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Abstract 
 

The synchronised relationship between financial and fundamental prices has 

been topical for years now. It seems that option pricing theory (OPT) has not 

be used to disentangle that relationship between two prices during merger and 

acquisition (M&A) activities. This article uses Put-Call parity theorem to 

explore the divergence of financial and fundamental prices in any firm during 

acquisition process. The results illustrate that price differentials are persistent; 

moreover, the differentials are caused by the exponential factor. Despite the 

fact that some principles are drawn from the REIT literature, the results have 

wider implications for industries with similar traits to REITs. 
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1 Background 

 

Marcato et al. (2019) explored exchange options in the REIT industry. In that study, 

some exchange options occurred between REITs and real estate operating companies (REOCs), 

some between REOCs and REOCs, some between REITs/REOCs and other type of firms. In 

terms of funding, some transactions were funded through cash only, stocks and cash (either 

debt or equity, or both) and some via stocks only. In presenting the results, Marcato et al. (2019) 

grouped the results based on the following parameters; (i) conflict of interest, (ii) market 

growth, (iii) funding (i.e. type of funding) and (v) specialisation. The results illustrated that the 

four parameters explain exchange options occurrence and persistent strategic investment 

decisions. However, Marcarto et al. (2019) never explained volatilities behaviour in those 

exchange options and the volatility patterns for determined window periods. 

Marcato et al. (2018) investigated the latter statement. Their study used the Black-

Scholes (1973) model (from here B-S) for only cash-finaced options. The deals used are 

classified as being small to medium transactions. The salient results of Marcato et al. (2018) 

illustrate that initial put value is in-the-money and synergies are 30% on average. In terms of 

converge to their long-term average volatilities, spot volatilities took some time to converge. 

These converge challenges are common on actual M&A deals, but what about on actual 

exchange options? The slower converges were evident both for underlying stock and converge 

towards the closing prices of target firms. Furthermore, Marcato et al. (2018) illustrated evident 

risks and inherent excess returns in those exchange options. One of the main question is that 

can those listed latter factors explain price differentials. For this article, the price differentials 

are between fundamental (i.e. net asset value per share, form here NAV) and financial (i.e. 

share) prices. 

According to Coskun et al. (2020), the issue of NAV versus share price diversion has 

been a long-standing point of discussion including within the Turkish REIT industry. In Coskun 

et al. (2020), parameters that led the divergence of financial and fundamental prices include 

leverage, financial performance, liquidity, size, market sentiments and appraisal biasness of 

appraisers. They argue specifically that levered NAVs traded at lower levels than share price 

while fair value accounting leads to NAVs trading at premiums. The issue of appraisal biasness 

is well documented in developed countries. Capozza and Israelsen (2007) stated the reason 

why values of real assets are uncertain is due to acceptable margin error valuation, which 

leads to subjective NAV values. Moreover, it can be inferred from Capozza and Israelsen 
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(2007), assessors make conservative assumptions when doing valuations and that leads to 

diversion. 

The widely used closed-form derivatives formula that illustrates relationship between 

fundamental and financial price is the Put-Call parity. Put-Call parity was pioneered by Hans 

Stoll on 1969. At the heart of Put-Call parity is depicting the relationship between put and call 

options in a closed-form solution. The parity relationship is explored in depth in the modelling 

section of this article. The study that is close to this article is Klemkosky and Resnick (1980), 

where Put-Call parity includes dividends. Another article that comes close to this study is Hsieh 

et al. (2008). Although, they looked at futures and index options while this study uses Put-Call 

approach on compound options. In Hsieh et al. (2008), implied volatilities for both futures and 

options indices were noticeable and statistically significant. Moreover, the results show that 

when there is Put-Call parity violation, there is information content is evident in the model. 

Overall, despite of the brilliant illustrations of Hsieh et al. (2008), it does not answer what causes 

violations between fundamental and financial option prices. 

Firstly, the objective of this article is to illustrate the price differentials when there are 

two underlying assets. In particular, it focuses when one price is a fundamental one and other is 

a financial one price). Is price differentials sustatanable? This article differs from the two 

mentioned studies because this article takes into account risk-free interest rate, dividends, the 

lagging effect which is common in most industries and the effect of tau (𝜏). Finally, this article 

focuses on pricing, hedging and calibration of options when mentioned parameters are taken 

into account. In principle, this article addresses more issues relating the Put-Call parity theorem. 

The resulst of this article illustrates price differentails are common during corporate activities. 

Furthermore, due to the price differentials, one needs to use appropriate formuals for pricing 

options during bear and bull market conditions.  

The balance of the article is as follows. Section 2 reviews prior literature and 

develops the hypothesis. Section 3 is on modelling. Section 4 is on the investigation of 

exponetial factor and section 5 concludes the article. 
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2 Literature Review 

 

2.1 Price Relationship in Exchange Options 

 

Chen and Suchanecki (2011) created a Parisian exchange options based occupation 

time derivatives and Parisian options. The authors opined that those type of options are not just 

valuable for hedging but for merger arbitrage. That is, other than the two firms merging, the 

actual merging time is taken into account-this is more like path dependent exchange options. 

Chen and Suchanecki (2011) state that in case of merger, prices of bidding and taken firms 

should be underpinned by what happens in those firms respectively. For their modelling 

framework, they start from the usual exchange option formula. Then, proceed to the barrier 

exchange option. The barrier element is because each option (i.e. put and call) have different 

probabilities of being in-the-money. By extension, the prices of acquiring and target firms have 

different probabilities of being in-the-money. On the other hand, Ross (1976) opined that option 

defined by a range of random returns. Similarly, in an exchange option, predators and preys are 

equitable compensated. Interesting, that moneyness leading to the entire exchange option being 

down-and-in the exchange call/put option. Moreover, the price of the latter option can be written 

differently, the difference between ordinary exchange option and subsequent down-and-in 

exchange call option. The inverse is true about up-and-out exchange call option. Chen and 

Suchanecki (2011) also express the latter option as Radon-Nikodym derivative. The point here 

is that prices of the main exchange option are sensitive to prices of sub-options of the main 

option. 

There were also special cases of standard Parisian exchange options. In addition, cases 

of cumulative Parisian exchange options where their values are underpinned by standard 

Parisian exchange options. By extension, “main” prices are influenced by standard sub-prices. 

The numerical results illustrate that a decrease in barrier levels, standard Parisian options are 

more valuable than barrier options and cumulative Parisian options are the less valuable. That 

can be attributed to the fact that barrier exchange options had less barriers than other options. 

The major finding by Chen and Suchanecki (2011) is that more parameters are included in 

option pricing, the more variables influence the prices of different option legs. Moreover, the 

impact of those parameters of different price legs is not always the same. Hence, difference in 

prices of an exchange option. 
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Ma et al. (2020) and Johnson and Shanno (1987) show how changes in variance of 

options lead to different prices in an exchange options. In Johnson and Shanno (1987) the 

variation in ex post variance while in Ma et al. (2020) variation is due to clustered jump 

dynamics. Johnson and Shanno (1987) assumed that both the return and stock price follow a 

stochastic process. Moreover, the hedging strategy and the portfolio of assets have random 

parameters. Call prices are generated using Monte Carlo simulations. The results of Johnson 

and Shanno (1987) show that the value of out-of-money options increase with an increase in 

correlation effect. Thus, due to increase in correlation including in prices, the variation increases 

lead to increase value of options. The increase in implied volatility had the same effect. 

Ma et al. (2020) incorporated Hawkes process in an exchange option in order to 

account jumps one an asset and across assets. They argue that there is no perfect hedging given 

clustering and each asset by implication its price has its own Greeks (Delta, Theta, Vega and 

Gamma). Fundamentally, the Greeks of a target firm tend to be higher than the Greeks of an 

acquiring firm. The numerical results show that prices of both assets increase dramatically 

because of the jumps, which leads to increase volatility. And that leads to increased option 

prices. It seems the prices of both assets do not increase at the same amount of change. The 

empirical results based on S&P500 index reveal the same findings as the numerical results.  

 

2.2 Premium versus Discounts of Exchange Options 

 

2.2.1 Differentials in Option Prices 

The price differentials in multi options can be explained by numerous things including 

option trading at premium or discount to other prices of other options. Longstaff (1992) 

investigated a rare situation indeed, where there is a possibility of negative prices. In the context 

B-S model, negative is only possible when prices do not follow a log normal distribution-where 

an investor is paid to invest in an option. Another point put forward by Longstaff (1992) in 

relation to negative prices is the presence of friction. In industries like REITs, friction is evident; 

therefore, there should be a possibility of negative option prices. He uses a simple long call 

option formula to compute callable and non-callable bonds. Preliminary estimates reveal that 

over 340 calls, 61.5% have negative values. Furthermore, there is much correlation between 

callable bonds and bond prices. Overall, the results show that the Treasury-bond market is 

imperfect; hence, characterised by frictions. Longstaff (1992) went further and investigated the 

call policy of the Treasury. Based on the policy the results reveal that negative prices are due 

to Treasury calling bonds when it is advantageous to the bondholder. He states that other 
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potential explanations of negative prices, by extension price differentials include Treasury 

activities (i.e. liquidity, different tax treatments, premium amortization and tax-timing options), 

and market frictions and arbitrage (i.e. taxes, short-selling costs and actual arbitrage strategies). 

