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Adaptive meshes have the potential to improve the accuracy and efficiency of atmospheric 
modelling by increasing resolution where it is most needed. Mesh re-distribution, or r-
adaptivity, adapts by moving the mesh without changing the connectivity. This avoids some 
of the challenges with h-adaptivity (adding and removing points): the solution does not 
need to be mapped between meshes, which can be expensive and introduces errors, and 
there are no load balancing problems on parallel computers. A long standing problem with 
both forms of adaptivity has been changes in volume of the domain as resolution changes 
at an uneven boundary. We propose a solution which achieves exact local conservation 
and maintains a uniform scalar field while the mesh changes volume as it moves over 
orography. This is achieved by introducing a volume correction parameter which tracks the 
cell volumes without using expensive conservative mapping.
A finite volume solution of the advection equation over orography on moving meshes 
is described and results are presented demonstrating improved accuracy for cost using 
moving meshes. Exact local conservation and maintenance of uniform scalar fields is 
demonstrated and the correct mesh volume is preserved.
We use optimal transport to generate meshes which are guaranteed not to tangle and are 
equidistributed with respect to a monitor function. This leads to a Monge-Ampère equation 
which is solved with a Newton solver. The superiority of the Newton solver over other 
techniques is demonstrated in the appendix. However the Newton solver is only efficient if 
it is applied to the left hand side of the Monge-Ampère equation with fixed point iterations 
for the right hand side.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dynamic mesh adaptivity can be advantageous for the numerical solution of PDEs when numerical errors (or their 
impacts) are greater in some areas than others. Numerical weather and climate predictions, for example, could be improved 
by locally varying the spatial resolution through time, tracking atmospheric phenomena such as weather fronts [4].

H-adaptivity involves adding and removing computational points based on local resolution requirements (e.g. [1,16,18]). 
The connectivity of the mesh and the total number of computational points change. Conversely, r-adaptivity, or mesh re-
distribution, involves moving mesh vertices without changing the connectivity of the mesh. It results in a deformed mesh 
keeping the number of computational points and topology the same (e.g. [7,9,10]).
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Fig. 1. Two-dimensional example of a change in shape of orography when the mesh distribution changes from (left) uniform to (right) focused in the 
middle. Solid (red) and dashed lines indicate the model orography and real orography, respectively.

R-adaptivity is an attractive form of adaptivity since the data structures associated with the connectivity do not change 
and therefore the load balancing remains constant on parallel computers. R-adaptivity does not require mapping solutions 
between old and new meshes. R-adaptivity can also lead to smoothly graded meshes, which are desirable in order to reduce 
wave reflections and other errors associated with rapid resolution changes [17,11].

A disadvantage of r-adaptivity is, with a fixed number of points and fixed connectivity, it is not possible to achieve 
exactly the required resolution in each direction simultaneously, which can be achieved with h-adaptivity. This causes an 
extra difficulty when introducing orography. For example, we consider a vertical slice model with a horizontally moving 
mesh over orography (Fig. 1). When the topographic surface is approximated as piecewise linear (or higher order) splines 
based on vertex locations, the shape of orography inevitably changes as mesh vertices move over the orography. Therefore 
the volume of the domain changes as the mesh moves, which results in unphysical compression or expansion of the model 
fluid.

With h-adaptivity, this issue can be avoided by evaluating all the metric terms from orography on the finest grid every-
where in the domain and average the result, in a consistent manner, to any coarser grid [8]. This approach is only suitable 
for models in which each fine grid cell only ever over-laps with one coarse grid cell. Another way to resolve this issue is 
using conservative mapping to calculate the cell volumes over the original shape of orography. For example, Schwartz et al. 
[14] presented an algorithm to perform highly accurate mappings using sub-grid knowledge, which ensures the required 
accuracy with grid refinement. Though this approach can be used with both h- and r-adaptivities, it is expensive to perform 
conservative mapping of the orography every time step.

Instead of mapping the shape of orography within each cell, we propose another solution which is to correct the cell 
volumes indirectly by solving a transport equation for a cell volume. We introduce a volume correction parameter which 
tracks the change in cell volumes caused by the change in the shape of orography. With this approach, the exact local 
conservation and maintenance of uniform fields on a moving mesh over orography is achieved without using expensive 
conservative mapping.

Section 2 provides the model description, including the finite-volume discretisation on a moving mesh, and the correction 
of the cell volumes as mesh moves over orography. In section 3, we present the results of a three-dimensional tracer 
advection test with the use of the volume correction parameter. Here we evaluate the model error using smooth and rough 
orography and demonstrate the importance of maintaining uniform fields on a moving mesh. Finally, in section 4 we provide 
a summary and outlook. We prove that the method for calculating corrected cell volumes is bounded in appendix A and we 
describe the optimally transported mesh generation in appendix B.

