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Abstract: Cloud detection is a necessary step in the generation of land surface temperature (LST)
climate data records (CDRs) and affects data quality and uncertainty. We present here a sensor-
independent Bayesian cloud detection algorithm and show that it is suitable for use in the production
of LST CDRs. We evaluate the performance of the cloud detection with reference to two man-
ually masked datasets for the Advanced Along-Track Scanning Radiometer (AATSR) and find a
7.9% increase in the hit rate and 4.9% decrease in the false alarm rate when compared to the opera-
tional cloud mask. We then apply the algorithm to four instruments aboard polar-orbiting satellites,
which together can produce a global, 25-year LST CDR: the second Along-Track Scanning Radiometer
(ATSR-2), AATSR, the Moderate Resolution Spectroradiometer (MODIS Terra) and the Sea and Land
Surface Temperature Radiometer (SLSTR-A). The Bayesian cloud detection hit rate is assessed with
respect to in situ ceilometer measurements for periods of overlap between sensors. The consistency
of the hit rate is assessed between sensors, with mean differences in the cloud hit rate of 4.5% for
ATSR-2 vs. AATSR, 4.9% for AATSR vs. MODIS, and 2.5% for MODIS vs. SLSTR-A. This is important
because consistent cloud detection performance is needed for the observational stability of a CDR.
The application of a sensor-independent cloud detection scheme in the production of CDRs is thus
shown to be a viable approach to achieving LST observational stability over time.

Keywords: Bayesian cloud detection; climate data records; land surface temperature; stability; ATSR;
MODIS; SLSTR

1. Introduction

Satellite data are used to produce climate data records (CDRs) for 21 essential climate
variables (ECVs) [1] within the European Space Agency (ESA) Climate Change Initiative
(CCI) Program [2,3]. These data records of 15–40 years enable the assessment of long-term
trends in geophysical variables that can be attributed to changes in the Earth’s climate,
e.g., [4–6]. For many CDRs, cloud detection is an essential pre-processing step in data
production [7–10]. Clouds and aerosols modify the Earth’s radiance as viewed from
space at thermal infrared and reflectance wavelengths. As such, many CDRs require the
identification of data that are adequately ‘clear’ for valid retrieval of surface or atmospheric
properties [9,10]. The desired endpoint of this process is retrieval-dependent: surface
property retrievals will typically discard observations not classified as clear-sky, while the
retrieval of cloud or aerosol properties will necessarily require identification of clouds.
“Clear-sky” in this paper is shorthand for “containing negligible cloud and aerosols for the
purpose of valid LST retrieval”.

Long data records are essential for assessing climate changes [3] and CDRs are typically
constructed using data from a series of satellite instruments, with a typical lifetime of
3–8 years. In order to identify long-term signals, data stability is essential [11,12], which
includes consistency in the cloud detection applied to different sensors within a CDR and
consistency in the retrieval methods.
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Here we focus on cloud detection to retrieve land surface temperature (LST). Bayesian
methods have been successfully applied to the production of sea surface temperature (SST)
CDRs [7,13] from many different sensors, with very good results compared to threshold-
based techniques [14]. Bayesian methods are, therefore, an ideal candidate for cloud
detection over land, where identification of appropriate cloud detection thresholds for
threshold-based techniques is further complicated by underlying heterogeneous land
cover types.

In this paper, we present the Bayesian cloud detection formulation used for SST
retrieval [7] adapted for LST retrievals. Cloud detection algorithms typically work on the
premise that clouds are both bright and cold [15,16], enabling them to be distinguished
from the underlying Earth surface at thermal infrared and reflectance wavelengths. This
premise does not always hold (even over the ocean, which is typically dark and relatively
warm [17]) and over land is further complicated by heterogeneous land cover, potentially
significant diurnal cycles in surface temperature, and surfaces that are themselves both cold
and bright, for example, snow- and ice-covered ground [18]. These particular challenges
make a fully Bayesian approach to calculating a probability of clear-sky well-suited to
the problem, because of the dynamic aspect of the cloud detection which exploits prior
information that accounts for spatiotemporal variability [19]. The Bayesian formulation
is sensor-independent and directly accounts for the differences in instrumental spectral
response functions through radiative transfer simulations. It can easily be applied to
multiple sensors used to create a long-term CDR.

