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Abstract: This survey starts with a general overview of the strategies for stock price change predic-
tions based on market data and in particular Limit Order Book (LOB) data. The main discussion is
devoted to the systematic analysis, comparison, and critical evaluation of the state-of-the-art studies in
the research area of stock price movement predictions based on LOB data. LOB and Order Flow data
are two of the most valuable information sources available to traders on the stock markets. Academic
researchers are actively exploring the application of different quantitative methods and algorithms
for this type of data to predict stock price movements. With the advancements in machine learning
and subsequently in deep learning, the complexity and computational intensity of these models
was growing, as well as the claimed predictive power. Some researchers claim accuracy of stock
price movement prediction well in excess of 80%. These models are now commonly employed by
automated market-making programs to set bids and ask quotes. If these results were also applicable
to arbitrage trading strategies, then those algorithms could make a fortune for their developers. Thus,
the open question is whether these results could be used to generate buy and sell signals that could
be exploited with active trading. Therefore, this survey paper is intended to answer this question by
reviewing these results and scrutinising their reliability. The ultimate conclusion from this analysis
is that although considerable progress was achieved in this direction, even the state-of-art models
can not guarantee a consistent profit in active trading. Taking this into account several suggestions
for future research in this area were formulated along the three dimensions: input data, model’s
architecture, and experimental setup. In particular, from the input data perspective, it is critical that
the dataset is properly processed, up-to-date, and its size is sufficient for the particular model training.
From the model architecture perspective, even though deep learning models are demonstrating
a stronger performance than classical models, they are also more prone to over-fitting. To avoid
over-fitting it is suggested to optimize the feature space, as well as a number of layers and neurons,
and apply dropout functionality. The over-fitting problem can be also addressed by optimising the
experimental setup in several ways: Introducing the early stopping mechanism; Saving the best
weights of the model achieved during the training; Testing the model on the out-of-sample data,
which should be separated from the validation and training samples. Finally, it is suggested to
always conduct the trading simulation under realistic market conditions considering transactions
costs, bid—ask spreads, and market impact.

Keywords: survey/review of the literature; experiments reproducibility evaluation; microstructure
market data; limit order book; time series analysis; deep learning; convolutional neural network; LSTM

MSC: 68T07

1. Introduction

Since the inception of the stock capital markets investors have attempted to forecast
the share price movements. However, at that time, the data available to them was quite
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limited and the approaches to processing this data were quite simple. Since then, the
amount of data available to the investors has expanded significantly and new ways of
processing this data have been introduced. Currently, even with all the technical progress
and advanced trading algorithms, the ability to correctly predict the stock price movements
still remains an extremely challenging task for most researchers and investors. Traditional
models based on fundamental analysis, technical analysis, and statistical methods, e.g.,
regression in [1], which were used for decades, often can not fully capture the complexity
of the issue at hand. In particular, they are not suitable for the data with high cardinality,
such as the Limit Order Book (LOB) data.

The recent advancement in the Machine Learning methods and proliferation of the
market, fundamental and alternative data in the digital format led to numerous attempts to
adopt these models for the stock price prediction task, e.g., [2-4]. Some researchers were al-
ready able to demonstrate quite impressive results in this area, in particular using LOB data
as a main source, e.g., [5]. In this paper, the focus is on the critical evaluation of the practical
usefulness of state-of-the-art Machine Learning and Deep Learning models based on LOB
data for stock price predictions. A more detailed formulation of the research problem,
motivation, goals, and the structure of this paper is presented in the paragraphs below.

Progress in the machine and deep learning opened new opportunities for building stock
price movement prediction models based on time-series data characterised by high cardinality,
such as the LOB data. As a consequence this area has been the focus of increasing research
interest over the recent years. Prediction performance of the suggested models is usually
claimed to be rather high, for some state-of-the-art Machine Learning and Deep Learning models
(e.g., [6,7]), according to the authors, accuracy is above 80%. From the practical perspective
these results look too good to be actually reproducible in real world stock trading. Thus, these
models require a detailed investigation, which we conduct in this paper.

This survey is focused on the critical evaluation of the current studies in the subject
area of stock price movement predictions based on LOB data and identification of the
improvements required and directions for further research.

In addition to this introductory section, the paper is organised into three main sections:

Section 2 contains an overview of the strategies for stock prediction based on the
market data. At the beginning there is an introduction to the three core types of data used
in trading: market data, fundamental data, and alternative data. The subsequent discussion
will focus on market data such as stock execution prices and volumes and LOB data. Next
there is an overview of the market data-based trading approaches, with their comparison,
evolution trends analysis, and the respective conclusions. Among those conclusions are
that the most promising data type for further analysis is LOB and the most promising
model classes are Machine Learning and Deep Learning.

Section 3 is focused on a critical review of the empirical research on the Benchmark LOB
dataset. At the beginning of this section there is a detailed description of the benchmark
LOB dataset with the evaluation of its merits and issues. Next, there is a subsection
devoted to the comparison and critical evaluation of the Machine Learning and Deep
Learning models based on the Benchmark LOB dataset. At the end of this section there is a
discussion of the data processing approach, experimental setup, and results for one of the
state-of-the-art models, for which the experiment was reproduced.

Finally, Section 4 summarises the findings from the evaluation of the stock price predic-
tion models and data used in these experiments. Based on these a number of improvements
are suggested and potential directions for future work in this area are defined.

2. Overview of Strategies for Stock Prediction Based on Market Data
2.1. Introduction to the Input Data for Stock Trading

Broadly, the source data for the stock trading strategies can be divided into three major
classes: fundamental data, alternative data, and market data.

The financial metrics, such as revenue, profit, free cash flow, etc., which define the
equity value of a particular company, are considered as company-specific fundamental data.
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The second category is the external fundamental data, which include the macroeconomic
and industrial indicators relevant to the selected company, such as GDP of the country
of operations, or the iron ore price for a steel producing company. The main assumption
of the trading strategies relying on fundamental data is that the stock price will converge
towards its fair value defined by the above-mentioned factors. For example, Bartov et al. [2]
concluded that the well-known post-earnings announcement drift phenomenon is caused
by the unsophisticated investors” delayed response to the new information. This suggests
that trading strategies could exploit this market inefficiency and generate excess returns
by rapidly and correctly responding to the new fundamental data inflows. Similarly, a
more recent study [3] proved that the trading strategy exploiting the slow reaction of oil
companies’ investors to the changing oil price can be profitable.

The proliferation of the internet and the production of large quantities of digital data in
recent years created a highly valuable source of insights on potential stock price movements.
The variety of this alternative data is unprecedented, it can be any insightful information
about the company, starting from such obvious examples as announcements on a companies’
websites, rumours in the news blogs and on social media about a company, and ending
with much more exotic data, such as the number of new positions posted on the company’s
recruiting section of the website, number of the visitors in the online store, or even satellite
photos of the number of cars parked near the company’s store or of the fields of a grain
producing company. For example, the authors of this research [4] concluded that the
satellite photos of the parking lots near a company’s stores provide useful information for
assessing a retailer’s performance. According to the authors, the trading strategies utilising
this data can generate extra profit at the expense of less informed market participants,
who are making their investment decisions based on the earnings announcements. This
is possible since only some investors have exclusive access to this information, while
others have to rely on the official financial results announcements, which happen with a
substantial time lag compared to the almost real-time satellite photos collection.

Market data comprises all the trade-related statistics that can be collected from the
exchanges or other trading platforms, such as the flow of the orders, stock price, and trading
volume. This type of data plays a pivotal role in intra-day trading and especially in High-
Frequency Trading (HFT). HFT firms generated enormous profits in recent years, which
provides empirical evidence that this type of data deserves the attention of researchers. In
addition, this market data is often available at an extremely fine scale. With a time series
interval that can be under 1 millisecond, a reasonable number of points for analysis can be
collected even for a period as short as one trading day. Further to this, the trading strategies
relying on fundamental data and alternative data generally need a longer investment
horizon with unpredictable duration since the period of convergence to the target price in
these strategies depends on how fast other market participants will process and react to
this information, which could vary substantially and could be difficult to predict.

