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ON A VECTOR-VALUED GENERALISATION OF VISCOSITY

SOLUTIONS FOR GENERAL PDE SYSTEMS

NIKOS KATZOURAKIS

Abstract. We propose a theory of non-differentiable solutions which applies

to fully nonlinear PDE systems and extends the theory of viscosity solutions of
Crandall-Ishii-Lions to the vectorial case. Our key ingredient is the discovery of

a notion of extremum for maps which extends min-max and allows “nonlinear

passage of derivatives” to test maps. This new PDE approach supports certain
stability and convergence results, preserving some basic features of the scalar

viscosity counterpart. In this introductory work we focus on studying the

analytical foundations of this new theory.
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1. Introduction

The theory of viscosity solutions (VS) of Crandall-Ishii-Lions is one of most suc-
cessful contexts of generalised solutions in which fully nonlinear degenerate elliptic
and parabolic equations can be studied effectively [1, 2, 3, 4, 8, 10, 11, 12, 14, 13,
15, 16, 17, 19, 20, 22, 23, 24, 25, 30, 32]. Main attributes of this approach are the
flexibility in passing to limits and the strong uniqueness theorems that supports,
albeit the solutions may be nowhere differentiable in any sense.

The tremendous success of VS in the last forty years in tackling a variety of
problems has led many researchers to investigate possible generalisations of this
theory to virtually any possible direction. Here “generalisation” is meant either in
the strict sense of either generalising the main ideas in order to apply under weaker
assumptions to more equations, or in the loose sense of generalising the spirit of

Key words and phrases. Fully nonlinear PDE systems, degenerate elliptic equations, VS, gen-
eralised solutions, maximum principle, extrema, jets.
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2 NIKOS KATZOURAKIS

applicability of this approach. Without being exhaustive, some notable extensions
of viscosity solution in either sense are given in [5, 6, 7, 11, 18, 21, 28, 29, 31].

It appears that the main restriction which to date has been unable to be re-
moved is that VS apply to single equations with scalar-valued solutions, or at best
to weakly coupled monotone systems which essentially can be treated component-
wise as independent equations. Removing this constraint is hardly a straightforward
task, as VS are essentially based on the scalar nature of the problem and on com-
parison arguments through the Maximum Principle and what is typically referred
to as its “calculus”, by which is meant that at a point of local extremum of a twice
differentiable scalar function, its gradient vanishes and its hessian has sign.

In this work we propose a vectorial generalisation of VS which applies to non-
monotone fully nonlinear systems. Our key ingredient is the discovery of a notion of
extremum for mappings which extends min/max and allows “nonlinear passage of
derivatives” to test maps. This notion of vectorial extremum, which is of indepen-
dent interest in itself, is coined contact and the term is inspired by the terminology
of “touching” by smooth test functions from above/below in the scalar theory of VS.
The notion of contact is characterised uniquely by a “maximum principle” type of
calculus (vanishing gradient, inequality for the hessian) for vector-valued functions.
The notion of contact of maps allows to develop a theory of generalised solutions
for systems, coined contact solutions (CS), which supports various stability and
convergence results, preserving some of the trademark attributes of VS and in some
cases extending mutatis mutandis some well-known scalar facts.

Despite simple to state, the notion of contact presents unfamiliar peculiarities.
The possible vectorial “twist” forces the notion to be functional rather than point-
wise, in the sense that extremals are maps and not points. Further, it is not
associated with any partial ordering. Moreover, it has order : first order contact
of two regular maps implies equality of their gradients and second order contact
implies an additional certain tensor inequality for their hessians at the point of
contact. Finally, it is not very easy to motivate how it arises, as its introduction is
justified merely by the generalised maximum principle calculus it carries. Hence,
for pedagogical reasons we have chosen to found our exposition on the conceptually
equivalent notion of contact jets, rather than contact maps. The former are sets
of pointwise generalised derivatives which extend the sub/super jets of VS and vec-
torial extrema appear rather later in our exposition. We hope that this significantly
simplifies the presentation, as contact jets bear a strong formal resemblance with
their scalar counterparts in their philosophy, once one replaces the usual inequalities
in the Taylor expansions by appropriate tensor inequalities.