The remainder of this paper proceeds as follows: in Section 2, we describe the Bayesian
cloud-detection algorithm and the algorithmic developments relevant to cloud screening
over land. In Section 3, we evaluate the cloud detection performance with respect to
manually masked satellite imagery using data from the Advanced Along-Track Scanning
Radiometer. In Section 4, we discuss the application of Bayesian cloud detection to data
from other instruments and the benefits of this approach to the generation of CDRs using
data from multiple sensors. We conclude the paper in Section 5.

2. Bayesian Cloud Detection over Land

The Bayesian approach to cloud detection as applied to SST retrieval has been widely
documented [7,13,14,17,19], so we present here only a brief overview. This overview covers
the main points relevant to understanding the evolutions of the algorithm for use over
land, which is the subject of this paper.

Bayes’ theorem, as applied to the cloud detection problem, can be used to calculate the
probability that an observation corresponds to clear-sky (P

(
c
∣∣∣yo, xb

)
), given knowledge of

the observation vector (yo) and the prior background state (xb) as shown in Equation (1).

P
(

c
∣∣∣yo, xb

)
=

1 +
P(c)P(yo

∣∣∣xb, c)

P(c)P(yo
∣∣xb, c)

−1

(1)

The observation vector contains the satellite observations for all channels used in
cloud detection. At night, this includes data from infrared wavelengths only, typically
centered on 3.7, 11, and 12 µm (where these channels are available for a given instrument).
During the day, reflectance channels can also be used, for example, wavelengths of 0.6, 0.8
and 1.6 µm, in addition to the 11 and 12 µm infrared wavelengths. The background state
vector contains information on the prior surface and atmospheric conditions specified by
the ERA-5 numerical weather prediction (NWP) analysis fields [20].

P(c) and P(c) are the prior probabilities of not-clear and clear-sky conditions respec-
tively. The ERA-5 NWP cloud fraction informs the prior probabilities. However, the cloud
fraction is only a proxy for probability, and the probability of clear-sky is constrained to the
range of 0.5–0.95, to ensure that the Bayes’ calculation is not fully pre-conditioned by the



Remote Sens. 2022, 14, 2231 3 of 14

prior [14]. To put it another way, the probability of there being a cloud in an observation
when the NWP cloud fraction is zero may well be low, but it is not zero.

P(yo
∣∣∣xb, c) is the probability of the observations given the background state vector

under clear-sky conditions. It is calculated from the difference between observations
and the prior clear-sky simulations of the fast forward model RTTOV [21], in light of the
expected uncertainties. For cloudy conditions, P(yo

∣∣∣xb, c) is determined using an empirical
look-up table, developed as a pragmatic alternative to more computationally expensive
cloudy-sky simulations [22].

The remainder of this section details the evolutions and settings particular to opti-
mizing performance over land. All modifications are made with a view to producing
multi-sensor CDRs. Sensor-specific dependencies are limited to the spectral response func-
tions (accounted for in the radiative transfer simulations) and the uncertainty assumptions.

2.1. Radiative Transfer and Numerical Weather Prediction (NWP) Data

Radiative transfer simulations of clear-sky conditions use version 12.3 of the fast-
forward model RTTOV [21], with the latest RTTOV coefficients (LBLRTM v12.8, v9 pre-
dictors) [23]. RTTOV is used to simulate observations at both reflectance and infrared
wavelengths, with prior surface and atmospheric conditions constrained by the closest
NWP analysis data from the hourly ERA-5 products [20]. For channels with solar reflectance
(visible and near-infrared), a Rayleigh single-scattering approximation is used [24].

The radiative transfer model is run at atmospheric profile locations commensurate
with the resolution of the NWP data (~30 km), with the outputs then bilinearly interpo-
lated to the higher resolution of the satellite imagery (typically ~1 km at nadir). Higher-
resolution surface data are used to specify the local conditions for a given satellite observa-
tion (Section 2.4).

2.2. Uncertainty Specification

The radiative transfer model outputs are used in the following equation to calculate
the probability of observations given the background state vector for clear-sky conditions.

P
(

yo
s

∣∣∣xb, c
)
=

e(−
1
2 ∆yt(HTBH+R)

−1∆y)

2π
∣∣HTBH + R

∣∣0.5 (2)

