
Spatial dependence and space–time trend
in extreme events 
Article 

Accepted Version 

Einmahl, J. H. J., Ferreira, A., de Haan, L., Neves, C. ORCID: 
https://orcid.org/0000-0003-1201-5720 and Zhou, C. (2022) 
Spatial dependence and space–time trend in extreme events. 
Annals of Statistics, 50 (1). pp. 30-52. ISSN 2168-8966 doi: 
10.1214/21-AOS2067 Available at 
https://centaur.reading.ac.uk/104770/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1214/21-AOS2067 

Publisher: Institute of Mathematical Statistics 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



Submitted to the Annals of Statistics

SPATIAL DEPENDENCE AND SPACE-TIME TREND IN EXTREME EVENTS

BY JOHN H.J. EINMAHL1, ANA FERREIRA2, LAURENS DE HAAN3, CLÁUDIA
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The statistical theory of extremes is extended to independent multivari-
ate observations that are non-stationary both over time and across space. The
non-stationarity over time and space is controlled via the scedasis (tail scale)
in the marginal distributions. Spatial dependence stems from multivariate ex-
treme value theory. We establish asymptotic theory for both the weighted
sequential tail empirical process and the weighted tail quantile process based
on all observations, taken over time and space. The results yield two statisti-
cal tests for homoscedasticity in the tail, one in space and one in time. Fur-
ther, we show that the common extreme value index can be estimated via a
pseudo-maximum likelihood procedure based on pooling all (non-stationary
and dependent) observations. Our leading example and application is rainfall
in Northern Germany.

1. Introduction. Within the domain of attraction of an extreme value distribution one
can distinguish equivalence classes via the concept of scedasis (Einmahl et al., 2016; de
Haan et al., 2015). The distribution function F has scedasis c (a positive, finite constant)
with respect to the continuous distribution function F0 if

lim
x↑x∗

1− F (x)

1− F0(x)
= c,

where x∗ is the right endpoint of F0. The equivalence class consists of all probability distri-
butions that have a scedasis with respect to the same distribution function F0.

In a univariate context – with independent observations – a natural estimator of the inte-
grated scedasis function and its asymptotic properties are known (Einmahl et al., 2016). The
present paper sets out to extend the results to a situation with multivariate observations as fol-
lows. Our leading example concerns daily rainfall in Northern Germany, with measurements
taken at 49 stations over 84 years. On any day, we have a 49-dimensional observation across
all stations, which potentially possesses spatial dependence. For each station, the distributions
of extreme rainfall over 84 years may vary according to a scedasis function.

MSC2020 subject classifications: Primary 62G32, 62G30, 62G05, 62G10, 62G20; secondary 60F17, 60G70.
Keywords and phrases: multivariate extreme value statistics, non-identical distributions, sequential tail empir-

ical process, testing.
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Consider independent random vectors
(
Xi,1,Xi,2, . . . ,Xi,m

)
, i= 1,2, . . . , n. In the rain-

fall context, “m” is the number of stations and “n” is the number of time points (in days). A
key assumption is the existence of scedasis: for some continuous distribution function F0 in
the domain of attraction of an extreme value distribution

(1.1) lim
x↑x∗

1− Fi,j(x)

1− F0(x)
= c
( i
n
, j
)
∈ (0,∞),

holds for i = 1,2, . . . , n, j = 1,2, . . . ,m, where Fi,j is the distribution function of Xi,j and
where for each j the scedasis c(·, j) is a positive continuous function on [0,1]. In order to
ensure that the function c is uniquely defined we impose the condition

m∑
j=1

Cj(1) = 1,

where for 0≤ t≤ 1 and j = 1,2 . . . ,m,

Cj(t) :=
1

m

∫ t

0
c(u, j)du;

Cj is called the integrated scedasis. The scedasis c(i/n, j) can be interpreted as the rel-
ative frequency of extremes at time i and location j. We assume F0 ∈ D(Gγ), γ ∈ R,
i.e., F0 is in the max-domain of attraction of Gγ(x) = exp{−(1 + γx)−1/γ}, 1 + γx > 0.
As a consequence of (1.1), γ is now the common extreme value index: Fi,j ∈ D(Gγ),
i= 1, . . . , n; j = 1, . . . ,m.

Estimators Ĉj for Cj will be introduced and their joint asymptotic distribution derived.
This will enable us to perform various tests. For each station j we test whether the sceda-
sis is changing over time. We also test whether the Cj(1) are different i.e. if there are real
differences in extreme rainfall over space.

Let Fi be the distribution function of
(
Xi,1,Xi,2, . . . ,Xi,m

)
. Assume that the distribution

function Fi,j of Xi,j is continuous and let Ui,j(t) := F←i,j
(
1−1/t

)
, where the arrow indicates

the generalized inverse function. To model the dependence, we further assume that

(1.2) F̃ (x1, x2, . . . , xm) := Fi
(
Ui,1(x1),Ui,2(x2), . . . ,Ui,m(xm)

)
does not depend on i and is in the domain of attraction of a multivariate extreme value dis-
tribution (de Haan and Ferreira, 2006, Chapter 6). As a consequence, the multivariate tail
dependence structure does not depend on i. Let Rj1,j2 denote the tail copula of the compo-
nents j1 and j2:

Rj1,j2(x, y) = lim
t↓0

1

t
P
(
1− Fi,j1(Xi,j1)≤ tx, 1− Fi,j2(Xi,j2)≤ ty

)
,

for (x, y) ∈ [0,∞]2\{(∞,∞)}. Note that a tail copula is continuous, non-decreasing, and
homogeneous of order one.

As in Einmahl et al. (2016), the estimator of Cj could be the number of exceedances over
a high empirical quantile at station j. But, since we want to compare the Cj’s, we want to
use the same threshold for all rain stations. Consequently the common threshold will be a
high empirical quantile of all N := n×m observations taken together. Let XN−k:N be the
(N − k)-th order statistic of the observations

{
Xi,j

}n m

i=1, j=1
. We define the estimator

Ĉj(t) :=
1

k

nt∑
i=1

1{
Xi,j>XN−k:N

}
where k is an intermediate sequence: k = k(n)→∞, k(n)/n→ 0, as n→∞; the sum is
over all integers 1≤ i≤ nt.

In this paper we make the following four contributions.
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1. We establish the joint asymptotic behavior of {Ĉj(t)}t∈[0,1], j = 1, . . . ,m.
2. We test H0 : Cj(1) = 1

m for all j = 1, . . . ,m, i.e., the total integrated scedasis is constant
over the various locations. We perform the test by checking whether the limit vector (in
distribution) of(√

k
(
Ĉ1(1)− 1

m

)
,
√
k
(
Ĉ2(1)− 1

m

)
, . . . ,

√
k
(
Ĉm(1)− 1

m

))
has mean zero. This will be done via an adapted χ2-test.

3. We test H0,j : Cj(t) = tCj(1) for 0 ≤ t ≤ 1 and some given j ∈ {1, . . . ,m}, i.e., the
scedasis c(·, j) is constant over time. Since, under H0,j , the limit in distribution of the
process

{√
k
(
Ĉj(t)− tĈj(1)

}
0≤t≤1 is essentially a Brownian bridge, we can use, e.g., a

Kolmogorov-Smirnov-type statistic.
4. We establish the asymptotic behavior of the pseudo-maximum likelihood estimator of γ

based on all n×m observations.

Crucial for these results is a joint weighted Gaussian approximation of the m sequential
tail empirical processes as well as one for the tail quantile process based on all n×m ob-
servations, for general γ ∈ R. The main challenge is to establish these results in the above
setting of observations that are dependent and have different distributions. For the tail empir-
ical processes this is achieved by disentangling these two complications, whereas for the tail
quantile process, after aggregating the m tail empirical processes, a delicate proof is required
to deal with the weight functions.

An early paper where in the univariate case a linear trend in the parameters of the limit
distribution is studied is Davison and Smith (1990). Various models for spatial extremes, all
quite different from the setup in the present paper, are reviewed in Davison et al. (2012), see
also Coles and Tawn (1996) for a specific rainfall model. The assumption of constant tail
dependence, cf. (1.2), is tested in Bücher et al. (2015).

