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Abstract
The structure of strong Indian monsoon low-pressure systems (LPSs) up to fore-
cast lead times of 15 days in 11 models of the Subseasonal-to-Seasonal (S2S)
Prediction Project is analysed. Strong LPS (SLPS) tracks are obtained from a
catalogue of LPSs tracked in all ensemble members of the S2S models during
a common reforecast period of June–September 1999–2010. SLPSs, which have
a minimum intensity equal to at least the upper-quartile intensity of all LPSs,
are then composited to generate horizontal and vertical structures of several
dynamic and thermodynamic fields. The evolution of fields with forecast lead
time and during LPS lifecycle is analysed. Furthermore, the simulation of the
lower-tropospheric monsoon circulation, precipitation biases, and the precipi-
tation contribution of LPSs are analysed. All S2S models and the multimodel
mean simulate the lower-tropospheric monsoon circulation, but prominent dry
biases are observed in the Australian Bureau of Meteorology and Environ-
ment and Climate Change Canada models. The precipitation contribution of
LPSs to the summer mean precipitation is smaller in all S2S models than in
tracks derived from ERA-Interim reanalysis. The location and amplitude of the
lower-tropospheric cold core and the location of maximum precipitation are not
well simulated by many models, particularly by the Hydrometeorological Centre
of Russia model, in which the cold core is missing altogether. The structure of rel-
ative vorticity anomaly in all S2S models and the multimodel mean is shallower
and weaker than in ERA-Interim and MERRA-2 reanalyses. Though the cold
core intensifies through the LPS lifecycle in all models, the warm core features a
midlife maximum, except in models such as Australian Bureau of Meteorology
and China Meteorological Administration. These results demonstrate the poten-
tial for S2S models at simulating the structure of SLPSs, benefiting stakeholders
that use S2S models for forecasting.
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1 INTRODUCTION

Indian monsoon low-pressure systems (LPSs) are
synoptic-scale cyclonic vortices that typically develop in
the quasi-stationary monsoon trough before propagat-
ing westnorthwestward during the summer monsoon
season (June–September) and have a typical lifespan of
3–5 days (Mooley, 1973; Godbole, 1977; Sikka, 1978; Saha
et al., 1981; Hunt and Parker, 2016). These systems are an
important component of the Indian monsoon since they
produce around 50% of the summer monsoon precipita-
tion over India (Yoon and Chen, 2005; Hunt and Fletcher,
2019) and up to 70% of the summer monsoon precipitation
over the east coast (Deoras et al., 2021b), benefiting Indian
society dependent on rain fed agriculture for their liveli-
hood. Though LPSs enable the recharge of groundwater,
strong LPSs (SLPSs) often trigger catastrophic floods in
the Indian subcontinent (e.g., Hunt and Menon, 2020),
causing adverse socio-economic impacts.

The India Meteorological Department classifies LPSs
on the basis of their mean sea-level pressure anomaly
or surface wind speeds (http://imdnagpur.gov.in/docs_
general/monsoonfaq.pdf). The systems featuring two
closed isobars in surface pressure at 2 hPa intervals over
land, or those featuring 3-min maximum sustained sur-
face wind speeds of 8.5–13 m⋅s−1 over sea, are referred to
as monsoon depressions (MDs), whereas systems weaker
than this are referred to as monsoon low-pressure areas.
Typically, around 14 LPSs form each summer, of which
two to six intensify into SLPSs, such as MDs (Sarker and
Chowdhury, 1988; Boos et al., 2015; Hunt et al., 2016a).
Though SLPSs such as MDs mostly form over the head of
the Bay of Bengal (BoB) and nearby coastal regions, other
regional LPS varieties can form over the Arabian Sea and
around Sri Lanka (Deoras et al., 2021b).

The occurrence of LPSs was reported as early as the
late 19th century by Eliot (1884), who found that LPSs
regularly form during July and August, they are weaker
than tropical cyclones, and most of them dissipate with-
out reaching northwestern parts of India. In the 20th

century, many studies analysed synoptic features of MDs.
Mulky and Banerji (1960) analysed circulation features of
a composite of 22 MDs that occurred between 1954 and
1958. They found that MDs are zonally asymmetric with
a tilt towards the southwest, a feature previously reported
by Pisharoty and Asnani (1957), and later reconfirmed
by Mooley (1973) in a larger composite of MDs occur-
ring during 1891–1960. Using meteorological charts and
radiosonde data, Krishnamurti et al. (1975, 1976), God-
bole (1977), and Sarker and Chowdhury (1988) analysed
more fields associated with MDs, such as temperature
and relative vorticity. They found that MDs have a cold
(warm) core in the lower (upper) troposphere, with the

most intense relative vorticity, winds, moisture, cloud
cover, and precipitation occurring in the southwestern
quadrant of the composite MD.

Though LPS studies in the last century were con-
strained by the lack of observations, especially over the
BoB, the availability of extensive satellite and reanaly-
sis datasets in this century has facilitated the investiga-
tion of more properties of LPSs. Hurley and Boos (2015),
who developed a global climatology of monsoon LPSs,
found that the thermal structure of MDs over India is
similar to those over the western Pacific and northern
Australia. Hunt et al. (2016a) performed a composite anal-
ysis of 106 MDs that occurred between 1979 and 2014.
Apart from confirming the previously known features
of MDs, they found that MDs occurring during active
phases of the monsoon are more intense than those during
break phases. Most recently, Deoras et al. (2021b) anal-
ysed the thermal and moisture structures of a composite
of 505 LPSs occurring between 1979 and 2018, which were
partitioned into four regional varieties. We found that
whilst all four varieties feature a similar structure, there
was a significant basin-dependent variability in the moist
thermodynamics.

Given the important role of LPSs during the sum-
mer monsoon season, it is necessary to understand the
skill of LPS predictions, especially on an extended time
scale of 15 days that is important for disaster prepared-
ness and informing agricultural practice. Deoras et al.
(2021a) investigated the prediction skill of LPSs in 11 mod-
els of the Subseasonal-to-Seasonal (S2S) Prediction Project
(Vitart et al., 2017) during June–September 1999–2010.
They found that S2S models are able to simulate LPSs
in general, but large biases are observed in the Aus-
tralian Bureau of Meteorology (BoM), China Meteoro-
logical Administration (CMA), and Hydrometeorological
Centre of Russia (HMCR) models. In fact, the multimodel
mean (MMM) track forecast error for LPSs at lead times
of 4 days is approximately twice that of the India Mete-
orological Department’s long-period average track error
for tropical cyclones over the north Indian Ocean (Mishra
et al., 2021). Therefore, it is important to improve the skill
of LPS forecasts, for which it is essential to understand
how S2S models simulate the structure and behaviour
of LPSs. In this article, we focus on SLPSs due to their
impacts on the Indian subcontinent during the summer
monsoon season; our aim is to understand the following
aspects:

• How well do S2S models simulate the circulation and
summer mean precipitation?

• How well do S2S models simulate the structure of
SLPSs?

http://imdnagpur.gov.in/docs_general/monsoonfaq.pdf
http://imdnagpur.gov.in/docs_general/monsoonfaq.pdf
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• How do fields associated with LPSs evolve with forecast
lead time and through LPS lifetime in S2S models?

We present an outline of the data and methodol-
ogy in Section 2. We look at the simulation of the
lower-tropospheric South Asian monsoon circulation in
Section 3, and precipitation biases and the precipitation
contribution of LPSs in Section 4. We then investigate the
storm-centred horizontal and vertical structures of LPSs
in Sections 5 and 6, respectively, and evolution of fields in
Section 7. We finally conclude in Section 8.