Taking into account the above-mentioned considerations the focus of this paper will
be on the market data as a core input source for stock price prediction models.

2.2. Market Data Classification Overview

In this paper, market data has a narrow definition; this is stock trading related statistics
that can be collected from the exchanges or other trading platforms, such as stock quotes,
trade prices, and volumes. This data can be classified by type, frequency, and depth.

In technical terms, the type of market data can be considered as a feature. The two
most basic market data types are the stock price and the traded volume. More advanced
ones could be the information about particular orders placed, such as type of the order,
buy/sell indicator, timestamp, etc.

The frequency of market data is defined based on the period between data points. The
shorter this period the higher the frequency of the data. The highest frequency market
data is tick-by-tick data, which means that the interval between the data points can be
extremely small (below 1 millisecond) and is defined by the recorded time stamps of quote
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updates, order submissions, trades, etc. Often intra-day market data is provided with a
lower frequency and recorded with a predefined time interval, for example 10 s or 1 min.
The most common example of non-intra-day market data is the end of day prices and
volumes, provided only on a daily basis.

The concept of depth of market data is mostly relevant for the LOB data which
comprises the bid and offer limit order prices and sizes up to a certain level. For example,
the most shallow Level 1 data provide just the best bid and ask quotes and their sizes for
the stock under consideration. In contrast the deepest market data could be the complete
LOB, including the price and size data for all the limit orders placed. Please refer to Table 1
for an illustrative example of LOB data structure.

Table 1. Limit Order Book dataset illustrative example.

Level 1 Level 2
Ask Bid Ask Bid
Timestamp  Mid-Price - : - - : : : :
Price Quantity Price Quantity Price Quantity  Price  Quantity
1275386347813 12.32 12.40 100 12.24 50 12.50 30 12.15 20
1275386347879 12.30 12.40 150 12.20 100 12.50 50 12.15 10

2.3. Market Data-Based Trading Approaches and Their Evolution

Market Data-Based trading strategies are leveraging the above-described data so
as to infer the expected stock price change. In order to identify the most promising
types of market data as well as an experimental approaches and models for stock price
movement predictions, an analysis of the state-of-the-art studies in this field is conducted
below. Approaches are compared both quantitatively and qualitatively and presented in
chronological order to better demonstrate the evolution in this area. In the review, papers
published in the last 15 years are considered. The discussion is built around the following
three key pillars:

¢ Input data used in these experiments;
*  Models applied for the stock price prediction;
*  Results achieved, their comparability and practicality assessment.

The reviewed papers taxonomy along these three categories is presented in the Figure 1.

2.3.1. Model

As can be seen from Table 2, at an earlier stage classical mathematical and statistical
models, such as Hidden Markov Models (HMM) or linear regressions were often applied, as
well as some basic machine learning models such as the Back Propagation Neural Network
(BPNN) and Support Vector Machine (SVM). Furthermore, genetic algorithms (GA), such
as traditional /hierarchical GA [8], Improved Bacterial Chemotaxis Optimisation (IBCO) [9],
or BFO [10] were widely applied for stock price predictions. From Table 2 it is clear that
models applied for stock prediction are evolving into deeper machine learning models with
more complex structures. Basic machine learning models such as SVM [5], RR, and [11]
were succeeded by the deeper machine learning architectures such as CNN [12], LSTM [13].
In more recent studies, authors were offering custom deep learning models consisting of
layers of different types, refs. [6,14] are setting out combinations of convolution and LSTM
layers. It is claimed that these models should improve the performance in stock price
prediction compared to the earlier models, which were more shallow. However, the more
complex models are also more prone to over-fitting, which can substantially limit their
generalising capability.
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Table 2. State-of-the-art stock price prediction models based on market data.

Data Results
Type Ref. Date Model - — R
Features Freq. Size Performance Practicality Reproducibility
ML [15] 02/2005 Feedforward Daily prices, in- Daily 2000 Outperforming @ returns were © Dataset is not
Neural Net- dicators: DOA, the buy and calculated, @ trad- in public access
work CX, MA, RSI hold strategy ing commissions © Code is not in
were considered public access
ML [16] 03/2005 Feedforward Daily high/low, Weekly 130 Difference © returns were © Dataset is not
Neural Net- closing prices, 0.70-1.74% not  calculated, in public access
work technical indica- © trading com- © Code is not in
tors: RSI, RRS, missions  were public access
MA, EMA, MACD ignored
MSM [17] 09/2005 HMM Opening/closing/ Daily <500 Likelihood © returns were © Dataset is not
highest/lowest —9.459%4 not  calculated, in public access
prices © trading com- © Code is not in
missions ~ were public access
ignored
GA [18] 09/2005 GCL Past prices Daily >1000 RMSE 0.0032 © returns were © Dataset is not
not  calculated, in public access
© trading com- © Code is not in
missions ~ were public access
ignored
GA [19] 04/2006 GAIS Stochastic %K/ Daily 2348 Hit rate: 65.45% © returns were © Dataset is not

%D /slow%D,
Momentum,
ROC, A/D
Oscillator, LW
%R, Disparity,
CCI, OSCP, RSI

not calculated,
© trading com-
missions were
ignored

in public access
© Code is not in
public access
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Table 2. Cont.
Data Results
Type Ref. Date Model - — R
Features Freq. Size Performance Practicality Reproducibility
ML [20] 05/2006 BPN, RBFN Daily prices Daily >1000 NMSE: BPN © returns were © Dataset is not
0.09-0.39, RBEFN not calculated, in public access
0.09-0.49 © trading com- © Code is not in
missions ~ were public access
ignored
MSM [21] 06/2006 Takagi- Weekly prices, Weekly 507 RMSE 5.81 © returns were © Dataset is not
Sugeno EPS, DPS, TBY- not calculated, in public access
Fuzzy model 1 © trading com- © Code is not in
missions ~ were public access
ignored
ML [22] 03/2007 SVR, MLP EMA, RSI, BB, Daily 2500 MSE: © returns were © Dataset is not
MACD, CMF SVR 0.01-57.9%, not  calculated, in public access
MLP 0.01-24.67% © trading com- © Code is not in
missions ~ were public access
ignored
ML [23] 05/2007 SVM, Ad- Opening/closing Daily >200 Accuracy: e predicting © Dataset is in
aBoostM1 /high- SVM 60.20%, EMA instead of public access ©
est/lowest AdaBoostM1 64.32% price, © returns Code is not in
prices, volumes were not calcu- public access
lated, © trading
commissions
were ignored
ML [24] 06/2007 BPN, SVM Opening/closing Daily <500 Hit rate: @ returns were © Dataset is not
prices, volumes BPN 74.2%, calculated, & trad- in public access
SVM 64.4% ing commissions © Code is not in
were considered public access
GA [25] 09/2007 GA Tick-by-tick Tick-by- >450,000 Prediction  rate © returns were © Dataset is not
prices,  techni- tick 66% not  calculated, in public access
cal  indicators: © trading com- © Code is not in
MA, EMA, missions were public access
SLMA, RS, ignored
SLEMA, MACD,

MAD, RCI, PL,
Momentum
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Table 2. Cont.

Data Results
Type Ref. Date Model - — R
Features Freq. Size Performance Practicality Reproducibility
GA [10] 09/2007 BFO Closing prices, Daily 3228 MAPE 0.66-1.89, © returns were © Dataset is not
technical indi- not  calculated, in public access
cators: EMA, © trading com- © Code is not in
ADO, STI, RS, missions ~ were public access
PROC, CPACC, ignored
HPACC
GA, [26] 01/2008 GA-SVM, Opening/closing Daily 1386 Hit Ratio: GA- © returns were © Dataset is not
ML SVM /high- SVM  59.534%, not  calculated, in public access
est/lowest SVM 55.64% © trading com- © Code is not in
prices, vol- missions ~ were public access
umes, Technical ignored
indexes: Mo-
mentum, LW
%R, ROC,
Stochastic %K,
Disparity, PVT
MSM [1] 01,/2008 TSK, BPN, Technical in- Daily 614 MAPE: TSK 2.4%, © returns were © Dataset is not
Multiple dexes: MA, BPN 4.29%, Mul- not calculated, in public access
regression Bias, RSI, tiple regression © trading com- © Code is not in
Stochastic line, 2.4% missions were public access
MACD, PL, ignored
volume
ML [27] 05/2008 voting, Opening/closing/ Daily 365 Accuracy: voting © returns were © Dataset is not
SVM, KNN, highest/lowest 76-80%, SVM not calculated, in public access
BPNN, C4.5 prices and vol- 67-70%, KNN © trading com- © Code is not in
DT, Logistic umes, technical 65%, BPNN missions were public access
regression indices: MA, 66-69%, C4.5 DT ignored

EMA, MACD,
Difference,
Bias, Stochastic
%K, %D, TR,
Oscillator, LW
%R, OBV

65-72%, Logis-
tic regression
65-68%
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Table 2. Cont.