The outline of the paper is as follows. Section 2 gives a detailed account of the conditions
and the ensuing results. These results are applied to the mentioned rainfall data in Section 3.
Proofs are collected in Section 4 and partly deferred to the Supplementary Material, along
with a simulation study showing the performance of the proposed estimation and testing
procedures and a validation of the assumptions for the data application.

2. Results. Throughout the paper we assume the following conditions.

(i) Multivariate dependence: Assume that F̃ , defined in (1.2), does not depend on i and is in
the domain of attraction of a multivariate extreme value distribution.

(ii) Sharpening of the scedasis condition (1.1): Assume that there exists an eventually de-
creasing function A1 with limt→∞A1(t) = 0 such that

sup
n≥1

max
i,j

∣∣∣∣1− Fi,j(x)

1− F0(x)
− c
(
i

n
, j

)∣∣∣∣=O

(
A1

(
1

1− F0(x)

))
, as x ↑ x∗.

(iii) Second order condition for F0: Write U0(t) := F←0
(
1− 1/t

)
. There exists γ ∈R, ρ < 0

and functions ã0, positive, andA0 not changing sign eventually satisfying limt→∞A0(t) =
0 such that for all x > 0,

(2.1) lim
t→∞

U0(tx)−U0(t)
ã0(t)

− xγ−1
γ

A0(t)
= Ψγ,ρ(x) :=

{
xγ+ρ−1
γ+ρ , γ + ρ 6= 0,

logx, γ + ρ= 0,

cf. Corollary 2.3.5 in de Haan and Ferreira (2006).
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(iv) Conditions on the intermediate sequence k: Assume, as n→∞,

k→∞, k/n→ 0,
√
kA1

(
q
n

k

)
→ 0, for all q > 0,

√
kA0

(n
k

)
→ 0

√
k sup
|u−v|≤ 1

n

∣∣c(u, j)− c(v, j)∣∣→ 0, for j = 1,2, . . . ,m.

Throughout the paper, quantities regarding γ = 0 should be read as the limit as γ tends to
zero. In particular, in (2.1) if γ = 0, (xγ−1)/γ should be read as logx. Likewise, (1+γx)1/γ

is meant to be ex. Write γ+ = γ ∨ 0 and γ− = γ ∧ 0. If γ ≤ 0, −1/γ+ means −∞; if γ ≥ 0,
1/(−γ−) means∞.

We begin with presenting two fundamental approximations, which are the basis for the
main results (Theorem 2.3, Corollaries 2.4 and 2.5, Theorem 2.6), but they are also of in-
dependent interest. For the following theorem we need to bound the difference between the
fraction to the left in (2.1) and its limit by a uniform inequality. For details, see the inequal-
ity (2.3.19) in Corollary 2.3.7, obtained from (B.3.19) in Theorem B.3.10 of de Haan and
Ferreira (2006). Such an inequality holds provided that the functions U0, ã0 and Ψγ,ρ are
replaced by appropriately chosen versions b0, a0 and Ψγ,ρ given in Corollary 2.3.7.

THEOREM 2.1. Assume conditions (i)-(iv). Let x0 >−1/γ+; set x1 := 1/(−γ−).

a) Tail empirical distribution functions
Using a Skorokhod construction, for 0≤ η < 1/2, as n→∞, it holds almost surely,

max
1≤j≤m

sup
x0≤xj<x1

sup
0≤tj≤1

(1 + γxj)
η/γ

∣∣∣∣√k(1

k

ntj∑
i=1

1{
Xi,j−b0(N

k
)

a0(N
k

)
>xj

}(2.2)

−(1 + γxj)
−1/γCj(tj)

)
−Wj

(
(1 + γxj)

−1/γ , Cj(tj)
)∣∣∣∣−→ 0,

where (W1, . . . ,Wm) is a mean zero Gaussian vector of bivariate Wiener processes Wj .
Its covariances follow from the covariance matrix Σ = Σ(s1, s2, t1, t2) with entries

σj1,j2(s1, s2, t1, t2) :=Cov
(
Wj1

(
s1,Cj1(t1)

)
, Wj2

(
s2,Cj2(t2)

))
(2.3)

=
1

m

∫ t1∧t2

0
Rj1,j2

(
s1c(u, j1), s2c(u, j2)

)
du,

for 1≤ j1, j2 ≤m.
b) Tail empirical quantile function

With any ε > 0 and X1:N ≤ . . .≤XN :N the order statistics of the sample {Xi,j}i,j of all
N observations, we have, for T > 0, as n→∞,
(2.4)

sup
1

2k
≤s≤T

s−1/2+ε
∣∣∣∣sγ+1

√
k
(XN−[ks]:N − b0(Nk )

a0(
N
k )

− s−γ − 1

γ

)
−

m∑
j=1

Wj

(
s,Cj(1)

)∣∣∣∣ P−→0.

We consider the two boundary cases for the dependence structure. In case of tail inde-
pendence, that is Rj1,j2 ≡ 0, for all pairs (j1, j2), j1 6= j2, the bivariate Wiener processes
W1, . . . ,Wm are independent, and (2.2) for γ > 0 specializes to a generalization of the re-
sults in Einmahl et al. (2016) where independence of the data is assumed. Further special-
izing the situation to having N i.i.d. data, Theorem 2.1 recovers Theorem 2.4.2 and gen-
eralizes Theorem 5.1.2 in de Haan and Ferreira (2006), on tail quantile and tail empirical
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processes, respectively. In case of complete tail dependence between two locations, that is
Rj1,j2(x, y) = x ∧ y, we obtain σj1,j2(s1, s2, t1, t2) = 1

m

∫ t1∧t2
0 (s1c(u, j1)) ∧ (s2c(u, j2))du.

In case c(·, j1) = c(·, j2), the covariance simplifies to (s1∧ s2)Cj1(t1∧ t2), which means that
the processes Wj1 and Wj2 are the same.

COROLLARY 2.2. Under the conditions and in the setup of Theorem 2.1, with ε > 0,

sup
1

2k
≤s≤T

(
1∧ sγ+1/2+ε

)∣∣∣∣√k(XN−[ks]:N −XN−k:N

a0(
N
k )

− s−γ − 1

γ

)
(2.5)

−
m∑
j=1

(
s−γ−1Wj

(
s,Cj(1)

)
−Wj

(
1,Cj(1)

))∣∣∣∣ P−→0.

As a result we get the joint asymptotic behavior of the Ĉj , j = 1, . . . ,m.

THEOREM 2.3. Under the conditions and in the setup of Theorem 2.1, as n→∞,
(2.6)

max
1≤j≤m

sup
0<t≤1

∣∣∣√k(Ĉj(t)−Cj(t))−{Wj

(
1,Cj(t)

)
−Cj(t)

m∑
r=1

Wr

(
1,Cr(1)

)}∣∣∣ P−→0,

Moreover, we have the uniform consistency of the estimator of the covariance matrix Σ as
follows. For T > 0 and j1 6= j2, as n→∞,

sup
0≤t≤1

sup
0≤s1,s2≤T

∣∣∣1
k

nt∑
i=1

1{
Xi,j1>XN−[ks1]:N ,Xi,j2>XN−[ks2]:N

}(2.7)

− 1

m

∫ t

0
Rj1,j2

(
s1c(u, j1), s2c(u, j2)

)
du
∣∣∣ P−→0.

Now we proceed with the two aforementioned tests. First we discuss the testing problem{
H0 :Cj(1) = 1

m , for all j = 1, . . . ,m,

H1 :Cj(1) 6= 1
m , for some j = 1, . . . ,m.

Let 1m be the m-unit vector, Im the identity matrix of dimension m and define M :=

Im − 1
m1m1

′
m. From Theorem 2.3 and under H0, D =

√
k
(
Ĉ1(1)− 1

m , . . . , Ĉm(1)− 1
m

)′
is asymptotically m-variate normal with zero mean vector and covariance matrix MΣ1M

′,
where Σ1 = Σ(1,1,1,1). Assume that Σ1 is invertible. Then rank(MΣ1M

′) = rank(M) =
m− 1.

We therefore confine attention to the first m − 1 components of D denoted by Dm−1,
which has an asymptotic covariance matrix (MΣ1M

′)m−1. Here for an m×m matrix A, the
notation Am−1 refers to the matrix consisting of the first m− 1 rows and m− 1 columns of
A. Finally, we define the test statistic

Tn :=D′m−1

(
(M Σ̂1M

′)m−1

)−1
Dm−1,

with Σ1 estimated via the empirical counterpart given in (2.7). From Theorem 2.3 we imme-
diately get the asymptotic behavior of Tn under H0.