2. Model description

2.1. Finite volume discretisation on a moving mesh

The model description assumes three spatial dimensions but the results (section 3) are all in 2.5 spatial dimensions; two 
horizontal dimensions and a single mesh layer in the vertical with changes of depth to represent the orography. The test 
case velocity field is defined in two dimensions using a streamfunction and the initial conditions are two dimensional.

We consider the three-dimensional advection equation in flux form:

∂ρ

∂t
+ ∇ · (uρ) = 0, (1)

where u = (u, v, w) is a prescribed velocity field and ρ is the tracer density. To derive a finite-volume discretised equation, 
first we integrate the equation over a control volume V and then apply Gauss’ divergence theorem:
2
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Fig. 2. An example showing how the mesh flux φm is calculated. The solid line and the thick line show the boundaries of a cell at the time step n and 
n + 1, respectively. The hatched region shows the swept volume by the right face of the cell, which is calculated as the mesh flux at time step n + 1/2
corresponding to that face.∫

V

∂ρ

∂t
dV +

∮
S

ρ u · n dS = 0, (2)

where n is the outward pointing unit normal vector on the boundary surface S of the control volume V so that ρ u · n dS
is the flux of ρ over the surface with area dS . To extend (2) to a moving mesh, we use the Reynolds transport theorem:

d

dt

∫
V (t)

ρ dV =
∫

V (t)

∂ρ

∂t
dV +

∮
S(t)

ρ us · n dS, (3)

where us is the velocity of the boundary surface S . Note that the control volume V and the boundary surface S are now 
time dependent. The relationship between the volume V and the velocity us is called the space conservation law [6]:

∂

∂t

∫
V (t)

dV −
∮

S(t)

us · n dS = 0. (4)

This means that the change in the control volume has to match the sum of the swept volumes of all its surfaces. Combining 
equations (2) and (3), we have the integral form of the advection equation (1) on a moving mesh:

d

dt

∫
V (t)

ρ dV +
∮

S(t)

ρ (u − us) · n dS = 0. (5)

The discretised form of the equation (5) can be written:

V n+1ρn+1 − V nρn

�t
+
∑
faces

ρ f (φ − φm) = 0, (6)

between time steps n and n +1 where values inside the summation are at time step n +1/2 (implying second-order accuracy 
in time), �t is the time step size, ρ f denotes the tracer density that is interpolated onto the cell faces, and φ = u · n dS is 
the face flux defined on the cell faces. The spatial accuracy will depend on how ρ f is evaluated on faces from cell volume 
data which is described in section 2.4. The mesh flux φm = us · n dS is calculated as the swept volume by the faces during 
each time step (Fig. 2), which satisfies the following discretised form of the equation (4):

V n+1 − V n

�t
−
∑
faces

φm = 0. (7)

2.2. Automatic mesh motion

The optimally transported mesh generation procedure is described in appendix B. The Monge-Ampère equation is solved 
to generate a mesh that is equidistributed with respect to a monitor function and guaranteed tangle free due to the optimal 
transport. A Newton method is described to solve the Monge-Ampère equation. A monitor function is chosen so that the 
cell areas are a factor of 4 smaller in regions where the second derivatives of the tracer density is highest compared with 
the regions of lowest second derivatives. The factor of 4 is achieved to solver tolerance by the elliptic optimal transport 
mesh generation, although there are no guarantees about the cell aspect ratios. The mesh is moved every time step so fast 
convergence of the Newton solver is important, which is also demonstrated in appendix B.
3
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Fig. 3. Two-dimensional example of mesh movement over orography between times n (top) and n +1 (bottom). On the left the sum of the volumes changes 
between n and n + 1 because of the sampling of the orography. On the right the volumes are multiplying the volume adjustment parameter A, making 
their sum invariant over time. The thick line represents the surface of orography. Hatched regions show the cell volumes.

The monitor function depends on the second derivative of the tracer density. Higher derivatives are not used because 
they are more noisy. Even using the second derivative, considerable smoothing is applied to the monitor function (see 
appendix B.3) as the second-order advection scheme (section 2.4) relies on superconvergence and hence a smoothly varying 
mesh to achieve second-order accuracy.

2.3. Time stepping with volume adjustment as the mesh moves over orography

When the cell volumes are calculated from vertex locations without tracking the variations in orography within each cell, 
the shape of the model orography inevitably changes as the mesh vertices move (Fig. 1). This means that equation (7) does 
not hold on a moving mesh over orography: we only consider the swept volumes in the horizontal, not the swept volume of 
the orography surface. The mismatch between the change in the control volume and the sum of the swept volumes results 
in artificial compression and expansion of the fluid.