Uncertainties in the background state are propagated through the model by the
HTBH + R term. B contains the background error covariance matrix, calculated for a
reduced state vector: surface temperature, total column water vapour (TCWV), and aerosol
optical depth (AOD, discussed further in Section 2.6). The uncertainty in the surface
temperature is given by the spread in the ERA5 skin temperature ensemble. TCWV
uncertainty is described by an exponentially decaying curve from 45% to 5% over a range
of 0–65 kg m−2.. Tropospheric dust aerosol uses an uncertainty of 10% and stratospheric
sulphate an uncertainty of 32%. Off-diagonal terms of the B matrix are set to zero. The H
matrix contains the forward model tangent linears for each satellite observation channel
used in the cloud detection and each element of the reduced state vector. The R matrix
contains two components: Rm, which characterizes the error in the forward model and
Ro, which characterizes the error in the satellite observations. Ro contains the noise
equivalent differential temperature (NEdT) for each satellite observation used in the cloud
detection. The model uncertainty, Rm, is of order 0.15–0.17 K for the infrared channels,
9% for the 1.6 and 0.8 µm reflectance wavelengths and 8% for the 0.6 µm wavelength.
The reflectance wavelength uncertainties were calculated by assessing observation minus
simulation differences for clear-sky MODIS scenes.
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2.3. Gaussian Mixed Model

Over land, we found that the ERA5 NWP reanalysis data does not fully capture
the extent of the diurnal warming over surfaces such as deserts. Our clear-sky PDFs
as simulated using RTTOV have a Gaussian distribution and as such, cases where the
observations were much warmer than the simulation (due to an underestimated prior
surface temperature) could fall outside of the clear-sky PDF and be erroneously flagged
as cloud. To address this, we use a Gaussian mixture model to extend the PDF on the
warm side. This calculates a second Gaussian, centered on the sum of the prior surface
temperature and the associated uncertainty. This second Gaussian has a sigma twice as
large as the uncertainty on the original Gaussian. Adding the two Gaussians, as illustrated
in Figure 1 (in a toy example), extends the clear-sky PDF on the warm side whilst having a
small impact on the cold side of the original Gaussian distribution. This makes the Bayesian
cloud detection more robust to the underestimation of the diurnal temperature cycle in the
ERA5 data.
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Figure 1. Gaussian mixture model illustration: the original PDF (blue) and additional PDF (red) are
added to give a new PDF (black dashed line). The new PDF is centered on the sum of the mean and
sigma of the original PDF and has a sigma twice that of the original PDF.

2.4. Surface Characterisation

Surface emissivity at the satellite image pixel location is specified using the combined
ASTER MODIS Emissivity over Land (CAMEL) v002 monthly climatology compiled from
observations made between 2000–2016 [25], which is specifically designed to be integrated
with RTTOV v12.3 simulations. It has a spatial resolution of 0.05 × 0.05◦, with an improved
representation of fractional snow cover compared with v001 [25]. Surface reflectance is
defined using the bidirectional reflectance distribution function (BRDF) atlas developed for
RTTOV v11 [26]. The atlas is at 0.1◦ resolution, covering wavelengths of 0.4–2.5 µm and
derived from the MODIS BRDF-kernel product [26].

Surface elevation is specified using the ASTER Global Digital Elevation Model (DEM) [27].
The native resolution of the DEM is 1 arc-second in latitude and longitude (~30 m) and this
has been regridded globally to a resolution of 1/125 degrees (~900 m), commensurate with
the resolution of observations from many polar-orbiting satellites used for the generation
of LST CDRs (e.g., ATSR-2, AATSR, MODIS and SLSTR).

2.5. Cloudy Probability Distribution Functions (PDFs)

Empirical probability density function (PDF) look-up tables (LUTs) are used to specify
P(yo

∣∣∣xb, c) , the probability of cloud (not clear) given the observations and background
state vector. For cloud detection over land, new sets of PDF LUTs were defined using
11 years of data from the MODIS Terra instrument aboard the Earth Observing System
(EOS). MODIS Terra is a good choice for deriving LUTs due to the long data record, a
wide range of available channels, and an equator overpass time of 10:30, similar to other
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instrument series (e.g., ATSRs, SLSTRs). Thus, a single set of LUTs can be used to apply
Bayesian cloud detection to a wide range of sensors.

Table 1 shows the three PDF LUTs used as applied to the ATSR-2, AATSR, MODIS and
SLSTR sensors in this study. Infrared and reflectance channels are treated independently,
ensuring an adequate population of the PDF observation space. There are two infrared
channel PDFs, as the 3.7 µm channel is not used during the day due to solar contamination.
The PDF LUTs are multidimensional, binned by observations, viewing geometry and
surface characteristics. Over land, the radiative response of the Earth’s surface will be
dependent on the land cover and as such, the PDFs are binned by biome, using the
land cover classification from the European Space Agency (ESA) LST Climate Change
Initiative (CCI). Land cover is stratified using the ESA Land Cover CCI classification [28],
coupled with extended differentiation of bare soil types using the ATSR Land Biome
Classification [29]. Table 2 summarizes which of the classes from each classification fall
within the condensed classification used to generate the PDF LUTs.