One of the first natural question that comes to mind of the experts of VS every
time an extension of the notion appears is “what kind of uniqueness results can be
obtained”. In the general vectorial case this may not be the right question to ask,
but rather “what kind of existence results can be obtained”. For instance, there
are striking examples of systems whose scalar counterparts have a good (existence
and) uniqueness theory, whilst in the full vectorial case even determining conditions
for existence is a highly non-trivial issue (see e.g. [26]). Hence, there are serious
limitations due to vectorial obstructions and in this work there is a natural shift
towards tools for existence rather than uniqueness.

We now give a brief outline of the contents of this work. In Section 2 we introduce
the preliminaries of multilinear algebra required to deal with the vectorial case. In
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Section 3 we introduce the notion of contact jets as sets of generalised pointwise
derivatives and the notion of CS. In Section 5 we introduce the appropriate notion
of degenerate ellipticity for fully nonlinear second order systems of PDEs that
guarantee the compatibility of CS with classical solutions. In Section 4 we study
the basic properties of contact jets, relate them to classical derivatives and prove
the compatibility of CS with the classical notions. We also derive some equivalent
formulations. In Section 6 we study the local structure around a point at which
a contact jet exists. The main result here is a formulation of contact jets which
involves a single scalar (not tensorial) fundamental inequality. We then deduce that
obstructions arising in the vectorial case imply that the J1-theory requires a priori
little Hölder space c

1
2 regularity and the J2-theory requires a priori Lipschitz C0,1

regularity. In the scalar case all obstructions disappear and the reduced theory of
semi-jets J2,± applies successfully to merely C0 functions. Roughly speaking, in
the general vectorial case only “1/2” of the derivatives can be interpreted weakly,
the rest “1/2” must exist classically. In Section 7 we present the extremality notion
of contact, establish its characterisation through a certain Calculus. Finally, in
Section 8 we prove a stability result for contact solutions as an existence tool.

We close this introduction by noting that due to considerations of size and length,
in this paper we only introduce and study the abstract rudiments of CS, leaving
concrete applications to specific systems for future developments.

2. Preliminaries, multilinear maps, tensor inequalities

Preliminaries. Let n,N ∈ N. In what follows, Rn will always denote the space
of column vectors Rn×1 equipped with the inner product a>b and RN×n will stand
for the space of N × n matrices equipped with inner product P : Q := tr(P>Q).

The respective norms will always be the Euclidean ones |a| =
√
a>a, |P | =

√
P : P .

The unit open ball of Rn centred at x will be denoted by Bn(x) and the respective
unit sphere by Sn−1(x). If x = 0, then Bn(0), Sn−1(0) will be denoted by Bn,
Sn−1. If a ∈ Rn, the sign of a is sgn(a) := a/|a| if a 6= 0 and sgn(0) := 0. The
summation convention will always be employed when repeated indices appear in a

product and repeated free indices will be denoted with a hat (̂.). We henceforth
reserve the letters n,N for the dimensions of Rn and RN ; Greek indices α, β,
γ,... will always run from 1 to N and Latin i, j, k,... from 1 to n. We denote
the space of linear maps Rn −→ RN by RN ⊗ Rn or by RN×n and the space of
linear maps RN×n −→ RN×n by RNn×Nn. The spaces of linear symmetric/positive
endomorphisms of Rn,RN ,RN×n will be symbolised by the respective subscripts
“s,+”. Let now u : Rn ⊇ Ω −→ RN be a twice differentiable map. Ω will always
denote an open subset and “once” or “twice” differentiability is understood as
existence of first or second order Taylor expansions. We view the gradient matrix
Du and the hessian tensor D2u as maps

Du = (Diuα)eα ⊗ ei : Rn ⊇ Ω −→ RN⊗ Rn,(2.1)

D2u = (D2
ijuα)eα ⊗ eij : Rn ⊇ Ω −→ RN⊗ Rn×ns ,(2.2)

where eij := ei⊗ ej , eαi := eα⊗ ei and eα, ei denote the standard bases of RN and
Rn respectively. We also introduce the following contraction operation for tensors
which extends the Euclidean inner product of RN ⊗ Rn. Let “⊗(r)” denote the
r-fold tensor product. If S ∈ ⊗(q)RN ⊗(s) Rn, T ∈ ⊗(p)RN ⊗(s) Rn and q ≥ p, we
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define a tensor S : T in ⊗(q−p)RN by

(2.3) S : T :=
(
Sαq...αp...α1 is...i1Tαp...α1 is...i1

)
eαq ⊗ ...⊗ eαp+1

.