The issue of (il)liquidity is covered again in Brenner et al. (2001). 

According to Brenner et al. (2001), illiquidity is one such character that explains price 

differentials. They argue that common determinants of illiquidity are bid-offer spreads and 

transactions costs-which are well documented in microstructure literature. For their study, they 

compare currencies issued over-the-counter (OTC) by Bank of Israel (BI) and options traded 

on Tel-Aviv Stock Exchange (TASE) during the period of April 1994 to June 1997. For 

modelling, they used implied standard deviation (ISD) weighted by vega and forward currency 

option formula. The preliminary results show that BI options traded at lower levels than the 

TASE options. In addition, ATM options showed less difference because of the tradability. 

They went further and tested illiquidity discount based on two methods-currency options 

techniques. Method 1 illustrated that TASE options traded about 21% on average higher than 

BI options. Method 2 is on validation of illiquidity. Those results show that illiquidity is 

statistically significant. Finally, transactions costs on BI options contributed to illiquidity. 

Deuskar et al. (2011) investigate the price differentials by exploring liquidity in OTC options 

markets. 

Deuskar et al. (2011) explored liquidity effect in OTC options markets, specifically 

focusing on whether prices trade at discounts or premiums in the market. According to the 

authors, the prominent factors that lead to price differentials in OTC markets are interest rate 

caps and floor markets. They used data from Westdeutsche Landsbank Girozentrale (WestLB) 

and Fixed Income Group during the period of January 1999 to May 2001. They present prices 

of caps and floors at OTM, ATM and ITM. The used Black-GBM and GARCH models to 

estimated implied volatilities. The initial result reveal that bid-offer spreads ranges from 8% to 

9%. The results broadly reveal that the higher the liquidity, the less the differentials. By 

extension, it implies lower premiums and/or discounts. Moreover, the results reveal that 

premiums and discounts are affected by moneyness of options-ATM options have less price 

differentials and/or discounts, ITM options hardly have differentials and OTM options have 

significant differentials. 

 

2.2.2 Jumps of Prices 

Deng (2015) priced an American put option on a zero-coupon bond in a jump-extended 

Cox-Ingersoll-Ross (1985) model (from here CIR). Recall that CIR model is a short term 
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interest model with jumps. He argues that short term-and-long term interest rates can be 

modelled in pure diffusion models; although the latter assumption contradicts empirical 

findings of some studies. Moreover, he states that jump-diffusion interest rates models do not 

give closed-form solutions. The reason why his study focuses on American style options is 

because according to him most traded interest rate products in the bond markets give option 

holders the right to chose the dates of exercisability. He illustrates the latter point using CIR 

model. Secondly, Deng (2015) derives a characteristic function using a Fourier transform in 

order to recover the corresponding cumulative probability. In principle, he prices a Bermudan 

option because the American option in his study has different exercisable dates that the holders 

chose from. 

He used (i) affine jump-diffusion CIR model (from here CIR_EJ) that allows random 

jumps in order to capture term structure of short term rate and defaultable-free, zero-coupon 

bond and (ii) the discounted zero-coupon bond with maturity 𝑇 with pre-specified date 𝑇 in 

future without intermediate payments. His extension on the CIR model allows jumps to move 

randomly. Then, he prices the American put option on zero-coupon bond using two Geske and 

Johnson (1984) approach. Deng (2015) states as number of dates in Bermudan option increases, 

so its value approaches a true American option value. Similarly, when nodes in a binomial tree 

increase, the option values approaches B-S values. Secondly, he inverted a formula for pricing 

a bond of American nature with two dates (simply a Bermudan option with two exercisable 

dates). 

The main finding of Deng (2015) was that Poisson process does not increase the value 

of the American option. Furthermore, numerical results show that the ‘higher the initial interest 

rate leads to lower price of the zero-coupon bond’. Secondly, the jump intensity has a significant 

impact on the option values. According to Deng (2015), the latter statement illustrates that jump 

intensity is central to the term structure of the interest rates. In order to validate and test 

reliability of his results, Deng (2015) used least-square Monte Carlo (MC) simulation with at 

least 100,000. Surprisingly, the results of least-square MC were unsatisfactory. Possible reasons 

for that might be the quality of data or some jumps were inaccurately captured in the models. 

Zhang and Schmidt (2016) approximate a small-time probability density functions in 

a case of a general jump diffusion process. They argue that general jump diffusion models that 

combine stochastic volatility and local volatility are common in practice. Due to the demand of 

those models in practice, Zhang and Schmidt (2016) state that finding a joint probability 

distribution for of the asset price (or return) and its volatility and its volatility at a certain point 

is a challenge. The theorems that can address the latter statement according to Zhang and 
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Schmidt (2016) is the Fokker-Planck equation (FPE) because it is either a partial differential 

equation (PDE) when there are no jumps or partial integral-differential equation (PIDE) when 

jumps are added to models. One advantage of FPE according to authors is the fact that it can be 

discretized numerically and its approximations tend to be accurate due to an iteration process. 

For modelling, Zhang and Schmidt (2016) introduce the fast Fourier transform (FFT). 

Other techniques used include Itô-Taylor expansion. In order to maintain simplicity in Itô-

Taylor expansion, Zhang and Schmidt (2016) dealt first with stochastic process without any 

jumps. For lemma 1, which is on real functions and matrices, they used Euler-Maruyama 

approximation as it provides reasonable drifts with constant diffusion functions over short 

times. Other technique that improves accuracy and speedy in (re)calibration of options is by 

using calculated options as a numéraire. Thereafter, they built characteristic functions that 

included Milstein approximation in which the investigated only one double stochastic integral 

for each pair of jump. When they added jumps, they focused on compound poison process. The 

latter process is similar to Cox-and-Hawks process. Those jump processes were applied on 

Heston and Bates models. Then Zhang and Schmidt (2016) applied that compound Poisson 

process in a general stochastic volatility model. For the probability density functions, they used 

inverse Fourier transform (IFT) because IFT compute algorithms efficiently. The numerical 

results illustrate that the model of Zhang and Schmidt (2016) performed better than Bates and 

Heston models. Furthermore, under the Heston model, their computation has shown to be more 

efficient and more accurate on large databases compared with other closed-form solutions. 

Finally, in the context of put-call parity, what drives disequilibrium? 

 

2.3 Violation of Put-Call parity theorem 

 

Sternberg (1994) argued that before the 1980s, it was a held view that stock markets 

exhibit semi-strong efficient market hypothesis. However, since the dawn of index futures and 

related products, people started to hold the notion that there are price violations in derivatives 

products. Sternberg (1994) used the Put-Call parity to explore price violations. He opined that 

with that Put-Call approach one does not need to deal with data problems and non-

synchronization in trading environments. Given the information asymmetric, and the 

relationship between fundamental and financial options, this study anchors its illustration based 

on synchronization principle-that principle will be demonstrated later in this study. The Put-

Call approach in Sternberg (1994) is used in its original form. 
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The preliminary results show that early exercise of options led to arbitrage 

opportunities. He went further and analysed arbitrage values for May-June 1983. The results 

illustrate that absolute deviations ranged between $50 and $60 for most of the sample. The 

mean value for the sample was -$30. Normally, negative means and skewness implies lower 

arbitrage opportunities. On the tax-modified boundary conditions, the arbitrage for early 

exercise is more than the arbitrage of late exercisability. The futures had specific months when 

they are closed-March, June, September and December. The latter pattern closing periods are 

similar to South African closing months. Overall, the results show market inefficiencies under 

rigorous conditions. In addition, it is very hard for one to eliminate mispricing opportunities in 

the derivatives markets. 

Wagner et al. (1996) explore intra-day Put Call parity violations. In case of Wagner et 

al. (1996), even synchronisation does not lead to harmonised Put-Call formula. The latter 

principle will be explored further in this article. The explanatory variables that Put-Call 

divergence in Wagner et al. (1996) are (i) dividends, (ii) interest rate, (iii) trading volume, (iv) 

intraday volatility, (v) intraday price trend and (vi) time to expiration. In the context of Put-Call 

parity, violations are due to overpriced calls occurring frequently within shorter periods-

Wagner et al. (1996). In Wagner et al. (1996) dividends are over 365-this is largely due to the 

fact that dividends are company policy; therefore, there is no formula not determining dividends 

with exception in the REIT industry. Wagner et al. (1996) argue that because of timing risk, 

risks are inherent in the Put-Call parity theorem. They also created numerous pairs of puts and 

calls for synchronisation purposes. The results of Wagner et al. (1996) show that out of 437,649 

of puts-calls pairs tested, 93% of pairs trade in one minute or less. Both the lower and upper 

bounds of violations were evident and violations were 100%. Broadly, (under)over pricing led 

to the violations in the Put-Call theorem. 