Data Results

Type Ref. Date Model - — R
Features Freq. Size Performance Practicality Reproducibility

ML [28] 12/2008 BPNN Opening prices, Daily <1000 R%0.96 © returns were © Dataset is not
S&P500 in- not calculated, in public access
dex, technical © ftrading com- © Code is not in
indices: RS, missions were public access
Stochastics ignored
(Raw-K)

ML [29] 04/2009 ESN, BPNN, Opening/closing/ Daily 1100 Proportion of © returns were © Dataset is not

Elman, highest/lowest, better predictions: not  calculated, in public access
RBFN Technical indi- ESN 57%, BPNN © trading com- © Code is not in
cators:  5-Day 14.87%,  Elman missions ~ were public access
high, 5-Day 20.16%, RBEFN ignored
close MA 7.94%

GA [9] 07/2009 IBCO, BPNN Opening/closing/ Daily 2350 MSE © returns were © Dataset is not
highest/lowest 9.93846x 10~ not calculated, in public access
prices and © trading com- © Code is not in
volumes missions ~ were public access

ignored

ML [30] 10/2009 SVM, BPNN Futures  con- Daily >1000 Accuracy: SVM © returns were © Dataset is not
tracts on 87.3%, BPNN not  calculated, in public access
commodi- 72.5% © trading com- © Code is not in
ties/foreign missions ~ were public access
currencies, ignored

stock indexes:
NYSE Compos-
ite, NASDAQ,
PSI, UTIL, DJ-
COMP, TRAN,
AMEX, Russell
2000, S&P 50
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Table 2. Cont.

Data Results
Type Ref. Date Model - — R
Features Freq. Size Performance Practicality Reproducibility
ML [31] 10/2009 LDA, QDA, Opening/High/Low Daily 1732 Hit rate: LDA © returns were © Dataset is not
KNN, Naive prices, S&P 500 0.84, QDA 0.85, not calculated, in public access
Bayes, Logit index, Ex- KNN 0.80, Naive © trading com- © Code is not in
model, Tree change rate, Bayes 0.83, Logit missions ~ were public access
class., Neu- HKD/USD model 0.86, Tree ignored
ral Net., cl. 0.80, Neural
Gaussian Net. 0.85, Gaus-
proc., SVM, sian pr. 0.85, SVM
LS-SVM 0.86, LS-SVM 0.86
MSM [32] 05/2010 HMM, SVM High/low Daily >1000 Accuracy: HMM © returns were © Dataset is not
prices; techni- 53%, SVM 70% not calculated, in public access
cal indicators: © trading com- © Code is not in
MACD, RS, missions  were public access
ADX, Lag ignored
profits and etc.
ML [33] 09/2010 HDT-RSB, Opening/closing/ Daily 1625 Accuracy: HDT- © returns were © Dataset is not
RSB, ANN, highest/lowest RSB 90.22%, RSB not calculated, in public access
NB prices and vol- 88.18%, ANN © trading com- © Code is not in

umes, technical
indices: MA,
MACD, RSI,
PVI, NVI, OBV,
PVT, Momen-
tum, Stochastic
%K, Stochastic
%D, CV, Ac-
celeration, LW
%R, OBV, ROC,
Typical price,
Median price,
Weighted close,
BB

77.66%, NB
77.36%

missions were
ignored

public access
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Table 2. Cont.

Data Results

Model

Features Freq. Performance Practicality Reproducibility
MLP, El- Lowest/highest/ Daily MAPE: MLP 0.01, & returns were & Dataset is not
man, Linear average prices Elman 0.02, Lin- not  calculated, in public access
regression ear regression 0.02 © trading com- © Code is not in

missions ~ were public access
ignored

ANFIS Gold price, Mon RMSE: 0.01 © returns were © Dataset is not

Exchange rate -thly not calculated, in public access

of USD, Interest © trading com- & Code is not in

rates on: de- missions ~ were public access

posits/Treasury ignored

bills, CPI, IPI,

Stock indexes:

DIJI, DAX,

BOVESPA
SVM+IG, MACD, BB, Daily Accuracy: © returns were © Dataset is not
SVM+SU, Stochastic%K, SVM+IG 5248, not calculated, in public access
SVM+Rel- Stochastic%D, SVM+SU 5248, © trading com- © Code is not in
iefF, Momentum, SVM+ReliefF missions ~ were public access
SVM+Cfs, LW %R, PL, VR, 46.69, SVM+Cfs ignored
SVM+OneR, MFI, A/B/C 61.98, SVM+0OneR
SVM+IFFS, ratios, DI 64.46, SVM+IFFS
SVM up/down, RSI, 64.05, SVM 62.81

TRIX, Cdl,

ROC, VRSI
MLP, Daily prices Daily MSE: MLP © returns were © Dataset is not
GARCH- 2478.15, GARCH- not calculated, in public access
MLP, DAN2, MLP 3665.83, © trading com- © Code is not in
GARCH- DAN2  1472.28, missions were public access
DAN2 GARCH-DAN2 ignored

20,901.20
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Table 2. Cont.

Data Results
Type Ref. Date Model - — R
Features Freq. Size Performance Practicality Reproducibility
ML [38] 08/2011 W.AS.P Daily  prices, Daily 400 Hit ratio: W.A.S.P @ returns were © Dataset is not
MA, EWO, 60%, Outperform- calculated, © trad- in public access
Oscillator lags ing the buy and ing commissions © Code is not in
hold strategy and were ignored public access
coin based fore-
casting
ML [39] 12/2011 Fuzzy type-1 S&P 500 index, Mon- 360 RMSE: Fuzzy © returns were © Dataset is not
ANN, Fuzzy T-Bill3, M1, IP, thly type-1 ANN 0.948, not calculated, in public access
type-2 ANN PPI Fuzzy type-2 © trading com- © Code is not in
ANN 0.909 missions  were public access
ignored
MSM, [40] 03/2012 MAP-HMM, Opening/closing/, Daily >2000 MAPE: MAP- © returns were © Dataset is not
ML HMM-FM, highest/lowest, HMM 1.51, not calculated, in public access
ARIMA, prices, vol- HMM-FM 1.77, © trading com- & Code is not in
ANN umes, fractional ARIMA 1.80, missions were public access
change be- ANN 1.80 ignored
tween highest
and lowest,
fractional devi-
ation between
highest and
lowest
ML [41] 09/2012 ANN Opening/closing/ Daily 417 MSE: ANN 103 © returns were © Dataset is not
highes/lowest, not  calculated, in public access

prices, volumes,
difference be-
tween highest
and lowest
returns

© trading com-
missions were
ignored

© Code is not in
public access
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Table 2. Cont.

Data Results
Type Ref. Date Model - — R
Features Freq. Size Performance Practicality Reproducibility
MSM [42] 06/2013 Linear  re- Level 1 of LOB, Tick-by- >1,500,000 RZ: 65% © returns were © Dataset is not
gression Order flow im- tick not calculated, in public access
model balance © trading com- © Code is not in
missions ~ were public access
ignored, © mid-
price assumption
is unrealistic
MSM [43] 12/2013 Rule based LOB, Order im- Tick-by- n.a. Mean return: @ returns were © Dataset is not
algorithm balance tick (One 1.9 bp, Standard calculated, © trad- in public access
day) error 0.7 bp ing commissions © Code is not in
were ignored, public access
© mid-price
assumption is
unrealistic
GA [8] 12/2013 Traditional / Technical  in- Daily <2500 Outperforming @ Simulation of © Dataset is not
Hierarchical dicators: MA, the buy and hold returns from the in public access
GA MACD, STC, strategy strategy in bear- © Code is not in
RS and etc. ish and bullish public access
markets, @ trad-
ing commissions
were considered
MSM [44] 12/2014 Feature LOB Tick-by- n.a. Trading cost @ trading simula- © Dataset is not
based predic- tick (Five- improvement of tions conducted, in public access
tion month 1 bp compared © trading com- © Code is not in
period) with uniform missions ~ were public access

execution strategy

ignored, © mid-
price assumption
is unrealistic
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Table 2. Cont.