For example, for s = q = 2 and p = 1, the tensor S : T of (2.3) is a vector with
components SαβijTβij with free index α and the indices β, i, j are contracted. In
particular, in view of (2.3), the second order linear system

(2.4) AαiβjD
2
ijuβ + BαγkDkuγ + Cαδuδ = fα,

can be compactly written as A : D2u+B : Du+Cu = f , where the meaning of “:” in
the respective dimensions is made clear by the context. Let now P : Rn −→ RN be
linear map. We will always identify linear subspaces with orthogonal projections on
them. Hence, we have the split RN = [P]>⊕[P]⊥ where [P]> and [P]⊥ denote range
of P and nullspace of P> respectively. In particular, if ξ ∈ SN−1, then [ξ]> = ξ⊗ ξ
is (the projection on) the line span[ξ] and [ξ]⊥ is (the projection on) the normal
hyperplane I − ξ ⊗ ξ.

Symmetrised tensor products. The next notion plays a crucial role to what
follows. The symmetrised tensor product is the operation

(2.5) ∨ : RN⊗ RN −→ RN×Ns : a ∨ b :=
1

2

(
a⊗ b+ b⊗ a

)
.

Obviously, a ∨ b = b ∨ a and a ∨ a = a⊗ a. Let us also record the identities

(a ∨ b) :X = X : (a⊗ b) = a>Xb , X ∈ RN×Ns ,(2.6)

|a⊗ b|2 = |a|2|b|2 , |a ∨ b|2 =
1

2

(
|a|2|b|2 + (a>b)2

)
.(2.7)

We will also need to consider tensor products “∨” of higher order between RN and
the spaces RN⊗ Rn and RN⊗ Rn×ns . If ξ ∈ RN , P ∈ RN⊗ Rn, we view the tensor
products ξ ⊗ P and P⊗ ξ as maps Rn −→ RN⊗ RN . This allows to define

(2.8) ξ ∨ P : Rn −→ RN×Ns , ξ ∨ P :=
1

2

(
ξ ⊗ P + P⊗ ξ

)
.

Obviously, (ξ ∨P)w = ξ ∨ (Pw) and ξ ∨P = P∨ ξ. Similarly, if X = Xαijeα⊗ eij ∈
RN⊗ Rn×ns , we view ξ ⊗X and X⊗ ξ as maps Rn × Rn −→ RN⊗ RN and we set

(2.9) ξ ∨X : Rn × Rn −→ RN×Ns , ξ ∨X :=
1

2

(
ξ ⊗X + X⊗ ξ

)
.

Once again we note that (ξ ∨X)(w, v) = ξ ∨ (X : w ⊗ v) and that ξ ∨X = X ∨ ξ.
Moreover, since Xαij = Xαji, the tensor ξ ∨X is in RNn×Nns : indeed,

(ξ ∨X)αiβj =
1

2

(
ξαXβij + ξβXαij

)
= (ξ ∨X)βjαi.(2.10)

Tensor Inequalities and orderings. Let Ξ ∈ RNn×Nns . The latter space comes
equipped with its natural ordering

(2.11) Ξ ≥ 0 ⇐⇒ Ξ : P⊗ P ≥ 0, P ∈ RN×n.

We now introduce a weaker notion of partial ordering in RNn×Nns which emerges
in the PDE theory that follows.



VECTOR-VALUED VISCOSITY SOLUTIONS FOR PDE SYSTEMS 5

Definition 1 (Rank-One Positivity). Let Ξ ∈ RNn×Nns . We say that the 4th-order
tensor Ξ is rank-one positive when the quadratic form P 7→ Ξ : P ⊗ P is rank-one
convex on RN⊗ Rn, that is when

(2.12) η ∈ RN , w ∈ Rn =⇒ Ξ : (η ⊗ w)⊗ (η ⊗ w) ≥ 0.

In this case, we write

(2.13) Ξ ≥⊗ 0.