Wagner et al. (1996), De Roon and Veld (1996) explore Put-Call violations based on 

early exercise. De Roon and Veld (1996) argue that index options on S&P 100 are not corrected 

for dividends; therefore, a violation on the Put-Call parity of S&P 100 is given. De Roon and 

Veld (1996) assumed that on the performance index, dividends are reinvested in the index-this 

makes it similar to nondividend paying stock. The performance index used in De Roon and 

Veld (1996) has been used before. The Put-Call parity used in De Roon and Veld (1996) is 

similar to one in Wagner et al. (1996) except the fact that in the latter studies the parameters are 

discrete in nature while the former parameters are continuous in nature. The results of De Roon 

and Veld (1996) illustrate that the difference between upper and lower bounds is notable. And 

the Put-Call parity violation is mainly driven by early exercise premium. Interestingly, they 
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found a negative relationship was found between violation and time to expiration, although the 

coefficient is not statistically significant. Then, how are those violations modelled in the 

presence of fundamental and financial option prices? 

 

 

3 Modelling 

 

In modelling option, one of the central rules is that input parameters should at least 

mimic the model. In order to abide with that rule, this article first synchronise the input 

parameters; thereafter, NAV and share price are derived from the Put-Call formula. Note that 

the resulting NAV and share price are of Put-Call parity nature. 

 

3.1 Synchronization of Financial and Fundamental Prices 

 

In order for share price and NAV to be comparable, share price and NAV should be 

illustrated by one numéraire using Brownian motion (BM). Prior studies illustrated that 

prices mean revert after some time and in complete markets expected returns of stock prices 

are zero. A similar pattern on REIT share prices was observed by Clayton and MacKinnon 

(2003) when they explored REIT returns taking into account other capital market instruments. 

What was observed by Clayton and MacKinnon (2003) is synonymous with BM in the context 

of mean-reversion. Some  s tudies  have  shown  tha t  l is ted  r ea l  es t at e  inves tmen ts  

are increasing becoming integrated into capital markets. As REITs are tradable securities, they 

should follow a GBM. In order to standardize share price and NAV using same numéraire 

it is assumed that: 

 

- Interpretation: no drift, no trend. 

- For i.i.d. if ∫𝑁𝐴𝑉𝜇𝑡(𝑁𝐴𝑉)𝜕𝑁𝐴𝑉 = 𝑚 = 0. 

- Markov process:∫
ℛ
𝑁𝐴𝑉1𝜌(𝑡, 𝑠, 𝑁𝐴𝑉0, 𝜕𝑁𝐴𝑉1) = 0. 

- Brownian motion is a martingale. 

- Can have very complicated dependence on the past. 
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It also assumed that the final process is a natural filtration of some past process. In order for a 

future stochastic process to be naturally filtrated by some prior process, the following should 

hold: 

 

- Encoding of knowledge. 

- ℱ𝑡 is a 𝜎-algebra; describes knowledge of agent at time 𝑡. 

- Collection (ℱ𝑡)𝑡∈𝐼 is called filtration if for all 𝑠 ≪ 𝑡 holds ℱ𝑠 ⊂ ℱ𝑡. 

- A stochastic process is called adapted if 𝑁𝐴𝑉𝑡 is ℱ𝑡 measurable. 

- Natural filtration of a process (𝑁𝐴𝑉𝑡)𝑡≫0: ℱ𝑡 is the 𝜎-algebra generated by (𝑁𝐴𝑉𝑠)𝑠≪𝑡 . 

- Any process is adapted with respect to (w.r.t.) its own filtration. 

- A stochastic process (𝑌𝑡)𝑡 is adapted w.r.t. the natural filtration of process (𝑁𝐴𝑉𝑡)𝑡 if 

𝑌𝑡 is a function only of (𝑁𝐴𝑉𝑠)𝑠≪𝑡 . 

 

Any stochastic process is called a martingale if for all 𝑠 ≪ 𝑡 holds and its expectation is 

represented as follows; Ε [𝑋𝑡 − 𝑋𝑠⎟(𝑋𝑡)𝑡≪𝑠] = 0, where 𝑋 is share price of a stock that process 

follows BM. The conditional expectation is also a martingale process in the sense that increases 

and decreases of share price from their relative level overtime are equal such that its expectation 

over time is zero. That is, share price and NAV are similar because they follow the BM. In 

practice, exercise price (𝑋) is deteremined through valuations; hence, 𝑋 can be replaced by 

NAV. Sometimes 𝑋 is illustaretd as 𝐾. Fisher (1978) argued that in pricing exchange options, 

exercise price can be illustrated by fundamental price such NAV. Taking into that the future 

process can be filtrated w.r.t. its past process, 𝑓𝑠, then it can be proven that the excepted value 

of a random process, 𝑁𝐴𝑉𝑡 at future time 𝑡, given that its present time 𝑠, taking the whole 

history of the BM process is Ε[𝑁𝐴𝑉𝑡⎪𝑓𝑠   𝑠<𝑡], where   represents the expectation. Filtration 

insures that the flow of information is continuous. Then 𝑁𝐴𝑉𝑡 is decomposed into known value 

of 𝑁𝐴𝑉𝑠 and the random increment of [𝑁𝐴𝑉𝑡 − 𝑁𝐴𝑉𝑠]: 

 

Ε [𝑁𝐴𝑉𝑡⎟ℱ𝑠  𝑠<𝑡] = Ε [𝑁𝐴𝑉𝑡⎟ℱ𝑠]      (1a) 

= Ε[𝑁𝐴𝑉𝑠 +𝑁𝐴𝑉𝑡 − 𝑁𝐴𝑉𝑠|ℱ𝑠]   (1b) 

= Ε [𝑁𝐴𝑉𝑠⎟ℱs] + Ε [𝑁𝐴𝑉𝑡 −𝑁𝐴𝑉𝑠⎟ℱ𝑠]  (1c) 

= 𝑁𝐴𝑉𝑠 + Ε [𝑁𝐴𝑉𝑡 −𝑁𝐴𝑉𝑠⎟ℱ𝑠]   (1d) 
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= 𝑁𝐴𝑉𝑠 + 0      (1e) 

= 𝑁𝐴𝑉𝑠      (1d) 

 

The 𝑁𝐴𝑉𝑠 is due to the history of time 𝑠 and it is not a random variable but the known 

value, so Ε [𝑁𝐴𝑉𝑠⎟ℱ𝑠] = 𝑁𝐴𝑉𝑠 which proves that the process could be either a sub or super-

martingale. Then 𝑁𝐴𝑉𝑡 −𝑁𝐴𝑉𝑠 equation is an increment value from 𝑠 to 𝑡, normally treated as 

a single random and it is independent of the value of the BM at time 𝑠 or earlier and the 

unconditional expectation of Ε [𝑁𝐴𝑉𝑡 − 𝑁𝐴𝑉𝑠⎟ℱ𝑠] = Ε[𝑁𝐴𝑉𝑡 − 𝑁𝐴𝑉𝑠] = 0  meaning that on 

average, number of increases or decreases in share price over time are equal, a phenomenon 

synonymous with martingale process. Thereafter, share price and NAV are derived based on 

the Put-Call parity. The latter principle entices similarity of share price and NAV further. 

 

3.2 Disetangling Prices 

 

One technique that illustrates that there is no arbitrage opportunity between options 

parameters is Put-Call parity theorem. Alexander (2008) illustrated that Put-Call parity formula 

is written as follows when there are no arbitrage opportunities: 

 

𝑓𝑐𝑎𝑙𝑙 (𝑆, 𝑡⎟𝐾, 𝑇) − 𝑓𝑝𝑢𝑡 (𝑆, 𝑡⎪𝐾, 𝑇) = 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) − 𝐾𝑒−𝑟(𝑇−𝑡)   (2a) 

 

where 𝑓𝑐𝑎𝑙𝑙  is call option, 𝑓𝑝𝑢𝑡  is put option, 𝑆 is stock price, 𝑡 is current time, 𝐾 is exercise 

price, 𝑇 is time to maturity of option contract, (𝑇 − 𝑡) is time to expiration of the contract, 𝑟 is 

risk-free interest rate, 𝑞 is dividend yield, and (𝑆, 𝑡⎟𝐾, 𝑇) is interpreted as changes in option 

(either call or put) price is due to change in 𝑆 and 𝑡, and those changes are conditional upon 𝐾 

and 𝑇. The latter part of the statement illustrates filtration process. Although, dividend 

component in Put-Call parity is important, dividend uncertainty does not have major impact on 

Put-Call parity. Taylor (1990: 207) stated that “dividend uncertainty may be only one or two 

cents, which is relatively low”. What drives an option contract in the context of time is 𝑡 in 

relation to 𝑇 of an option contract. That is, tau drives an option price together with 𝑆 and there 

is some history embedded in 𝑆. Moreover, (𝑆, 𝑡⎟𝐾, 𝑇) illustrates that option variables are 

interrelated. Now, when one looks at (𝑆, 𝑡⎟𝐾, 𝑇), one sees that 𝐾 and 𝑇 are fixed during life of 