Table 1. PDF LUTs used to determine the probability of ‘not clear’ conditions given the observations
and background state vector.

PDF Channels
(µm) Dimension Range No. of

Bins Time

1 11.0, 12.0

Biome 1–8 7

Day

Solar zenith angle 0–180◦ 2
Atmospheric path length 1–2.4 4
NWP surface temperature 240–330 K 90

11.0–12.0 µm channel difference −1–6 K 35
11.0 µm-NWP surface temperature −15–15 K 30

2 3.7, 11.0, 12.0

Biome 1–8 7

Night

Solar zenith angle 90–180◦ 1
Atmospheric path length 1–2.4 4
NWP surface temperature 240–330 K 90

3.7–11.0 µm channel difference −6–10 K 80
11.0–12.0 µm channel difference −1–6 K 35

11.0 µm-NWP surface temperature −15–15 K 30

3 0.6, 0.8, 1.6

Biome 1–8 7

Day

Solar zenith angle 0–95◦ 38
Atmospheric path length 1–2.4 4

1.6 µm channel 0–1 50
0.8 µm channel 0–1 50

0.6–0.8 µm channel difference −0.5–0.2 35

Table 2. Biome definitions for PDF LUT binning over land surfaces as described by the Land Cover
CCI Classes [28] and the ATSR LST Biome Classification (ALB2) classes [29].

Biome Name Land Cover CCI Classes ALB2 Classes

1 Cropland 10, 11, 12, 20, 30, 40, 100, 110 -
2 Forest 50, 60, 61, 62, 70, 71, 72, 80, 81, 82, 90 -
3 Shrubland 120, 121, 122, 130, 140, 150, 151, 152, 153 -
4 Flooded 160, 170, 180 -
5 Urban 190 -
6 Bare Soil 200, 201, 202 20, 21, 22, 23, 24, 25
7 Snow and Ice 220 -

Figure 2 demonstrates the biome dependence of the empirical PDFs. It shows the
difference in the 11.0 µm minus NWP surface temperature against the 11.0–12.0 µm chan-
nels for daytime and near-nadir observations. The shape of the PDF is biome-dependent,
with larger differences in the 11.0–12.0 µm channels for urban areas, cropland, and flooded
ground than over bare soil and snow-and-ice surfaces. The largest positive differences in
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the 11.0 µm minus NWP surface temperature dimension are seen for snow and ice, bare soil
and shrubland. As viewed from this slice, the cropland, flooded ground and urban PDFs
were the most compact, the highest densities occurred where the 11.0–12.0 µm differences
were close to zero and the 11.0 µm minus NWP surface temperatures were slightly negative.
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Figure 2. PDF 1 (Table 1) plots for different biome classifications. Plots show the 11.0 µm-NWP
surface temperature (d110-surft) as a function of the 11.0–12.0 µm channel difference (d110–120).
PDFs are for near-nadir observations (the first atmospheric path length bin) and summed over all
NWP surface temperature bins. The colour bars use consistent shading between plots with different
maxima dependent on the data density.

Empirical PDFs derived from MODIS data can be used when processing other sensors
by applying a spectral shift to the observations prior to the look-up in order to make them
‘look like’ MODIS [14]. The spectral shifts are calculated using RTTOV 137-level NWP
profile data, including two sets of profiles: 5000 diverse in temperature and 5000 diverse
in specific humidity [30]. Of the 10,000 profiles in these two datasets, approximately 2000
are located over land, and these are used to calculate the shifts. Each shift is piecewise
linear in total column water vapour, with a dependency on atmospheric path length. Shifts
are provided for each channel, with reflectance wavelength shifts having an additional
dependence on the solar zenith angle. For infrared wavelengths, the shift is provided in
the form of an offset, and for reflectance wavelengths, a scale factor. These spectral shifts
are stored in a look-up table and can be applied prior to indexing the empirical PDFs.

2.6. Aerosol Characterisation

Aerosol information comes from two sources: tropospheric aerosol from the Coperni-
cus Atmosphere Monitoring Service (CAMS) reanalysis [31] and the stratospheric sulphate
aerosol dataset used in ESA SST CCI [7] for periods affected by major volcanic eruptions
(1982–1984 and 1991–1993). The CAMS aerosol climatology [32,33] provides monthly mean
profiles of aerosol mass mixing ratios for sea salt (three size bins), mineral dust (three size
bins), organic matter and black carbon. These are interpolated to the location of the NWP
analysis fields and the full profile is included in the background state vector passed to
RTTOV, which includes support for all CAMS aerosol species. Total column dust mass and
stratospheric sulphate are included in the reduced state vector, so their uncertainties (10%
and 32%, respectively) will affect the shape of the clear-sky PDF (see Section 2.2).

