure. This means that information 
from observed variables is more effectively transferred to unobserved variables during the assimilation, thereby 
contributing to the improved forecasts seen for the Proposed Method compared to Method B2, through better 
initial conditions. Forecast skill is assessed quantitatively in the remainder of this section.

Figure 7. Relative histogram of anomalies 𝐴𝐴
(

𝑥𝑥
𝑓𝑓

𝑡𝑡
[𝑘𝑘] − 𝑥𝑥𝑡𝑡[𝑘𝑘]

)

 for an observed variable (left column) and unobserved variable 
(right column) for the different methods for Case Study 1. Forecasts are one-step-ahead (in this case, 0.02 MTU).
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Figure 8. Relative histogram of anomalies 𝐴𝐴
(

𝑥𝑥
𝑓𝑓

𝑡𝑡
[𝑘𝑘] − 𝑥𝑥𝑡𝑡[𝑘𝑘]

)

 for an observed variable (left column) and unobserved variable 
(right column) for the different methods for Case Study 2. Forecasts are one-step-ahead (in this case, 0.04 MTU).

Figure 9. Example showing benefit of accounting for bimodal transition in an observed variable in Case Study 1 (shown for t = 82 in Figure 7).
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A range of forecast metrics were considered to quantify forecast properties including reliability, resolution, accu-
racy and consistency. Reliability and resolution were quantified using the Continuous Ranked Probability Score 
(CRPS) and the (negative) Logarithmic Score (LS) given in Equations 26–28:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 = ∫
∞

−∞

(

𝐹𝐹
𝑓𝑓

𝑗𝑗
(𝑦𝑦) − 𝐹𝐹 𝑜𝑜

𝑗𝑗 (𝑦𝑦)
)2
𝑑𝑑𝑦𝑦 (26)

𝐹𝐹 𝑜𝑜
𝑗𝑗 (𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

0 𝑦𝑦 𝑦 𝑦𝑦𝑗𝑗

1 𝑦𝑦 ≥ 𝑦𝑦𝑗𝑗

 (27)

𝐿𝐿𝐿𝐿𝑗𝑗 = −ln
(

𝑝𝑝
𝑓𝑓

𝑗𝑗
(𝑦𝑦 = 𝑦𝑦𝑗𝑗)

)

 (28)

where 𝐴𝐴 𝐴𝐴
𝑓𝑓

𝑗𝑗
(𝑦𝑦) is the empirical cumulative distribution function of the forecast of variable y at time j; 𝐴𝐴 𝐴𝐴 𝑜𝑜

𝑗𝑗
(𝑦𝑦) is the 

cumulative distribution function of the observations of y at time j; and 𝐴𝐴 𝐴𝐴
𝑓𝑓

𝑗𝑗
(𝑦𝑦 = 𝑦𝑦𝑗𝑗) indicates the value of the fore-

cast probability density function, evaluated at the observation value. For cases where only a single observation of 
y is available at each time, the Heaviside step function is used to characterize the cumulative distribution function 
of the observation (see Equation 27).

The CRPS is routinely adopted in forecasting studies, although it can be a poor statistic for complex forecast 
probability densities (see for example Smith et al. (2015) who showed that the CRPS can give misleadingly good 
scores to outcomes that fall in between two modes of a bimodal forecast density). Hence, the LS is also calculated, 
although it has the drawback of heavily penalizing forecasts in which the outcome falls outside the forecast range. 
Accuracy is measured by the RMSE, which is evaluated on the ensemble mean.

Statistical consistency is characterized using RMS Error versus RMS Spread diagnostic plots, which has been 
adopted in similar studies (see e.g., Arnold et al., 2013). Ensemble forecasts are considered statistically consistent 
if the expected ensemble variance equals the expected squared ensemble mean error (assuming unbiasedness and 
a large enough ensemble size). We separate forecasts into 10 equally populated bins according to their forecast 
variance, and the mean square spread and mean square error are calculated for each bin prior to taking the square 
root.

We used the forecast skill score (FSS) to quantify the relative improvement of the proposed approach over the 
benchmark methods, defined as:

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆Pr − 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆

𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 − 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆
 (29)

where ScorePr indicates the forecast score of the proposed method; ScoreBe indicates the forecast score of the 
reference method (i.e., Method B1 or B2); and ScorePe indicates the score associated to a perfect forecast (e.g., a 
perfect forecast has FSS = 1). A skill score of 0.5 means that the proposed approach provides a 50% improvement 
over the benchmark, whilst a negative score indicates a degradation in performance.