One solution to this problem would be to use a conservative mapping of old to new mesh to calculate the cell volumes 
over the original shape of the orography. However we want to avoid the expense of conservative mapping every time step, 
particularly as we are only interested in the cell volumes and not in the shape of orography itself. Therefore, instead of 
mapping the shape of orography within each cell, we track the corrected cell volumes by solving the following advection 
equation for a cell volume:

An+1 V n+1 − An V n

�t
=
∑
faces

Ãn
f φm, (8)

where A is the volume adjustment parameter and V is the volume of cells as defined only by their vertices so that AV
corresponds to the corrected cell volumes (Fig. 3). To avoid having negative cell volumes, we use a downwind value of An

f

(with respect to the mesh velocity), denoted by Ãn
f , in the right-hand side. This guarantees that A is always positive as long 

as the initial value of A is positive at all cells (see appendix A for a proof). Then we use AV in the advection equation (6)
instead of V and solve (6) for ρn+1 using a two stage, second-order Runge-Kutta method:

An+1 V n+1ρ∗ − An V nρn

�t
+ 1

2

∑
faces

ρn
f (φ

n − Ãn
f φm) + 1

2

∑
faces

ρn
f (φ

n+1 − Ãn
f φm) = 0, (9)

An+1 V n+1ρn+1 − An V nρn

�t
+ 1

2

∑
ρn

f (φ
n − Ãn

f φm) + 1

2

∑
ρ∗

f (φ
n+1 − Ãn

f φm) = 0, (10)

faces faces

4
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where the mesh flux φm is evaluated at time step n + 1/2 as in Fig. 2. In this way, we achieve conservation of both the total 
domain volume (i.e., the total AV ) and the total mass relative to the domain size (i.e., the total ρ AV ), thereby maintaining 
uniform fields without the need to map the shape of orography within each cell.

The downwinding of A has the effect of smoothing the orography. We will see in section 3.1 that this smoothing does 
not accumulate, which would make the orography progressively smoother and smoother, but instead it oscillates as the 
mesh moves to and fro over the orography.

To prove that our scheme preserves a uniform field on a moving mesh, we assume a divergence-free velocity field so 
that for each cell∑

faces

φ = 0 (11)

at all time steps, and check if the solution stays uniform when the initial condition is uniform. Given ρn ≡ 1, the equation 
(9) becomes

An+1 V n+1ρ∗ − An V n

�t
+ 1

2

∑
faces

(φn − Ãn
f φm) + 1

2

∑
faces

(φn+1 − Ãn
f φm) = 0. (12)

Substituting the equations (8) and (11) into (12), we have

An+1 V n+1(ρ∗ − 1) = 0. (13)

As An+1 V n+1 �= 0, we obtain ρ∗ ≡ 1. Then equation (10) becomes

An+1 V n+1ρn+1 − An V n

�t
+ 1

2

∑
faces

(φn − Ãn
f φm) + 1

2

∑
faces

(φn+1 − Ãn
f φm) = 0. (14)

In the same way as above, we obtain ρn+1 ≡ 1. Therefore it is proved that the solution stays uniform in a divergence-free 
velocity field when the initial condition is uniform. In section 3, we will confirm this result numerically, whereas the model 
without the volume adjustment suffers from artificial compression and expansion of the fluid in association with the mesh 
movement over orography.

2.4. Advection scheme

Section 2.1 describes the interaction of the discretisation with the moving mesh, and section 2.3 includes the description 
of a two-stage, second-order Runge-Kutta time stepping scheme as in the equations (9) and (10). To complete the discreti-
sation we must specify how face values, ρ f , are calculated from cell values, ρ . We use a simple, second-order linear upwind 
advection scheme without monotonicity constraints (e.g. [15]). The use of an unbounded advection scheme makes it easier 
to ensure that the mesh motion over orography does not generate spurious oscillations. The face values are approximated 
as:

ρ f = ρu + δ · ∇uρ (15)

where ρu is the value of ρ in the cell upwind of the face, δ is the vector that goes from the upwind cell centre to the face 
centre, and ∇uρ is the gradient of ρ calculated in the upwind cell using Gauss’ divergence theorem:

∇uρ = 1

V

∑
faces of u

ρ̃ f S f (16)

where ρ̃ f is the values of ρ linearly interpolated from cell centres onto faces and S f is the outward pointing vector normal 
to each face with magnitude equal to the face area (the face area vector). This gradient calculation is only second-order 
accurate on a uniform mesh. We therefore rely on superconvergence for accuracy so the mesh deformations must be smooth 
which requires smoothing of the monitor function, as described in appendix B.3.

The combination of the two-stage explicit Runge-Kutta time stepping and the linear upwind interpolation means that 
the advection is stable for Courant numbers up to one.