When processing data that overlap the full CAMS analysis (2003 onwards), it is also
possible to download the daily column integrated masses and scale the climatological
aerosol profiles to match the daily data. This is currently done for the three mineral dust
components, while other components use the climatological values.
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3. Results

The performance of the Bayesian cloud mask can be assessed with reference to a man-
ual cloud mask generated by expert inspection of satellite imagery. Two manually masked
datasets are currently available for Advanced Along-Track Scanning Radiometer (AATSR)
imagery. The first was generated as part of the SYNERGY project, which developed a cloud
mask scheme using AATSR data in conjunction with observations from the Medium Resolu-
tion Imaging Spectrometer (MERIS) aboard the same satellite platform [34,35]. The dataset
consists of 21 daytime scenes between 2002–2007 over five different regions: Abracos Hill
(Brazil), Cart Site (North America), Ouagadougou (Burkino Faso), Mongu (Zambia) and
Tomsk (Russia) [19]. The second dataset was developed within the European Space Agency
(ESA) Data User Element (DUE) GlobTemperature project as part of a cloud-detection
round-robin exercise [36]. This dataset consists of 10 scenes between 2007 and 2011, includ-
ing both day and nighttime data, one scene over ice in Antarctica and a dust-affected case
over Algeria. The details of the 31 scenes used to evaluate the cloud mask performance
are given in Table 3, summarized from more detailed information provided in [19,36].
Collectively these datasets are designed to cover a wide range of atmospheric and surface
conditions, different solar illuminations and differing cloud types.

Table 3. SYNERGY and DUE GlobTemperature project manually masked scenes used to calculate
cloud mask performance metrics (information collated from [19,36]).

Scene Location Date Orbit
Number Day/Night Project

1 China 21/05/2007 27304 Night GlobT
2 Russia 22/05/2007 27314 Day GlobT
3 Florida, USA 23/05/2007 27333 Day GlobT
4 UK 23/08/2007 28647 Day GlobT
5 Algeria 11/06/2010 43290 Day GlobT
6 Ukraine 05/08/2010 44083 Night GlobT
7 Antarctica 08/08/2010 44121 Night GlobT
8 Mauritania 08/08/2010 44128 Night GlobT
9 Canada 07/06/2011 48474 Day GlobT
10 Uruguay 11/11/2009 40250 Night GlobT
11 Brazil 06/06/2004 11858 Day SYNERGY
12 Brazil 26/05/2005 17369 Day SYNERGY
13 Oklahoma, USA 09/08/2004 12776 Day SYNERGY
14 Oklahoma, USA 16/05/2005 16784 Day SYNERGY
15 Oklahoma, USA 25/07/2005 17786 Day SYNERGY
16 Oklahoma, USA 05/06/2006 22295 Day SYNERGY
17 Oklahoma, USA 08/10/2007 29309 Day SYNERGY
18 Burkina Faso 28/11/2002 03897 Day SYNERGY
19 Burkina Faso 01/12/2002 03941 Day SYNERGY
20 Burkina Faso 02/01/2003 04398 Day SYNERGY
21 Burkina Faso 21/01/2003 04670 Day SYNERGY
22 Burkina Faso 15/07/2003 07176 Day SYNERGY
23 Zambia 15/01/2003 04583 Day SYNERGY
24 Zambia 09/07/2003 07088 Day SYNERGY
25 Zambia 17/11/2003 08090 Day SYNERGY
26 Russia 03/06/2004 11810 Day SYNERGY
27 Russia 12/08/2004 12812 Day SYNERGY
28 Russia 23/06/2005 17321 Day SYNERGY
29 Russia 06/10/2005 18824 Day SYNERGY
30 Russia 21/09/2006 23834 Day SYNERGY
31 Russia 02/08/2007 28343 Day SYNERGY