Data Results
Type Ref. Date Model - — R
Features Freq. Size Performance Practicality Reproducibility
ML [5] 06/2015 SVM LOB, n level Tick-by- 1500 Precision:  86%, @ trading simula- © Dataset is not
volumes, tick Recall: 89%, F1 tions conducted, in public access
prices,mid- score: 86.6% © trading com- © Code is not in
prices, bid-ask missions ~ were public access
spreads, prices ignored, © mid-
differences, price assumption
mean prices is unrealistic
and volumes,
accumulated
differences,
intensity, accel-
erations
MSM [45] 12/2015 Logistic LOB Tick-by- 25,200 Mean  squared © returns were © Dataset is not
regression tick residua 0.18-0.251 not  calculated, in public access
© trading com- © Code is not in
missions  were public access
ignored, © mid-
price assumption
is unrealistic
MSM [46] 12/2016 MC-fuzzy Closing prices Daily >4000 RMSE 82.7 © returns were © Dataset is not
not calculated, in public access
© trading com- © Code is not in
missions ~ were public access
ignored
DL [12] 07/2017 CNN LOB Tick-by- >400,000 Precision: 65.54%, © returns were © Dataset is not
tick Recall: 50.98%, F1 not calculated, in public access

score 55.21%

© trading com-
missions were
ignored, © mid-
price assumption
is unrealistic

© Code is not in
public access
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Table 2. Cont.

Data Results
Type Ref. Date Model - — R
Features Freq. Size Performance Practicality Reproducibility
ML [11] 09/2017 RR LOB Tick-by- >400,000 Accuracy 48% © returns were @ Dataset is in
tick not  calculated, public access @
© trading com- Code is in public
missions were access
ignored, © mid-
price assumption
is unrealistic
ML [13] 09/2017 SVM, MLP, LOB Tick-by- >400,000 F1 score (SVM © returns were @ Dataset is in
LSTM tick 35.88%, MLP not calculated, public access ©
48.27%, LSTM © trading com- Code is not in
66.33%) missions ~ were public access
ignored, © mid-
price assumption
is unrealistic
ML [47] 10/2017 MDA, LOB Tick-by- >400,000 Accuracy (MDA © returns were @ Dataset is in
MCSDA tick 71.92%, MCSDA not calculated, public access ©
83.66%) © trading com- Code is not in
missions ~ were public access
ignored, © mid-
price assumption
is unrealistic
ML, [48] 12/2017 MTR, LOB Tick-by- 400,000 Accuracy (MTR O returns were @ Dataset is in
DL WMTR, tick 86.08%, WMTR not calculated, public access ©
LDA, N-BoF, 81.89%, LDA © trading com- Code is not in
BoF 63.82%, N-BoF missions  were public access

62.70%, BoF
57.59%)

ignored, © mid-
price assumption
is unrealistic
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Table 2. Cont.
Data Results
Type Ref. Date Model - — R
Features Freq. Size Performance Practicality Reproducibility
MSM, [49] 01/2018 GNB, SGD, LOB Tick-by- <=50,000 Accuracy (GNB © returns were @ Dataset is in
ML MLP, GDB, tick 38.67%,  SGD not calculated, public access @
RF 27.86%, MLP © trading com- Code is in public
38.96%, GDB missions were access
62.19%, RF ignored, © mid-
89.24%) price assumption
is unrealistic
DL [50] 09/2018 C(TABL) LOB Tick-by- >400,000 Accuracy 84.70% © returns were @ Dataset is in
tick not calculated, public access ©
© trading com- Code is not in
missions  were public access
ignored, © mid-
price assumption
is unrealistic
DL [51] 02/2019 DAIN MLP LOB Tick-by- >400,000 F1 score 68.26% © returns were @ Dataset is in
tick not calculated, public access ©
© trading com- Code is not in
missions  were public access
ignored, © mid-
price assumption
is unrealistic
DL [52] 03/2019 HeMLGOP LOB Tick-by- >400,000 Accuracy 83.06% © returns were @ Dataset is in
tick not calculated, public access ©

© trading com-
missions were
ignored, © mid-
price assumption
is unrealistic

Code is not in
public access
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Table 2. Cont.

Data Results
Type Ref. Date Model - — R
Features Freq. Size Performance Practicality Reproducibility
DL [6] 03/2019 DeepLOB LOB Tick-by- >134 X Accuracy 84.47% @ trading simu- @ Dataset is in
tick 100 lation conducted, public access @
© trading com- Code is in public
missions ~ were access
ignored, © mid-
price assumption
is unrealistic
DL [7] 02/2020 TransLOB LOB Tick-by- >400,000 Accuracy 87.66% © returns were @ Dataset is in
tick not calculated, public access ©
© trading com- Only part of the
missions ~ were code is in public
ignored, © mid- access
price assumption
is unrealistic
DL [53] 03/2020 BiN- LOB Tick-by- >400,000 Accuracy 86.87% © returns were @ Dataset is in
C(TABL) tick not  calculated, public access ©
© trading com- Code is not in
missions ~ were public access
ignored, © mid-
price assumption
is unrealistic
DL [54] 06/2020 RCNK Posts text, Daily >1000 Accuracy 66.26%, @ returns were @ Dataset is in
open/close MCC 0.39 calculated, © trad- public access @
/high- ing commissions Code is in public
est/lowest were ignored access

price, trading
volume, techni-
cal indices: MA,
ROC, RSI,
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Table 2. Cont.

Data Results
Type Ref. Date Model - — R
Features Freq. Size Performance Practicality Reproducibility
DL [55] 07/2020 LSTM, GRU News text data, Daily Stock MAE (LSTM @ returns were @ Dataset is in
open/close data: 17.69, GRU 24.47); calculated, © trad- public access @
/high- 1996, RMSE (LST™M ing commissions Code is in public
est/lowest News: 23.07, GRU 29.15) were ignored access
price, trading 42,110
volume
DL [14] 08/2020 CNN-LSTM LOB Tick-by- >400,000 F1 score 44.00% © returns were @ Dataset is in
tick not calculated, public access ©
© trading com- Code is not in
missions  were public access
ignored, © mid-
price assumption
is unrealistic
DL [56] 02/2021 EnsembleLOB, LOB, MBO Tick-by- >46,000,000 F1 score (En- © returns were © Dataset is not
Ensemble- tick sembleLOB not calculated, in public access
MBO, 68.31%, Ensemble- © trading com- © Code is not in
Ensemble- MBO 62.56%, missions were public access
MBO-LOB Ensemble-MBO- ignored, © mid-
LOB 69.02%) price assumption
is unrealistic
DL [57] 05/2021 DeepLOB- LOB Tick-by- >400,000 F1 score © returns were @ Dataset is in
Seq2Seq, tick (DeepLOB- not  calculated, public access @
DeepLOB- Seq2Seq 81.51%, © trading com- Code is in public
Attention DeepLOB- missions ~ were access
Attention 82.37%) ignored, © mid-

price assumption
is unrealistic
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Table 2. Cont.