COROLLARY 2.4. Assume that Σ1 is invertible. Then underH0, Tn
d→ χ2

m−1, as n→∞.
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Next we consider, for j ∈ {1, . . . ,m}, the testing problem H0,j : Cj(t) = tCj(1), 0≤ t≤
1, and H1,j that this is not the case. This null hypothesis means that the scedasis for station
j, c(·, j), is constant over time. We can use test statistics of the Kolmogorov-Smirnov-type

or Cramér-von Mises-type based on the process
√
k
(
Ĉj(t)− tĈj(1)

)/√
Ĉj(1), 0≤ t≤ 1.

COROLLARY 2.5. Fix j ∈ {1, . . . ,m}. Under the hypothesis that Cj(t) = tCj(1), for
0≤ t≤ 1, {√

k Ĉj(1)
( Ĉj(t)
Ĉj(1)

− t
)}

t∈[0,1]

d−→
{
B(t)

}
t∈[0,1],

with B a Brownian bridge.

Finally, we introduce the pseudo-maximum likelihood estimator (MLE) of (γ,a0(
N
k )).

The estimator is based on the N = n × m dependent and non-identically distributed ob-
servations (as described in Section 1) and in particular on the order statistics of ex-
cesses {XN−i+1:N − XN−k:N}ki=1. The (pseudo) ML procedure is based on the assump-
tion that these order statistics are taken from the (limiting) generalized Pareto distribution
1− (1 +γx/σ)−1/γ , γ ∈R, σ > 0, where σ represents the scale component a0(Nk ); for more
details see de Haan and Ferreira (2006), Section 3.4. This leads to the log-likelihood

(2.8) `(γ,σ,x) =− logσ−
(

1 +
1

γ

)
log
(

1 + γ
x

σ

)
, 0< x<

σ

−γ−
(for γ = 0 the formula is interpreted as − logσ − x/σ). The pseudo log-likelihood based on
the above sample can be written as, with parameter space (γ,σ) ∈R× (0,∞),

LN,k(γ,σN/k) =

k∑
i=1

`(γ,σN/k,XN−i+1:N −XN−k:N )

= k

∫ 1

0
`(γ,σN/k,XN−[ks]:N −XN−k:N )ds

= k

∫ 1

0
`

(
γ,

σN/k

a0(N/k)
,
XN−[ks]:N −XN−k:N

a0(N/k)

)
ds− k loga0(N/k).(2.9)

Generally (γ̂, σ̂N/k) is an MLE if it is a local maximizer of LN,k(γ,σN/k) solving the score
equations, { ∂

∂γLN,k(γ,σN/k) = 0
∂
∂σLN,k(γ,σN/k) = 0.

In the following we highlight γ0 as the true unknown parameter value.

THEOREM 2.6. Under conditions (i)-(iv) with γ0 >−1/2, with probability tending to 1,
there exists a unique sequence of estimators (γ̂n, â0(N/k)), maximizing (2.9), for which

√
k

(
γ̂n − γ0,

â0(N/k)

a0(N/k)
− 1

)
d−→N(0, I−1γ0 Σγ0I

−1
γ0 )

where

I−1γ0 =

[
(γ0 + 1)2 −(γ0 + 1)
−(γ0 + 1) 2(γ0 + 1)

]
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and Σγ0 is the covariance matrix of the random vector[∑m
j=1

∫ 1
0

(
sγ0γ−10 (1− sγ0)− s2γ0

){
s−γ0−1Wj(s,Cj(1))−Wj(1,Cj(1))

}
ds∑m

j=1(1 + γ0)
∫ 1
0 s

2γ0
{
s−γ0−1Wj(s,Cj(1))−Wj(1,Cj(1))

}
ds

]
with {Wj}mj=1 from Theorem 2.1.

REMARK 1. The covariance matrix Σγ0 can be calculated as follows: let U be a (1×2m)
vector with the first i= 1, . . . ,m, components as

γ−10

∫ 1

0

(
sγ0 − (1 + γ0)s

2γ0
){
s−γ0−1Wi(s,Ci(1))−Wi(1,Ci(1))

}
ds,

and the remaining i=m+ 1, . . . ,2m components as

(1 + γ0)

∫ 1

0
s2γ0

{
s−γ0−1Wi(s,Ci(1))−Wi(1,Ci(1))

}
ds.

The covariance matrix of U has entries τij , i= 1, . . . ,2m,j = 1, . . . ,2m, given by,

τii =
2 + 6γ0 + 5γ20

(1 + γ0)2(1 + 2γ0)2
Ci(1), i= 1, . . . ,m;

τii =

(
1 + γ0
1 + 2γ0

)2

Ci−m(1), i=m+ 1, . . . ,2m;

τi,i+m = τi+m,i =
1 + γ0

(1 + 2γ0)2
Ci(1), i= 1, . . . ,m;

τij =

∫ 1

0

∫ 1

0
f(s)f(t)rij(s, t)− 2f(s)g(t)rij(s,1) + g(s)g(t)rij(1,1)dsdt,

i 6= j, i, j = 1, . . . ,m;

τij = (1 + γ0)
2

{∫ 1

0

∫ 1

0
sγ0−1tγ0−1ri−m,j−m(s, t)− 2sγ0−1t2γ0ri−m,j−m(s,1)

+s2γ0t2γ0ri−m,j−m(1,1)dsdt
}
,

i 6= j, i=m+ 1, . . . ,2m,j =m+ 1, . . . ,2m;

τij = (1 + γ0)

{∫ 1

0

∫ 1

0
f(s)tγ0−1ri,j−m(s, t)− f(s)t2γ0ri,j−m(s,1)

−g(s)tγ0−1ri,j−m(1, t) + g(s)t2γ0ri,j−m(1,1)dsdt
}
,

j 6= i+m, i= 1, . . . ,m, j =m+ 1, . . . ,2m;

τij = (1 + γ0)

{∫ 1

0

∫ 1

0
f(s)tγ0−1ri−m,j(s, t)− f(s)t2γ0ri−m,j(s,1)

−g(s)tγ0−1ri−m,j(1, t) + g(s)t2γ0ri−m,j(1,1)dsdt
}
,

i 6= j +m,j = 1, . . . ,m, i=m+ 1, . . . ,2m,

with

f(s) = s−1γ−10 (1− (1 + γ0)s
γ0) , g(s) = sγ0γ−10 (1− sγ0)− s2γ0
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rij(s, t) = σi,j(s, t,1,1) =EWi(s,Ci(1))Wj(t,Cj(1)).

Then Σγ0 =Cov(I ×U) = I Cov(U) IT where I = I2×2m =

[
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1

]
.

We consider the two boundary cases for the dependence structure again. In case of tail
independence for all pairs (j1, j2), the matrix I−1γ0 Σγ0I

−1
γ0 reduces to

Σiid =

[
(γ0 + 1)2 −(γ0 + 1)
−(γ0 + 1) 1 + (γ0 + 1)2

]
,

which is the same covariance matrix as that for N i.i.d. data. In case of complete tail depen-
dence for all pairs (j1, j2) and if all m scedases c(·, j) are the same, the matrix I−1γ0 Σγ0I

−1
γ0

becomes mΣiid, which is the same as that for n i.i.d. data with k replaced by k/m.
As an example, consider N data such that all m scedases c(·, j) are the same and the tail

dependence structure is described by the well-known logistic stable tail dependence function

lθ(x1, . . . , xm) =

 m∑
j=1

x
1/θ
j

θ

, xj ≥ 0;

cf. Einmahl et al. (2012). Here the parameter θ ∈ (0,1] reflects the degree of tail dependence,
with θ = 1 corresponding to tail independence and the limiting case θ = 0 corresponding to
complete tail dependence. Then for all j1 6= j2 the pairwise tail copula becomes

Rj1,j2(x, y) = x+ y−
(
x1/θ + y1/θ

)θ
=mrj1,j2(x, y), x, y ≥ 0.

FIG 1. Asymptotic variance of the MLE of γ0 for the logistic stable tail dependence function in dimen-
sion m= 20, as a function of the dependence parameter θ and the extreme value index γ0.