 12 

an option, and 𝑆 and 𝑡 change during life of an option. According to Alexander (2008) the 

reason why LHS is equal to RHS of Put-Call parity is that eq. (2a) shows that a long call and 

short put options with same strike and maturity (M). Furthermore, Alexander (2008) stated that 

if M>0, put is worth nothing if it is exercised now, but call is worth: 

 

𝑓𝑐𝑎𝑙𝑙 (𝑆, 𝑡⎪𝐾, 𝑇) = 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) − 𝐾𝑒−𝑟(𝑇−𝑡)      (2b) 

 

And if M<0, call is worth nothing if exercised now, but put is worth: 

 

𝑓𝑝𝑢𝑡 (𝑆, 𝑡⎪𝐾, 𝑇) = 𝐾𝑒−𝑟(𝑇−𝑡) − 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡)      (2c) 

 

Thereafter, LHS of eq. (2c) is simplified: 

 

𝑓𝑝𝑢𝑡 (𝑆, 𝑡⎟𝐾, 𝑇) = −[𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) − 𝐾𝑒−𝑟(𝑇−𝑡)]      (2d) 

𝑓𝑝𝑢𝑡 (𝑆, 𝑡⎪𝐾, 𝑇) = −𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡⎟𝐾, 𝑇)       (2e) 

 

When one explores eqs 2 (d and e), it can be seen that 𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡⎟𝐾, 𝑇) and 𝑓
𝑝𝑢𝑡(𝑆, 𝑡⎪𝐾, 𝑇) are 

the same value except that they have opposite signs. It follows from eqs 2 (d and e) that LHS 

(i.e. put) and RHS (i.e. call) have the same risk as two different products of the same value 

should have the same amount of risk. In addition, eqs 2 (d and e) illustrate that there are no 

arbitrage opportunities between of 𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡⎟𝐾, 𝑇) and 𝑓
𝑝𝑢𝑡(𝑆, 𝑡⎪𝐾, 𝑇). According to 

Alexander (2008) 𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡⎟𝐾, 𝑇) and 𝑓
𝑝𝑢𝑡(𝑆, 𝑡⎪𝐾, 𝑇) are independent of volatility, implying 

that 𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡⎟𝐾, 𝑇) and 𝑓
𝑝𝑢𝑡(𝑆, 𝑡⎪𝐾, 𝑇) have the same vega (v). While it might be true that 

𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡⎟𝐾, 𝑇) and 𝑓
𝑝𝑢𝑡(𝑆, 𝑡⎪𝐾,𝑇) have the same vega, the impact of volatility on call and 

put options in Put-Call parity has opposite effects on call and put options, i.e. if a long call 

increases due to the volatility then a long put option decreases at the same time. The same 

concept should hold on betas of call and put options. In addition, it can be inferred from 

Alexander (2008) that long call and put options in Put-Call parity have same risks amounts of 

different signs. Following Alexander (2008), the negative risks of long put options and positive 

risks of long call options cancel each other in Put-Call parity, thereby causing the net effect of 
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risks in Put-Call parity to be zero. Similar effects should apply to volatilities as well when they 

are used as risks measures. Merton (1973) stated that options unlike warrants are side contracts 

and when there are equal number of sellers and buyers, aggregated sum of options would be 

zero. While for warrants, aggregated sum when there are equal sellers and buyers is positive 

because warrants are part of capital structures of firms. The other possibility in eqs 2 (d and e) 

is that long call and put options decrease by the same rate of r; therefore, long call and put 

options are independent of r as they have the same rho (𝜌). Then, K in Put-Call parity is replaced 

by NAV and eq. (2a) becomes: 

 

𝑓𝑐𝑎𝑙𝑙 (𝑆, 𝑡⎟𝐾, 𝑇) − 𝑓𝑝𝑢𝑡 (𝑆, 𝑡⎪𝐾, 𝑇) = 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) − 𝑁𝐴𝑉𝑒−𝑟(𝑇−𝑡)   (3) 

 

In order to illustrate share price and NAV diversion using Put-Call parity, this article 

proposes that eq. (3) should be re-written such that firstly, share price is the subject of the 

formula; thereafter, NAV as the subject of the formula. Although, NAV and share price of a 

firm are non-synchronous with each other that should lead to errors in the application of Put-

Call parity given that share prices converge to NAVs in a long-run. In order for Put-Call parity 

to give fair values, call, put and underlying asset should be traded simultaneously. Thus, eq. (3) 

is re-written such that share price is the subject of the formula. Appendix A illustrates that when 

a share price is the subject of Put-Call parity, the resulting formula is: 

 

𝑆(𝑡)𝑃𝐶𝑃 = 𝑁𝐴𝑉𝑒
𝑞−𝑟         (4a) 

 

Note that in eq. (4a) NAV is the actual NAV of Put-Call parity. Eq. (4a) illustrates that 

share price is equal to NAV times the exponential factor that incorporates the difference of 

dividend yields and risk-free interest rate. That is, the exponential factor from Put-Call parity 

causes divergence of share price and NAV of a firm. Moreover, NAV trades above share price 

of a REIT firm, phenomenon that occurs rarely in the REIT industry. For a failed merger, there 

would not be expoenetial factor as the option price would be equivalent the price of underlying 

asst. “A call with a zero exrcise price is equivalent to the primitive asset on which it is written”, 

Ross (1976: 79). Note that although eq. (4a) is inconsistent with prior studies on the REIT 

industry, it cannot be ruled out. There is one special circumstance where firms declare dividend 

yields higher than risk-free interest rate is during bear market conditions such as in the United 

States in 1960s during the Great Depression. This is partly to induce investors to invest in 
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companies during bearish conditions. In addition, financial markets should be in bearish state 

for a long period. Share price in eq. (4a) can never be negative because share prices are always 

positive. Therefore, 𝑆(𝑡)𝑃𝐶𝑃 will decline at a decreasing rate of (𝑞 − 𝑟) to some minimum level. 

Now, eq. (4a) is re-written such that NAV is the subject of the formula. Appendix B illustrates 

that a NAV as a subject of Put-Call parity is given by the following formula: 

 

𝑁𝐴𝑉𝑃𝐶𝑃 = 𝑆(𝑡)𝑒
𝑟−𝑞         (4b) 

 

Note that in eq. (4b) 𝑆(𝑡) is the actual 𝑆(𝑡) of Put-Call parity. In eq. (4b), NAV of 

Put-Call parity is equal to share price times the exponential factor that incorporates the 

difference of the risk-free interest rate and dividend yields. Hence, the NAV is more than share 

price by the exponential factor amount. The difference of NAV and share price is consistent 

with occurrences in some industries such as REIT. The exponential factor in eqs 4 (a and b) 

contributes to the divergence of share price and NAV of a firm. From eqs 4 (a and b), one 

can see that the exponential factor has smoothing effect in the sense that it can be hedged 

until share price and NAV are equal in trading environment. Just like eq. (4a), eq. (4b) 

illustrates there should be arbitrage opportunities in industries because of the divergence of 

share price and NAV. However, arbitrage opportunities are most likely to be short lived given 

that share price converges to its NAV in a long-run. One of the ways of minimising arbitrage 

opportunities is by expressing options as ratio of price of an underlying asset. In addition, a 

technique in the latter statement leads to options returns expressed in relation to returns of an 

underlying asset. 

The relationship between risk-free interest rate and dividend yields in eqs 4 (a and b) 

illustrates that in the former formula risk-free interest rate is less that dividend yields while the 

latter formula risk-free interest rate is more than dividend yields. The special relationship in 

both formulas can be attributed to non-linearity of those two variables. Normally, when a share 

price of firm increases, management declare higher dividend yields. When interest rates are 

high, consumers tend to consume less of goods and services provided by firms and that makes 

share prices of those firms less desirable at the point in time. Intuitively, dividends declared by 

firms should be less than risk-free interest rate. The linkage of dividend yields and risk-free 

interest rate in eq. (4b) seem to represent bullish market conditions. As share price of a firm 

changes, options parameters changes. Glascock and Hung (2010: 128) stated that “according to 

volatility feedback theory, the news will decrease future volatilities of winners, and therefore 
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decrease their required rate of returns, causing an increase in immediate stock prices”. The 

information asymmetry in industries is most likely to contribute to Put-Call parity violations. 

Interestingly, eq. (4b) just like eq. (2a) illustrates that when NAV is viewed as an option, NAV 

of Put-Call parity is driven by S and t, a phenomenon synonymous with Put-Call parity. 