Data Results
Type Ref. Date Model - — R
Features Freq. Size Performance Practicality Reproducibility
DL [58] 09/2021 BiN- LOB Tick-by- >400,000 F1 score 65.73% © returns were @ Dataset is in
DeepLOB tick not  calculated, public access ©
© trading com- Code is not in
missions ~ were public access
ignored, © mid-
price assumption
is unrealistic
MSM [59] 10/2021 GCHP LOB 1 s inter- >500,000 F1 score 37% © returns were @ Dataset is in
val not calculated, public access ©
© trading com- Code is not in
missions ~ were public access
ignored, © mid-
price assumption
is unrealistic
DL [60] 01/2022 MTABL-C-4 LOB Tick-by- >400,000 F1 score 76.42% © returns were @ Dataset is in
tick not calculated, public access ©

© trading com-
missions were
ignored, © mid-
price assumption
is unrealistic

Code is not in
public access
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Input data Model Type Results
Type Frequency Practicality Reproducibility
Mathematical and statistical
models
. . . Dataset in
St_ock Monthly Trading simulation public
prices done/not done
access/not
i Genetic Algorithms Trading Code in
Trading . N
Weekly commission public
Volumes .
considered/not access/not
Technical . Machine Learning M|d-pr|F:e
X Daily execution/
Indicators
not
LOB 1 second Deep Learning
interval
Tick-by-tick

Figure 1. The reviewed papers taxonomy.

2.3.2. Data

As can be seen from Table 2, earlier studies [15-17] were using low frequency, usually
daily, data or sometimes even weekly or monthly data. Data samples were also relatively
small, often in the range of 500-2500 data points. With rare exceptions such as [25], where
the high frequency tick-by-tick market data was used with an extensive one-year long
dataset of more than 450,000 data points. As a features from this data in addition to
the prices and volumes, technical indicators, such as Moving Average (MA), Moving
Average Convergence/Divergence (MACD), Average Directional Index (ADX), Relative
Strength factor (RS), Relative Strength Index (RSI), Schaff Trend Cycle (STC), etc., were often
used. In some studies, such as [17], the underlying model assumptions were unrealistically
simplistic, for example, taking the prior day price as the only predictor for the next day price.
Others [10,19,25], were using the extensive set of technical indicators as features, where
for the feature selection mechanism the genetic algorithms were applied in combination
with basic statistical models for the stock price prediction. More recent studies have tended
to focus on the high-frequency market data and explore this data in greater depth. For
example, instead of fully relying only on the level 1 data, up to 10 levels of LOB data were
used. The average data sample size also increased substantially, from thousands of data
points to hundreds of thousands. Some studies, such as [42], were using datasets consisting
of more than a million of data-points or even more than a hundred millions like in [6]. This
tendency could be explained by the fact that as the models applied are becoming more
complex, larger datasets are required to properly train them. However, even for some
studies utilising the LOB data the small sample size was still an issue. For example, ref. [49]
was based on the data for just one day making it difficult to draw general conclusions on
the general effectiveness of the methodology.

2.3.3. Experimental Setup, Results Comparability, Practicality and Reproducibility

Earlier studies were using predominantly different datasets, experiment setups and
even the metrics measuring the models performance, were varying widely. All these factors
are making them almost incomparable. Reproducibility of many of these experiments was
also poor since datasets and code were made publicly available for only a few of the studies
considered. The situation was improved after the first public benchmark LOB dataset was
published [11] in 2017. This work established a common platform for the research in this
area by allowing a greater standardisation of experiment setup and performance metrics in
addition to the benchmark LOB dataset itself. Recent state-of-the-art studies are often using
this dataset to compare the results against the other models. However, only a few authors
were used their models to conduct trading simulations such as in these studies [5,6,43] and
to calculate potential profits from the strategy based on the model predictions. Thus, it
is possible to assess the practical value of just a few of the model suggested. The other
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problem affecting the practicality of these studies is that the transaction costs were often
not taken into consideration even when this trading simulation was undertaken, with rare
exceptions [15,24]. The other unrealistic assumption, which is embedded in the above-
mentioned benchmark LOB dataset [11] and thus affecting all the studies using this data, is
that transactions could be executed at the mid-price. The mid-price is just a simplifying
approximation of the actual execution price. The former is calculated as an average of the
best bid and offer prices, while the latter would be the best offer for buying and best bid
for selling using market orders. This type of order would be required to ensure timely
execution. It is clear that a round trip transaction in either direction with buying at best
offer and selling at best bid would results in larger spread-related transaction costs than
if the mid-price execution is assumed. At the same time, mid-price is still important for
market-making strategies for properly positioning the bid and ask limit orders relative to
the expected mid-price.

2.3.4. Key Takeaways

Our analysis of prior studies, as set out above, leads to the conclusion that ma-
chine/deep learning models using the high-frequency and high-depth market data such as
LOB data, are the most promising direction in the research area of stock price prediction,
that is why they are explored in the rest of this paper. Since the recent state-of-the-art
models in this research area were often trained on the above-mentioned benchmark LOB
dataset, which helped to substantially improve their predictive performance comparability,
it was decided to focus in the next chapter on the review of studies that were leveraging
this dataset, to identify the most promising studies.

3. Critical Review of the Experiments with the Benchmark LOB Dataset
3.1. Benchmark LOB Dataset

The above-mentioned benchmark LOB dataset contains high frequency LOB data for
10 trading days (1 June 2010-14 June 2010) for five stocks (Kesko, Outokumpu, Sampo,
Rautaruukki, Waértsild) traded on the Helsinki Stock Exchange. As can be seen from
Figure 2, there was generally an upward trend during this period with just a few days of
price declines, also the movements of prices for these five stocks were fairly similar. Except
Kesko, all these stocks demonstrated better performance than the market (based on the
MSCI Finland Index) on average.
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Figure 2. Stocks performance against the market index.

The pre-processed LOB dataset contains timing, volume, and price information for the
first 10 levels of bid and ask sides of the LOB. In Table 1, the structure of the dataset before
the normalisation is illustrated. Timestamps are in milliseconds from 1 January 1970. Prices
are in EUR with 4 decimal places after the decimal point. In addition to the above-described



Mathematics 2022, 10, 1234

21 of 33

features, the dataset also contains the labels for 1, 2, 3, 5, and 10 predicted horizons. Labels
values are ‘1’ (upward movement) or 2" (no movement) or ‘3" (downward movement).

The publication of this dataset became an important milestone in this area of research

by providing other authors with the publicly available input data for their experiments and
by enabling them to benchmark the performance of their models.

However, in the course of our empirical analysis, we identified a series of problems

and limitations in this dataset which may either bias or reduce the practical relevance of
the results obtained when using it:

Occurencies

400,000 | F——

350,000 1 . flat
| down

300,000 1

250,000 1

200,000 |

150,000 -

100,000 -
o

The underlying order flow data provided by NASDAQ is more than ten years old,
so this data may not be a good indicator of the current situation in the dynamically
evolving stock markets.

Authors combined all the five stocks data into one dataset, making them indistinguish-
able from each other. As a results of this, at multiple data points in the experiments, the
models are learning the price movement outcome for one stock based on the LOB fea-
tures of the other stock, which does not make much sense from the market operations
perspective. This could introduce some bias in the models and their conclusions.
The other potential biases could have been introduced during the processing of the raw
order flow data and further data clean-ups and normalisation. Analysis of the of raw
data from NASDAQ, led to the conclusion that there could be some outliers and errors
in this data that need to be adjusted before feeding this to the models to avoid biased
results. It is not clear if this was actually performed by the authors of the benchmark
LOB dataset, since the data in the benchmark LOB dataset is normalised using three
different methods: min-max, z-score, and decimal-precision) and combined for all the
stocks, making it hard to identify potentially erroneous data points.

The dataset is inherently unbalanced among its three classes of movement (“upward”,
“flat”, “downward”). As we can see from Figure 3 the “flat” class is dominant for
the prediction horizons of 1, 2, 3 events. With the increasing length of the prediction
horizon the proportion of the “flat” class is gradually shrinking, so for the prediction
horizon of 5 events the dataset is more or less balanced between the three classes,
while for 10 events the “flat” class is positioned as the smallest one. This requires
appropriate adjustments to the experimental setup, such as over-sampling, under-
sampling and etc. Based on the review of prior studies, some of the results reported
were based on experimental procedures that did not include dynamically responsive
sampling of datapoints; this could have potentially biased such results.

“upward”, “flat” and “downward” labels in this dataset are determined based on the
mid-price movement, which is an average between the best bid and offer prices. This
assumption could be valid if the buy or sell part of the transaction is executed using the
limit orders instead of market orders. Since there is no guarantee that the limit orders
would be actually executed in the required time slot, this assumption is unrealistic.