With the latter formula we can numerically compute the τij in Remark 1 and obtain Σγ0(θ).
Figure 1 shows, for m= 20, the asymptotic variance of

√
k(γ̂n − γ0) as a function of θ and

γ0. The variance increases smoothly with dependence and with γ0. For fixed γ0, it increases
from (γ0 + 1)2 to 20(γ0 + 1)2, as θ decreases from 1 to 0. Clearly, tail independence yields
the most accurate estimation of γ0.
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3. Application. This section is devoted to illustrating the testing methods for detecting a
trend in extreme rainfalls, both across stations and over time. We use a subset of rainfall data
from the German national meteorological service, which consists of daily rainfall amounts
recorded in 49 stations (m= 49) in three regions of North-West Germany: Bremen, Nieder-
sachsen and Hamburg. The data set comprises nearly complete time series records over 84
years (1931-2014). We divide the data into two seasons: winter from November to March,
and summer from May to September, excluding the transitional months April and October.

Although the raw data set comprises a tally of 49× 84× 150 rainfall amounts within each
season, the actual number of observations we use at each station, n, will be determined by a
declustering procedure. This has been designed to remove the effect of temporal dependence
and is viewed as a key step to ensure that after pre-processing, the data set can be regarded
as having no temporal dependence. The idea of our pre-processing procedure is to create
gaps between consecutive observations by removing some days in the data set. The detailed
procedure we have employed is outlined in the next paragraph.

The raw data set consists of daily rainfall amounts (in mm) at each gauging station
j = 1, . . . ,m, including zero rainfall. From this data set we will use the daily maximum rain-
fall amount across the m stations, henceforth referred to as station-wise maxima, for elic-
iting potential serial dependence. We order all station-wise maxima from high to low. The
declustering procedure is initiated by picking up the pair of calendar days with the largest
and second largest station-wise maxima. If this second maximum was recorded within two
consecutive days of the first station-wise maximum, then all m observations on its corre-
sponding day are removed; otherwise both days are kept. This procedure then rolls out to
the subsequent ordered station-wise maxima: for each station-wise maxima, we remove the
corresponding day if it is recorded within two consecutive days of any of the previously kept
days. This results in the declustered data sets with sample sizes n = 3561 and n = 3552
for winter and summer respectively. The two data sets are used for testing the presence of
scedasis over time and/or across space, whilst accounting for the spatial dependence.1 In
Section 3.1 of the Supplementary Material, we find that the remaining serial dependence in
the station-wise maxima after declustering is negligible.

0.0

0.2

0.4

0.6

0.8

1.0

400 600 800 1000 1200 1400
k

 

Pairwise dependence: j1= Hude, j2= Schiffdorf −− Winter

m
 x

 s
ig

m
a 

j1
,j2

(k
)

0.0

0.2

0.4

0.6

0.8

1.0

400 600 800 1000 1200 1400
k

 

Pairwise dependence: j1= Hude, j2= Schiffdorf −− Summer

m
 x

 s
ig

m
a 

j1
,j2

(k
)

FIG 2. Estimates of mσj1,j2(1,1,1,1) for k = 300,301, . . . ,1500.

In addition, we check the assumptions of having a constant extreme value index over time
and over space (cf. Sections 3.2 and 3.3 in the Supplementary Material) and find no evidence

1We make the declustered data sets and the codes for application available at
https://github.com/zhouchen0527/rainscedasis

https://github.com/zhouchen0527/rainscedasis
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against making such assumptions. In relation to the spatial dependence, we present in Figure
2 two plots displaying estimates for the pairwise spatial dependence through

mσ̂j1,j2(1,1,1,1) :=
m

k

n∑
i=1

1{
Xi,j1>XN−k:N ,Xi,j2>XN−k:N

},
as in (2.7), for k = 300, . . . ,1500. Note that the choice of k in this estimation differs from
that in the estimation of tail dependence coefficient by a factor ofm, i.e. k = 300 corresponds
to choosing k = 6 at each station. In addition, we choose to estimate mσj1,j2(1,1,1,1), since
by construction, a factor 1/m appears in the expression for σj1,j2(1,1,1,1), see (2.3). The
plots in Figure 2 illustrate estimation of pairwise spatial dependence for one single pair of
stations for winter and for summer. These suggest that spatial dependence is stronger in the
winter than in the summer, a finding consistent with both the convective nature of extreme
rainfall in the summer and widespread persistent precipitation in the winter.
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FIG 3. Obtained p-values through the test Tn for homogeneity across space, all plotted as a function
of k = 300, . . . ,1500.
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First, we test whether the total integrated scedasis of extreme rainfall is constant across
m= 49 stations by adopting the test statistic Tn in Corollary 2.4. We reject the null hypoth-
esis of having constant total integrated scedasis across all stations for large values of Tn. We
plot the p-values against k the number of upper observations used in the test in the two plots
of Figure 3, for winter and summer seasons respectively. The p-values obtained for the winter
season stay below 5% for all k > 350. Therefore, we conclude that for the winter season, the
total integrated scedasis of extreme rainfall is not constant across stations. In other words, the
frequencies of having extreme rainfall differ across stations. In contrast, there is no statistical
evidence of a trend in the space-domain over the summer. This finding holds for almost all
values of k in the lower panel of Figure 3.
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FIG 4. Obtained p-values for the test of the null hypothesis H0,j of a non-existent time trend at each
station j = 1,2, . . . ,49. The Kolmogorov-Smirnov statistic is applied with k = 1000 higher observa-
tions. The numbers next to the station-marks indicate elevation in meters; one station on the east side
falls outside the map.
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Next, we investigate a possible temporal trend in the extreme rainfall process for each
station mapped in Figure 4 by means of a Kolmogorov-Smirnov (KS) type test based on the
left hand side of the limit relation in Corollary 2.5. For each season, we apply this test at
each station j with k = 1000, and plot the p-values of the test in the two plots in Figure 4,
for winter and summer seasons respectively. The sharper the red in the renderings, the lower
the estimated p-values, and the more evidence for rejecting the null hypothesis. The brighter
the green marks, the higher the p-values. We find that the p-values vary widely across the
selected region, and more so in the winter.

Overall, we find that p-values plunge in the winter but soar in the summer at many loca-
tions. In the winter season, the KS type test highlights two stations with p-values below the
nominal level α= 5%: p= 0.044 for station Steinau, Kr.Cuxhaven, with elevation 1m, and
p = 0.05 for Bramsche at 58m high. Nevertheless, we need to interpret such p-values with
caution. Given that these are the lower p−values across all 49 stations, we are encountering
a potential multiple test problem. One potential solution is to consider the Bonferroni cor-
rection: the corrected nominal level is α∗ = 5%/49≈ 0.1%. Since these low p-values do not
breach the corrected nominal level, we find no temporal trend over the winter, at the usual
significance levels. Similarly, for the summer, the KS type test identifies one significant indi-
vidual p-value of 0.048 for station Uetze, standing at 60m of elevation. Again this individual
p-value is not in the vicinity of the Bonferroni’s corrected critical barrier α∗ = 0.1%. To
summarize, there seems to be no temporal trend in extreme rainfalls in the winter or in the
summer.

Finally, we report the estimated extreme value index γ using all data from all stations in
one season, using the maximum likelihood estimator (MLE) in Theorem 2.6. Figure 5 shows
the estimates against various values of k, for the winter and summer seasons respectively. We
observe that, for k ranging between 900 and 1100, both estimates paths seem to consolidate a
plateau of stability. For the purpose of point estimation, we fix k = 1000, highlighted in both
plots with a vertical gray line. The estimated extreme value indices are γ̂ = 0.041 and 0.078
for winter and summer seasons, respectively, with corresponding 95% confidence intervals
(−0.0546, 0.1365) and (0.0159, 0.1391). We find that the estimated standard deviation for
the winter, based on the asymptotic distribution of the maximum likelihood estimator for γ,
is greater than (1 + γ̂)/

√
k, the estimated standard deviation assuming tail independence.

This indicates that ignoring spatial dependence results in underestimation of the asymptotic
variance. The analogous results for the summer season lead to estimated standard deviations
nearly matching the values (1 + γ̂)/

√
k, which suggests weaker spatial tail dependence dur-

ing the summer months.