Therefore, it is recommended that eq. (4b) be used to calculate share price and NAV of a REIT 

firm during bull market conditions. For calculation of share price of a firm during bull market 

conditions, it is recommended that eq. (4b) is re-written such that share price is the subject of 

the formula as opposed using eq. (4a) for reasons stated earlier. When share price is the subject 

of the formula, eq. (4b) changes to: 

 

𝑆(𝑡)𝑃𝐶𝑃 =
𝑁𝐴𝑉𝑎𝑐𝑡𝑢𝑎𝑙

𝑒𝜆
         (5a) 

or 

𝑆(𝑡)𝑃𝐶𝑃 = 𝑁𝐴𝑉𝑎𝑐𝑡𝑢𝑎𝑙𝑒
−𝜆        (5b) 

 

where 𝜆 is the difference between risk-free interest rate and dividend yield. The reason why 

lambda is the difference between risk-free interest rate and dividend yields is because eqs 5 (a 

and b) are locked, otherwise eqs 5 (a and b) will revert back to bear market conditions where 

the dividend declared are higher than risk-free interest rate. Arbitrageurs can written option 

strategies and earn riskless profits. Note that the exponential lambda in eqs 5 (a and b) can be 

written as 𝑒𝜆 =
𝑁𝐴𝑉𝑎𝑐𝑡𝑢𝑎𝑙

 𝑆(𝑡)𝑃𝐶𝑃
. This is similar to eqs (3) and (4) in Kamara and Miller (1995). Those 

formulas in Kamara and Miller (1995) synthetic riskless lending† and borrowing‡ rates, 

respectively. In the context of REITs, one can end up with negative 𝑅𝐿 and 𝑅𝐵  because the 

NAV can be negative. Similar, the exponential factor (i.e. arbitrage) can be negative. That 

would be typically in a deflationary environment, where the cost of living is high indeed and it 

costly to own assets. Although, that scenario is very rare but it is not impossible to occur. It in 

the context of the real estate industry including REIT, it is highly likely to have negative 

arbitrage. According to Kamara and Miller (1995), what leads to negative arbitrage is the 

delaying in execution time-similar to lagging effect in the real estate industry. To one’s 

knowledge, no study has explained negative arbitrage so far. The exponential factor in eqs 4 (a 

and b) supports the latter statement. It is recommended that one should use eq. (4a) when 

 
† 𝑅𝐿 ≡

𝑋

(𝑆𝑎−𝐷+𝑡𝑠)+(𝑃𝑎+𝑡𝑝)−(𝐶𝑏−𝑡𝑐)
− 1, where 𝑆𝑎 and 𝑆𝑏 are bid and ask prices of one S&P share, 𝑆𝑇 price of S&P share at date 𝑇, 𝐷 the present 

value of dividends, 𝑡𝑖 transaction costs of buying or selling assets, 𝜆𝑠 percent of proceeds available to S&P short-sellers and 𝑋 is exercise price. 
‡ 𝑅𝐵 ≡

𝑋

(𝜆𝑠(𝑆𝑏−𝐷)−𝑡𝑠)+(𝑃𝑎+𝑡𝑝)−(𝐶𝑏−𝑡𝑐)
− 1. 
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calculating NAV and share price where investors are induced to participate in mergers in 

bearish market conditions. When investors are not induced to participate in mergers, eq. (4b) 

should be used to calculate NAV and share price. It seems that the latter statement refers to the 

bullish market conditions. Although, in eqs 4 (a and b) there is no time factor, it is fair to assume 

that there is the time factor in both formulas given that share prices and NAVs are different at 

different points in time. In this study, costs are not taken into account, but when costs are 

minimal, NAV and share price of a firm are most likely to be equal.  

The fundamental exponential factor conjecture drawing from Ross (1976) is that it 

(exponential factor) is that its presence dependent of underlying assets. This is because it can 

be inferred from theorem 1 from Ross (1976) that option returns are inherent from underlying 

assets. Moreover, symmetry environment option returns are most likely to be zero. This article 

follows from Marcato et al. (2018 and 2019)-each REIT is portfolio of a number of properties 

which form one fund in the form a REIT firm. On a single option portfolio being shown a 

number of single simple options¸ Ross (1976) stated that they can be ‘written with no loss of 

efficiency’. The latter resonates with REITs given that their uniqueness and the fact hostile 

merger are rare indeed. The salient taking would be that the exponential factor is not due to 

REIT market ineffincies but the REIT structure. Similarly, the production theorem from Ross 

(1976), that each contributes positive returns seem to be probale. Moreover, Marcato et al 

(2018) illustrated that REIT mergers generate alpha.  

 

 

4 Investigation of Exponential Factor 

 

In order to exploit exponential factor, the following procedures are carried out; 

minimization of exponential factor, integral transforms and second order partial differential 

equations (PDEs). Those mentioned techniques will give a rounded picture of exponential 

factor. 

 

4.1 Exponential Factor 

 

Numerical techniques are used to explore the exponential factor that causes the 

diversion of share price and NAV of a firm as illustrated by eqs 4 (a and b). The idea behind 

exploring eqs 4 (a and b) is to collapse those two equations to the level where the exponential 
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factor is the subject of the formula. Wherever it is possible to eliminate the exponential factor 

is eliminated it will be done so. Appendix C illustrates that without the exponential factor, eqs 

4 (a and b) yield: 

 

𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡│𝐾, 𝑇) = 𝑓𝑝𝑢𝑡(𝑆, 𝑡│𝐾, 𝑇)       (6) 

 

Eq. (6) illustrates that without the exponential factor the value of the buyer (i.e. call 

option) is equal to the value of the seller (i.e. put option). In order to verify whether eq. (6) is 

maximum (minimum) value, options boundaries are explored. 

 

4.2 Options Boundaries 

 

Option boundaries are normally used to show maximum and/or minimum values of 

options. Other ways of illustrating options boundaries includes taking derivatives of options 

prices in relation to their spot prices. Table 4.1 illustrates option boundaries: 

 

Table 4.1: Option Boundaries 

Boundaries Long Call Options Long Put Options 

Upper 𝐶 ≪ 𝑆0 𝑃 ≪ 𝐾 

Lower 𝐶 < 𝑆0 −𝐾𝑒
−𝑟𝑇 𝑃 < 𝐾𝑒−𝑟𝑇 − 𝑆0 

 

The changes in spot prices of options values can lead to arbitrage opportunities. 

Therefore, it is proposed that options boundaries must be illustrated using first partial 

derivatives of options boundaries w.r.t. spot prices. Table 4.2 illustrates derivatives of options 

boundaries: 

 

Table 4.2: Options Boundaries Derivatives 

Boundaries Long Call Options Long Put Options 

Upper 𝜕𝐶

𝜕𝑆0
≪ 1 

𝜕𝑃

𝜕𝑆0
≪ 0 

Lower 𝜕𝐶

𝜕𝑆0
< 1 

𝜕𝐶

𝜕𝑆0
< −1 
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Bakshi et al. (1997) stated when options are divided by spot prices and resulting ratios 

are around one, those options are regarded as being at-the-money position. Ratios higher than 

one are regarded as being in-the-money position and ratios less than one are regarded as being 

at out-of-the-money position. That is, upper and lower boundaries of call options exist when 

calls are at least at-the-money. At same time, when one calculates Put-Call parity parameters 

using options which are in-the-money it leads to mispricing. The latter challenge is also 

illustrated eralier in Easton (1994). The mispricing can be solved by buying calls which are in-

the-money as they are generally undervalued and selling puts which are out-of-the-money as 

they are generally overvalued. The presence of mispricing and deep out-of-the-money 

especially for long calls signals the presence of skewness with higher kurtosis. Similar findings 

are in Bakshi et al. (1997). However, arbitrage opportunities when options are out-the-money 

are very difficult to fully exploit. The first partial derivatives illustrate that long puts have upper 

and lower boundaries when puts are in out-of-the-money. Options that are in out-the-money are 

hardly traded in stock markets. The contradiction positions of calls and puts should lead to 

mispricing as options and their underlying assets are not traded simulatenously. On the other 

hand, those contradictions lead to options boundaries. Given that exploitations have been of 

derivatives nature, this article proposes exploring the integral transforms of the same formulas. 

The reason why eqs (4b) and 5 (a and/or b) are explored is because those are two formulas that 

seem to consistent with some studies in most industries. 

 

4.3 Integral Transforms 

 

Fourier and Laplace transforms are used to transform eqs (4b) and 5 (a and/or b) 

respectively. First, eq. (4b) is transformed using Fourier transform because the subject of eq. 5 

(a and/or b) is NAV. And, NAVs can be negative and Fourier transform integrates values 

between positive and negative infinity. Suppose function (f) is continuous and piecewise 

smooth, and 𝑓: ℝ ⟶ ℝ is integrable over the real line ℝ, then Fourier transform ℱ[𝑓(𝑥)] ≔

𝑓:ℝ ⟶ ℝ of 𝑓 is defined by: 

 

𝑓(𝑥) ≔ ℱ[𝑓(𝑠)](𝑥) ≡ ∫ 𝑒𝑖𝑠𝑥𝑓(𝑠)𝑑(𝑠)
+∞

−∞
       (7) 

 

It is assumed that the initial condition for Fourier transform can be illustrated as 

follows; 𝐴(𝑆) + 𝐵(𝑆) = 𝑓(𝑠), A(s) − B(s) = 0 and so 𝐴(𝑆) = 𝐵(𝑆)
1

2
𝑓(𝑠) and 

1

2
 is an integer. 
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Let 𝑦′ = 𝑟 + 𝑞 and  𝑦′ = 𝑟 − 𝑞, and and 𝑁𝐴𝑉𝑃𝐶𝑃 = 𝑆(𝑡)𝑒
𝑟−𝑞

 from eq. (4b). Firstly, eq. (4b) is 

converted into continuous and piecewise formula, a requirement for Fourier transform. When 

𝑒(𝑟−𝑞) is discretised, it becomes (1 + 𝑟 − 𝑞) which gives rise to arbitrage opportunities. 