3. Results

3.1. Advection over smooth and rough orography

In this section, we present the results of an advection test on a three-dimensional mesh with one layer in the vertical. 
We use a computational domain with a size of [−L, L] × [−L, L] × [0, H], where the domain half-length L and height H are 
5
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Fig. 4. Left: initial conditions of the tracer density (coloured/shaded), the velocity and height of orography (dashed is negative, contour interval 100 m). 
Right: the monitor function (coloured/shaded), the resulting 50 × 50 mesh and the cell volumes (contoured). The Monge-Ampère mesh solution ensures 
that the product of the monitor function and the cell volumes is uniform.

set to 5 km and 1 km, respectively. The number of cells is N both in the x and y directions. All boundaries of the domain 
are considered as rigid walls.

An initial tracer (coloured/shaded in Fig. 4a), is transported by a solid body rotating velocity field. The initial tracer 
density ρ0 is defined as

ρ0(x, y) =

⎧⎪⎨
⎪⎩

1

2

[
1 + cos

(
πrt

Rt

)]
(rt ≤ Rt) (a)

0 (rt > Rt) (b)

(17)

where the tracer radius Rt = L/5, and the distance to the centre of the tracer,

rt = |x − xt | =
√

(x − xt)2 + (y − yt)2, (18)

with the centre of the tracer initially at xt = (0, L/2). The divergence-free velocity field can be written in terms of a 
streamfunction ψ as

u = −∂ψ

∂ y
, v = ∂ψ

∂x
, w = 0. (19)

We use ψ that yields a velocity field which rotates around the centre of the domain and decays linearly to zero before it 
reaches the boundaries (Fig. 4a):

ψ(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� r2
v (rv ≤ Ri) (a)

� Ri

{
Ri + (rv − Ri)

(
Ro − rv

Ro − Ri
+ 1

)}
(Ri < rv ≤ Ro) (b)

�Ri Ro (rv > Ro) (c)

(20)

where rv is the distance to the centre of the domain. The inner radius is set to Ri = 0.76L so that the tracer is separate from 
the sheared velocity and the outer radius is set to Ro = L so that the velocity is zero at the boundary. The angular velocity is 
given by � = π/600 s−1 so that the tracer is transported counterclockwise and reaches its initial position after 600 seconds. 
Note that, although the velocity field is steady, it is recalculated after every time step since the mesh is changing.

The streamfunction is evaluated at vertices on the three-dimensional mesh and the fluxes are calculated using Stoke’s 
circulation theorem around faces (between cells). This ensures that the velocity field is discretely divergence free. Note that 
6
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the velocity flux, φ, is not scaled by A as this would create divergence. A acts on the mesh fluxes and volumes but not on 
the fluid fluxes.

The tracer passes over a smooth hill and valley, as shown in Fig. 4a, with surface height given by

h(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hmax

2

[
1 + cos

(πrh

a

)]
(rh ≤ a) (a)

hmin

2

[
1 + cos

(πrv

a

)]
(rv ≤ a) (b)

0 (rh > a and rv > a) (c)

(21)

where a = L/5 is the orography radius, hmax = 500 m is the height at the centre of the hill and that of the valley hmin =
−500 m. The distance to the centre of the hill rh = |x − xh| with xh = (−L/2, 0), and the distance to the centre of the valley 
rv = |x − xv | with xv = (L/2, 0).

As a more challenging test, the tracer also passes over a cylinder-shaped hill and valley which has steep cliffs on the 
sides, with surface height given by

h(x, y) =

⎧⎪⎨
⎪⎩

hc (rh ≤ a) (a)

−hc (rv ≤ a) (b)

0 (rh > a and rv > a) (c)

(22)

where hc = 500 m.
The monitor function calculated from the initial tracer field is coloured/shaded in Fig. 4b along with an initial 50 × 50

mesh calculated from this monitor function. The cell volumes are contoured which shows that the Monge-Ampère mesh 
solution ensures the volumes closely fit the requirements. However cells can be stretched in order to achieve the required 
volume and there is no control over the cell aspect ratios. The contoured cell volumes in Fig. 4b also show the smooth 
mountain (on the left) and the smooth valley (on the right). The mesh generation controls cell volumes before the orography 
is created so that the volume changes due to the orography do not influence the horizontal resolution. i.e. the monitor 
function controls the horizontal cell areas.

The control run over smooth orography uses the volume correction, 100 × 100 cells and a time step of �t = 0.5 s. 
The tracer after a quarter, half, three quarters and a full revolution of the control run are coloured/shaded in Fig. 5 and the 
monitor function (indicating the mesh density) is contoured. As the velocity field is divergence-free, the tracer is accelerated 
over the hill and decelerated over the valley, returning to its original shape and position after 600 s. The mesh tracks the 
tracer as it moves and changes its shape, without tangling. As described in section 2.2, the monitor function is chosen here 
so that the cell areas are a factor of 4 smaller in regions where the second derivatives of the tracer density is highest 
compared with the regions of lowest second derivatives (see appendix B.3 for details). The results with and without the 
volume correction, A, look visually identical for the smooth orography (not shown).