1 event 3ev. 10 ev
Horizons

Figure 3. Dataset distribution among three classes of labels.
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3.2. Comparison and Critical Evaluation of the ML/DL Models Based on the Benchmark LOB
Dataset in Chronological Order

A number of state-of-the-art models in Table 3 below were compared based on the
following statistical metrics as Accuracy, Precision, Recall, and F1 for the same benchmark
dataset [11]. All the models considered were trained on the data for the first 7 days of the
dataset for at least 150 epochs and tested on the last 3 days. The prediction horizon selected
is 10 LOB events.

Table 3. State-of-the-art stock price prediction models performance on the benchmark LOB dataset.

Archetype Model Ref. Date Accuracy  Precision Recall F1
Linear Classification RR [11] 09/2017 48.00 41.80 43.50 41.00
Nonlinear Classification SVM [13] 09/2017 - 39.62 44.92 35.88
Multi-linear Classification MTR [48] 12/2017 86.08 51.68 40.81 40.14
WMTR [48] 12/2017 81.89 46.25 51.29 47.87
Image Classification BoF [48] 12/2017 57.59 39.26 51.44 36.28
LDA [48] 12/2017 63.82 37.93 45.80 36.28
Dimensionality Reduction MDA [47] 10/2017 71.92 4421 60.07 46.06
MCSDA [47] 10/2017 83.66 46.11 48.00 46.72
Neural Network MLP [13] 09/2017 - 47.81 60.78 48.27
LSTM [13] 09/2017 - 60.77 75.92 66.33
N-BoF [48] 12/2017 62.70 42.28 61.41 41.63
HeMLGOP [52] 03/2019 83.06 48.57 50.67 4943
DAIN-MLP [51] 02/2019 - 65.67 71.58 68.26
Deep Learnin CNN [12] 06/2017 - 50.98 65.54 55.21
P & CNN-LSTM [14] 08/2020 - 56.00 45.00 44.00
C(TABL) [50] 09/2018 84.70 76.95 78.44 77.63
BiN-C(TABL) [53] 03/2020 86.87 80.29 81.84 81.04
DeepLOB [6] 03/2019 84.47 84.00 84.47 83.40
TransLOB [71 02/2020 87.66 91.81 87.66 88.66

In the work of Tran et al. [48], the authors were comparing the stock price prediction
models based on the methods presented in Table 4 below. As in previous papers, the same
LOB benchmarks dataset was the source for features extraction.

Table 4. Performance comparison of the methods applied in [48].

Model Abbrev. Accuracy Precision Recall F1
Ridge Regression RR 46.00 43.30 43.54 42.52
Single hidden Layer Feed Forward SLFN 53.22 49.60 41.28 38.24
Network

Linear Discriminant Analysis LDA 63.82 37.93 45.80 36.28
Multi-linear Discriminant Analysis MDA 71.92 44.21 60.07 46.06
Multi-channel Time-series Regression = MTR 86.08 51.68 40.81 40.14
Weighted Multi-channel Time-series WMTR 81.89 46.25 51.29 47.87
Regression

Bag-of-Features BoF 57.59 39.26 51.44 36.28
Neural Bag-of-Features N-BoF 62.70 42.28 61.41 41.63

As can be seen from Table 3 and even more clearly from Figure 4, the performance in
terms of F1 score, Accuracy, Precision, and Recall was gradually improving over time with
more and more complex models applied. For the basic linear and non-linear classification
(Ridge Regression (RR) and Support Vector Machines (SVM)) models the F1 score was
around 40 percent. Shallow neural network architectures, such as Multilayer Perceptron
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(MLP) improved the F1 score to almost 50 percent. The resulting F1 score was even further
improved by the deep learning models, such as Long Short-Term Memory (LSTM).

® Deep Learning € Nonnlinear Classification O Dimensionality Reduction < Image Classification
A Linear Classification B Neural Network A Multi-linear Classification

F1 score

90

® TransLOB
85 ® DeeplOB DeepLOB-Attention
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Figure 4. F1 score evolution over time for the state-of-the-art stock price prediction models trained
on the benchmark LOB dataset.

The best performance among those deep learning models was demonstrated by the
DeepLOB [6] and TransLOB architectures [7]. Each of them according to their authors
demonstrating Accuracy and F1 scores well in excess of 80%. If these results are repro-
ducible in real stock trading, these models could be potentially employed by market makers
for setting their bid and ask quotes. However, we are interested in assessing whether these
models could be used to generate buying and selling signals which could be incorporated
in the trading strategies of active traders. Thus, the question is whether these models can
be used to develop profitable arbitrage strategies. In practice there are serious concerns
that this could be the case. Firstly, because of the earlier described issues with the bench-
mark dataset. Secondly, because of the potential flaws in the experiment setups. Thirdly,
because of the ignored transaction costs and assumed mid-price execution the expected
profitability of the trading strategies based on these models could be overestimated. As
it would be proved later these two factors alone can make the strategies based on the
suggested models unprofitable. In the work of Zhang et al. [6], they set out a the deep neural
network method with a combination of convolution layers and Long Short-Term Memory
(LSTM) units—DeepLOB, which was exploited to develop stock trading strategy based
on the LOB data. This approach demonstrates better prediction power than any other
existing algorithms relying on the LOB as a source for the feature extraction at the time of
publication. Authors claimed higher F1 score of DeepLOB compared with the following
models: RR, SLFN, LDA, MDA, MCSDA, MTR, WMTR, BoF, N-BoF, B(TABL), and C(TABL).
The authors tested their results on the two datasets, one of them was the benchmark LOB
dataset, the other was a massive one year long sample with 134 million data points based
on the London Stock Exchange LOB data. A trading simulation was also conducted which
demonstrated the profitability to be statistically higher than zero.

From all the models tested on the benchmark LOB dataset to the best of our knowledge,
the highest F1 score was demonstrated by the TransLOB model [7], which applied the
deep learning architecture called Transformer to the LOB data for stock price movement
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prediction. The authors of this paper only tested the model on one dataset and did not
conduct any trading simulation, which limits the credibility of the work.

For the last two studies, the authors kindly provided access to their code. However,
the full code allowing the reproduction of the experiment was shared only for the DeepLOB.
That is why it was decided to reproduce this experiment and make a detailed evaluation of
the model architecture, experiment setup, and the conclusions drawn from: it.

3.3. Reproducibility of Earlier LOB Predictions
3.3.1. Model, Experimental Setup and Results Analysis

DeepLOB work [6] demonstrated one of the best prediction performances and its code
is available to the public (https:/ /github.com/zcakhaa, 30 December 2021). The author’s
experiment was reproduced on a Tesla V100 (PCIE card with 16GByte of memory) using
the provided code and feeding in the benchmark LOB dataset [11]. This dataset contains
the LOB data for five stocks for ten consecutive days. The model is trained on the data for
the first seven days for 200 epochs and tested based on the data for the last 3 days. The
prediction horizon was assumed to be five events.

F1 score, Accuracy, Precision, and Recall metrics were calculated for each of the
200 epochs of training for both training and validation datasets. Generally, they are
consistent with what the authors are claiming in their paper. Furthermore, to better
understand the performance for each of the three label classes (“up”, “flat”, “down”)
separately, the confusion matrix for training—Figure 5a and validation—Figure 5b datasets
were built. As it could be seen from Figure 5a, the model is demonstrating better accuracy
in predicting the upward movements, and worst at predicting downward movement. For
the validation dataset, the accuracy of prediction is significantly lower for all three classes
as depicted in Figure 5b.

As can be seen from Figure 6, after the first 50 epochs there is an over-fitting occurring
as a validation Accuracy (“acc”), F1 score (“f1_m”), Precision (“precision_m”) and Recall
(“recall_m") are going down in parallel with the growing Categorical Cross-Entropy Loss
(“loss”), while the respective training metrics continue to improve: Categorical Cross-
Entropy Loss is reducing, while Accuracy, F1 score, Precision, and Recall are increasing. As
Zhang et al. mentioned in their paper [6], training of the model is stopped if the validation
accuracy does not improve for more than 20 epochs, which happens after 100 epochs,
according to them. However, from Figure 6 it is clear that over-fitting already starts after
epoch 50, so the weights taken at epoch 100 by the authors are not optimal.
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Figure 5. Confusion matrix for the reproducibility experiment. (a) Training data sample. (b) Valida-
tion data sample.