2 DATA AND METHODS

2.1 S2S database

The S2S database consists of reforecasts from the following
11 meteorological centres: the BoM, CMA, Environment
and Climate Change Canada (ECCC), European Cen-
tre for Medium-Range Weather Forecasts (ECMWF),
HMCR, Institute of Atmospheric Sciences and Climate
of the National Research Council (ISAC-CNR), Japan
Meteorological Agency (JMA), Korea Meteorological
Administration (KMA), Météo-France/Centre National
de Recherche Meteorologiques (CNRM), National Cen-
ters for Environmental Prediction (NCEP), and UK Met
Office (UKMO). Table 1 shows details of the configuration
of S2S reforecasts. Each reforecast comprises a control
reforecast as well as perturbed reforecasts that produce
ensemble members. BoM reforecasts are archived on a
2.5◦ × 2.5◦ grid, whereas other S2S models are archived on
a 1.5◦ × 1.5◦ grid. All reforecasts are archived at a daily res-
olution. Despite differences in the reforecast configuration
(e.g., reforecast frequency), there are enough commonali-
ties in the 11 S2S models to make intercomparisons (Vitart
et al., 2017). Following previous studies using the S2S
dataset (e.g., Jie et al., 2017; Vitart, 2017; Lee et al., 2018),
we assume that any bias in our results due to heterogene-
ity in the reforecast configuration will be insignificant.
Since all S2S models cover a common reforecast period
of 1999–2010, we consider reforecasts starting between
May and September 1999–2010 in this work. For tracking
LPSs (see Section 2.1), we use mean sea-level pressure, u
and v winds at 850 hPa and temperature at 925 hPa; these
variables are instantaneous (0000 UTC). We use the same
model versions considered by Deoras et al. (2021a) for
consistency. For analysing vertical structure, we use all
available pressure levels in the archive, which are 1,000,
925, 850, 700, 500, 300, 200, and 100 hPa. We compute
anomalies against the summer mean climatology in all
S2S models and reanalysis datasets (to be discussed in
Section 2.2). For S2S models, we consider the reforecast

period between June 1 and September 30, 1999–2010, in
all reforecasts starting between May 1 and September 30,
provided this period is within the first 15 days of each
reforecast.

2.2 LPS database

We use a catalogue of LPSs (Deoras et al., 2021c) tracked
in all ensemble members of 11 S2S models, ECMWF
ERA-Interim (ERA-I) reanalysis and Modern-Era Ret-
rospective Analysis for Research and Applications,
version 2 (MERRA-2). The details of this dataset are
described in Deoras et al. (2021a). In this catalogue, LPSs,
which include monsoon low-pressure areas, MDs, and
deep depressions, were tracked using a feature-tracking
algorithm (Hunt et al., 2016a; 2018) based on 850 hPa rel-
ative vorticity. Since LPSs feature a warm-over-cold core
structure (e.g., Godbole, 1977), non-LPSs were filtered
out from potential LPSs using a temperature–pressure
filter—a track is removed from the dataset if all of its track
points have 925 hPa temperature anomalies greater than
or equal to 0.5 K or non-negative mean sea-level pressure
anomalies at the centre. The climatologies of 925 hPa tem-
perature and mean sea-level pressure for track filtering
were computed by averaging all reforecasts starting the
same day and the same month, but excluding the actual
year of reforecasts, following which the forecast anoma-
lies were calculated by subtracting climatologies from the
ensemble member. Only those LPSs featuring lysis within
the first 15 days of reforecasts were retained for further
analysis. Here, we define SLPSs as systems whose mini-
mum intensity (central 850 hPa relative vorticity) reaches
at least the 75th percentile of the population of all tracked
LPSs in the respective S2S model or reanalysis dataset.
Intensity thresholds are given in Table 1.

2.3 Reanalysis datasets

We verify the results of S2S models against ERA-I (Dee
et al., 2011) and MERRA-2 (Gelaro et al., 2017) reanal-
ysis datasets. ERA-I is available at a spatial resolu-
tion of ∼ 0.7◦ × 0.7◦ and a temporal resolution of 6 hr,
whereas MERRA-2 has a spatial resolution of 0.625◦ ×
0.5◦ (longitude× latitude) and a temporal resolution of
3 hr. For analysing the vertical structure of LPSs in these
datasets, we use the same model output levels discussed
in Section 2.1. We verify the results against the MERRA-2
dataset to account for observational uncertainty. We com-
pute forecast anomalies against a summer mean cli-
matology (June–September 1999–2010) for ERA-I and
MERRA-2 reanalysis datasets.
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T A B L E 1 Configuration of reforecasts in 11 subseasonal-to-seasonal models and ERA-Interim and MERRA-2 reanalysis datasets
used in this article

Model Resolution Ensemble size Reforecast frequency Intensity threshold

BoM ∼ 2.00◦ × 2.00◦, L17 33 Six per month 6.16

CMA ∼ 1.00◦ × 1.00◦, L40 4 Daily 4.97

CNRM ∼ 0.70◦ × 0.70◦, L91 15 Four per month 3.80

ECCC 0.45◦ × 0.45◦, L40 4 Weekly 3.99

ECMWF 0.25◦ × 0.25◦, L91 11 Two per week 4.16

HMCR 1.10◦ × 1.40◦, L28 10 Weekly 2.97

ISAC-CNR 0.80◦ × 0.56◦, L54 5 Every 5 days 4.43

JMA ∼ 0.50◦ × 0.50◦, L100 5 Three per month 3.92

KMA ∼ 0.50◦ × 0.50◦, L85 3 Four per month 4.31

NCEP ∼ 1.00◦ × 1.00◦, L64 4 Daily 4.17

UKMO ∼ 0.50◦ × 0.80◦, L85 7 Four per month 4.35

ERA-Interim ∼ 0.70◦ × 0.70◦, L60 — — 3.97

MERRA-2 ∼ 0.63◦ × 0.50◦, L72 — — 5.11

Note: The intensity threshold column shows the minimum intensity of strong Indian monsoon low-pressure systems, which is based on the upper-quartile
values of central 850 hPa relative vorticity of low-pressure systems in each model, ERA-Interim, and MERRA-2.
Abbreviations: BoM, Australian Bureau of Meteorology; CMA, China Meteorological Administration; ECCC, Environment and Climate Change Canada;
ECMWF, European Centre for Medium-Range Weather Forecasts; HMCR, Hydrometeorological Centre of Russia; ISAC-CNR, Institute of Atmospheric
Sciences and Climate of the National Research Council; JMA, Japan Meteorological Agency; KMA, Korea Meteorological Administration; CNRM,
Météo-France/Centre National de Recherche Meteorologiques; NCEP, National Centers for Environmental Prediction; UKMO, UK Met Office; MERRA-2,
Modern-Era Retrospective Analysis for Research and Applications, version 2.

2.4 Global Precipitation Measurement
Integrated Multisatellite Retrievals
for GPM

We use the Global Precipitation Measurement (GPM) Inte-
grated Multisatellite Retrievals for GPM (IMERG) dataset
(Huffman et al., 2015) for evaluating precipitation biases
in S2S models. We also use this dataset to determine
the precipitation contribution and the horizontal struc-
ture of precipitation of LPSs tracked in the ERA-I and
MERRA-2 datasets. GPM IMERG is a merged precipi-
tation product that provides precipitation estimates on
a 0.1◦ × 0.1◦ grid globally every 0.5 hr. It shows notable
improvements over other precipitation products, such as
the Tropical Rainfall Measuring Mission Multisatellite
Precipitation Analysis in capturing heavy rainfall over
India during the summer monsoon season, and repre-
sents mean-monsoon rainfall more realistically (Prakash
et al., 2016; 2018; Liu 2016). However, it has difficulty
at detecting rainfall over northeastern and southeast-
ern parts of India. Furthermore, it underestimates the
frequency of heavy rainfall over northeastern parts of
India due to the orography (Prakash et al., 2018). For
most analysis in this study, we regrid the IMERG dataset
to a spatial resolution of 1◦ × 1◦ for a fair comparison
with the coarser S2S dataset, similar to Deoras et al.
(2021a).

2.5 Significance testing
and root-mean-square error

We perform an independent t-test (Snedecor and Cochran,
1989) for each S2S model and MERRA-2 to determine
if their composite states significantly differ from ERA-I.
Our null hypothesis states that an LPS composite in an
S2S model or MERRA-2 has identical average values to
the composite in ERA-I. Areas where the 95% significance
level is not satisfied will be stippled, and red line contours
will be shown in corresponding figures. Furthermore,
in order to compare the S2S results with ERA-I and
MERRA-2, we calculate a root-mean-square error for
different fields over the plotting domain. For vertical
composites, the root-mean-square error value in a model
output level is weighted by the density of air in that level.
This will facilitate a comparison of our results with future
studies that might consider vertical levels different from
those here.