As usually, we define Ξ ≤⊗ 0⇔ −Ξ ≥⊗ 0 and Ξ ≤⊗ Θ⇔ Ξ−Θ ≤⊗ 0. We recall
the well-known fact that the quadratic form P 7→ Ξ : P ⊗ P is rank-one convex
when the next function is convex on R for all P, η, w:

(2.14) t 7→ Ξ :
(
P + t(η ⊗ w)

)
⊗
(
P + t(η ⊗ w)

)
.

We now establish that rank-one positivity “≥⊗” defines a partial ordering in the
subspace of RNn×Nns consisting of separately symmetric fourth-order tensors:

Lemma 2. Let Ξ, H, Θ be in RNn×Nns . Then:

(i) We have Ξ ≤⊗ Ξ. Also, if Ξ ≤⊗ Θ, Θ ≤⊗ H then Ξ ≤⊗ H.

(ii) If 0 ≤⊗ Ξ ≤⊗ 0, then

(2.15)
(
Ξαiβj + Ξβjαi

)
eαi ⊗ eβj = 0.

Corollary 3 (≥⊗ partially orderings). The inequality of rank-one positivity defines
a partial ordering in the next space of separately symmetric tensors

(2.16) RNn×Nns∗ :=
{

Ξ = Ξαiβjeαi ⊗ eβj
∣∣∣ Ξαiβj = Ξβjαi = Ξβiαj

}
.

Proof of Lemma 2. (i) is trivial. To see (ii), let ξ ∈ RN , w ∈ Rn. By assumption,
we have 0 ≤ Ξ : (ξ ⊗ w)⊗ (ξ ⊗ w) ≤ 0. Hence,

0 = Ξ : (ξ ⊗ w)⊗ (ξ ⊗ w) = Ξαiβjξαwiξβwj = (ξαΞαiβjξβ)wiwj .(2.17)

If we set ξ>Ξ ξ := (ξαΞαiβjξβ)ei ⊗ ej , then (2.17) says

(2.18) (ξ>Ξ ξ) : w ⊗ w = 0

for all w ∈ Rn, and moreover, by the symmetries of Ξ, we have ξ>Ξ ξ ∈ Rn×ns :

(ξ>Ξ ξ)ij = ξαΞαiβjξβ = ξαΞβjαiξβ = (ξ>Ξ ξ)ji.(2.19)

Hence, (2.18) implies for all i, j ∈ {1, ..., n} and all ξ ∈ RN that

(2.20) ξαΞαiβj ξβ = 0.

By interchanging in (2.20) i and j and employing that Ξαiβj = Ξβjαi, we have

(2.21) ξαΞβiαj ξβ = 0.

By (2.20) and (2.21), for all i, j fixed we have

(2.22) ξα
(
Ξαiβj + Ξβiαj

)
ξβ = 0.

Since
(
Ξαiβj + Ξβiαj

)
eα ⊗ eβ belongs to RN×Ns , we obtain (2.15) as desired. �
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Remark 4. It is evident that RNn×Nns∗ is a proper subspace of RNn×Nns and that
it can be equipped with both partial orderings “≤” and “≤⊗”. It also evident that
“≤” is a stronger notion than “≤⊗”, in the sense that Ξ ≥ 0 implies Ξ ≥⊗ 0. The
known examples of rank-one convex quadratic form which are not convex imply
that rank-one positivity is genuinely weaker that positivity.

3. Contact solutions for fully nonlinear PDE systems

In this section we introduce the basics of a theory of non-differentiable solutions
which applies to fully nonlinear systems of partial differential equations of the form

(3.1) F(·, u,Du,D2u) = 0,

where u : Rn ⊇ Ω −→ RN and

(3.2) F : Ω× RN × (RN⊗ Rn)× (RN⊗ Rn×ns ) −→ RN .

The arguments of the nonlinearity F will be denoted by F
(
x, η,P,X

)
. For the mo-

ment, the only assumption that needs to be imposed to F is mere local boundedness.
Hence, we allow for discontinuous coefficients. Later we will assume continuity and
an appropriate notion of ellipticity, in order to assure compatibility of generalised
and classical solutions. Our notion of solution allows to interpret merely continu-
ous maps as solutions to the PDE system (3.1). The point of view is to relax Du
and D2u to certain generalised pointwise derivatives and relax equality in (3.1) to
appropriate inequalities, when F is evaluated at these generalised derivatives.