Data from these 31 scenes were used to calculate performance metrics [20,32] for
the Bayesian cloud detection in comparison with the operational Standard ATSR Cloud
Detection (SADIST) cloud mask [37,38], which used a series of threshold tests to determine
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the presence of cloud-affected observations. The performance metrics are as follows: (1) the
percentage of perfect classification (the percentage of pixels across the whole scene that
are correctly classified), (2) the hit rate (the percentage of cloudy pixels that are correctly
masked), (3) the false alarm rate (the percentage of clear-sky pixels falsely flagged as cloud)
and (4) the true skill score (hit rate minus the false alarm rate). The results given in Table 4
show that the Bayesian cloud detection consistently improves on the operational cloud
mask across all four metrics. The percentage of perfect classification across all scenes is
86.6% for the Bayesian mask compared with 81.0% for the operational mask. The hit rate is
significantly higher for the Bayesian mask (93.9% compared with 86.0%), whilst the false
alarm rate is lower (16.7% compared with 21.6%). As a result of the higher hit rate and
lower false alarm rate, the Bayesian true skill score is 77.2%, compared with 64.7% for the
operational mask.

Table 4. Cloud detection performance metrics for Bayesian and operational cloud masks compared
to manually masked AATSR data from the SYNERGY and ESA DUE GlobTemperature projects.

Performance Metric Bayesian Cloud
Detection (%)

Operational Cloud
Detection (%)

Percentage of Perfect Classification 86.6 81.0
Hit Rate 93.9 86.0

False Alarm Rate 16.7 21.6
True Skill Score 77.2 64.7

Table 5 provides the confusion matrix for the Bayesian and operational cloud masks
across the 31 scenes. The performance metrics were calculated using 4,958,105 observations
with 1,530,831 cloudy pixels and 3,427,274 clear-sky pixels. The numbers in bold are the
observations correctly classified by each algorithm, whilst the off-diagonal terms are the
number of misclassified observations. Despite the larger number of clear-sky observations
compared to cloud, which in terms of performance metrics would typically benefit an
algorithm with a tendency to under-flag (missing some cloud, but with a low false alarm
rate), the strength of the Bayesian mask is seen in the larger numbers of correctly classified
pixels in both classes—cloud and clear-sky (total 4,294,347)—compared with the operational
mask (4,014,623).

Table 5. Confusion matrices for Bayesian and operational cloud masks compared to manually masked
AATSR data from the SYNERGY and ESA DUE GlobTemperature projects. The numbers in bold are
the observations correctly classified by each algorithm.

Confusion Matrix Manual Mask Cloud Manual Mask Clear

Bayesian Cloud 1,437,732 570,659
Bayesian Clear 93,099 2,856,615

Operational Cloud 1,316,944 729,595
Operational Clear 213,887 2,697,679

Any cloud detection algorithm may produce a poor cloud mask for particular scenes,
but there are also characteristic differences between cloud detection algorithms, repeated
across many images, that underly the overall performance metrics, particularly with respect
to the false alarm rate. The examples in Figure 3 typify the performance of the Bayesian
and operational cloud masks relative to the manually masked datasets. Here, we see the
manual mask on the left of the image, the Bayesian mask in the centre and the operational
mask on the right. Pixels masked as cloud are shown in white, clear-sky-over-land in green
and water pixels (where the masks are not compared) are shown in blue.

The Bayesian cloud mask is often (but not exclusively) more conservative with respect
to the edges of cloud features than the manual mask, extending the footprint of the cloud.
This is true for both datasets, manually masked using different systems and by different
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experts. This will contribute to some false flagging of clear-sky pixels. In the operational
cloud mask (Figure 3, right), there is a tendency to mistakenly flag surface features as
clouds, as seen in the centre and on the left side of the image. This contributes in a large
part to the higher false alarm rate in the operational cloud mask when compared to the
Bayesian mask. The differences in hit rates arise from the operational mask missing some
cloud features and underestimating the cloud extent for others.
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4. Application to CDR Generation

The applicability of the Bayesian cloud detection to many sensors is advantageous in
the generation of Climate Data Records (CDRs). Since sensor differences are represented
by the forward model and a few uncertainty parameters, the Bayesian framework is
not dependent on specific instrument characteristics, equator overpass time or channel
availability at specific wavelengths, meaning that it can be readily applied to data from
different sensors. This is often required in the generation of CDRs spanning 20–30+ years,
constructed using observations from multiple sensors.

For CDR generation, a similar cloud mask performance over time and between sensors
is needed for observational stability, i.e., to avoid apparent changes in LST statistics arising
in reality from cloud masking discontinuities. Does consistency in the cloud masking
technique (Bayesian) across sensors give consistent cloud mask performance?