In order to avoid over-fitting, the following actions could be considered:
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* Increase the size of the dataset. Authors of DeepLOB (recognising the over-fitting
issue that can result from the fact that the LOB benchmark dataset has only LOB data
for 10 consecutive days) trained their model, in addition, on the larger dataset based
on the one year long data from the London Stock Exchange (LSE). Depending on
the type of security and prediction horizon, accuracy for the LSE dataset is in the
range of 62-70%, which is substantially lower than for the benchmark LOB dataset.
This could suggest that the performance of the model on the benchmark LOB dataset
was overestimated.

* Remove some of the features, optimise feature space. Authors are using price and
volume data for 10 levels of the bid and ask sides of LOB, which results in 40 fea-
tures. Usually, higher level orders have less effect on the future price changes, so the
reduction of the number of levels from the LOB taken as an input to the model. The
other aspect is the number of the latest LOB events taken into account for the price
movement prediction. In the DeepLOB work, it is taken as 100, but again there could
be the potential to optimise that number. The respective optimisations of the feature
space could help to reduce over-fitting.

*  Model simplification. The DeepLOB model consists of convolution layer with 15 fil-
ters of size 1 x 2; inception module (concatenation of five convolution layers with
32 filters and max-pooling layer with stride 1 and zero padding); LSTM with 64 units.
The total number of parameters of this model is around 60,000. Probably, there is
potential to further optimise this complex architecture to minimise over-fitting.

*  Early stopping mechanism. This was mentioned by the authors of DeepLOB model in
their paper. The script is stopping the training of the model if the validation accuracy
does not improve for more than 20 epochs. As a result, early stopping happens after
100 epochs. However, as was earlier mentioned, there are symptoms of over-fitting
happening already after the first 50 epochs, so the early stopping mechanism could be
further optimised, by reducing the allowed number of epochs without improvement.

*  Save the best weights of the model achieved during the training. Functionality in
many Python machine learning libraries, including TensorFlow, enables the saving
of the best weights of the model achieved during the training based on the selected
metric performance. For example, as can be seen from Figure 6, if the condition for
saving the model weights was the maximisation of the validation accuracy, the weights
from somewhere around epoch 50 would be taken as the best. Thus, likewise for an
early stopping mechanism the model would not suffer from over-fitting.

*  Apply dropout. Dropout functionality is probabilistically removing inputs during
training. This could be undertaken as an alternative to the removal of some features
or in addition to that to solve the over-fitting problem.

3.3.2. Practical Value of the Model for Trading

The authors also conducted a simple trading simulation to test whether the DeepLOB
model can be actually maximised. LOB data for 10 stocks traded on LSE were included
in this simulation, namely: Lloyds Bank, Barclays, Tesco, Vodafone, HSBC, Glencore,
Centrica, BT, BP, and ITV. The trading strategy applied was as follows: when output of the
DeepLOB model is upward, the respective stock is acquired and position held until the
model provides a downward signal, after which it is sold. For the short selling the opposite
strategy is applied. At the end of each trading day all the positions are closed and no trading
during the auction is allowed. The authors of the article claimed that the demonstrated
profits are statistically higher than zero. However, they made two assumptions that are
not realistic.
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Figure 6. Development of performance metrics for the DeepLOB model during the training phase
on training and validation dataset: (a) Categorical Cross-Entropy Loss; (b) Accuracy; (c) F1 score;
(d) Precision; (e) Recall.

The first of them is absence of transaction costs. UK brokers typically either charge a
flat fee of around GBP 15 per trade or a percentage of the transaction value of around 0.5%
with some minimum commission (https://the-international-investor.com/investment-faq/
stock-broker-charges, 10 January 2022). At the same time, it should be mentioned that a
relatively new trend of zero-fee trading model is becoming a standard for the brokerage
industry in the US. According to [61], Robinhood was the first brokerage firm that offered
this, and others had to follow to stay competitive. Currently, many US brokers claim that
their commissions are zero, however there are still some hidden costs for the traders for
margin services, transfer costs, SEC fees, etc.

A second unrealistic assumption of the authors is that they can buy and sell stock at the
mid-price. In reality execution is not guaranteed at this price. If trader wants a guaranteed
execution of his order he would need to buy stock at the current best offer, which is higher
than mid-price or sell at the current best bid, which is lower than the mid-price. The authors
explain their mid-price approach assuming that it is possible to submit the limit order at
the better price instead of executing a market order. Although, it could be possible that this
limit order will be executed in the desired time-frame, it is not guaranteed. Thus, mid-price
assumption as well as an absence of transaction costs are potentially overestimating the
profitability of the trading strategy based on the DeepLOB model.

Depending on the type of stock and prediction horizon the average profit per trade
for the above-described trading simulation is in the range of GBX (penny sterling) —0.01 to
0.03 , with a median of around GBX 0.01. For example, for the Tesco stock the average profit
per trade is close to this median of GBX 0.01. At the moment of preparation of this paper,
the spread for this stock (difference between the best bid and ask prices) was around GBX
0.1. Assuming the spread is stable at this level and the trader has to use market orders to
execute the intended transaction in the defined time-frame, even if brokers fees are ignored,
this GBX 0.1 becomes an additional costs. This is more than ten times higher than the
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average profit per trade for Tesco. For the other nine stocks this spread is at least a few
times higher than the average profit per trade as computed by the authors.

Another area for further improvement of this trading simulation could be to conduct
the trading simulation for the stock index exchange-traded fund as well in addition to
individual stocks. A stock index exchange-traded fund due to its diversified nature is less
volatile than individual stocks. It would be interesting to explore how the lower volatility
would impact the profitability of this strategy.

Thus, even though the DeepLOB model is demonstrating a promising performance in
predicting stock price movements for the datasets tested, in its current form with a basic
trading strategy it is unlikely to generate a consistent profit in the active stock trading.
The DeepLOB model is also prone to over-fitting as was identified during the reproduced
experiment, so there is room for improvement in the generalising capability of this model
by applying the above-described methods.

4. Conclusions and Future Work

The LOB as an input data for the intra-day stock price prediction has received substan-
tial academic attention over the last decade and proved to be one of the most valuable data
sources for features extraction. After the first benchmark LOB dataset was published in
2017 the number of studies and their comparability substantially increased. However, this
dataset suffers from a number of issues, such as dated information, inherently unbalanced
distribution between three classes, five stocks comprising this dataset are indistinguishable,
potential processing issues and unrealistic mid-price execution assumption embedded in
the classes labels. All these could substantially bias the results of experiments performed
with this dataset. Nevertheless, a number of the Deep learning models [7], ref. [6] have
demonstrated a strong performance on this dataset based on standard statistical metrics
such as Accuracy, Precision, Recall, and F1 score. However, further analysis has revealed
that strategies based on these models can generate consistent profit only if some unrealistic
conditions are assumed. One of them is the absence of transaction costs and the second
is mid-price execution. Further, it was noted that some of these deep learning models are
prone to over-fitting, which is limiting their generalising capability. The above-described
issues in the data, models and experimental setups suggest that there is room for further
research in each of these three domains.

In terms of the input data, the following steps are recommended:

*  Use more recent LOB data for the input features;

e Do not implicitly assume the mid-price execution;

¢ To properly train the deep learning models, an extensive dataset should be used,
otherwise the over-fitting problem could become severe;

e Careful pre-processing of the dataset should be performed as required to filter out
erroneous data;

*  Data for different stocks should be distinguishable in the dataset;

e Itis advocated by a number of authors in recent studies [56,62] that Order Flow in
addition to the LOB data can slightly improve the performance of the stock price
prediction models.