Fig. 6a,b shows the tracer advection over the rough orography at a quarter and one whole revolution without using vol-
ume correction, A. Large oscillations are generated due to the compression and expansion of the domain. These oscillations 
are not always visible in Fig. 6a,b because the tracer is only coloured between zero and one but the location of the largest 
monitor function shows where the oscillations are large. It might be possible to dampen the oscillations with an aggressive 
monotonic advection scheme but monotonic advection should only be achieved for non-divergent wind fields whereas we 
have introduced artificial divergence by changing the mesh volume.

The control run over the rough orography using the volume correction, A, gives very similar results to the results over 
smooth orography (Fig. 6c,d), demonstrating the success of correcting the volumes and the importance of the maintenance 
of uniform fields on a moving mesh over orography.

3.2. Correcting the volume and preserving uniform fields

Fig. 7 shows how the total, uncorrected domain changes in volume as the mesh moves over the smooth and rough 
orography over five revolutions of the solid body rotation for the control runs solving the advection equation with A. 
The rough orography creates larger and more rapidly varying changes in domain volume than the smooth orography. The 
corrected mesh, with cell volumes AV , does not change size to machine precision, as required. We also require that A
does not deviate too far from one regardless of the length of the simulation as this would mean that the orography is 
getting progressively smoother. This is of particular concern as we know that A is calculated using first-order numerics. The 
maximum and minimum values and the variance of A for ten revolutions are shown in Figs. 8 and 9 for the smooth and 
rough orography, confirming that deviations from one do not accumulate.

To demonstrate that the model with A maintains uniform fields as the mesh moves over orography, we repeat the 
experiment using a uniform initial condition, ρ0 ≡ 1, instead of using the cosine-shaped tracer but the mesh moves to track 
the original cosine-shaped tracer. We compare results with and without the volume correction, A. Figs. 10a,b,d,e show the 
initially uniform tracer density at t = 150 s and t = 600 s without the volume correction. For the smooth orography there is 
7
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Fig. 5. Tracer advection over smooth orography with a moving mesh correcting for volume errors. Colours/shading show the tracer density at t = (a) 150 s, 
(b) 300 s, (c) 450 s and (d) 600 s. Solid and dashed black contours show the positive and negative height of orography, with a contour interval of 100 m. 
Grey contours show the monitor function which is inversely proportional to the horizontal cell area. Resolution 100 × 100 cells, �t = 0.5 s.

artificial compression and expansion of the fluid leading to deviations of the tracer from one. For the rough orography, the 
deviations from one are much larger, with shorter wavelengths and fill the whole of the rotating domain. Figs. 10c,f show 
1012(ρ − 1) at t = 600 s when using A which shows that the uniform ρ is maintained to machine precision for the smooth 
and rough orography. The values of A calculated are shown in Fig. 11.

3.3. Convergence with resolution

Advection over flat, smooth and rough orography is simulated using the model with volume corrections and with a range 
of resolutions, varying the time step in proportion to the resolution, as shown in Table 1. The adaptive mesh simulations are 
8
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Fig. 6. Tracer advection over rough orography with a moving mesh without (a,b) and with (c,d) correcting for volume errors with A. Colours/shading show 
the tracer density at t = (a,c) 150 s, (b,d) 600 s. Solid and dashed black contours show the positive and negative height of orography, with a contour interval 
of 100 m. Grey contours show the monitor function which is inversely proportional to the horizontal cell area. Resolution 100 × 100 cells, �t = 0.5 s.

compared with fixed mesh simulations. The fixed and adaptive simulations use the same time step for the same nominal 
resolution so the maximum Courant number is larger for the adaptive simulations due to the local refinement.

The 	2 error norms versus nominal (average) resolution after one revolution for fixed and moving meshes are shown 
in Fig. 12. The moving mesh reduces errors by about a factor of four both with and without orography. The presence or 
shape of the orography makes little difference to the errors which explains why the smoothing of the orography during the 
volume correction does not affect the errors. Simulations on the fixed, uniform mesh converge with a rate of 1.78, close 
to the theoretical convergence rate of two. Although the errors are lower with mesh adaptation, the order of convergence 
is also slightly lower at a rate of 1.64. This is likely to be because the mesh is no longer uniform and so the solution 
9
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Fig. 7. The normalised change in volume of the domain when moving the 100 × 100 cell mesh over smooth (top) and rough (bottom) orography for five 
full revolutions of the solid body rotation and the corrected volume. The corrected domain changes are multiplied by 108 for the smooth orography and by 
109 for the rough orography.

Table 1
Resolution, time step and maximum Courant number statistics for the 
convergence with resolution tests using fixed and moving meshes.

No. cells �x �x adapt �t max C max C

fixed min max fixed adapt

50 × 50 200 104 292 1 0.27 0.52

100 × 100 100 50 162 0.5 0.28 0.53

200 × 200 50 25 85 0.25 0.28 0.83

400 × 400 25 12.5 46 0.125 0.28 0.88

benefits less from superconvergence. The sub-optimal convergence might be improved by optimising the monitor function 
and would certainly be improved by using a higher-order advection scheme, both of which are outside the scope of this 
paper.