Definition 5 (Contact jets). Let u : Rn ⊇ Ω −→ RN be a continuous map, x ∈ Ω
and ξ ∈ SN−1. The first contact ξ-jet of u at x is the set of generalised derivatives

J1,ξu(x) :=
{

P ∈ RN⊗ Rn
∣∣ as Ω 3 z → x,

ξ ∨
[
u(z)− u(x)− P(z − x)

]
≤ o(|z − x|)

}
.(3.3)

The second contact ξ-jet of u at x is the set of generalised derivatives

J2,ξu(x) :=

{
(P,X) ∈ RN⊗ (RN × Rn×ns )

∣∣∣ as Ω 3 z → x,

ξ ∨
[
u(z)− u(x)− P(z − x)− 1

2
X : (z − x)⊗ (z − x)

]
≤ o(|z − x|2)

}
.(3.4)

Remark 6. The meaning of “o(1)” in (3.3), (3.4) is that there exists a continuous
matrix-valued map T : Rn \ {0} −→ RN×Ns such that |T (y)| → 0 as y → 0. The
meaning of the rest quantities appearing is that given in formulas (2.5)-(2.9). In
particular, matrix inequalities are considered in RN×Ns . The necessity to define
generalised derivatives on boundary points x ∈ ∂Ω of closed sets Ω stems from
the necessity to consider boundary value problems for PDE systems, but also for
technical reasons arising in our subsequent analysis. If x ∈ Ω, since Ω is open the
statement “Ω 3 z” which means “convergence in Ω” can be dropped.

In the scalar case of N = 1, we have S0 = {−1,+1} and J1,ξ,J2,ξ reduce to
the semi-jets J1,± and J2,± of VS. Indeed, (±1) ∨ a = (±1) ⊗ a = ±a for any
a ∈ R and (3.4) reduces to inequality in R. Moreover, by applying “: (ξ ⊗ ξ)”
to (3.4) we deduce that the “scalar” ξ-projection ξ>u of u along ξ ⊗ ξ satisfies
(ξ>P, ξ>X) ∈ J2,±(ξ>u)(x), and similarly for (3.3) (see (2.6)).
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In the following we will also need to consider closures of contact jets:

Definition 7 (Contact jet closures). Let u : Rn ⊇ Ω −→ RN be a continuous map,
x ∈ Ω and ξ ∈ SN−1. The first contact ξ-jet closure of u at x is

J
1,ξ
u(x) :=

{
P ∈ RN⊗ Rn

∣∣ ∃ (ξm, xm,Pm, )→ (ξ, x,P)

as m→∞ : Pm ∈ J1,ξmu(xm)
}
.(3.5)

The second contact ξ-jet closure of u at x is

J
2,ξ
u(x) :=

{
P ∈ RN⊗ (Rn × Rn×ns )

∣∣ ∃ (ξm, xm,Pm,Xm)→

(ξ, x,P,X) as m→∞ : (Pm,Xm) ∈ J2,ξmu(xm)
}
.(3.6)

The main difference of (3.5), (3.6) compared to their scalar counterparts is that
we approximate in the direction ξ as well. When N = 1 no such option is available,
since S0 = {−1,+1} is totally disconnected. Before giving our notion of solution,
we need one more definition, which we state only for the second order case.

Definition 8 (Envelopes of discontinuous coefficients). Given ξ ∈ SN−1 and con-
sider the map F of (3.2) which we assume is locally bounded. The ξ-Envelope ξ∗F
of F is the upper semi-continuous envelope of the projection ξ>F:

ξ∗F(x, η,P,X) := lim
ε→0

sup
{
ξ>F(y, θ,Q,Y) : |x− y|(3.7)

+ |η − θ|+ |P−Q|+ |X−Y| ≤ ε
}
.

We now proceed to the main notions of solutions we will use in this work.