Therefore, an arbitrage opportunity is written off by taking a short position in the same formula; 

(1 − 1 + 𝑟 − 𝑞) ignoring any related costs. The function becomes (𝑟 − 𝑞) and 𝑁𝐴𝑉𝑃𝐶𝑃 

becomes 𝑁𝐴𝑉𝑃𝐶𝑃 = 𝑆(𝑡)(𝑟 − 𝑞). Then 𝑁𝐴𝑉𝑃𝐶𝑃 = 𝑆(𝑡)(𝑟 − 𝑞) is convert into continuous 

form; 𝑁𝐴𝑉𝑃𝐶𝑃 = ln(1 + 𝑁𝐴𝑉𝑃𝐶𝑃) or  𝑒𝑁𝐴𝑉𝑃𝐶𝑃 − 1. Thereafter, arbitrage is written off by 

taking a long position of the same amount as a short position 𝑁𝐴𝑉𝑃𝐶𝑃 = 𝑒
𝑁𝐴𝑉𝑃𝐶𝑃 − 1 + 1 or 

𝑁𝐴𝑉𝑃𝐶𝑃 = 𝑒
𝑁𝐴𝑉𝑃𝐶𝑃. Appendix D shows that Fourier term for NAV is given by the following 

formula: 

 

= √𝜋𝑒−
[𝑆(𝑡)(𝑟−𝑞)]1

2⁄         (8) 

 

Eq. (8) shows that when dividends are less than risk-free interest rate, eq. (8) increases 

with time. Moreover, given that √𝜋 is positive; therefore, eq. (8) has a minimum function. 

[𝑆(𝑡)(𝑟 − 𝑞)]2 portion increases with eq. (8) exponentially over time. The increasing factor of 

eq. (8) with time is similar to a logarithm function as long as (𝑟 − 𝑞)2 decreases with time. 

However, ceteris paribus, if (𝑟 − 𝑞)2 increases with time, eq. (8) decreases with time. That is, 

eq. (8) is dual-direction in the sense that it has ability to increase and/or decrease with time 

depending what happens to other variables. The latter statement shows that eq. (8) is entropic. 

Moreover, values can converge either from top or bottom. It seems that NAV based strategy 

works in bull and bear market conditions. Thereafter, Laplace transform of share price of eq. 5 

(a and/or b) is exemplified. Laplace transform is used in eq. 5 (a and/or b) because share prices 

can never be negative. By definition, Laplace transform is �̅�(𝑠) = ℒ[𝑋(𝑡)](𝑠) ≡

∫ 𝑒−𝑠𝑡𝑋(𝑡)𝑑𝑡
+∞

0
 given a function, 𝑋(𝑡) which is defined for 𝑡 ≥ 0. Function (�̅�)𝑠 is defined 

for all values of 𝑠 such that the integral converges and the function is derived w.r.t. any variable 

of 𝑠. Appendix E illustrates that Laplace transform of share price is: 

 

= 𝑒−𝑁𝐴𝑉𝜆        (9) 

 

Although eq. (8) includes more variables, eq. (9) is simpler as it is based on the change 

in NAV because lambdas tend to constant for a specific period. The phenomenon on lambdas 
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is inferred from Anand and Weaver (2006). NAVs tend to be stable in the long run and that 

leads to consistency is an implementable strategy. Given that Laplace transform integrates 

values between zero and positive infinity and prices do not increase forever. That is, a long term 

average is most likely to be between zero and positive infinity. 

 

4.4 Second Order PDEs 

 

Options have non-linear payoffs; this implies that they pay differently at different 

points in time. In addition, payoff structures differ from option to the next one. Second order 

PDEs are some of the techniques used to illustrate options payoff structures. Second order PDE 

is represented by the following formula: 

 

𝑓(𝑢𝑥, 𝑢𝑦 , 𝑢, 𝑥, 𝑦) = 𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦       (10) 

 

where 𝑓(𝑢𝑥, 𝑢𝑦 , 𝑢, 𝑥, 𝑦) is a function that has parameters; 𝑢, 𝑥 and 𝑦, and one wants second 

derivatives of the same function w.r.t. 𝑥 and 𝑦. 𝐴, 𝐵 and 𝐶 are constants of the second 

derivatives of the function. Functions can be described as elliptic when 𝐵2 < 𝐴𝐶, as hyperbolic 

when 𝐵2 > 𝐴𝐶 and as parabolic when 𝐵2 = 𝐴𝐶. Payoff structures that are illustrated are of eqs 

(A8) and (B4). The reason why equations in the latter statement are used is because they have 

all variables that make a function elliptic, hyperbolic or parabolic. S(t) is the function of eq. 

(A8) and its parameter is q. The three parts on the RHS of eq. (A8) relate to A, B and C. 

Therefore, A=2, B=-2 and C=1. That is, 𝐵2 = 4 and AC=2. This illustrates that eq. (A8) is a 

hyperbolic function. In a hyperbola, values start at a specific starting point and as time changes, 

value increases. Similar principle would imply that options value increase with time; moreover, 

one has numerous points where a desired value is located. Thus, one can design option strategy 

as per desired option value taking into account time and other options parameters. It seems that 

eq. (A8) has a minimum point (usually a starting point) and the same equation has ability to 

increase options values. NAV is a function of eq. (B4) and its parameters are risk-free interest 

rate and tau. The three parts on the RHS of eq. (B4) relate to A, B and C. Therefore, A=1, B=2 

and C=-2. That is, 𝐵2 = 4 and AC=-2. This illustrates that eq. (B4) is a hyperbolic function. 

The views that apply to eq. (A8) apply equally to eq. (B4) as well because they are both 

hyperbolic functions. 
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5 Conclusion 

 

Firstly, this article illustrates that there are price differentials in options during 

corporate activities. Those price differentials are due to the presence of financial and 

fundamental prices. In principle, financial and fundamental prices hardly trade at the same 

level(s). Secondly, there are appropriate formulas for pricing options during bear and bull 

market conditions. Thirdly, negative option premium are possible during corporate activities. 

Fourth, options strategies are complex as shown by PDEs and hyperbola. Finally, although the 

article focuses on the REIT industry, emanating strategies can be replicated in other industries. 

The implications of this article are as follows. Firstly, price differentials create arbitrage 

opportunities. Moreover, those opportunities can be customised to suit short-term and/or long-

term period. Secondly, option formulas need to be improved in order for them to be suitable for 

pricing in certain situations. Thirdly, unforeseen products like negative option premiums do 

emerge sometimes. Fourth, strategists need to improve their technical knowledge for 

appropriately pricing of capital market products. Finally, some strategies are not industry and/or 

product specific. 
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Appendix 

 

Appendix A: Put-Call Share Price 

 

If Alexander (2008) arguments on call and put options when M>0 and M<0 are taken into 

account then Put-Call parity can be re-written as: 

 

𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) = 𝑁𝐴𝑉𝑒−𝑟(𝑇−𝑡) + {𝑓𝑐𝑎𝑙𝑙 (𝑆, 𝑡⎪𝐾, 𝑇) − 𝑓𝑝𝑢𝑡(𝑆, 𝑡⎟𝐾, 𝑇)}⏟                        
𝐿𝐻𝑆 𝑜𝑓 𝑒𝑞.(12)

   (A1) 

 

Thereafter, 𝑓𝑐𝑎𝑙𝑙  and 𝑓𝑝𝑢𝑡  are replaced by their formulas and eq. (A1) becomes: 

 

𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) = 𝑁𝐴𝑉𝑒−𝑟(𝑇−𝑡) + {𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) − 𝐾𝑒−𝑟(𝑇−𝑡)}⏟                
𝑓𝑐𝑎𝑙𝑙

− {𝐾𝑒−𝑟(𝑇−𝑡) − 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡)}⏟                
𝑓𝑝𝑢𝑡

 (A2) 

 

Removing brackets in eq. (A2) yields: 

 

𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) = 𝑁𝐴𝑉𝑒−𝑟(𝑇−𝑡) + 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) − 𝐾𝑒−𝑟(𝑇−𝑡)⏟                
𝑓𝑐𝑎𝑙𝑙

− 𝐾𝑒−𝑟(𝑇−𝑡) + 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡)⏟                
𝑓𝑝𝑢𝑡

  (A3) 

 

Putting together like terms in eq. (A3) yields: 

 

𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) = 𝑁𝐴𝑉𝑒−𝑟(𝑇−𝑡) + 2𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) − 2𝐾𝑒−𝑞(𝑇−𝑡)     (A4) 

 

Taking out the common factor on both sides of eq. (A4) leads to: 

 

𝑆(𝑡)𝑒−𝑞𝑒(𝑇−𝑡) = 𝑒(𝑇−𝑡)[𝑁𝐴𝑉𝑒−𝑟 + 2𝑆(𝑡)𝑒−𝑞 − 2𝐾𝑒−𝑟]     (A5) 

 

Thereafter, one divides throughout eq. (A5) by common factor, 𝑒(𝑇−𝑡): 

 

𝑆(𝑡)𝑒−𝑞𝑒(𝑇−𝑡)

𝑒(𝑇−𝑡)
=

𝑒(𝑇−𝑡)[𝑁𝐴𝑉𝑒−𝑟+2𝑆(𝑡)𝑒−𝑞−2𝐾𝑒−𝑟]

𝑒(𝑇−𝑡)
       (A6) 

 

After dividing throughout by the common factor, eq. (A6) becomes: 
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𝑆(𝑡)𝑒−𝑞 = 𝑁𝐴𝑉𝑒−𝑟 − 2𝐾𝑒−𝑟 + 2𝑆(𝑡)𝑒−𝑞       (A7) 

 

The exercise price, K in eq. (A7) is replaced by NAV because it can be inferred from Fisher 

(1978) that K can be replaced by fundamental price when one prices exchange options when 

underlying assets are real ones. 