4. Conclusion

We proposed a novel approach to solve the problem of changes in volume of the domain when resolution changes over 
orography in a simulation using adaptive meshes. The volume correction parameter is introduced which tracks the cell 
volumes by solving an advection equation for a cell volume, achieving conservation of both the volume of the domain and 
the total mass without expensive conservative remapping. The results of tracer advection test showed that our scheme 
maintains a uniform field while the mesh resolution changes over orography, whereas the model without the volume 
correction suffers from artificial compression and expansion of the fluid due to the lack of conservation of volume of the 
10



H. Yamazaki, H. Weller, C.J. Cotter et al. Journal of Computational Physics 461 (2022) 111217
Fig. 8. The maximum and minimum of the volume correction parameter, A, when moving the 100 × 100 cell mesh over smooth and rough orography for 
ten full revolutions of the solid body rotation.

domain. The importance of the maintenance of uniform fields was demonstrated over rough orography where the change 
in cell volumes on a moving mesh can be pronounced without volume correction. The resulting artificial changes in volume 
lead to large unbounded errors when the advected tracer moves over orography. The volume correction successfully avoided 
the errors by efficiently tracking the changes in the cell volumes over orography and correcting the cell volumes. The same 
idea is considered to be applicable to other variable boundary conditions on a moving mesh (e.g. a land sea mask). The 
volume correction effectively smooths the orography and the smoothing reaches an oscillating steady state which depends 
on the roughness of the original orography. Further work is needed to apply this method to the shallow water or fully 
compressible equations with the aim of simulating atmospheric problems on a moving mesh over real orography.

The optimally transported mesh is moved by solving the Monge-Ampère equation at every time step. A novel Newton 
solve of the Monge-Ampère equation is described in the appendix.
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Fig. 9. The variance of the volume correction parameter, A, when moving the 100 × 100 cell mesh over smooth and rough orography for ten full revolutions 
of the solid body rotation.
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Appendix A. Boundedness of volume adjustments

In section 2.3, we introduced a volume adjustment parameter, A, to correct the cell volumes, V , calculated from vertex 
locations sampled over orography. As the mesh moves, the sum of all V changes but the sum of AV does not change. Here 
we prove that A is bounded above zero which is needed to guarantee that the model may not have negative cell volumes.

The parameter A is calculated from an advection equation (8) discretised using first-order forward in time and first-order 
downwind in space, which can be rewritten as:

An+1 V n+1 − An V n

�t
=

∑
outward

faces

An
N φm︸︷︷︸

positive

+
∑

inward
faces

An φm︸︷︷︸
negative

=
∑

outward
faces

An
N φm︸︷︷︸

positive

−
∑

inward
faces

An |φm|︸︷︷︸
positive

, (23)

where An
N denotes the tracer density at the neighbouring cell downstream. This can be re-arranged for An+1 as a function 

of values of A at time level n:
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Fig. 10. Advection of ρ ≡ 1 over smooth and rough orography with mesh movement to track the cosine hill tracer. a,b,d,e do not use the volume corrector, 
A. c,f uses A and the difference between ρ and 1 multiplied by 1012 is plotted.

An+1 = V n

V n+1 An

⎧⎪⎨
⎪⎩1 − �t

V n

∑
inward
faces

|φm|︸︷︷︸
positive

⎫⎪⎬
⎪⎭+ �t

V n+1

∑
outward

faces

An
N φm︸︷︷︸

positive

. (24)

Given that An > 0 and An
N > 0, we can see that An+1 > 0 when

1 − �t

V n

∑
inward
faces

|φm|︸︷︷︸
positive

= 1 −

∣∣∣∣∣∣∣
�t

V n

∑
inward
faces

φm

∣∣∣∣∣∣∣︸ ︷︷ ︸
positive

> 0. (25)

Since the mesh velocity Courant number, C , is defined as

C = �t

V n

∑
faces

φm, (26)

An+1 > 0 if |C | < 1. Therefore it is proved that, when the initial value of A is positive at all cells, A stays positive as long as 
the mesh velocity Courant number is less than one.

Appendix B. Numerical solution of the Monge-Ampère equation for mesh generation

The meshing technique is described in full, analysed and compared with other methods full in [3] which is summarised 
here and results are presented for the meshes used in this paper.
13
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Fig. 11. A at t = (a) 150 s and (b) 600 s in the advection test over smooth and rough orography. Solid and dashed contours show the profile of orography 
as in Fig. 10.