Definition 9 (Contact solutions for second order systems). Consider the map F of
(3.2) and suppose it is locally bounded. The continuous map u : Rn ⊇ Ω −→ RN is
called a contact solution to (3.1) on Ω when for any x ∈ Ω and ξ ∈ SN−1 we have

(P,X) ∈ J2,ξ
u(x) =⇒ ξ∗F

(
x, u(x),P,X

)
≥ 0.(3.8)

Similarly, one can specialise the notion for first order systems as follows.

Definition 10 (Contact solutions for first order systems). Suppose the map

(3.9) F : Ω× RN × (RN⊗ Rn) −→ RN

is locally bounded. The continuous map u : Rn ⊇ Ω −→ RN is called a contact
solution to

(3.10) F(·, u,Du) = 0

on Ω, when for all x ∈ Ω and ξ ∈ SN−1 we have

P ∈ J1,ξ
u(x) =⇒ ξ∗F

(
x, u(x),P

)
≥ 0.(3.11)

Remark 11. We observe that for N = 1, CS reduce to viscosity solutions (up to a
difference in the sign convention in the inequality). However, the new ingredients in
the contact notions which are not component-wise will lead to genuinely vectorial
phenomena.
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The new objects J1,ξ, J2,ξ will be studied thoroughly later. Before presenting
some explicit calculations of contact jets for a typical map to illustrate the working
philosophy (which is analogous to the scalar case), we present a reformulation of
Definitions 9-10.

Lemma 12 (Alternative definitions). In the setting of Definitions 9-10, the impli-
cations (3.11), (3.8) can be respectively replaced by

P ∈ J1,ξu(x) =⇒ ξ∗F
(
x, u(x),P

)
≥ 0,(3.12)

(P,X) ∈ J2,ξu(x) =⇒ ξ∗F
(
x, u(x),P,X

)
≥ 0.(3.13)

If moreover the nonlinearity F is continuous, we can replace the ξ∗F by ξ>F.

Proof of Lemma 12. For brevity we exhibit only the second order case. Obvi-

ously, J2,ξu(x) ⊆ J
2,ξ
u(x). Conversely, assume (3.13) and fix (P,X) ∈ J2,ξ

u(x).
Then, there is a sequence (ξm, xm,Pm,Xm) → (ξ, x,P,X) as m → ∞ and also
(Pm,Xm) ∈ J2,ξmu(xm). By (3.13) and since u is continuous and F is locally
bounded, there exists a bounded open set B centred at (ξ, x,P,X) such that

0 ≤ (ξm)∗F
(
xm, u(xm),Pm,Xm

)
(3.14)

≤ ξ∗F
(
xm, u(xm),Pm,Xm

)
+ |ξ − ξm|

(
sup
B
|F|
)

for m large. Since ξ∗F is upper semi-continuous, by letting m→∞ we obtain that
ξ∗F(x, u(x),P,X) ≥ 0. Hence, the map u is a contact solution. �

4. Basic calculus of generalised derivatives

In this section we examine the pointwise generalised derivatives J1,ξu(x) and
J2,ξu(x) and relate them with the classical ones Du(x),D2u(x). We begin with two
simple algebraic results will turn out to be essential tools.

Lemma 13 (Spectral decomposition of symmetrised tensor products). Let R ∈ RN
and ξ ∈ SN−1. Then, ξ ∨R is a symmetric matrix with rank at most 2 and its the
spectrum of consists of at most three distinct eigenvalues λ− ≤ 0 ≤ λ+, given by

(4.1) σ(ξ ∨R) =

{
−1

2

(
|R| − ξ>R

)
, 0,

1

2

(
|R|+ ξ>R

)}
.

The respective eigenspaces are

(4.2) N
(
ξ ∨R − λI

)
=


span[ξ − sgn(R)], λ = λ−,

(span[{ξ,R}])⊥ , λ = 0,
span[ξ + sgn(R)], λ = λ+.

Proof of Lemma 13. If R = 0 or R is co-linear to ξ, the result is obvious. If R, ξ

are linearly independent, we observe that N
(
ξ ∨ R

)
= (span[{ξ,R}])⊥: indeed, for

all η ∈ RN , we have the identity

(4.3) (ξ ∨R)η =

(
R>η

2

)
ξ +

(
ξ>η

2

)
R.