Overall, the proposed method was found to outperform the benchmark methods in all forecast metrics considered 
across a range of lead times, in both case studies. This is demonstrated in Figure 10 which shows the space and 
time averaged forecast score against lead time. Forecasts from the proposed approach have better reliability, 
resolution and accuracy scores than the benchmarks, and are significantly more skilful at longer lead times (e.g., 
0.6 MTU, or approximately 3 days). The observed improvements are robust to different dynamical regimes, as 
indicated in Figure 11 which shows the mean and standard deviation of skill scores computed over the 30 inde-
pendent simulations. Relative improvements are greatest when comparing to Method B1, where the proposed 
approach offers a 70% improvement on average based on the RMSE and CRPS, although a sizable improvement 
of 30% is still apparent when comparing to Method B2 in Case Study 2 (see Figure 11). Forecast ensembles from 
the proposed approach also have better consistency properties, as shown by the RMS Error versus RMS Spread 
diagnostic plots (Figure 12) where the points lie closer to the diagonal in the proposed approach.
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5. Conclusions
Characterizing model error is critical to ensure ensemble Data Assimilation methods produce high quality fore-
casts and analyses. Accounting for model errors due to unresolved scales is particularly of interest in weather and 
climate modeling. Numerous stochastic parameterization methods have been proposed for this purpose, although 
such methods generally rely on data or knowledge of the sub-grid scale processes and/or require observations 
of all resolved variables. We develop a method that is suited to the more realistic condition where the resolved 
variables are only partially observed and knowledge of the sub-grid processes is unavailable. It allows for the 
estimation of complex error structures which depend on known covariates (e.g., state); requires no assumptions 
or specification or a parametric error distribution (e.g., Gaussian errors); considers the full range of statistical 
moments (not just bias and covariance); and avoids the need for numerical tuning typical of inflation and local-
ization methods.

The efficacy of the method is demonstrated through numerical experiments on the multi-scale Lorenz 96 model. 
Comparisons are made to two existing methods that use data assimilation to estimate model errors offline, as 
these are amenable to the partially observed setting: (a) where the errors are assumed to be Gaussian with mean 
and covariance estimated from a sample of analysis increments; and (b) where model errors are estimated using 

Figure 10. Forecast scores against lead time for both case studies. Scores are presented as averages across space (i.e., over all 
k variables) and across all simulations. Lower values indicate better performance.
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long window weak constraint 4D-Var. The proposed approach is shown to recover model errors more precisely 
than the benchmark methods, thereby making it a more effective parameterization of the sub-grid processes. It is 
also particularly useful for cases with highly non-Gaussian errors, as considered in this study. Assimilation exper-
iments with the ETKF show that the proposed approach leads to improved forecasts in terms of accuracy, reliabil-
ity, resolution and consistency. The conditional sum of squares minimization procedure in the proposed method 
also allows complex error structures to be estimated more precisely than with the least squares type 4D-Var 
approach. The advantages of accounting for complex state dependent error relationships are also clearly demon-
strated by the considerably poorer performance of the constant mean and covariance Gaussian error method.

The proposed method is suited to multi-scale systems where a locality and homogeneity assumption can be made, 
that is, where errors are influenced by neighboring states instead of the full state vector and the error statistics are 
the same at each location in space or in parts of the state space with similar dynamics. These assumptions help 
regularize the ill-posed problem of estimating model errors from partial observations. Future work will inves-
tigate systems where such assumptions are inapplicable, although it is expected that other simplifying assump-
tions would be needed. Finally, the method was applied to a case with negligible observation error, with some 

Figure 11. Forecast skill scores against lead time for both case studies. Skill scores are first averaged across space (i.e., 
over all k variables) and time within each independent simulation. The average of all such values over the 30 independent 
simulations is shown in the plot (square and triangle markers), as well as the standard deviation. More positive skill scores 
indicate greater relative improvement of the Proposed method compared to the benchmark method.
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preliminary work including more prominent observation error. Subsequent work will consider the more complex 
case of estimating model errors from noisy observations.

Data Availability Statement
The implementation of the proposed method and benchmarks on the Lorenz 96 application detailed in Section 4 
can be accessed at https://doi.org/10.5281/zenodo.5820227.
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