4. Proofs. Write for convenience Xi,j = Ui,j(Yi,j), where (Yi,1, Yi,2, . . . , Yi,m) follows
the distribution function F̃ with standard Pareto marginals. Let Y (j)

i:n be the i-th order statistic
from Y1,j , Y2,j , . . . , Yn,j , for all j.
Proof of Theorem 2.1 a) Tail empirical distribution functions

Consider one station j for the time being and define Cj,n(t) := 1
N

nt∑
i=1

c
(
i
n , j
)
. (Recall

N = nm.) According to Proposition 1 in Einmahl et al. (2016) we have under a Skorokhod
construction for any t0 > 0 and 0≤ η < 1/2, almost surely,

sup
0<v≤t0,0≤t≤1

v−η
∣∣∣∣√k{1

k

nt∑
i=1

1{
Yi,j>

nmCj,n(1)

kv c( i
n
,j)

} − vCj(t)

Cj,n(1)

}
−Wj

(
v,

Cj(t)

Cj,n(1)

)∣∣∣∣−→ 0,

as n→∞. After some rearrangement we get, almost surely,

(4.1) sup
0<v≤t0,0≤t≤1

v−η
∣∣∣∣√k{1

k

nt∑
i=1

1{
Yi,j>

n

kv c( i
n
,j)

}−mvCj(t)}−Wj

(
mv,Cj(t)

)∣∣∣∣−→ 0.
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FIG 5. The maximum likelihood estimates of the extreme value index with accompanying 95% confi-
dence intervals, all plotted against k, the number of upper order statistics. The gray overlay gives the
confidence intervals in case the tail independence setting were to be assumed.

We are going to transform this result in several steps. First replace v with n
kc( i

n
,j)

(
1 −

Fi,j
(
U0(

N
ku)
))

, 0< u≤ t0. Note that, as n→∞, by condition (ii),

n

kc( in , j)

(
1− Fi,j

(
U0

(N
ku

)))
=
n

k

(
1− F0

(
U0

(N
ku

))){
1 +O

(
A1

(N
ku

))}
=
u

m

{
1 +O

(
A1

(N
ku

))}
,
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and by condition (iv),
√
kA1

(
N
ku

)
→ 0 uniformly for 0 < u ≤ t0. Hence we have, almost

surely,

sup
0<u≤t0,0≤t≤1

u−η
∣∣∣∣√k{1

k

nt∑
i=1

1{
Ui,j(Yi,j)>U0

(
N

ku

)} − uCj(t)}−Wj

(
u, Cj(t)

)∣∣∣∣−→ 0.

Next replace u with N
k

(
1− F0

(
b0
(
N
k

)
+ xa0

(
N
k

)))
and note that by condition (iii) and

Proposition 3.2 (equation 3.2) of Drees et al. (2006)

N

k

(
1− F0

(
b0
(N
k

)
+ xa0

(N
k

)))
= (1 + γx)−1/γ

{
1 +O

(
A0

(N
k

))}
uniformly for x ≥ x0 > −1/γ+ and

√
kA0

(
N
k

)
→ 0 by condition (iv). Recall Xi,j =

Ui,j(Yi,j). Hence we have for each j,

sup
x0≤xj<x1,0≤t≤1

(1 + γxj)
η/γ

∣∣∣∣√k{1

k

nt∑
i=1

1{Xi,j−b0(N
k

)

a0(N
k

)
>xj
} − (1 + γxj)

−1/γ Cj(t)
}

(4.2)

−Wj

(
(1 + γxj)

−1/γ , Cj(t)
)∣∣∣∣−→ 0,

which yields the weak convergence of the weighted process on the left to the weighted Wiener
process on the right.

It remains to prove the joint convergence of the processes at different locations. First we
deal with convergence of the finite dimensional distributions. After that we consider tightness.
For ease of writing we confine ourselves to the first two dimensions, i.e.

{
(Xi,1, Xi,2)

}n
i=1

and one point (s1, t1) and (s2, t2) at each dimension. According to the Cramèr-Wold device,
we look first at all linear combinations (u, v ∈R, x0 ≤ x, y < x1, 0≤ t1, t2 ≤ 1)

√
k

[
u

1

k

nt1∑
i=1

(
1{Xi,1−b0(N

k
)

a0(N
k

)
>x
} − P{Xi,1 − b0(Nk )

a0(
N
k )

> x
})

(4.3)

+ v
1

k

nt2∑
i=1

(
1{Xi,2−b0(N

k
)

a0(N
k

)
>y
} − P{Xi,2 − b0(Nk )

a0(
N
k )

> y
}))]

.

The Lindeberg-Feller central limit theorem applies to this expression since the summands are
indicators and hence bounded. As a consequence we obtain that

√
k

(
1

k

nt1∑
i=1

1{Xi,1−b0(N
k

)

a0(N
k

)
>x
} − P{Xi,1 − b0(Nk )

a0(
N
k )

> x
}
,

1

k

nt2∑
i=1

1{Xi,2−b0(N
k

)

a0(N
k

)
>y
} − P{Xi,2 − b0(Nk )

a0(
N
k )

> y
})

converges in distribution to
(
W1

(
(1 + γx)−1/γ ,C1(t1)

)
,W2

(
(1 + γy)−1/γ ,C2(t2)

))
. Note

that, e.g. for the first dimension, by assumptions (ii) and (iv),

1

mn

nt1∑
i=1

N

k
P
{Xi,1 − b0(Nk )

a0(
N
k )

> x
}

=
1

mn

nt1∑
i=1

(1 + γx)−1/γ c
( i
n
,1
)

+ o
( 1√

k

)
= (1 + γx)−1/γ C1(t1) + o

( 1√
k

)
.
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It follows that

√
k

(
1

k

nt1∑
i=1

1{Xi,1−b0(N
k

)

a0(N
k

)
>x
} − (1 + γx)−1/γC1(t1),(4.4)

1

k

nt2∑
i=1

1{Xi,2−b0(N
k

)

a0(N
k

)
>y
} − (1 + γy)−1/γC2(t2)

)
converges in distribution to

(
W1

(
(1 + γx)−1/γ ,C1(t1)

)
, W2

(
(1 + γy)−1/γ ,C2(t2)

))
.

Next we prove tightness of the process in (4.4) in the space D
(
[0,1]2 × [x0, x1)

2
)

with
index (t1, t2, x, y). We know from (4.2) that for 0≤ η < 1/2 the sequence of processes

(1 + γxj)
η/γ
√
k

(
1

k

ntj∑
i=1

1{Xi,j−b0(N
k

)

a0(N
k

)
>xj
} − (1 + γxj)

−1/γCj(tj)

)
is tight in the space D

(
[0,1] × [x0, x1)

)
, for j = 1 and j = 2. It then follows from Ferger

and Vogel (2015) that the joint process (4.4) is also tight. Hence the weak convergence is
established. A Skorokhod construction yields the result.

For the proof of (2.3) consider the covariance of the two components in (4.4). It suffices
to show that the leading term in this covariance

1

k

n(t1∧t2)∑
i=1

E
[
1{Xi,1−b0(N

k
)

a0(N
k

)
>
s
−γ
1
−1

γ

}1{Xi,2−b0(N
k

)

a0(N
k

)
>
s
−γ
2
−1

γ

}]

=
1

mn

n(t1∧t2)∑
i=1

N

k
P
{Xi,1 − b0(Nk )

a0(
N
k )

>
s−γ1 − 1

γ
,
Xi,2 − b0(Nk )

a0(
N
k )

>
s−γ2 − 1

γ

}
→ 1

m

∫ t1∧t2

0
R1,2(s1c(u,1), s2c(u,2))du, n→∞,(4.5)

for fixed (t1, t2, s1, s2) ∈ [0,1]2 × [0, T ]2, where T = (1 + γx0)
−1/γ > 0. Since Xi,j =

Ui,j(Yi,j) with Yi,j standard Pareto distributed random variables, given any ε > 0, for suf-
ficiently large n,

P

(
Xi,1 − b0

(
N
k

)
a0
(
N
k

) >
s−γ1 − 1

γ
,
Xi,2 − b0

(
N
k

)
a0
(
N
k

) >
s−γ2 − 1

γ

)

=P

k
n
Yi,1 >

m

N
k

(
1− Fi,1

(
b0
(
N
k

)
+ a0

(
N
k

) s−γ1 −1
γ

)) ,
k

n
Yi,2 >

m

N
k

(
1− Fi,2

(
b0
(
N
k

)
+ a0

(
N
k

) s−γ2 −1
γ

))


≤P

(
k

n
Yi,1 >

m

s1c
(
i
n ,1
)

(1 + ε)
,
k

n
Yi,2 >

m

s2c
(
i
n ,2
)

(1 + ε)

)
.