3 SIMULATION OF THE
LOWER-TROPOSPHERIC SOUTH
ASIAN MONSOON CIRCULATION

In this section, we first investigate the simulation of
the mean state of the lower-tropospheric South Asian
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monsoon circulation (hereafter referred to as the mon-
soon circulation), and then investigate its simulation on
SLPS days (i.e., when at least one SLPS was present in the
domain). We consider forecast lead times of 0–15 days in
all ensemble members of 11 S2S models. Jie et al. (2017)
investigated biases in the simulation of the monsoon circu-
lation in control forecasts of 10 S2S models at forecast lead
times of 10 days; however, their analysis was limited to the
transition (May 25–June 25) and mature (June 25–July 25)
phases of the Indian monsoon. We remain, therefore, with-
out a complete understanding of the simulation of the
monsoon circulation by S2S models at lead times of up to
15 days during the climatological period as well as on SLPS
days.

Figure 1 shows the climatology of 850 hPa winds in
11 S2S models at lead times of up to 15 days, ERA-I and
MERRA-2 during June–September 1999–2010. The MMM

of S2S models is also shown. All S2S models and the MMM
are able to simulate the main features of the monsoon
circulation, such as the cross-equatorial flow, Somali Jet,
and the position of the monsoon trough, and most models
have a root-mean-square error consistent with the obser-
vational uncertainty. The monsoon trough, however, is
located further to the south in the BoM model than in oth-
ers. As a result, there are strong westerly winds over most
of the Arabian Sea, southern India, and very weak north-
westerly winds over north-central and northern parts of
India. The BoM model has the largest root-mean-square
error in wind speed, and the spread of errors in S2S mod-
els is larger than the observational uncertainty (i.e., the
root-mean-square error between MERRA-2 and ERA-I).
We now turn to 850 hPa wind anomalies (Figure 2), which
are computed by subtracting the summer mean climatol-
ogy from 850 hPa winds on SLPS days. The summer mean

F I G U R E 1 Contours show the climatology of 850 hPa winds (m⋅s−1) in all ensemble members of 11 subseasonal-to-seasonal (S2S)
models and ERA-Interim and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis datasets
during June–September 1999–2010. The multimodel mean (MMM) of S2S models is also shown. The climatology is considered for forecast lead
times of 0–15 days in all S2S models and the MMM. Wind vectors in each subplot are regridded to match the coarsest spatial resolution of the
BoM model, which is 2.5◦ × 2.5◦. Numbers outside parentheses in each subplot indicate the root-mean-square error in the wind speed (m⋅s−1)
between the respective S2S models and ERA-Interim, whereas those in parentheses indicate the pattern correlation coefficient between the
respective S2S models and ERA-Interim. BoM, Australian Bureau of Meteorology; CMA, China Meteorological Administration; ECCC,
Environment and Climate Change Canada; ECMWF, European Centre for Medium-Range Weather Forecasts; HMCR, Hydrometeorological
Centre of Russia; ISAC-CNR, Institute of Atmospheric Sciences and Climate of the National Research Council; JMA, Japan Meteorological
Agency; KMA, Korea Meteorological Administration; CNRM, Météo-France/Centre National de Recherche Meteorologiques; NCEP,
National Centers for Environmental Prediction; UKMO, UK Met Office [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 2 As Figure 1, but for wind anomaly on strong Indian monsoon low-pressure system days. Contours show the wind anomaly,
which is computed against the summer mean climatology for subseasonal-to-seasonal models, the multimodel mean (MMM), ERA-Interim,
and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). BoM, Australian Bureau of Meteorology;
CMA, China Meteorological Administration; ECCC, Environment and Climate Change Canada; ECMWF, European Centre for
Medium-Range Weather Forecasts; HMCR, Hydrometeorological Centre of Russia; ISAC-CNR, Institute of Atmospheric Sciences and
Climate of the National Research Council; JMA, Japan Meteorological Agency; KMA, Korea Meteorological Administration; CNRM,
Météo-France/Centre National de Recherche Meteorologiques; NCEP, National Centers for Environmental Prediction; UKMO, UK Met
Office [Colour figure can be viewed at wileyonlinelibrary.com]

climatology (June–September 1999–2010) is computed for
forecast lead times of 0–15 days in all ensemble members
of each S2S model. The cross-equatorial monsoon flow
strengthens on SLPS days in all S2S models, the MMM,
ERA-I, and MERRA-2, evidenced by positive anomalies
over the Arabian Sea, southern India, and the BoB. This
suggests that SLPSs influence the simulation of the mon-
soon circulation. The wind anomaly is smallest in the BoM
and ECCC models. Furthermore, winds are inaccurately
simulated by the ECCC model since there are anomalous
southwesterly winds over the Arabian Sea at 15◦N and
anomalous southerly winds over the BoB at 10◦N instead
of westerlies. However, the root-mean-square error for
most models is smaller than the observational uncertainty.
As with the climatology, the root-mean-square error is
largest in the BoM model with respect to ERA-I and small-
est in the CMA model with respect to both ERA-I and
MERRA-2.

In summary, S2S models and the MMM well sim-
ulate the monsoon circulation during the climatologi-
cal period and on SLPS days in general. Models such
as CMA, ECMWF, KMA, and UKMO have the best

performance, whereas BoM and ECCC have prominent
biases.

4 PRECIPITATION

In this section, we investigate precipitation biases and the
precipitation contribution of LPSs to the modelled sum-
mer mean precipitation. We carry out these analyses for
forecast lead times of 0–15 days during June–September
2001–2010. These results could help stakeholders in many
ways. The modelling community could thoroughly inves-
tigate reasons for precipitation biases, which would be
useful for improving S2S precipitation forecasts in the
future. Models featuring small biases in forecasts of precip-
itation as well as the precipitation contribution of LPSs can
be used for developing better forecast products, thereby
favouring better management of water resources. Since
individual LPS events can cause significant floods in the
Indian subcontinent, meteorologists and hydrologists can
use such models for LPS forecasting, resulting in improved
flood preparedness and agricultural decision making. Here

http://wileyonlinelibrary.com
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

F I G U R E 3 Precipitation bias (mm⋅day−1) in the (a, b)
European Centre for Medium-Range Weather Forecasts (ECMWF),
(c, d) National Centers for Environmental Prediction (NCEP), (e, f)
UK Met Office (UKMO) models, and (g, h) the multimodel mean
(MMM) of the 11 subseasonal-to-seasonal models for forecast lead
times of 0–15 days during June–September 2001–2010. For each
model, the bias is calculated as the model precipitation minus
Global Precipitation Measurement (GPM) Integrated Multisatellite
Retrievals for GPM precipitation for all days (left column) and
low-pressure system (LPS) days (right column) [Colour figure can
be viewed at wileyonlinelibrary.com]

we consider LPSs instead of SLPSs since weaker LPSs (e.g.,
low-pressure areas) still provide a significant precipitation
contribution to the summer mean precipitation (Hunt and
Fletcher, 2019).

4.1 Precipitation biases

Figure 3 shows precipitation biases for all ensemble mem-
bers of the three best-performing models: ECMWF, NCEP,
and UKMO. The result for the MMM is also shown in
Figure 3, whereas the results for other models are shown
in Figure S1. The biases are calculated for all days (i.e.,
climatology) and LPS days (i.e., when at least one LPS
was present in the domain). Since the BoM model has the
coarsest resolution (2.5◦ × 2.5◦), precipitation datasets of
other S2S models and IMERG are regridded to this resolu-
tion. The biases are then calculated by subtracting IMERG
precipitation from each model.