We investigated the consistency of the Bayesian cloud detection algorithm across
multiple sensors by considering an LST CDR constructed using data from the second
Along-Track Scanning Radiometer (ATSR-2), AATSR, the Moderate Resolution Infrared
Spectroradiometer (MODIS Terra) and the Sea and Land Surface Temperature Radiometer
(SLSTR-A). These sensors are aboard polar-orbiting satellites with equator overpass times
of 10:00 (AATSR and SLSTR) or 10:30 (ATSR-2 and MODIS) local time. Each sensor pair in
this CDR (ATSR-2 and AATSR, AATSR and MODIS, MODIS and SLSTR) has some overlap,
and in this overlap period we compared the cloud detection hit rate for each sensor using
the Bayesian algorithm.

The hit rate was calculated with reference to a series of in situ ground stations with
ceilometers, which measure cloud base height. The ceilometer locations are globally
distributed, as shown in Table 6. Each ceilometer record has a different length, with three
sites (North Slope, Ny Alesund, and Southern Great Plains [39–41]) covering all three
satellite-overlap periods and the remainder covering only a subset of the overlaps. The
satellite data were matched to the ceilometer observations with a spatial separation of 1 km
and within a time window of 5 min. The temporal difference in the match-up is related
to the frequency of the in situ observations. The mean and median time differences were
typically within 30 s for all ground stations, with the exception of Ny Alesund and Sabana,
where the in situ observations are less frequent. The ceilometer observation is matched
to the satellite pixel in which the cloud base is observed, taking into account the cloud
base height and viewing geometry of the sensor. The satellite zenith angle in the possible
matches is limited to +/−22 degrees to ensure consistency in comparison between the
narrow-swath ATSR sensors and the MODIS and SLSTR instruments. These matches were
then used to calculate the cloud hit rate.
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Table 6. Ground station locations of in situ ceilometer data used to validate the Bayesian cloud
detection applied to different satellite sensors [39–45]. The North Slope of Alaska station has two
longitudes as the station location has moved within the data record.

Station Country Latitude
(Degrees)

Longitude
(Degrees)

Frequency of
Observations

Bingley UK 53.8 −1.9 1 min
Coleshill UK 52.5 −1.7 1 min

North Slope Alaska 71.3 −156.6/−156.7 35 s
Ny Alesund Norway 78.9 11.9 5 min

Oliktok Point Greenland 70.5 −149.9 30 s
Paris France 48.7 2.2 3 s

Sabana Puerto Rico 18.3 −65.7 1 h
Southern Great Plains USA 36.6 −97.5 1 min
Tropical West Pacific Papua New Guinea −2.1 147.4 1 min

University of Reading UK 51.4 0.9 1 min

The hit rates for the sensor overlap periods are compared in Table 7, with the corre-
sponding number of matches from which the hit rate was calculated shown in Table 8. For
ATSR-2 and AATSR the overlap period is from 09/2002–02/2003, for AATSR and MODIS,
02/2011–03/2012 and for MODIS and SLSTR 06/2016–07/2017. The full overlap period
is used for each location, where ceilometer data are available. The latter two comparison
periods typically have more matches, as the overlap period between sensors is longer. The
number of matches in Puerto Rico was small due to the relative infrequency of both the in
situ observations and satellite overpasses (the location is closer to the equator than many
of the other ground stations) in addition to the in situ data record finishing in 12/2016,
partway through the overlap period.

Table 7. Bayesian cloud detection hit rate percentage with reference to ceilometer observations
for overlapping data between different sensors: ATSR-2 and AATSR, AATSR and MODIS, MODIS
and SLSTR.

Location ATSR-2 AATSR AATSR MODIS MODIS SLSTR
Bingley, UK - - 94.4 92.8 93.3 96.1

Coleshill, UK - - 89.7 90.9 92.4 92.7
North Slope Alaska 77.5 83.3 78.8 95.2 95.0 91.4

Ny Alesund 86.1 87.2 88.9 95.2 94.6 96.0
Oliktok Point Alaska - - - - 95.7 94.5

Paris - - - - 96.2 98.5
Puerto Rico - - - - 100.0 100.0

Southern Great Plains 91.9 96.3 90.1 87.4 89.9 97.2
Tropical West Pacific 76.5 70.0 83.9 84.8 - -