The definition of R1,2 implies that, as n→∞,

n

k
P

(
k

n
Yi,1 >

1

v1
,
k

n
Yi,2 >

1

v2

)
→R1,2(v1, v2),
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uniformly for (v1, v2) ∈ [0, V ]2 with any fixed V > 0. By the continuity and boundedness of
c and of R1,2, as n→∞,

n

k
P

(
k

n
Yi,1 >

m

s1c
(
i
n ,1
)

(1 + ε)
,
k

n
Yi,2 >

m

s2c
(
i
n ,2
)

(1 + ε)

)

−R1,2

(
s1c
(
i
n ,1
)

(1 + ε)

m
,
s2c
(
i
n ,2
)

(1 + ε)

m

)
→ 0,

uniformly in i, s1 and s2. Hence, uniformly in (t, s1, s2) ∈ [0,1]× [0, T ]2,

1

k

nt∑
i=1

P

(
Xi,1 − b0

(
N
k

)
a0
(
N
k

) >
s−γ1 − 1

γ
,
Xi,2 − b0

(
N
k

)
a0
(
N
k

) >
s−γ2 − 1

γ

)

≤ 1

k

nt∑
i=1

P

(
k

n
Yi,1 >

m

s1c
(
i
n ,1
)

(1 + ε)
,
k

n
Yi,2 >

m

s2c
(
i
n ,2
)

(1 + ε)

)

=

∫ ([nt]+1)/n

1/n

n

k
P

k
n
Y1,1 >

m

s1c
(
[nu]
n ,1

)
(1 + ε)

,
k

n
Y1,2 >

m

s2c
(
[nu]
n ,2

)
(1 + ε)

du

→
∫ t

0
R1,2

(
s1c (u,1) (1 + ε)

m
,
s2c (u,2) (1 + ε)

m

)
du, as n→∞.

The lower bound follows similarly by replacing 1 + ε with 1− ε and reversing the inequality.
Now by the homogeneity of R, (4.5) follows by letting ε→ 0 and taking t= t1 ∧ t2. o

The following lemma is useful for the proof of Theorem 2.1 b).

LEMMA 4.1. For all δ > 0, there exists 0< a< 1 such that for large n,

P
{
U0

(aN
ks

)
≤XN−[ks]:N ≤ U0

( N
aks

)
for

1

2k
≤ s≤ 1

}
> 1− δ.

PROOF. Condition (1.1) implies, by inversion, that there exist M > 1 and t0 > 0 such that
for all t≥ t0,

(4.6) U0

( t

M

)
≤ Ui,j(t)≤ U0(Mt)

Note that from Inequality on page 419 of Shorack and Wellner (1986), we get that for
every δ > 0 there exists 0< b < 1 such that

P
{ bn
ks
≤ Y (j)

n−[ks]:n for
1

2k
≤ s≤ 1 and Y (j)

n−[ks]:n ≤
n

kbs
(4.7)

for 0≤ s≤ 1; j = 1,2, . . . ,m
}
> 1− δ/2.

Note also that

(4.8) Y
(1)
n−[ks]:n ≤ YN−[ks]:N ≤ max

1≤j≤m
Y

(j)

n−
[
ks

m

]
:n

Next we show, using (4.6), that with probability tending to 1,

(4.9) U0

( 1

M
YN−[ks]:N

)
≤XN−[ks]:N ≤ U0

(
M YN−[ks]:N

)
.



SPACE-TIME TREND IN EXTREMES 17

By definition [ks] of the Yi,j are not less than YN−[ks]:N . Hence at least [ks] of the Ui,j(Yi,j)
are not less than U0(

1
M YN−[ks]:N ). The right-hand inequality is similar. The result follows

combining (4.7), (4.8) and (4.9).

Proof of Theorem 2.1 b) Tail empirical quantile function
We start from (2.2) in Theorem 2.1a). By taking tj = 1 and aggregating over 1≤ j ≤m, we
get that for any 0≤ η < 1/2, as n→∞, almost surely,

(4.10)

sup
x0≤x<x1

(1 + γx)η/γ

∣∣∣∣∣∣√k
(
Pn(x)− (1 + γx)−1/γ

)
−

m∑
j=1

Wj((1 + γx)−1/γ ,Cj(1))

∣∣∣∣∣∣−→ 0,

where

Pn(x) =
1

k

n∑
i=1

m∑
j=1

1{
Xi,j−b0(Nk )

a0(Nk )
>x

},
and x0 >−1/γ+ and x1 = 1/(−γ−). As a consequence, for δ1 > 0,

P
{

sup
x0≤x<x1

(1 + γx)η/γ
∣∣∣√k(Pn(x)− (1 + γx)−1/γ

)
(4.11)

−
m∑
j=1

Wj((1 + γx)−1/γ ,Cj(1))

∣∣∣∣∣∣> δ1

}
−→ 0.

We remark that the region x0 ≤ x < x1 has different implications for γ > 0, γ < 0, and
γ = 0. For γ > 0, it implies that 1 + γx ≥ 1 + γx0 > 0, i.e. 1 + γx is bounded away from
zero. For γ < 0, 1 + γx > 1 + γx1 = 0. Hence 1 + γx > 0 but not necessarily bounded away
from zero. On the other hand, 1 + γx≤ 1 + γx0, i.e. 1 + γx is bounded away from∞. For
γ = 0,1 + γx= 1.

Then, split the range of s in two subintervals, [1/(2k), s0] and [s0, T ], where s0 is a suffi-
ciently small, but fixed, positive number.

For the range [s0, T ] we use (4.10) and Vervaat’s Lemma (cf. e.g. Appendix A of de Haan
and Ferreira (2006)) with xn(s) := Pn(s) and x←n (s) :=

(
XN−[ks]:N − b0(N/k)

)
/a0(N/k).

We then obtain the statement in (2.4), with the ‘sup’ taken over [s0, T ].
For s ∈ [1/(2k), s0], we first deal with the Gaussian processes term. LetW0 be a univariate

standard Wiener process. It is well-known (and follows from the law of the iterated logarithm)
that for every δ̃ > 0 there exists an s0, such that P{sup0<s≤s0 |W0(s)|/sη < δ̃}> 1− δ̃. Now

Wj( · ,Cj(1))
d
=
√
Cj(1)W0 for all j. Hence for δ > 0, there exists an s0(δ), such that for all

s0 ≤ s0(δ),

(4.12) P

{
sup

0<s≤s0
s−η

∣∣∣∣∣∣
m∑
j=1

Wj(s,Cj(1))

∣∣∣∣∣∣< δ

}
> 1− δ.

Hence, we shall concentrate on proving that with probability larger than 1 − δ, with a
proper choice of s0, for large n,

(4.13) sup
1

2k
≤s≤s0

sγ+
1

2
+ε
√
k

(
XN−[ks]:N − b0

(
N
k

)
a0
(
N
k

) − s−γ − 1

γ

)
≤ δ,
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and

(4.14) inf
1

2k
≤s≤s0

sγ+
1

2
+ε
√
k

(
XN−[ks]:N − b0

(
N
k

)
a0
(
N
k

) − s−γ − 1

γ

)
≥−δ.

In the following we further split the range of s, [1/(2k), s0], into two subintervals,
[1/(2k), tn] and (tn, s0], where tn depends only on the constant a in Lemma 4.1 (eventu-
ally depending on δ) and a sufficiently small ξ > 0, although the choice of tn is different for
proving the upper bound in (4.13) and the lower bound in (4.14):

√
kt1/2+εn :=

{
δ∆−11 with ∆1 := a−γ−1

γ (1 + ξ)> 0, for the upper bound,
δ∆−12 with ∆2 := 1−aγ

γ (1 + ξ)> 0, for the lower bound.