In all models, the patterns of precipitation biases on
all days are similar to those on LPS days, suggesting that
LPSs are among the important contributors to precipita-
tion biases. In the BoM and CMA models, there are promi-
nent dry biases over the monsoon core zone (Rajeevan
et al., 2010), northeastern India, BoB, and nearby coastal
regions on all days and LPS days. Whereas the CNRM,
HMCR, ISAC-CNR, and NCEP models simulate weak dry
biases over the monsoon core zone on all days, the ECCC
and JMA models simulate weak wet biases. In contrast, the
ISAC-CNR model simulates strong wet biases along the
Himalayan foothills and parts of eastern India on all days.
In all models, LPSs reduce dry precipitation biases over the
head of the BoB and the monsoon core zone, whereas in
the ECCC model they increase the wet bias. This is because
LPSs usually inhabit these regions. The MMM features
small dry biases over the BoB and small wet biases over
India on all days. The pattern is reversed on LPS days.

The dry biases over the monsoon core zone, head of
the BoB, and nearby coastal regions are well known in the
current general circulation models, including the MMM
of CMIP5 and CMIP3 models (e.g., Sperber et al., 2013;
Praveen et al., 2015). Here, following Sperber et al. (2013)
and Jie et al. (2017), we investigate how precipitation biases
are associated with biases in the lower-tropospheric mon-
soon circulation. Figure S2 shows biases in 850 hPa winds
on all days computed against ERA-I. These results are con-
sidered for forecast lead times of 0–15 days. The overall
biases in the MMM are smaller than those in individual
S2S models. The BoM, CMA, and CNRM models have
strong easterly or northeasterly anomalies over the head of
the BoB and the monsoon core zone, suggesting that dry
precipitation biases are associated with a weak monsoon
flow. This is also seen in models such as JMA and NCEP,
in which prominent dry biases over the Myanmar coast
are associated with easterly wind anomalies. In contrast, a
prominent wet bias over the monsoon trough region in the
ECCC model and wet biases along the Himalayan foothills
in the ISAC-CNR model are associated with strong west-
erly wind anomalies. These results agree with Jie et al.
(2017) in general, who found similar wind biases at fore-
cast lead times of 10 days in control runs of 10 S2S models.
We will explore the precipitation contribution of LPSs in
the next subsection to better understand these results.

4.2 Precipitation contribution

Figure 4 shows the precipitation contribution of LPSs to
the summer mean precipitation in all ensemble members
as well as the MMM of 11 S2S models. The results for
LPSs tracked in ERA-I and MERRA-2, for which GPM
IMERG precipitation is used, are also shown. We attribute
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F I G U R E 4 Percentage of seasonal (June–September 2001–2010) precipitation attributed to monsoon low-pressure systems tracked in
all ensemble members of 11 subseasonal-to-seasonal (S2S) models for forecast lead times of 0–15 days and ERA-Interim and MERRA-2
reanalysis datasets. Precipitation is attributed to a low-pressure system if it falls within 800 km of its centre. The multimodel mean (MMM) of
S2S models is also shown, which is computed by regridding the precipitation contribution in each S2S model to the coarsest spatial resolution
of the BoM model (2.5◦ × 2.5◦). The Global Precipitation Measurement (GPM) Integrated Multisatellite Retrievals for GPM dataset is used for
calculating the precipitation contribution of monsoon low-pressure systems tracked in ERA-Interim and MERRA-2 reanalysis datasets. The
subplots of ERA-Interim and MERRA-2 are highlighted in dark violet to distinguish them from the S2S dataset. BoM, Australian Bureau of
Meteorology; CMA, China Meteorological Administration; ECCC, Environment and Climate Change Canada; ECMWF, European Centre for
Medium-Range Weather Forecasts; HMCR, Hydrometeorological Centre of Russia; ISAC-CNR, Institute of Atmospheric Sciences and
Climate of the National Research Council; JMA, Japan Meteorological Agency; KMA, Korea Meteorological Administration; CNRM,
Météo-France/Centre National de Recherche Meteorologiques; NCEP, National Centers for Environmental Prediction; UKMO, UK Met
Office; MERRA-2, Modern-Era Retrospective Analysis for Research and Applications, version 2 [Colour figure can be viewed at
wileyonlinelibrary.com]

precipitation to an LPS if it falls within 800 km of its cen-
tre, as initially suggested by Hunt and Fletcher (2019).
The results agree with past studies (e.g., Hurley and Boos
2015; Hunt and Fletcher 2019; Deoras et al., 2021b) in
general—LPSs in most models and the MMM have the
largest precipitation contribution over parts of eastern and
east-central India and adjoining parts of the BoB. However,
the precipitation contribution over eastern India is smaller
in all S2S models than in ERA-I. Deoras et al. (2021a) found
that all S2S models underestimate the frequency of LPSs.
It is important, therefore, to delineate the roles of biases
on LPS precipitation and LPS frequency in total LPS pre-
cipitation biases, for which we follow a linearised budget
method. For each S2S model, we first approximate the total
simulated precipitation (TP) as follows:

TP = P × N, (1)

where P is the composite-mean LPS precipitation within
800 km of the LPS centre and N is the total number of LPSs.

From the results of ERA-I, we then apply bias corrections
to P and N:

TPbc = (P + Pb) × (N + Nb), (2)

where TPbc is the bias-corrected total precipitation, Pb is
the precipitation bias, and Nb is the LPS frequency bias. We
then determine the bias in the total simulated precipitation
(TPb) by subtracting Equation (1) from Equation (2) and
ignoringe the product term of Pb and Nb, which we assume
to be small:

TPb = (P × Nb) + (N × Pb). (3)

We then estimate relative contributions of frequency
and precipitation biases to the total precipitation bias from
Equation (3). Compared with LPS frequency biases, LPS
precipitation biases in most models have a greater relative
contribution (0.6–0.8) to the total precipitation bias over
eastern India. In contrast, biases in LPS frequency in the

http://wileyonlinelibrary.com


DEORAS et al. 9

BoM, ECCC, and JMA models contribute the most (rela-
tive contribution exceeding 0.8) to the total precipitation
bias over eastern India.

The precipitation contribution depends on the prop-
agation of LPSs over India. We find that biases in the
simulation of LPS tracks (e.g., see Deoras et al., 2021a,
figure 4) modulate their precipitation contribution. The
precipitation contribution of LPSs in models such as the
CMA and HMCR is the largest over south-central India
since LPSs propagate further southward in these models
than in others. In the ECMWF, ISAC-CNR, KMA, and
UKMO models, there is a large precipitation contribution
over northern parts of the Arabian Sea, as well as parts
of Pakistan, Afghanistan, and Iran, which is attributed
to long-lived BoB LPSs and Arabian LPSs, as suggested
by Deoras et al. (2021b). The climatological precipita-
tion over these regions during the summer monsoon
season is very small, which means that any passing LPS
makes a proportionately large contribution to precipi-
tation. The precipitation contribution over the Arabian
Sea is larger in MERRA-2 than in ERA-I, which is due
to a larger frequency of Arabian LPSs (Deoras et al.,
2021a). Furthermore, the precipitation contribution of
LPSs over eastern parts of India is smaller in MERRA-2
than in ERA-I, which is attributed to a lower track
density.

In conclusion, stakeholders could benefit from precip-
itation forecasts from the MMM since precipitation biases
are small and the MMM simulates the precipitation con-
tribution reasonably well. They could also benefit from
precipitation forecasts of the ECCC, ECMWF, ISAC-CNR,
JMA, and UKMO models after applying suitable bias
corrections.

5 HORIZONTAL STRUCTURE
OF SLPS

In this section, we discuss the horizontal structure of pre-
cipitation, 850 hPa wind, mean sea-level pressure and
850 hPa relative vorticity for composites of SLPSs. For com-
positing, we centralise each SLPS at each time step to 0◦
relative latitude and 0◦ relative longitude. We have not
rotated composites in this study. Hunt et al. (2016b) com-
pared unrotated and rotated composites of storm-centred
precipitation for MDs. They found that the location of
maximum precipitation, which is not collocated with
the LPS centre, is not affected by rotation, whereas its
magnitude is reduced in the rotated composite. Other
fields (e.g., relative vorticity) feature smaller variance than
precipitation, and their maxima are collocated with the
LPS centre.