B.1. Introduction

An optimally transported mesh is as close as possible to the original mesh (close being defined by the root mean square 
distance between the vertices of the original and transported mesh) whilst equidistributing a given scalar monitor function 
[5]. To guarantee that the transported mesh is not tangled, the locations, x, are defined from the locations of the original 
mesh, ξ , by the addition of the gradient of a mesh potential, φ:

x = ξ + ∇φ. (27)
14
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Fig. 12. The 	2 error norm in ρ versus the grid size for the advection test over smooth orography using a cosine-shaped tracer. The fixed, uniform mesh 
solutions converge at a rate of 1.78 both with and without the smooth orography. The moving mesh simulations over flat, smooth (mountains) and rough 
(cliffs) orography converged at a rate of 1.64.

Equidistribution of the monitor function, m(x) > 0 is expressed as:

|∇x| m(x) = c (28)

for a constant c uniform across space where | | is the matrix determinant so that |∇x| is the Jacobian determinant of the 
map from the original to the transported mesh. The combination of equations (27) and (28) gives a fully non-linear elliptic 
PDE, the Monge-Ampère equation:

|I + H(φ)| = c

m(x)
(29)

where I = ∇ξ is the identity tensor and H = ∇∇ is the Hessian. The meshes in this paper are all the result of numerical 
solution of the Monge-Ampére equation.

Budd and Williams [5] added Laplacian smoothing and a rate of change term to (29) making it parabolic and solved 
using a spectral method. Weller et al. [19] derived an equation to generate optimally transported meshes on the surface of a 
sphere, linearised about a uniform flat mesh to create fixed point iterations, each iteration requiring the solution of a Poisson 
equation discretised using finite volumes. McRae et al. [12] re-wrote the equation on the surface of a sphere as a PDE and 
solved using a Newton solver with finite elements. Here we describe a Newton method for solving the Monge-Ampère 
equation on a finite plane and discretise in space with finite volumes following [19].

B.2. Numerical method

We define a Newton method for solving (29) in Euclidean geometry, linearising the LHS around the previous iteration 
and using the RHS from the previous iteration. xk = ξ + ∇φk is the solution at iteration k. By writing φk+1 = φk + εψ it can 
be shown that

|I + H(φk+1)| = |I + H(φk)| + ∇ · Pk∇εψ +N (εψ), (30)

where Pk is the matrix of cofactors of I + H(φ) and N is some nonlinear function. In 2D

Pk =
[

1 + φk
yy −φk

xy

−φk
xy 1 + φk

xx

]
(31)

and N (εψ) = ε2|H(ψ)|. In 3D, a more involved calculation can show N (εψ) = ε3Ñ (ψ) and
15
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Pk =

⎡
⎢⎢⎣

1 + φk
yy + φk

zz + φk
yyφ

k
zz − φk

yzφ
k
yz −φk

xy − φk
xyφ

k
zz + φk

xzφ
k
yz −φk

xz − φk
xzφ

k
yy + φk

xyφ
k
yz

−φk
xy − φk

xyφ
k
zz + φk

xzφ
k
yz 1 + φk

xx + φk
zz + φk

xxφ
k
zz − φk

xzφ
k
xz −φk

yz − φk
xxφ

k
yz + φk

xyφ
k
xz

−φk
xz − φk

xzφ
k
yy + φk

xyφ
k
yz −φk

yz − φk
xxφ

k
yz + φk

xyφ
k
xz 1 + φk

xx + φk
yy + φk

xxφ
k
yy − φk

xyφ
k
xy

⎤
⎥⎥⎦ .

At convergence terms proportional to εd (where d is the dimensionality of space) will disappear so at each iteration, we 
solve the following Poisson equation for εψ :

∇ ·
(

Pk∇εψ
)

= c

m(xk)
− |I + H(φk)|. (32)

Equation (32) is elliptic as long as Pk is positive definite. For simplicity and efficiency we use a finite volume discretisation 
for spatial discretisation of (32). However, unlike wide stencil finite difference methods (e.g. [13]), this is not guaranteed 
to give monotonic solutions. Wide stencil finite difference methods increase the stencil size until the determinant of the 
Hessian in the Monge-Ampère equation is positive. They are quite expensive and we are taking a more pragmatic approach. 
Our approach means that Pk can become non-positive definite so (32) loses its ellipticity and solutions rapidly diverge. To 
remedy this we can modify (32) to maintain ellipticity by replacing the matrix P k with a modified matrix Q k such that

Q k = Pk + γ I (33)

and γ is defined as

γ :=
{

0 if minσ [Pk] > 0

δ − minσ [Pk] if minσ [Pk] ≤ 0.
(34)

The constant δ > 0 is chosen to avoid round-off errors (we have taken δ = 10−5), and σ [Pk] refers to the spectrum of Pk . 
This process simply shifts the eigenvalues of the matrix P k so that they remain positive.

The iterations labelled k are called outer iterations because the Poisson equation is also solved using an iterative solver 
within each outer iteration.