Moreover the following technical relations provide the constants to determine an upper
bound for s0. Note that for large enough η there exists η′ with 1− η < 1− η′ < 1/2 + ε, such
that the following hold:(

1 +
δγ√
k
s−1/2−ε

)−1/γ
<

(
1 +

δγ√
k
s−(1−η

′)

)−1/γ
,(4.15)

sup
s>tn

s−(1−η
′)

√
k
≤ t
−(1−η′)
n√

k
=
t
η′−1/2+ε
n√
kt

1/2+ε
n

→ 0,

(
1 +

δγ√
k
s−(1−η

′)

)−1/γ
≤ 1− cI

δ√
k
s−(1−η

′) for some 0< cI ≤ 1 and large n,

(
1− δγ√

k
s−(1−η

′)

)−1/γ
≥ 1 + cII

δ√
k
s−(1−η

′) for some 0< cII ≤ 1 and large n,

where the last two inequalities follow from the inequalities (1 + γx)−1/γ ≤ 1 − cIx and
(1− γx)−1/γ ≥ 1 + cIIx respectively, for 0< x<min(1,1/(−γ−)) and some 0< cI , cII ≤
1. Then, we should take

s0 ≤min(s0(δ), (δcI/(1 + δ1))
(η−η′)−1

, δcII/((m/a)η(1 + ξ)−η/γ(1 + δ1))
(η−η′)−1

).

(A) Upper bound and s ∈ [(2k)−1, tn]: Assume first that A0 is eventually positive. Corol-
lary 2.3.7 in de Haan and Ferreira (2006) and Lemma 4.1 imply: for all ε, δ, θ > 0, there exists
0< a< 1 such that for large n, with probability at least 1− δ,

XN−[ks]:N − b0
(
N
k

)
a0
(
N
k

) − s−γ − 1

γ

≤(as)−γ − s−γ

γ
+ Ψγ,ρ

(
1

as

)
A0

(
N

k

)
+ (as)−γ−ρ−θA0

(
N

k

)
≤s−γ

{
a−γ − 1

γ
+ s−ρ−θKA0

(
N

k

)}
,

for some K > 0. Hence,

sγ+1/2+ε
√
k

(
XN−[ks]:N −U0

(
N
k

)
a0
(
N
k

) − s−γ − 1

γ

)
≤ s1/2+ε

√
k

{
a−γ − 1

γ
+ s−ρ−θKA0

(
N

k

)}

≤ δ

∆1

{
a−γ − 1

γ
+ s−ρ−θKA0

(
N

k

)}
≤ δ,
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for n large, uniformly in s ∈ [(2k)−1, tn], since sups∈[(2k)−1, tn] s
−ρ−θA0

(
N
k

)
→ 0 choosing

θ <−ρ.
(B) Upper bound and s ∈ (tn, s0]: We prove that, with probability at least 1− δ, for large n,

Pn
(
s−γ − 1

γ
+

δ√
k
s−γ−1/2−ε

)
≤ s, for all s ∈ (tn, s0],

which implies the upper bound in (4.13).
We intend to apply (4.11) with x replaced by γ−1(s−γ − 1) + δk−1/2s−γ−1/2−ε. For this,

note that,

1 + γ

(
s−γ − 1

γ
+

δ√
k
s−γ−1/2−ε

)
= s−γ

(
1 +

δγ√
k
s−1/2−ε

)
and, for s ∈ (tn, s0] and γ > 0 the right-hand side is at least s−γ0

(
1 + δγk−1/2s

−1/2−ε
0

)
, con-

sequently bounded away from zero. For γ < 0 the inequality is reversed and the expression
is bounded from above. Hence,

Pn
(
s−γ − 1

γ
+

δ√
k
s−γ−1/2−ε

)
≤ s

(
1 +

δγ√
k
s−1/2−ε

)−1/γ
+

1√
k
W̃

(
s

(
1 +

δγ√
k
s−1/2−ε

)−1/γ)
+

δ1√
k
sη
(

1 +
δγ√
k
s−1/2−ε

)−η/γ
≤ s

(
1− cI

δ√
k
s−(1−η

′)

)
+

1 + δ1√
k
sη = s− sη√

k

(
cIδs

η′−η − (1 + δ1)
)

with W̃ (s) :=
∑m

j=1Wj(s,Cj(1)) and where for the second inequality we have applied

(4.15), η < 1/2, (4.12) and
(

1 + δγs−1/2−ε/
√
k
)−1/γ

≤ 1.

It remains to check that cIδsη
′−η − (1 + δ1)≥ 0 which holds by the choice of s0.

(C) Lower bound and s ∈ [(2k)−1, tn]: As in (A) assume first that A0 is eventually positive.
Corollary 2.3.7 in de Haan and Ferreira (2006) and Lemma 4.1 imply: for all ε, δ, θ > 0, there
exists 0< a< 1 such that for large n, with probability at least 1− δ,

XN−[ks]:N − b0
(
N
k

)
a0
(
N
k

) − s−γ − 1

γ

≥(a/s)γ − s−γ

γ
+ Ψγ,ρ

(a
s

)
A0

(
N

k

)
−
(a
s

)γ+ρ+θ
A0

(
N

k

)
≥s−γ

{
aγ − 1

γ
− s−ρ−θKA0

(
N

k

)}
,

for some K > 0, hence,

sγ+1/2+ε
√
k

(
XN−[ks]:N − b0

(
N
k

)
a0
(
N
k

) − s−γ − 1

γ

)
≥ s1/2+ε

√
k

{
aγ − 1

γ
− s−ρ−θKA0

(
N

k

)}

≥ δ

∆2

{
aγ − 1

γ
− s−ρ−θKA0

(
N

k

)}
≥−δ,

for large n, uniformly in s ∈ [(2k)−1, tn], since sups∈[(2k)−1, tn] s
−ρ−θA0

(
N
k

)
→ 0 choosing

θ <−ρ.
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(D) Lower bound and s ∈ (tn, s0]: We prove that, with probability at least 1− δ, for large n,

Pn
(
s−γ − 1

γ
− δ√

k
s−γ−1/2−ε

)
≥ s+

1

k
, for all s ∈ (tn, s0],

which implies the lower bound in (4.13). Similarly as in (B) apply (4.11) with x replaced by
γ−1(s−γ − 1)− δk−1/2s−γ−1/2−ε. Note that,

1 + γ

(
s−γ − 1

γ
− δ√

k
s−γ−1/2−ε

)
= s−γ

(
1− δγ√

k
s−1/2−ε

)
and, for s ∈ (tn, s0] and γ > 0 the right-hand side is at least s−γ0 (1− γ∆2) > 0 and conse-
quently bounded away from zero. For γ < 0 the inequality is reversed and the expression is
bounded above. Hence,

Pn
(
s−γ − 1

γ
− δ√

k
s−γ−1/2−ε

)
≥ s

(
1− δγ√

k
s−1/2−ε

)−1/γ
(4.16)

+
1√
k
W̃

(
s

(
1− δγ√

k
s−1/2−ε

)−1/γ)
− δ1√

k
sη
(

1− δγ√
k
s−1/2−ε

)−η/γ
≥ s

(
1 + cII

δ√
k
s−(1−η

′)

)
− a−η(1 + ξ)−η/γ(1 + δ1)

sη√
k

= s+
sη√
k

(
cIIδs

η′−η − a−η(1 + ξ)−η/γ(1 + δ1)
)

where we have used in particular (4.15). It remains to check that the right-hand side of (4.16)
is at least s+ 1/k which is equivalent to
sη
√
k
(
cIIδs

η′−η − a−η(1 + ξ)−η/γ(1 + δ1)
)
≥ 1. This holds by the choice of η′ < η and

choosing s0 ≤ δcII/((m/a)η(1 + ξ)−η/γ(1 + δ1))
(η−η′)−1

.
Finally, if A0 is eventually negative, the proofs are the same, except that the signs of the

remaining terms in (A) and in (C), +(as)−γ−ρ−θA0

(
N
k

)
and −(a/s)γ+ρ+θA0

(
N
k

)
, should

be interchanged. o

Proof of Theorem 2.3
Fix j ∈ {1, . . . ,m}. Replace x in (2.2) with

(
XN−k:N − b0

(
N
k

))
/a0
(
N
k

)
and use condi-

tion (iii) jointly with Theorem 2.3.8 of de Haan and Ferreira (2006) to get

√
k

{
1

k

nt∑
i=1

1{
Xi,j>XN−k:N

} − (1 + γ
XN−k:N − b0

(
N
k

)
a0
(
N
k

) )−1/γ
Cj(t)

−Wj

((
1 + γ

XN−k:N − b0
(
N
k

)
a0
(
N
k

) )−1/γ
, Cj(t)

)}
= op

((
1 + γ

XN−k:N − b0
(
N
k

)
a0
(
N
k

) )−η/γ)
.