5.1 Precipitation and wind

Figure 5 shows storm-centred precipitation for com-
posites of SLPSs tracked in all ensemble members of
eleven S2S models, the MMM, ERA-I and MERRA-2
during June–September 2001–2010. Vectors showing 850
hPa wind as an anomaly to the summer mean clima-
tology are overlaid. The overall composite-mean pre-
cipitation produced by SLPSs in S2S models and the
MMM is in agreement with that produced by observed
MDs, as investigated in past studies (e.g., Stano et al.
2002). Whilst all models underestimate the maximum
precipitation (considered within 800 km of the com-
posite centre), there is a prominent underestimation in
the maximum and composite-mean precipitation in the
HMCR model, which also poorly simulates the 850 hPa
wind anomaly. The MMM also underestimates the maxi-
mum and composite-mean precipitation. The BoM (CMA)
model features the smallest (largest) root-mean-square
error with respect to ERA-I. The error in S2S mod-
els is larger than the observational uncertainty in the
composite-mean precipitation in reanalyses, which is cal-
culated using the GPM IMERG dataset.

The region of maximum precipitation is located ∼
300 km from the centre. In the CNRM, ECMWF, JMA,
NCEP, and UKMO models, it is located to the south-
west of the centre, which is in agreement with ERA-I,
MERRA-2, and past studies (e.g., Godbole, 1977; Yoon and
Chen 2005; Hunt et al. 2016a). In contrast, it is located to
the relative south of the centre in the BoM, CMA, ECCC,
HMCR, and ISAC-CNR models and the MMM. The region
of maximum precipitation is located to the westsouthwest
of the LPS centre, which is attributed to quasigeostrophic
dynamical lifting (e.g., Sanders, 1984; Boos et al. 2015)
and horizontal moisture advection (e.g., Adames and Ming
2018), with adiabatic quasigeostrophic ascent dominat-
ing in the lower troposphere over the maximum pre-
cipitation region (Rajamani and Rao, 1981; Murthy and
Boos, 2020). We investigate moisture-flux convergence at
850 hPa (Figure S3), since other fields, such as vertical
velocity, are not commonly available in S2S models. It
should be noted that we have excluded the ISAC-CNR
and KMA models, since specific humidity is not avail-
able. Among all S2S models, the HMCR model features
the weakest moisture-flux convergence, which explains
the lowest precipitation in this model. There is a strong
positive linear correlation (Figure S6a) between mean
moisture-flux convergence and mean precipitation (both
considered within 800 km of the composite centre) among
S2S models—the Pearson correlation coefficient is 0.84
and it is statistically significant at the 95% confidence level.
Since LPSs are located closer to the Himalayas in BoM than
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F I G U R E 5 Storm-centred precipitation (mm⋅day−1) for composites of strong Indian monsoon low-pressure systems (SLPSs) tracked in
all ensemble members of 11 subseasonal-to-seasonal (S2S) models and ERA-Interim and Modern-Era Retrospective Analysis for Research
and Applications, version 2 (MERRA-2) reanalysis datasets during June–September 2001–2010 (contours). Wind vectors showing the 850 hPa
wind speed as an anomaly to the summer mean climatology for the same period are overlaid. These results are considered for forecast lead
times of 0–15 days. The multimodel mean (MMM) of S2S models is also shown. The Global Precipitation Measurement (GPM) Integrated
Multisatellite Retrievals for GPM (IMERG) dataset is used for calculating precipitation for SLPSs tracked in ERA-Interim. Numbers indicate
the root-mean-square error in the composite-mean precipitation (mm⋅day−1) between the respective S2S models and GPM IMERG for SLPSs
in ERA-Interim, whereas numbers in parentheses indicate the error (mm⋅day−1) in the maximum precipitation (within 800 km from the
centre). For MERRA-2, numbers show the aforementioned errors between SLPSs in MERRA-2 and ERA-Interim. BoM, Australian Bureau of
Meteorology; CMA, China Meteorological Administration; ECCC, Environment and Climate Change Canada; ECMWF, European Centre for
Medium-Range Weather Forecasts; HMCR, Hydrometeorological Centre of Russia; ISAC-CNR, Institute of Atmospheric Sciences and
Climate of the National Research Council; JMA, Japan Meteorological Agency; KMA, Korea Meteorological Administration; CNRM,
Météo-France/Centre National de Recherche Meteorologiques; NCEP, National Centers for Environmental Prediction; UKMO, UK Met
Office [Colour figure can be viewed at wileyonlinelibrary.com]

in other models, there is a large moisture-flux convergence
to the relative north. The magnitude of precipitation for
SLPSs is smaller in MERRA-2 than in ERA-I (Figure S4d),
which is attributed to a weaker moisture-flux convergence.

5.2 Mean sea-level pressure
and relative vorticity

Here, we would like to understand the simulation of the
structure of mean sea-level pressure (MSLP) anomaly and

850 hPa relative vorticity for SLPS composites. Figure 6
shows storm-centred 850 hPa relative vorticity (10−5 s−1)
in coloured contours and MSLP anomaly in line con-
tours. The difference between composites of MERRA-2
and ERA-I is shown in Figure S4. The maximum relative
vorticity and MSLP anomaly are located at the composite
centre in all S2S models, the MMM, ERA-I, and MERRA-2.
The CMA, NCEP, ECMWF, and ISAC-CNR models sim-
ulate the largest relative vorticity and MSLP anomaly,
whereas the HMCR (BoM) model simulates the small-
est relative vorticity (MSLP anomaly). There is a strong
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F I G U R E 6 Storm-centred relative vorticity (10−5 s−1) at 850 hPa in shaded contours and mean sea-level pressure anomaly (hPa) in line
contours for composites of strong Indian monsoon low-pressure systems tracked in all ensemble members of 11 subseasonal-to-seasonal
(S2S) models and ERA-Interim and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis
datasets during June–September 1999–2010. The anomaly is considered for forecast lead times of 0–15 days in all S2S models, and is
computed against the summer mean climatology for S2S models and ERA-Interim. The multimodel mean (MMM) of S2S models is also
shown. Stippling and modified line contours indicate regions where the composite does not significantly differ from ERA-Interim at the 95%
level, based on an independent t-test. Numbers indicate the root-mean-square error in the 850 hPa relative vorticity (10−5 s−1) and mean
sea-level pressure anomaly (hPa, shown in parentheses) between the respective S2S models and ERA-Interim. For MERRA-2, numbers
represent root-mean-square error in the same fields, which is computed with respect to ERA-Interim. BoM, Australian Bureau of
Meteorology; CMA, China Meteorological Administration; ECCC, Environment and Climate Change Canada; ECMWF, European Centre for
Medium-Range Weather Forecasts; HMCR, Hydrometeorological Centre of Russia; ISAC-CNR, Institute of Atmospheric Sciences and
Climate of the National Research Council; JMA, Japan Meteorological Agency; KMA, Korea Meteorological Administration; CNRM,
Météo-France/Centre National de Recherche Meteorologiques; NCEP, National Centers for Environmental Prediction; UKMO, UK Met
Office [Colour figure can be viewed at wileyonlinelibrary.com]

negative and statistically significant (at the 95% confidence
level) intermodel linear correlation (Pearson correlation
coefficient of −0.74) between maximum MSLP anomaly
and maximum precipitation (Figure S6b). The weakest
rainfall (Figure 5), therefore, is associated with the weak
intensity of SLPSs. The intensity at the composite centre in
reanalyses is similar; however, the intensity to the relative
north and northeast of the composite centre in MERRA-2
is more than in ERA-I. This does not have any implica-
tions for the model result since the spread of errors among

models is larger than the observational uncertainty. With
respect to ERA-I, the root-mean-square error for MSLP
anomaly (850 hPa relative vorticity) is the largest for the
HMCR (BoM and CMA) models, whereas the BoM and
HMCR models have the largest root-mean-square error for
both fields with respect to MERRA-2 (see Table S1).

In conclusion, stakeholders could benefit from the
MMM, ECMWF, ISAC-CNR, NCEP, and UKMO models
given the best simulation of the horizontal structure of
fields discussed in this section.
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6 VERTICAL STRUCTURE

In this section, we analyse the vertical structure of relative
vorticity, temperature, and moist static energy of compos-
ites of SLPSs in all S2S models, the MMM, ERA-I, and
MERRA-2. The vertical structures are drawn above the
zero-latitude line, so relative west is to the left and relative
east is to the right of 0◦ relative longitude. Similar to previ-
ous analyses, we consider forecast lead times of 0–15 days
in all S2S models.