University of Reading, UK - - - - 91.9 95.5

The hit rates were assessed across all sensor pairs, over a wide range of geographical
locations and surface biomes, and at different points in the CDR time series. The mean
difference in hit rate is 4.5% between ATSR-2 and AATSR, 4.9% between AATSR and
MODIS, and 2.5% between MODIS and SLSTR, the latter comparison benefitting from a
greater number of available satellite to in situ matches. In comparison, the mean difference
in the hit rate for the operational cloud mask between ATSR-2 and AATSR was greater at
12.1% (not shown), suggesting a greater difficulty in obtaining threshold-based algorithm
consistency across different satellite sensors (this is the only overlapping pair sharing the
same operational cloud-mask formulation). Differences in the absolute hit rate for both
cloud masks did occur between sites (ranging between 70–100% for the Bayesian and
33.3–100% for the operational), reflecting some remaining challenges in optimising cloud
detection across all land surfaces.
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Table 8. Number of cloudy ceilometer observations compared when calculating the hit rate for
overlapping data between different sensors: ATSR-2 and AATSR, AATSR and MODIS, MODIS
and SLSTR.

Location ATSR-2 AATSR AATSR MODIS MODIS SLSTR
Bingley, UK - - 36 125 570 563

Coleshill, UK - - 29 110 542 547
North Slope Alaska 120 102 170 673 686 455

Ny Alesund 532 501 973 2147 2156 2231
Oliktok Point Alaska - - - - 515 327

Paris - - - - 292 326
Puerto Rico - - - - 10 11

Southern Great Plains 62 54 81 174 189 290
Tropical West Pacific 17 30 87 151 - -

University of Reading, UK - - - - 405 445

The largest inter-sensor differences for a single match-up location occurred for the
North Slope of Alaska, as seen for the overlap between AATSR and MODIS. Here, we see a
step-change in the performance of the cloud detection between the two ATSR instruments
and the other sensors. From these data alone, it was difficult to determine the exact reason
for the magnitude of the difference at this specific location, but some variation was expected
as the hit rate was calculated from an independent set of matches for each sensor, and there
was a 30 min time difference in the equator overpass time for consecutive sensors in the
time series.

Figure 4 compares the hit rate difference across all sensor pairs and locations for
the Bayesian and operational masks. All of the operational masks used threshold-based
techniques: the SADIST mask [37,38] is used for ATSR-2 and AATSR, the MOD35_L2
products for MODIS Terra [46] and the summary cloud mask for SLSTR-A [47] (which
is an evolution of the SADIST mask applied to the ATSR instruments). The median
percentage difference was 2.7% for the Bayesian cloud detection compared with 10.3% for
the operational masks. The interquartile range was smaller for the Bayesian mask (3.9%
compared with 10.95% for the operational masks), with the 75th percentile of the Bayesian
hit rate comparison (5.1%) falling below the 25th percentile for the operational masks
(6.7%). The smaller percentage differences in the hit rate between overlapping sensors
and the reduced data spread in the Bayesian mask comparison suggest that applying this
cloud mask to all sensors in a CDR will give better observational stability than using the
operational cloud masks for each sensor.
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Bayesian cloud mask (bottom) and the various operational cloud masks (top). The red line shows
the median difference and the edges of the boxes represent the 25th and 75th percentiles.
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5. Conclusions

In this paper we present a Bayesian cloud detection scheme as applied to satellite
observations over land for the purpose of generating LST CDRs. We assessed the Bayesian
algorithm using two manually masked datasets for the AATSR sensor in comparison
with the operational threshold-based algorithm. The Bayesian cloud detection hit rate
was 7.9% greater, and the false alarm rate was 4.9% smaller than the operational cloud
mask. This mean improvement in cloud detection skill was found across a wide range of
conditions present in the validation dataset.

We also considered the suitability of the Bayesian algorithm for application to multiple
satellite sensors when generating climate data records. The cloud detection hit rates
between the sensors in overlapping time periods were consistent on average to about
5% using the Bayesian algorithm, compared to 22.5% for the operational cloud masks.
Observational stability between sensors is important to avoid apparent changes in any
CDR variable (not just LST) that results from the discontinuities in data processing over
time, including cloud-masking. The assessment of cloud mask consistency between sensors
as presented in this paper would be recommended when producing CDRs dependent on
cloud masking as a pre-processing step. This could be achieved by using in situ ceilometer
data for validation as presented here, or by using other forms of data as a reference, e.g.,
manually masked scenes, or sets of pre-classified pixels.

Some further work remains to ensure uniformity of cloud mask performance across
different geographical locations and land surface types, as the absolute hit rate is variable
between the validation sites (this is true of both the Bayesian and operational cloud masks).
The Bayesian cloud mask performance can be increased over cold and/or bright surfaces,
including snow, ice and deserts. More work on cloud detection in these regions is required
to provide global consistency in cloud-masking skill.
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