 

𝑆(𝑡)𝑒−𝑞 = 𝑁𝐴𝑉𝑒−𝑟 − 2𝑁𝐴𝑉𝑒−𝑟 + 2𝑆(𝑡)𝑒−𝑞      (A8) 

 

Factorising eq. (A8) yields: 

 

2𝑆(𝑡)𝑒−𝑞 − 𝑆(𝑡)𝑒−𝑞 = 2𝑁𝐴𝑉𝑒−𝑟 − 𝑁𝐴𝑉𝑒−𝑟      (A9) 

 

Eq. (A9) is simplified further: 

 

𝑆(𝑡)𝑒−𝑞 = 𝑁𝐴𝑉𝑒−𝑟         (A10) 

 

Then, share price in eq. (A10) is written as the subject of the formula: 

 

𝑆(𝑡) =
𝑁𝐴𝑉𝑒−𝑟

𝑒−𝑞
          (A11) 

 

Exponential terms in eq. (A11) are put together: 

 

𝑆(𝑡)𝑃𝐶𝑃 = 𝑁𝐴𝑉𝑒
𝑞−𝑟         (A12) 
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Appendix B: Put-Call NAV 

 

When arguments by Alexander (2008) on the 𝑓𝑐𝑎𝑙𝑙  and the 𝑓𝑝𝑢𝑡  when M>0 and M<0 are taken 

into account, Put-Call parity can be re-written as: 

 

𝑁𝐴𝑉𝑒−𝑟(𝑇−𝑡) = 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) + 𝑓𝑝𝑢𝑡(𝑆, 𝑡⎪𝐾, 𝑇) − 𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡⎟𝐾, 𝑇)    (B1) 

 

Thereafter, 𝑓𝑐𝑎𝑙𝑙  and 𝑓𝑝𝑢𝑡  are replaced by their formulas and eq. (B1) becomes: 

 

𝑁𝐴𝑉𝑒−𝑟(𝑇−𝑡) = 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) + {𝐾𝑒−𝑟(𝑇−𝑡) − 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡)}⏟                
𝑓𝑝𝑢𝑡

− {𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) − 𝐾𝑒−𝑟(𝑇−𝑇}⏟                
𝑓𝑐𝑎𝑙𝑙

 (B2) 

 

Removing brackets in eq. (B2) yields: 

 

𝑁𝐴𝑉𝑒−𝑟(𝑇−𝑡) = 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) + 𝐾𝑒−𝑟(𝑇−𝑡) − 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡)⏟                
𝑓𝑝𝑢𝑡

− 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) + 𝐾𝑒−𝑟(𝑇−𝑡)⏟                
𝑓𝑐𝑎𝑙𝑙

  (B3) 

 

When like terms are put together, eq. (B3) becomes: 

 

𝑁𝐴𝑉𝑒−𝑟(𝑇−𝑡) = 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡) + 2𝐾𝑒−𝑟(𝑇−𝑡) − 2𝑆(𝑡)𝑒−𝑞(𝑇−𝑡)     (B4) 

 

The K in eq. (B4) is replaced by NAV for the same reason as in appendix A, and like times on 

the RHS of eq. (B4) are put together: 

 

𝑁𝐴𝑉𝑒−𝑟(𝑇−𝑡) = 2𝑁𝐴𝑉𝑒−𝑟(𝑇−𝑡) − 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡)      (B5) 

 

Factorising eq. (B5) leads to: 

 

𝑁𝐴𝑉𝑒−𝑟(𝑇−𝑡) = 𝑆(𝑡)𝑒−𝑞(𝑇−𝑡))        (B6) 

 

Both sides of eq. (B6) are divided by common factor (𝑖. 𝑒. 𝑒(𝑇−𝑡)) in order to simplify further: 

 

𝑁𝐴𝑉𝑒−𝑟𝑒(𝑇−𝑡)

𝑒(𝑇−𝑡)
=

𝑆(𝑡)𝑒−𝑞𝑒(𝑇−𝑡)

𝑒(𝑇−𝑡)
        (B7) 
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The resulting formula after dividing eq. (B7) by common factor is: 

 

𝑁𝐴𝑉𝑒−𝑟 = 𝑆(𝑡)𝑒−𝑞         (B8) 

 

NAV in eq. (B8) is written as the subject of the formula: 

 

𝑁𝐴𝑉 =
𝑆(𝑡)𝑒−𝑞

𝑒−𝑟
          (B9) 

 

Exponential terms in eq. (B9) are put together: 

 

𝑁𝐴𝑉𝑃𝐶𝑃 = 𝑆(𝑡)𝑒
𝑟−𝑞         (B10) 
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Appendix C: Disentangling Exponential Factor 

 

When the exponential factor is the subject of the formula, eq. (13) changes to: 

 

𝑒𝑞−𝑟 =
𝑆(𝑡)𝑃𝐶𝑃

𝑁𝐴𝑉𝑎𝑐𝑡𝑢𝑎𝑙
          (C1) 

 

Note that eq. (C1) includes 𝑆(𝑡) = 𝑁𝐴𝑉𝑒𝑞−𝑟 + [𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡|𝐾, 𝑇) − 𝑓𝑝𝑢𝑡(𝑆, 𝑡|𝐾, 𝑇)]𝑒+𝑞(𝑇−𝑡). The 𝑆(𝑡)𝑃𝐶𝑃 

in eq. (C1) is replaced by the full S(t) term: 

 

𝑒𝑞−𝑟 =
𝑁𝐴𝑉𝑒𝑞−𝑟+[𝑓𝑐𝑎𝑙𝑙(𝑆,𝑡|𝐾,𝑇)−𝑓𝑝𝑢𝑡(𝑆,𝑡|𝐾,𝑇)]𝑒𝑞(𝑇−𝑡)⏞                                  

𝑆(𝑡)𝑃𝐶𝑃

𝑁𝐴𝑉
      (C2) 

 

The RHS of eq. (C2) is decomposed into appropriate ratios: 

 

𝑒𝑞−𝑟 = 𝑒𝑞−𝑟 +
[𝑓𝑐𝑎𝑙𝑙(𝑆,𝑡|𝐾,𝑇)−𝑓𝑝𝑢𝑡(𝑆,𝑡|𝐾,𝑇)]𝑒𝑞(𝑇−𝑡)

𝑁𝐴𝑉
      (C3) 

 

Thereafter, one factorises eq. (C3): 

 

0 =
[𝑓𝑐𝑎𝑙𝑙(𝑆,𝑡|𝐾,𝑇)−𝑓𝑝𝑢𝑡(𝑆,𝑡|𝐾,𝑇)]𝑒𝑞𝜏

𝑁𝐴𝑉
        (C4) 

 

In eq. (C4), one multiplies throughout by the common denominator, NAV: 

 

0 = [𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡|𝐾, 𝑇) − 𝑓𝑝𝑢𝑡(𝑆, 𝑡|𝐾, 𝑇)]𝑒𝑞𝜏       (C5) 

 

The put and call options are separated from one another in eq. (C5): 

 

0 = 𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡|𝐾, 𝑇)𝑒𝑞𝜏 − 𝑓𝑝𝑢𝑡(𝑆, 𝑡|𝐾, 𝑇)𝑒𝑞𝜏      (C6) 

 

A call option is equated to a put option in eq. (C6): 

 

𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡|𝐾, 𝑇)𝑒𝑞𝜏 = 𝑓𝑝𝑢𝑡(𝑆, 𝑡|𝐾, 𝑇)𝑒𝑞𝜏       (C7) 
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Eq. (C7) illustrates that when dividend yields are discounted on continuous basis over time, the 

value of call and put options are equal in Put-Call parity. Taylor (1990) stated that the inclusion 

of dividend yields in Put-Call parity minimises mispricing opportunities. Eq. (C7) can still be 

simplified further by diving throughout by the common factor, 𝑒𝑞𝜏 on LHS and RHS of the 

formula. 