6.1 Relative vorticity

Figure 7 shows the vertical structure of relative vorticity
anomaly of composites of SLPSs in all ensemble mem-
bers of 11 S2S models, the MMM, ERA-I, and MERRA-2,
and Figure S5 shows the difference between MERRA-2
and ERA-I. The structure is zonally symmetric with a tilt
towards the relative west, and it has a maximum intensity
near the 850 hPa level, which agrees with past studies (e.g.,

Godbole, 1977; Hunt et al. 2016a). The BoM and HMCR
models simulate the smallest anomalies, whereas models
such as the ECMWF and ISAC-CNR simulate the largest
anomalies. Compared with ERA-I and MERRA-2, all S2S
models and the MMM simulate shallower and weaker
anomalies. The overall vorticity structure is shallower in
MERRA-2 than in ERA-I. In the MMM, most S2S models,
ERA-I, and MERRA-2 there are negative anomalies in the
upper troposphere due to the divergent outflow of SLPSs.
The root-mean-square error is largest for the HMCR
and BoM models with respect to ERA-I and MERRA-2,
whereas it is smallest for the ECMWF and CMA models
with respect to ERA-I and MERRA-2, respectively. As seen
in previous results, the spread in errors among S2S models
is larger than the observational uncertainty.

6.2 Temperature

We would now like to understand the vertical structure of
temperature anomaly (Figure 8). As discussed in Section 1,

F I G U R E 7 Vertical structure of relative vorticity anomaly (10−5 s−1) of storm-centred composites of strong Indian monsoon
low-pressure systems in all ensemble members of 11 subseasonal-to-seasonal (S2S) models, ERA-Interim and Modern-Era Retrospective
Analysis for Research and Applications, version 2 (MERRA-2) reanalysis datasets during June–September 1999–2010. The anomaly is
considered for forecast lead times of 0–15 days in all S2S models, and is computed against the summer mean climatology. The multimodel
mean (MMM) of S2S models is also shown. The vertical structure is drawn above the zero-relative-latitude line in a horizontal composite.
Stippling indicates regions where the composite does not significantly differ from ERA-Interim at the 95% level, based on an independent
t-test. Numbers indicate the root-mean-square error in the relative vorticity anomaly (10−5 s−1) between the respective S2S models and
ERA-Interim, or against MERRA-2 in parentheses. The number in MERRA-2 shows the root-mean-square error between MERRA-2 and
ERA-Interim. BoM, Australian Bureau of Meteorology; CMA, China Meteorological Administration; ECCC, Environment and Climate
Change Canada; ECMWF, European Centre for Medium-Range Weather Forecasts; HMCR, Hydrometeorological Centre of Russia;
ISAC-CNR, Institute of Atmospheric Sciences and Climate of the National Research Council; JMA, Japan Meteorological Agency; KMA,
Korea Meteorological Administration; CNRM, Météo-France/Centre National de Recherche Meteorologiques; NCEP, National Centers for
Environmental Prediction; UKMO, UK Met Office [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 8 As Figure 7, but for temperature anomaly (K). BoM, Australian Bureau of Meteorology; CMA, China Meteorological
Administration; ECCC, Environment and Climate Change Canada; ECMWF, European Centre for Medium-Range Weather Forecasts;
HMCR, Hydrometeorological Centre of Russia; ISAC-CNR, Institute of Atmospheric Sciences and Climate of the National Research Council;
JMA, Japan Meteorological Agency; KMA, Korea Meteorological Administration; CNRM, Météo-France/Centre National de Recherche
Meteorologiques; NCEP, National Centers for Environmental Prediction; UKMO, UK Met Office; MERRA-2, Modern-Era Retrospective
Analysis for Research and Applications, version 2; MMM, multimodel mean [Colour figure can be viewed at wileyonlinelibrary.com]

LPSs have a warm-over-cold structure; the cold core in the
lower troposphere is attributed to evaporative cooling due
to precipitation and reduced insolation due to significant
cloud cover (Sarker and Chowdhury, 1988; Sørland and
Sorteberg, 2015), whereas the warm core is attributed to
latent heating from deep convection (Ashok et al., 2000;
Hunt et al., 2016b). All S2S models and the MMM sim-
ulate the upper-tropospheric warm core; however, there
are biases in the simulation of its vertical extent. The
composite warm core is shallower in the BoM, ECCC,
and JMA models than in other models. It is the weak-
est in the BoM, JMA, and HMCR models, suggesting that
either there is less convection or the convective scheme
is producing less heating due to factors such as biases in
the vertical moisture flux. The warm core is weaker in
the MMM than in reanalyses. In contrast, models such
as the ECMWF, ISAC-CNR, UKMO, and NCEP simulate
a strong warm core whose magnitude is similar to that
in ERA-I and MERRA-2. There is a strong positive and
statistically significant (at the 95% confidence level) inter-
model linear correlation (Pearson correlation coefficient of
0.74) between the maximum intensity of the warm core at
300 hPa and maximum precipitation within 800 km of the
composite centre (Figure S6c).

Unlike for the warm core, there are larger biases in
the simulation of the lower-tropospheric cold core. The
HMCR model does not simulate the cold core. The most
intense structure of the cold core in ERA-I, MERRA-2,

ECCC, ECMWF, and UKMO models is exactly above the
composite centre; however, it is displaced in other S2S
models and the MMM. Similar to the warm core, the cold
core is shallower in the BoM and JMA models than in other
models and reanalyses, which is due to the weak inten-
sity of SLPSs. There is a moderate negative and statistically
significant (at the 95% confidence level) intermodel lin-
ear correlation (Pearson correlation coefficient of −0.61)
between the magnitude of the cold core (i.e., maximum
925 hPa temperature anomaly) and maximum precipita-
tion within 800 km of the composite centre (Figure S6d),
agreeing with findings of previous studies (Sarker and
Chowdhury, 1988; Hunt et al., 2016a) that the develop-
ment of the cold core is attributed to evaporating precip-
itation. This result also suggests that the general thermal
structure is well captured in models featuring more accu-
rate rainfall (e.g., NCEP). The UKMO model features the
smallest root-mean-square error with respect to ERA-I and
MERRA-2.

6.3 Moist static energy

We investigate the vertical structure of moist static energy
(MSE) anomaly in this subsection. MSE is a useful ther-
modynamic parameter to understand moist convection
since it is conserved under a hydrostatic balance and moist
adiabatic processes. It has been used to analyse LPSs in
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F I G U R E 9 As Figure 7, but for moist static energy anomaly (103 J⋅kg−1). The results for the Institute of Atmospheric Sciences and
Climate of the National Research Council and Korea Meteorological Administration models are not shown due to the unavailability of the
specific humidity field. Output for the 100 hPa level is not shown in ERA-Interim and Modern-Era Retrospective Analysis for Research and
Applications, version 2 (MERRA-2) since it is not available in subseasonal-to-seasonal models. BoM, Australian Bureau of Meteorology;
CMA, China Meteorological Administration; ECCC, Environment and Climate Change Canada; ECMWF, European Centre for
Medium-Range Weather Forecasts; HMCR, Hydrometeorological Centre of Russia; JMA, Japan Meteorological Agency; CNRM,
Météo-France/Centre National de Recherche Meteorologiques; NCEP, National Centers for Environmental Prediction; UKMO, UK Met
Office; MMM, multimodel mean [Colour figure can be viewed at wileyonlinelibrary.com]

past studies (e.g., Karmakar et al., 2020). The MSE h is
defined as

h = cpdT + qvL + gz (4)

where cpd is the heat capacity of dry air at constant pres-
sure, T is the temperature, qv is the specific humidity, L is
the latent heat of vaporization of liquid water, g is the accel-
eration due to gravity, and z is the altitude. We compute
the geopotential contribution term gz from the geopoten-
tial height. The second term in this equation shows the
importance of latent heating and its contribution to the
first term that measures the dry-air enthalpy. Therefore,
large values of MSE are related to more moisture content,
which is associated with the intensity of LPSs. We could
not compute MSE anomalies for the ISAC-CNR and KMA
models since the specific humidity field is not available.
The MSE anomaly in all models, the MMM, ERA-I, and
MERRA-2 (Figure 9) is maximum in the lower troposphere
near the 850–700 hPa level. This result agrees with Hunt
et al. (2016a), who inferred that the moisture structure of
an MD composite features two maxima: in the upper tro-
posphere and near the 850 hPa level. The MSE anomaly
is the weakest in the HMCR, JMA, and ECCC models,
which does not exceed 3 × 103 J⋅kg−1. The ECMWF and
CNRM models feature anomalies of 6 × 103 J⋅kg−1, which
are similar to those in MERRA-2. However, the magni-
tude of the lower-tropospheric MSE anomaly is weaker
in MERRA-2 than in ERA-I. Similar to the structure
of relative vorticity anomaly (Figure 7) and temperature
anomaly (Figure 8), the MSE anomaly structure shows a

westward tilt with height in some models, such as BoM
and NCEP. The ECMWF and NCEP models feature the
smallest root-mean-square error with respect to ERA-I and
MERRA-2, whereas the BoM, HMCR, and ECCC models
feature large errors.