The Laplacian and the Hessian of (32) are discretised in space using compact finite volumes, following [19]. This is 
equivalent to second order finite differences on a uniform grid. Zero gradient boundary conditions are used. The spatial 
discretisation leads to a set of linear simultaneous equations. These are solved using the OpenFOAM GAMG solver with a 
symmetric Gauss Seidel smoother and an LU pre-conditioner. A maximum of 10 solver iterations are allowed. The tightest 
solver tolerance is 10−4 but the solver is only solved to a tolerance of 0.01 times the initial residual each outer iteration. 
This is to avoid spending too much time solving the first few iterations tightly when subsequent iterations will have updated 
coefficients. Tightening the tolerance would reduce the small discrepancies between the mesh volumes and c/m.

B.3. The monitor function

The monitor function is based on the Frobenius norm of the Hessian of the tracer density, ρ , which in two dimensions 
is

m1(x) =
√

ρ2
xx + ρ2

xy + ρ2
yx + ρ2

yy . (35)

Following McRae et al. [12] we use the rule of thumb that half of the resolution should be placed where not much is 
happening. This can be approximately achieved by setting:

m2(x) = min

(
m1

m1 + 1
, rmax

)
(36)

where m1 is the area average of m1 and rmax is the ratio of smallest to largest cell volumes/areas of the resulting adapted 
mesh. For the simulations in section 3 we use rmax = 4 meaning that, if cells have aspect ratio 1 then the maximum ratio 
of smallest to largest cell side lengths is 2. The monitor function is smoothed before it is used for mesh generation so that 
the resulting mesh varies smoothly, which is advantageous for finite volume and finite difference methods that have the 
property of super convergence. The final monitor function, m3, is the implicit solution of the diffusion equation:

m3 − m2

�t
= K∇2m3 (37)

where the diffusion coefficient, K , is mesh size and time step dependent:

K = M
�x2

4�t
. (38)

M is equivalent to the number of applications of a (1, −2, 1) filter to smooth the monitor function. M = 20 is used for 
the meshes presented in section 3. The Laplacian in (37) is calculated on the uniform orthogonal computational mesh of 
squares using 2nd-order centred differences (i.e. (1, −2, 1) differencing in each direction).
16



H. Yamazaki, H. Weller, C.J. Cotter et al. Journal of Computational Physics 461 (2022) 111217
Fig. 13. Convergence of mesh generation for four different resolutions for advection over a hill and a valley. The top row shows convergence starting from a 
regular mesh. The bottom row shows convergence for each time step of the transient simulation. In the transient simulation there are four outer iterations, 
each consisting of one solution of the Poisson equation (32) initialised from the mesh at the previous time step. The left hand side shows the number of 
linear equation solvers per solution of the Poisson equation and the right hand side shows the initial residual before the linear equation solver is called. 
Before the simulation is started, a refined mesh is calculated from a uniform mesh and convergence is shown in the top row.

B.4. Results

Meshes are generated for the linear advection results using a cosine-shaped tracer in section 3.1 starting from initial 
uniform grids of 50 × 50, 100 × 100, 200 × 200 and 400 × 400 points in a plane of size 10 km by 10 km.

Before the advection simulation starts, an initial mesh is generated using the monitor function calculated from the 
analytic description of the initial conditions. 9 outer iterations are used. The residual of the Poisson equation solver and 
the number of iterations of the Poisson equation solver for each outer iteration are shown in the top row of Fig. 13 for all 
resolutions. Convergence is reasonably insensitive to resolution which is necessary for efficiency. Convergence in the first 
three iterations is noisy but then convergence proceeds exponentially (note the residuals are on a log-scale).

While solving the advection equation, the mesh is moved every time step. The same uniform, regular computational 
mesh is used to solve the Monge-Ampère equation each time step but the solution is initialised from the previous time 
step. Each time step, a maximum of 4 outer iterations of the Monge-Ampère Newton solver are allowed. The number of 
inner (linear equation solver) iterations and the initial residual for each solver are shown in the bottom row of Fig. 13. This 
shows that at most 5 inner iterations are needed and convergence is exponential between each outer-iteration per time 
step.

B.5. Further remarks

Section B.2 described a regularisation technique to ensure that the discretised Poisson equation (32) remains elliptic by 
artificially increasing the diagonal of the Poisson equation coefficient, P . This may raise concerns that we are arbitrarily 
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changing the problem that we are solving. However the regularisation is only very occasionally needed and is only ever 
needed during the first one or two outer iterations and so this regularisation never influences the final converged solution.

Browne et al. [3] compared this Newton solver with the parabolic method of Browne et al. [2] and with the fixed point 
iterations used by Weller et al. [19]. Convergence of the proposed Newton solver was far superior and free of arbitrary 
parameters. Browne et al. [3] also proposed a Newton solver that involved linearising the c/m term of (32). This lead to 
even faster but unreliable convergence and so is not used here.
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