 

𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡│𝐾, 𝑇) = 𝑓𝑝𝑢𝑡(𝑆, 𝑡│𝐾, 𝑇)       (C8) 

 

Then, when the exponential factor is the subject of the formula, eq. (14) changes to: 

 

𝑒𝑟−𝑞 =
𝑁𝐴𝑉𝑃𝐶𝑃

𝑆(𝑡)𝑎𝑐𝑡𝑢𝑎𝑙
          (C9) 

 

Note that eq. (C9) includes 𝑁𝐴𝑉 = 𝑆(𝑡)𝑒𝑟−𝑞 + [𝑓𝑝𝑢𝑡(𝑆, 𝑡|𝐾, 𝑇) − 𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡|𝐾, 𝑇)]𝑒𝑟(𝑇−𝑡). 𝑁𝐴𝑉𝑃𝐶𝑃 in eq. 

(C9) is replaced by full NAV term: 

 

𝑒𝑟−𝑞 =
𝑆(𝑡)𝑒𝑟−𝑞+[𝑓𝑝𝑢𝑡(𝑆,𝑡|𝐾,𝑇)−𝑓𝑐𝑎𝑙𝑙(𝑆,𝑡|𝐾,𝑇)]𝑒𝑟𝜏⏞                                

𝑁𝐴𝑉𝑃𝐶𝑃

𝑆(𝑡)
       (C10) 

 

The RHS of eq. (C10) is decomposed into appropriate ratios: 

 

𝑒𝑟−𝑞 = 𝑒𝑟−𝑞 +
[𝑓𝑝𝑢𝑡(𝑆,𝑡|𝐾,𝑇)−𝑓𝑐𝑎𝑙𝑙(𝑆,𝑡|𝐾,𝑇)]𝑒𝑟𝜏

𝑆(𝑡)
       (C11) 

 

Thereafter, eq. (C11) is factorised: 

 

0 =
[𝑓𝑝𝑢𝑡(𝑆,𝑡|𝐾,𝑇)−𝑓𝑐𝑎𝑙𝑙(𝑆,𝑡|𝐾,𝑇)]𝑒𝑟𝜏

𝑆(𝑡)
        (C12) 

 

In eq. (C12), one multiplies throughout by the common denominator, S(t): 

 

0 = 𝑓𝑝𝑢𝑡(𝑆, 𝑡|𝐾, 𝑇)𝑒𝑟𝜏 − 𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡|𝐾, 𝑇)𝑒𝑟𝜏      (C13) 

 

Put and call options are separated from one another in eq. (C13): 

 

𝑓𝑝𝑢𝑡(𝑆, 𝑡|𝐾, 𝑇)𝑒𝑟𝜏 = 𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡|𝐾, 𝑇)𝑒𝑟𝜏       (C14) 
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Eq. (C14) is similar to eq. (C7) except that instead of dividend yields there is risk-free interest 

rate. When firms pay out dividends, they usually take into account the level of risk-free interest 

rate. Thus, dividends declared are based on the level of risk-free interest rate and normally 

dividends declared are lower than risk-free interest rate. Similarly, risk-free interest rate should 

have the same effect as dividends in Put-Call parity. Bakshi et al. (1997) stated that proper 

modelling of interest rates in improves the quality of options models. Eq. (C14) can be 

simplified further by dividing throughout by the common factor; 𝑒𝑟𝜏: 

 

𝑓𝑐𝑎𝑙𝑙(𝑆, 𝑡│𝐾, 𝑇) = 𝑓𝑝𝑢𝑡(𝑆, 𝑡│𝐾, 𝑇)       (C15) 
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Appendix D: NAV Transformation 

 

When 𝑁𝐴𝑉𝑃𝐶𝑃 = 𝑒
𝑆(𝑡)(𝑟−𝑞) is transformed into algebraic, it yields: 

 

�̂�(𝑥) ≔ ℱ[𝑓(𝑁𝐴𝑉𝑃𝐶𝑃)](𝑥) ≔ ∫ 𝑒𝑖𝑠𝑥𝑓(𝑁𝐴𝑉𝑃𝐶𝑃)𝑑(𝑁𝐴𝑉𝑃𝐶𝑃)
+∞

−∞
    (D1) 

 

Then likes terms are put together: 

 

ℱ[𝑒𝑁𝐴𝑉𝑃𝐶𝑃](𝑠) = ∫ 𝑒−𝑖𝑠𝑁𝐴𝑉𝑃𝐶𝑃𝑓(𝑁𝐴𝑉𝑃𝐶𝑃)
+∞

−∞
𝑑𝑁𝐴𝑉𝑃𝐶𝑃     (D2) 

 

Eq. (D2) can be simplified further: 

 

= ∫ 𝑒𝑁𝐴𝑉𝑃𝐶𝑃𝑒−𝑖𝑠𝑁𝐴𝑉𝑃𝐶𝑃𝑑(𝑁𝐴𝑉𝑃𝐶𝑃)
+∞

−∞
      (D3) 

 

NAV term in eq. (D3) is squared: 

 

= ∫ 𝑒−𝑖𝑠(𝑁𝐴𝑉𝑃𝐶𝑃)
2
𝑑(𝑁𝐴𝑉𝑃𝐶𝑃)

+∞

−∞
       (D4) 

 

Positive and negative infinities are separated: 

 

= ∫
+∞
𝑒−𝑖𝑠(𝑁𝐴𝑉𝑃𝐶𝑃)

2
𝑑(𝑁𝐴𝑉𝑃𝐶𝑃) − ∫−∞𝑒

−𝑖𝑠(𝑁𝐴𝑉𝑃𝐶𝑃)
2
𝑑(𝑁𝐴𝑉𝑃𝐶𝑃)   (D5) 

 

Note that the second part of eq. (D5) approaches zero as infinity becomes a huge number. Thus, 

the second part of eq. (D5) disappears: 

 

= √𝜋𝑒−
(𝑁𝐴𝑉𝑃𝐶𝑃)

2

4
⁄

        (D6) 

 

NAV term is replaced by appropriate parameters in eq. (D6): 

 

= √𝜋𝑒−
[𝑆(𝑡)(𝑟−𝑞)]2

4⁄         (D7) 

 

Eq. (D7) is simplified further: 

 

= √𝜋𝑒−
[𝑆(𝑡)(𝑟−𝑞)]1

2⁄         (D8)  
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Appendix E: Share Price Transformation 

 

Just like in Fourier transform, in order for Laplace transform to exist, eq. (15) should be 

converted into continuous and piecewise formula. First, 𝑒𝜆 is discretised into (𝜆 + 1). Thereafter, 

arbitrage opportunities are written off by taking a short position ignoring any related costs, 

(𝜆 + 1 − 1) = 𝜆.  

Then eq. (15) collapse to 𝑆(𝑡)𝑃𝐶𝑃 = 𝑁𝐴𝑉𝜆. The continuous form of 𝑆(𝑡)𝑃𝐶𝑃 is 𝑆(𝑡)𝑃𝐶𝑃 = 𝑒
𝑁𝐴𝑉𝜆 + 1. 

Finally, the share price is 𝑆(𝑡)𝑃𝐶𝑃 = 𝑒
𝑁𝐴𝑉𝜆 after taking a short position and ignoring any costs 

related to 𝑆(𝑡)𝑃𝐶𝑃 = 𝑒
𝑁𝐴𝑉𝜆 + 1 − 1. 𝑆(𝑡)𝑃𝐶𝑃 is put into Laplace formula: 

 

ℒ[𝑆(𝑡)𝑃𝐶𝑃](𝑠) = ∫ 𝑒−𝑠𝑆(𝑡)𝑃𝐶𝑃𝑑(𝑆(𝑡)𝑃𝐶𝑃)
+∞

0
     (E1) 

 

Eq. (E1) can be simplified further: 

 

= [−
1

𝑆(𝑡)𝑃𝐶𝑃
𝑒−𝑠𝑆(𝑡)]

∞
0

       (E2) 

 

One takes the limit of eq. (E2) between zero and positive infinity: 

 

= lim
𝑇→∞

|−
1

𝑆(𝑡)𝑃𝐶𝑃
𝑒−𝑠𝑆(𝑡)𝑃𝐶𝑃|

𝑇
0

      (E3) 

 

Positive infinity and zero terms are separated from each other in eq. (E3): 

 

= lim
𝑇→∞

|−
1

𝑆(𝑡)𝑃𝐶𝑃
𝑒−𝑇𝑆(𝑡)𝑃𝐶𝑃 +

1

𝑆(𝑡)𝑃𝐶𝑃
|
𝑇
0

     (E4) 

 

The first term in brackets in eq. (E4) approaches zero: 

 

= (0 +
1

𝑆(𝑡)𝑃𝐶𝑃
)        (E5) 

 

The zero term in eq. (E5) is left out: 

 

=
1

𝑆(𝑡)𝑃𝐶𝑃
         (E6) 
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𝑆(𝑡)𝑃𝐶𝑃 reverts back to appropriate term: 

 

=
1

𝑒𝑁𝐴𝑉𝜆 
         (E7) 

 

Eq. (E7) can be re-written as: 

 

= 𝑒−𝑁𝐴𝑉𝜆        (E8) 
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