In conclusion, the ECMWF, NCEP, and UKMO models
have the best simulation of horizontal and vertical struc-
tures of SLPS composites, whereas the HMCR model has
the worst.

7 VARIABILITY

In order to better represent various LPS processes in
models, it is important to understand how the structure
evolves with the LPS lifespan as well as forecast lead
time of S2S models. Here, we focus on the evolution of
850 hPa relative vorticity, lower-tropospheric cold core,
and upper-tropospheric warm core, since they have not
been explored in previous studies. We consider these fields
at the centre of LPSs. It should be noted that we con-
sider LPSs instead of SLPSs since we are interested in the
lifetime evolution of these fields and we would not expect
an SLPS to meet its vorticity threshold throughout its life.

7.1 Evolution over forecast lead time

Understanding how the structure of LPS varies with fore-
cast lead time may provide insights into bias development
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(a) (b) (c)

F I G U R E 10 (a) Relative vorticity anomaly (10−5 s−1) at the 850 hPa level and temperature anomalies (K) at (b) 925 hPa and (c) 300 hPa
levels of composites of Indian monsoon low-pressure systems as a function of forecast lead time (days). These anomalies, which are
computed against the summer mean climatology, are taken from the centre of low-pressure systems tracked in all ensemble members of 11
subseasonal-to-seasonal models during June–September 1999–2010. The anomalies are considered for forecast lead times of 0–15 days. The
multimodel mean (MMM) is also shown. Step 0 is not available for the BoM, ECCC, JMA, and KMA models. BoM, Australian Bureau of
Meteorology; CMA, China Meteorological Administration; ECCC, Environment and Climate Change Canada; ECMWF, European Centre for
Medium-Range Weather Forecasts; HMCR, Hydrometeorological Centre of Russia; ISAC-CNR, Institute of Atmospheric Sciences and
Climate of the National Research Council; JMA, Japan Meteorological Agency; KMA, Korea Meteorological Administration; CNRM,
Météo-France/Centre National de Recherche Meteorologiques; NCEP, National Centers for Environmental Prediction; UKMO, UK Met
Office [Colour figure can be viewed at wileyonlinelibrary.com]

and how modelled LPS could be better represented in the
future. Figure 10 shows the evolution of 850 hPa relative
vorticity anomaly, 925 hPa temperature anomaly (a mea-
sure of the cold core), and 300 hPa temperature anomaly
(a measure of the warm core) for forecast lead times of
0–15 days. In the BoM (HMCR) model, the 850 hPa rela-
tive vorticity anomaly increases (decreases) with forecast
time, and there is a prominent increase in the relative vor-
ticity anomaly between forecast lead times of 3 and 10 days
in the CMA model. The relative vorticity anomaly in the
CMA model decreases after attaining the maximum mag-
nitude at forecast lead times of ∼ 5 days. We compute the
estimated convective available potential energy (ECAPE;
Ditchek et al. 2016) to understand the results (not shown).
ECAPE is the difference between the surface moist static
energy and the upper-tropospheric vertically averaged
saturation moist static energy. Ditchek et al. (2016) found
that ECAPE has the largest anomalous contribution to
the seasonal cycle of genesis of MDs. For illustration pur-
poses, we will discuss the results for the CMA and HMCR
models. Compared with forecast lead times of 0–5 days,
the ECAPE in the CMA model increases by 6 × 103 J⋅kg−1

over the monsoon core zone and head of the BoB during

forecast lead times of 10–15 days. This leads to an increase
in the relative vorticity anomaly during forecast lead times
of 10–15 days. In contrast, ECAPE difference between fore-
cast lead times of 12–15 days and 0–3 days in the HMCR
model is −5 × 103 J⋅kg−1, suggesting unfavourable condi-
tions for LPSs during forecast lead times of 12–15 days.

Most models feature an intensification of the 925 hPa
temperature anomaly with increasing forecast lead times.
The intensification of the temperature anomaly in the
HMCR model suggests that there is a tendency of more
lysis of LPSs with increasing forecast lead times—matured
LPSs at longer lead times would have a cooler lower tropo-
sphere than their younger counterparts. The CMA model
shows anomalous warming in the lower troposphere after
∼ 1 day forecast lead time, suggesting a significant propor-
tion of young LPSs. This is also evident from the 300 hPa
temperature anomaly, which shows an increase from lead
times of ∼ 6 days onwards. Interestingly, the BoM model
also shows anomalous warming at longer lead times at
the 300 hPa level, suggesting a significant proportion of
young LPSs.

In conclusion, the MMM is less sensitive to forecast
lead time than individual S2S models are.

http://wileyonlinelibrary.com
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(a) (b) (c)

F I G U R E 11 (a) Relative vorticity anomaly (10−5 s−1) at the 850 hPa level and (b, c) temperature anomalies (K) at (b) 925 hPa and (c)
300 hPa levels of composites of Indian monsoon low-pressure systems (LPSs) as a function of LPS lifespan (percentage) during
June–September 1999–2010. These anomalies are computed against the summer mean climatology and are considered for forecast lead times
of 0–15 days. They are taken from the centre of LPSs tracked in all ensemble members of 11 subseasonal-to-seasonal models and the
ERA-Interim and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis datasets. The
multimodel mean (MMM) is also shown. BoM, Australian Bureau of Meteorology; CMA, China Meteorological Administration; ECCC,
Environment and Climate Change Canada; ECMWF, European Centre for Medium-Range Weather Forecasts; HMCR, Hydrometeorological
Centre of Russia; ISAC-CNR, Institute of Atmospheric Sciences and Climate of the National Research Council; JMA, Japan Meteorological
Agency; KMA, Korea Meteorological Administration; CNRM, Météo-France/Centre National de Recherche Meteorologiques; NCEP,
National Centers for Environmental Prediction; UKMO, UK Met Office [Colour figure can be viewed at wileyonlinelibrary.com]

7.2 Evolution over LPS lifespan

In order to fully compare various LPS processes in S2S
models with observed behaviour, it is necessary to study
the evolution of structure during LPS lifetime. We inter-
polate atmospheric fields of interest onto a common time
axis, since different LPSs can have a different lifespan.
Here, we construct a lifetime-percentage array, following
Hunt et al. (2016a). We first calculate the percentage age
of an LPS at each time step, with the first (final) time
step denoting genesis (lysis) or 0% (100%) lifespan, and
then interpolate fields for all such time steps on this array.
We iterate this process for all LPSs, and finally compute a
mean value for each S2S model, ERA-I, and MERRA-2.