Now by (2.4)

√
k
XN−k:N − b0

(
N
k

)
a0
(
N
k

) P−→
m∑
j=1

Wj

(
1,Cj(1)

)
and hence

√
k
{

1−
(

1 + γ
XN−k:N − b0

(
N
k

)
a0
(
N
k

) )−1/γ}
−
√
k
XN−k:N − b0

(
N
k

)
a0
(
N
k

) P−→0.
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Combining this we obtain

sup
0≤t≤1

|
√
k

(
1

k

nt∑
i=1

1{
Xi,j>XN−k:N

}−Cj(t))−{Wj

(
1,Cj(t)

)
−Cj(t)

m∑
r=1

Wr

(
1,Cr(1)

)
}| P−→0,

which yields (2.6).
Next we prove for fixed (t,w1,w2) ∈ [0,1]× [0, T ]2, as n→∞,

(4.17)
1

k

nt∑
i=1

1{Xi,j1−b0(Nk )
a0(Nk )

>
w
−γ
1
−1

γ
,
Xi,j2

−b0(Nk )
a0(Nk )

>
w
−γ
2
−1

γ

} P→ 1

m

∫ t

0
Rj1,j2(w1c(u, j1),w2c(u, j2))du.

We check the variance of the left hand side: using (4.5), as n→∞,

V ar

(
1

k

nt∑
i=1

1{Xi,j1−b0(Nk )
a0(Nk )

>
w
−γ
1
−1

γ
,
Xi,j2

−b0(Nk )
a0(Nk )

>
w
−γ
2
−1

γ

}
)

=

nt∑
i=1

1

k2
V ar

(
1{Xi,j1−b0(Nk )

a0(Nk )
>
w
−γ
1
−1

γ
,
Xi,j2

−b0(Nk )
a0(Nk )

>
w
−γ
2
−1

γ

}
)

≤
nt∑
i=1

1

k2
P

(
Xi,j1 − b0

(
N
k

)
a0
(
N
k

) >
w−γ1 − 1

γ
,
Xi,j2 − b0

(
N
k

)
a0
(
N
k

) >
w−γ2 − 1

γ

)

≤ 1

km
(1 + ε)

∫ t

0
Rj1,j2(w1c(u, j1),w2c(u, j2))du→ 0.

Hence, by Chebyshev inequality, as n→∞,

1

k

nt∑
i=1

1{Xi,j1−b0(Nk )
a0(Nk )

>
w
−γ
1
−1

γ
,
Xi,j2

−b0(Nk )
a0(Nk )

>
w
−γ
2
−1

γ

}

− 1

k

nt∑
i=1

P

(
Xi,j1 − b0

(
N
k

)
a0
(
N
k

) >
w−γ1 − 1

γ
,
Xi,j2 − b0

(
N
k

)
a0
(
N
k

) >
w−γ2 − 1

γ

)
P→ 0.

Then, (4.5) implies (4.17).
By the continuity of the right hand side of (4.17) and the monotonicity of both sides of

(4.17) in t, w1 and w2, this result holds uniformly for (t,w1,w2) ∈ [0,1]× [0, T ]2.
Finally, for fixed (s1, s2) ∈ [0, T ]2, by (2.4), as n→∞(

1 + γ
XN−[ksj ]:N − b0

(
N
k

)
a0
(
N
k

) )−1/γ
P→ sj ,

for j = 1,2. We can then replace wj in (4.17) with
(

1 + γ
XN−[ksj ]:N

−b0(Nk )
a0(Nk )

)−1/γ
, which

yields (2.7) for fixed (t, s1, s2) ∈ [0,1]× [0, T ]2. The uniformity follows as before. o

Proof of Corollary 2.5 Under the null hypothesis, using Theorem 2.3, under a Skorokhod
construction,

√
k
(
Ĉj(t)− tĈj(1)

)
=
√
k
(
Ĉj(t)−Cj(t)

)
− t
√
k
(
Ĉj(1)−Cj(1)

)
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converges uniformly (0≤ t≤ 1) to

Wj

(
1,Cj(t)

)
−Cj(t)

m∑
r=1

Wr

(
1,Cj(1)

)
− t
[
Wj

(
1,Cj(1)

)
−Cj(1)

m∑
r=1

Wr

(
1,Cr(1)

)]
=Wj

(
1, tCj(1)

)
− tWj

(
1,Cj(1)

) d
=
√
Cj(1)B(t).

Then the result follows directly via Slutsky’s theorem. o

The proof of Theorem 2.6 is deferred to the Supplementary Material. Here we only present
the main steps of the proof.

We use “local asymptotic normal theory”, where the local log-likelihood and local score
processes are fundamental, consisting of reparametrizations of the former with local param-
eter h= (h1, h2) ∈R2:{

h1 =
√
k
(
γN/k − γ0

)
h2 =

√
k
(
σN/k/a0(N/k)− 1

) ⇔
{
γ = γN/k = γ0 + h1/

√
k

σ = σN/k = a0(
N
k )(1 + h2/

√
k),

L̃N,k(h) =k

∫ 1

0
`

(
γ0 +

h1√
k
,a0(

N

k
)(1 +

h2√
k

),XN−[ks],N −XN−k,N

)
ds

=k

∫ 1

0
`

(
γ0 +

h1√
k
,1 +

h2√
k
,
XN−[ks],N −XN−k,N

a0(
N
k )

)
ds− k loga0(

N

k
),

and 
∂L̃N,k
∂h1

(h1, h2) = 1√
k

∂LN,k
∂γ (γ,σN/k) = 0

∂L̃N,k
∂h2

(h1, h2) = 1√
k

∂LN,k
∂σ (γ,σN/k) = 0.

The main steps of the proof are as follows:

a) Denote θ = (γ,σ) ∈R× (0,∞). First prove that

∂2L̃N,k(h)

∂h∂hT
=−Iγ0 + oP (1), Iγ0 =−

∫ 1

0

∂2`

∂θ∂θT

(
γ0,1,

s−γ0 − 1

γ0

)
ds,

uniformly in a large enough ball Hn to ensure that it covers the true solution; Iγ0 is the
Fisher information matrix related to the approximate GPγ0,1 model

Iγ0 =

(
2

1+3γ0+2γ2
0

1
1+3γ0+2γ2

0
1

1+3γ0+2γ2
0

1
1+2γ0

)
.

Iγ0 is positive definite, which implies that the local log-likelihood process is eventually
strictly concave on Hn with probability tending to 1.

b) Then, by integration one obtains an expansion for the local log-likelihood process (holding
uniformly for h in compact sets):

L̃N,k(h) = L̃N,k(0) + hT
∂L̃N,k
∂h

(0)− 1

2
hT Iγ0h+ oP (1)

where

∂L̃N,k
∂h

(0) =
1√
k

k∑
i=1

∂`

∂θ

(
γ0,1,

XN−i+1,N −XN−k,N

a0(
N
k )

)
d→N(0,Σγ0).
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c) Finally the Argmax Theorem (van der Vaart, 2000, Corollary 5.58) provides the result: let

Mn(h) = L̃N,k(h)− L̃N,k(0),
M(h) = hTN(0,Σγ0)− 1

2h
T Iγ0h, h ∈R2.

Then,

ĥn = argmax
h∈Hn

Mn(h)
d→ h= argmax

h∈R2

M(h)
d
= I−1γ0 N(0,Σγ0)

provided ĥn is tight which holds as in Dombry and Ferreira (2019). Finally, note that

L̃N,k(ĥn) = LN,k

(
γ0 +

ĥn,1√
k
,a0(

N

k
)(1 +

ĥn,2√
k

)

)
and similarly for its derivatives.
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SUPPLEMENTARY MATERIAL

Supplementary Material for “Spatial dependence and space-time trend in extreme
events” The supplementary material consists of three sections. Section 1 provides the de-
tailed proof of Theorem 2.6. Section 2 shows a simulation study regarding the proposed
estimation and testing procedures. Section 3 validates the assumptions for the data applica-
tion.
(doi: TO BE COMPLETED BY THE TYPESETTER).
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