In terms of model architectures, it is clear that deep learning architectures demonstrate
a stronger performance than classical models. However, they are also more prone to
over-fitting. Thus, this problem should be addressed by one of following methods:

*  Removal of the relatively less significant features, optimisation of the feature space;

e  Optimisation of the model architecture. This could be achieved by limiting the number
of neurons and removing the relatively less critical layers;

¢ Applying the dropout functionality for probabilistically removing inputs during training

LSTM models for many years were a standard way of time series forecasting, and
proved to work well for stock price prediction in particular. Authors of these studies [14],
ref. [6] also suggested that a combination of CNN with LSTM can further improve the
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performance. A new deep learning architecture, Transformer has demonstrated a better
performance than LSTM for the translation problem [63]. Wallbridge [7] developed the
version of Transformer adopted for the stock price predicting based on LOB and claimed
that it demonstrates the best performance on the benchmark LOB dataset.

Two broad directions could be undertaken to develop the next state-of-the-art model,
either finding ways to improve the above-mentioned models or suggesting a new model
architecture, or at least one that has not yet been used for this type of problem, that could
demonstrate a superior performance without suffering from over-fitting.

The experimental setup plays a critical role in the quality of the research results
obtained. In particular, a number of improvements in it could be made to address the
earlier mentioned over-fitting problem:

¢ Increasing the size of the data sample;
e  Introducing the early stopping mechanism in model training;
*  Saving the best weights of the model achieved during the training.

It is also important to test the results on out of sample data, and not just on the
validation data, that has already been used in the training process to find optimal model
parameters. Unfortunately, this is often ignored by many researchers. If this is not done,
the existing over-fitting problem can be hidden.

For the stock prediction task it is critically important not to limit the experiment to
the standard statistical performance metrics such as accuracy, F1 score and etc., but also
conduct the trading simulation. Profit is the ultimate measure of success of these algorithms,
and if the model can not help to consistently generate it under real market conditions,
which include transactions costs, bid—ask spreads, and market impact, then its practical
value is rather limited.
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Abbreviations

The following abbreviations are used in this manuscript:

%D 3-day moving average of Stochastic %K.

ADO Accumulation Distribution Oscillator.

ADX Average Directional Index.

ANFIS Adaptive Network-Based Fuzzy Inference System.

ANN Artificial Neural Network.

ARIMA Autoregressive Integrated Moving Average.

BB Bollinger Band.

BFO Bacterial foraging optimisation.

BiN-DeepLOB DeepLOB model with Bilinear Input Normalization layer.
BiN-C(TABL) Neural network consisting of Bilinear normalisation layer and three

Temporal Attention augmented Bilinear Layers.
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BoF
bp
BPN
BPNN

C(TABL)

C45DT
CCI
CMF
CNN

CNN-LSTM

CPACC
CPI

cv

X

DAIN MLP

DAN2

DeepLOB
DeepLOB-Attention
DeepLOB-5eq2Seq
DI

DL

DOA

DPS

EMA

Ensemble-MBO-LOB

Ensemble-MBO
EnsembleLOB

EPS
ESN
EWO
GA

GARCH-DAN2

GARCH-MLP

GA-SVM
GAIS
GCHP
GCL

GDB

GDP

GNB
GRU
HDT-RSB
HeMLGOP
HFT
HMM
HMM-FM
HPACC
IBCO
IFFS

Bag-of-Features.

Basis points.

Back-Propagation Networks.

Back Propagation Neural Network.

Neural network consisting of three Temporal Attention augmented
Bilinear Layers.

C4.5 decision tree.

Commodity Channel Index.

Chaikin Money Flow.

Convolutional Neural Network.

Deep learning architecture combining Convolutional Neural Network with
Long Short-Term Memory.

Closing Price Acceleration.

Consumer price index.

Chaikin’s volatility.

Convexity.

Neural network architecture consisting of the Deep Adaptive Input
normalisation Layer and Multilayer Perceptron.

Dynamic Artificial Neural network.

Deep neural network method with Long Short-Term Memory units.
DeepLOB model with Attention mechanism.

DeepLOB model with sequence-to-sequence mechanism.
Directional Indicator.

Deep Learning.

Difference of averages.

Dividends Per Share.

Exponential Moving Average.

Deep learning model combining Ensemble-MBO and

Ensemble- LOB models.

Deep learning model combining MBO-LSTM and MBO-Attention models.
Deep learning model combining LOB-LSTM, LOB-CNN,

and LOB-DeepLOB models.

Earnings Per Share.

Recurrent neural network-Echo State Network.

Elliott Wave Oscillator.

Genetic Algorithms.

Hybrid Dynamic Artificial Neural network which use generalised
Autoregressive Conditional Heteroscedasticity.

Hybrid Multi-Layer Perceptron which use generalised Autoregressive
Conditional Heteroscedasticity.

Hybrid Genetic Algorithm Support Vector Machine.

Genetic Algorithm approach to Instance Selection in artificial neural networks.
General Compound Hawkes Processes.

Genetic complementary learning (GCL) fuzzy neural network.
Gradient Boosting Classifier.

Gross Domestic Product.

Guassian Naive Bayes.

Gated recurrent unit.

Hybrid Decision Tree-Rough Set Based trend prediction system.
Heterogeneous Multi-layer generalised Operational Perceptron.
High-Frequency Trading.

Hidden Markov Models.

Combination of Hidden Markov Model and Fuzzy Model.

High Price Acceleration.

Improved Bacterial Chemotaxis optimisation.

Improved Fractal Feature Selection.
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IG

P

IPI
KNN
LDA
LOB
LS-SVM
LSTM
LW %R
M1

MA
MACD
MAD
MAE

MAP-HMM

MAPE
MBO
MCC
MC-fuzzy
MCSDA
MDA
MFI

ML
MLP
MSE
MSM

MTABL-C-4

MTR
N-BoF
NB
NMSE
NVI
OBV
OosCP
PL
PPI
PROC
PVl
PVT
QDA
RBFN
RCI
RCNK
RF
RMSE
ROC
RR
RRS
RS
RSB
RSI
SGD

Information Gain.

Industrial Production.

Industrial production index.

Kth nearest neighbour.

Linear Discriminant Analysis.

Limit Order Book.

Least Squares Support Vector Machine.
Long Short-Term Memory.

Larry William’s %R.

Money Supply level.

Moving Average.

Moving Average Convergence/Divergence.
Moving Average Deviation rate.

Mean absolute error.

Combination of Maximum a Posteriori Approach with Hidden
Markov Model.

Mean Absolute Percentage Error.
Market by order data.

Matthews Correlation Coefficient.
Markov-fuzzy Combination Model.
Multilinear Class-Specific Discriminant Analysis.
Multilinear Discriminant Analysis.
Money Flow Index.

Machine Learning.

Multilayer Perceptron.

Mean Squared Error.

Mathematical and Statistical models.
Multi-head Temporal Attention Bilinear Layer with 4 attention heads and
topology C.

Multi-channel Time-series Regression.
Neural Bag-of-Features.

Naive Bayes.

normalised mean squared error.
Negative volume index.

On Balance Volume.

Price Oscillator.

Psychological Line.

Producer Price Index.

Price Rate of Change.

Positive volume index.

Price Volume Trend.

Quadratic Discriminant Analysis.
Radial Basis Function Networks.

Rank Correlation Index.

Recurrent Convolutional Neural Kernel.
Random Forest.

Root-Mean-Square Error.

Rate Of Change.

Ridge Regression.

Rate of returns of Stocks.

Relative Strength factor.

Rough Set Based trend prediction system.
Relative Strength Index.

Stochastic Gradient Descent.
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SLEMA Short/Long Exponential Moving Average.

SLMA Short/Long Moving Average.

STC Schaff Trend Cycle.

STI Stochastic Indicator.

SU Symmetrical Uncertain.

SVM Support Vector Machine.

SVR Support Vector Regression.

T-Bill3 3-month Treasury bill rate.

TBY-1 One year Treasury Bill Yield.

TR True Range of price movements.

TransLOB Deep learning architecture based on the Transformer model.
TRIX Triple Exponentially Smoothed Average.

TSK Takagi-Sugeno—Kang type Fuzzy Rule Based System.
VR Volume Ratio.

VRSI Volume Relative Strength Index.

W.AS.P Wave Analysis Stock Prediction.

WMTR Weighted Multi-channel Time-series Regression.
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