Most S2S models along with the MMM feature maxi-
mum 850 hPa relative vorticity anomalies around midlife
(Figure 11), in agreement with ERA-I, MERRA-2, and
previous findings (Hunt et al., 2016a). However, the CMA
and HMCR models feature a different pattern. LPSs in the
CMA model attain a maximum magnitude at ∼70% lifes-
pan, whereas those in the HMCR model do not feature
a midlife maximum, suggesting that LPSs do not evolve
in a realistic manner. As discussed in the previous sub-
section, ECAPE in the HMCR model is not favourable

for the intensification or genesis of LPSs at longer lead
times, which seems to be preventing LPSs from attain-
ing a midlife maximum. This is supported by findings of
Deoras et al. (2021a), who found that SLPSs in the HMCR
model are not able to propagate inwards over the land
(see lysis in figure 4 of that article). The slightly delayed
maximum anomaly in the CMA model is attributed to
an increase in the relative vorticity during forecast lead
times of 3–10 days, when LPSs having genesis in the early
period of reforecasts would be in their mature phase. Sim-
ilar to the findings for relative vorticity anomaly, many
models, and ERA-I and MERRA-2 reanalyses, feature a
midlife maximum in the 300 hPa temperature anomaly.
This is expected, since latent heating due to convection
would respond to the LPS intensity. However, BoM shows
an increasing temperature anomaly with increasing LPS
lifespan, whereas CMA, JMA, and NCEP show a decreas-
ing temperature anomaly. The influence of forecast lead
time on these results is clear, since the BoM model features
increasing temperature anomalies, whereas the CMA,
JMA, and NCEP feature decreasing temperature anoma-
lies with increasing forecast lead time (see Figure 10). The
925 hPa temperature anomalies intensify in all S2S mod-
els, ERA-I, and MERRA-2 with increasing LPS lifespan.

http://wileyonlinelibrary.com
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More mature LPSs are more likely to be found over land
rather than sea. Since land has a lower heat capacity than
sea, the effect of reduced insolation due to LPS-cloud
cover becomes more prominent over land, resulting in
greater cooling in the lower troposphere.

In conclusion, the BoM, CMA, HMCR, and ISAC-CNR
models have a high sensitivity to forecast lead time,
whereas the MMM has a lower sensitivity than individual
models. The evolution of fields with respect to LPS lifes-
pan in the ECWMF, UKMO, and NCEP models, which
have the best simulation of horizontal and vertical struc-
tures, is most similar to ERA-I and MERRA-2. Therefore,
these models and the MMM are useful for understanding
LPS processes. The BoM, CMA, HMCR, and ISAC-CNR
models, most of which feature large biases in LPS tracks,
may be of interest to the modelling community for further
exploring the factors responsible for atypical evolution of
fields.

8 CONCLUSIONS

Indian monsoon LPSs are major rain-bearing cyclonic
vortices that form during the summer monsoon sea-
son (June–September). Despite their important role for
water supply and triggering floods, the simulation of their
structure by numerical weather prediction models is not
well understood. In this article, we analysed the sim-
ulation of the structure of SLPSs by 11 models of the
Subseasonal-to-Seasonal (S2S) Prediction Project (Vitart
et al., 2017). Here, SLPSs are systems whose minimum
intensity (central 850 hPa relative vorticity) reaches at
least the 75th percentile of the population of all tracked
LPSs in the respective S2S model or reanalysis dataset.
These systems were analysed in all ensemble members
of 11 S2S models during a common reforecast period of
June–September 1999–2010 and for forecast lead times of
0–15 days. The results were verified against the ECMWF
ERA-I reanalysis and MERRA-2 datasets. The key results
of this paper can be summarised as follows.

The simulation of the circulation
and summer mean precipitation

All S2S models and the MMM simulated the main features
of the lower-tropospheric (850 hPa) monsoon circulation
during the climatological period. They also simulated the
intensification of the circulation when SLPSs were present.
However, there were regional biases in some models, such
as BoM, NCEP, and ECCC. We found dry precipitation
biases over the monsoon core zone, northeastern India,
head of the BoB, and nearby coastal regions in the BoM

and CMA models, which were associated with an east-
erly wind bias at the 850 hPa level. In contrast, the JMA
and ECCC models simulated weak wet biases over the
monsoon core zone, which were associated with a west-
erly wind bias. The precipitation contribution of LPSs to
the summer monsoon precipitation was smaller in all S2S
models than in ERA-I. This was mainly due to biases
in LPS precipitation in most S2S models. In summary,
the CMA, ECMWF, HMCR, ISAC-CNR, JMA, KMA, and
UKMO models well simulated the monsoon circulation in
general, and the MMM outperformed individual models
for precipitation.

The simulation of the structure of SLPSs

We examined horizontal structures of precipitation, MSLP,
wind, and relative vorticity at 850 hPa for composites of
SLPSs. There was a prominent underestimation of maxi-
mum precipitation and composite-mean precipitation in
the HMCR model, which was associated with the weak
intensity of SLPSs. Many models correctly simulated the
location of maximum precipitation to the relative south-
west of the centre, except for the CMA, ECCC, HMCR,
and ISAC-CNR models, which featured a precipitation
maximum to the relative south of the centre, coinciding
with the maximum moisture-flux convergence at 850 hPa.
The CMA, NCEP, ECMWF, and ISAC-CNR (HMCR) mod-
els simulated the largest (smallest) relative vorticity and
MSLP anomalies.

We found that the vertical structure of relative vortic-
ity anomaly was shallower and weaker in all S2S mod-
els and the MMM than in ERA-I and MERRA-2. The
upper-tropospheric warm core was shallow (i.e., eroded
from the top) in the BoM, ECCC, and JMA models. The
HMCR model, which simulated a weak warm core, did not
simulate the lower-tropospheric cold core. We also found
that the moist static energy anomaly was the weakest in the
HMCR, JMA, and ECCC models, and the structure showed
a westward tilt with height in some models, such as BoM
and NCEP. In summary, the ECMWF, NCEP, and UKMO
models had the best simulation of horizontal and vertical
structures of SLPSs, whereas HMCR had the worst.

Evolution of fields

We examined the evolution of central 850 hPa relative vor-
ticity and temperature anomalies at 925 hPa and 300 hPa
over forecast lead time of S2S models and LPS lifespan.
The BoM, CMA, HMCR, and ISAC-CNR models were
highly sensitive to forecast lead time due to variations in
large-scale conditions, such as the ECAPE (Ditchek et al.,
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2016). There was an influence of the forecast lead time
on the lifetime evolution of fields in these models. How-
ever, other S2S models and the MMM featured a midlife
maximum in the 850 hPa relative vorticity anomaly and
300 hPa temperature anomaly, in agreement with Hunt
et al. (2016a). The cold core in the lower troposphere
strengthened in all models and the MMM with increasing
LPS age. This was due to the effect of reduced insolation
due to cloud cover from older LPSs over land. This effect
is more prominent over land than sea due to differences in
heat capacities.

The results of this paper demonstrate that S2S mod-
els simulate the structure of SLPSs, with the ECMWF,
NCEP, and UKMO models having the best simulation in
general. These results, combined with the results of Deo-
ras et al. (2021a), suggest that stakeholders could use S2S
models for forecasting LPSs. The results of this study in
particular would encourage the modelling community to
carry out further investigations of factors such as biases
in temperature anomalies in S2S models. In addition, the
results would benefit meteorologists and hydrologists, who
could use the S2S dataset for developing better products
for forecasting SLPSs and their impacts. Since the tropical
intraseasonal oscillation (ISO) strongly controls LPS fre-
quency (Krishnamurthy and Ajayamohan, 2010; Deoras
et al., 2021b), it is entirely plausible that LPS composites
feature more intense structures during active phases of
the ISO than during inactive phases. Vitart (2017) found
that S2S models can skilfully predict the Madden–Julian
Oscillation with a lead time of up to 4 weeks. The S2S
models can also predict the Boreal Summer ISO (BSISO)1
and BSISO2 events with a lead time of up to 6–24.5 days
and 6.5–14 days, respectively (Jie et al., 2017). However, an
analysis of how this affects SLPS structure is beyond the
scope of this study. Lastly, a role of the El Niño Southern
Oscillation in modulating the frequency and LPS structure
needs to be examined in the S2S dataset. In this study, we
assumed that any bias in the results due to heterogene-
ity in the reforecast configuration was insignificant. This
aspect could be investigated in a future study by determin-
ing the sensitivity of the results to the ensemble size and
reforecast frequency. For example, SLPS structures can be
intercompared in a range of ensemble members in each
S2S model.
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