Hence, η is normal to both ξ and R if and only if (ξ ∨ R)η = 0. By the Spectral
Theorem, ξ ∨R has at most three distinct eigenvalues λ−,0, λ+ and

(4.4) N
(
ξ ∨R − λ−I

)
⊕N

(
ξ ∨R − λ+I

)
= span[{ξ,R}].
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We now employ (4.3) to check directly that

(4.5) (ξ ∨R)

(
ξ ± R

|R|

)
= λ±

(
ξ ± R

|R|

)
with λ± as in (4.1). The lemma follows. �

We now show that symmetric products ξ ∨ (·) coupled by the inequality ≥⊗
induce “directed” orderings.

Proposition 14 (Induced partial orderings). Let ξ be in SN−1 and ξ⊥ = I− ξ⊗ ξ.

(i) If v ∈ RN , then

ξ ∨ v ≤ 0 ⇔
{
v = (ξ>v)ξ
ξ>v ≤ 0

⇔
{
ξ⊥v = 0
ξ>v ≤ 0

⇔ v = −|v|ξ.(4.6)

(ii) If X ∈ RN⊗ Rn×ns , then

ξ ∨X ≤⊗ 0 ⇔
{

X = ξ ⊗ (ξ>X)
ξ>X ≤ 0

⇔
{
ξ⊥X = 0
ξ>X ≤ 0

⇔ ξ ∨X ≤ 0.

In particular, it follows that the orderings ≤ and ≤⊗ coincide on the cone

(4.7)
{
η ∨Y

∣∣∣ η ∈ RN , Y ∈ RN⊗ Rn×ns

}
which is a subspace of the space (2.16) of separately symmetric tensors.

Proof of Proposition 14. (i) By Lemma 13, ξ∨v ≤ 0 if and only if maxσ(ξ∨v) ≤
0, hence if and only if 1

2 (|v| + ξ>v) = 0 and this says v = −|v|ξ. The latter is

equivalent to v = (ξ>v)ξ with ξ>v ≤ 0 and to ξ⊥v = 0 with ξ>v ≤ 0.
(ii) Suppose that ξ ∨X ≤⊗ 0 and fix η ∈ RN and w ∈ Rn. Then, we have

0 ≥ (ξ ∨X) : (η ⊗ w)⊗ (η ⊗ w)

=
1

2

(
ξαXβij + ξβXαij

)
ηαwiηβwj(4.8)

=
1

2

[(
ξαXβijwiwj

)
+
(
ξβXαijwiwj

)]
ηαηβ

=
(
ξ ∨ (X : w ⊗ w)

)
: η ⊗ η.

By (4.8), we obtain for any w fixed that ξ ∨ (X : w ⊗ w) ≤ 0. By employing (i) to
the vector v := X : w ⊗ w, we see that

ξ>(X : w ⊗ w) ≤ 0 ,
(
X− ξ ⊗ (ξ>X)

)
: w ⊗ w = 0,

for any w fixed. Since w is arbitrary, we obtain the desired decomposition which
can be recast as ξ⊥X = 0, ξ>X ≤ 0. Finally, by assuming the latter decomposititon
and fixing P ∈ RN⊗ Rn, we have

(ξ ∨X) : P⊗ P =
(
ξ ∨ ξ ⊗ (ξ>X)

)
: P⊗ P

= ξαξβξγXγijPαiPβj

= (ξγXγij)(ξαPαi)(ξβPβj)(4.9)

= (ξ>X) : (ξ>P)⊗ (ξ>P)

≤ 0
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and the last inequality follows by ξ>X ≤ 0. Hence, ξ ∨X ≤ 0 as desired. Finally,
the implication ξ ∨X ≤ 0⇒ ξ ∨X ≤⊗ 0 is trivial. �

Now we relate generalised and classical pointwise derivatives.

Theorem 15 (Contact jets and derivatives). Let u : Rn ⊇ Ω −→ RN be a map
which is continuous at x ∈ Ω.
(a) If there exists one direction ξ ∈ SN−1 such that both J1,±ξu(x) are nonempty,
then u is differentiable at x and both J1,±ξu(x) are singletons with element the
gradient:

(4.10) J1,±ξu(x) 6= ∅ =⇒ J1,ξu(x) = J1,−ξu(x) =
{

Du(x)
}
.

(b) If u is differentiable at x, then for all ξ ∈ SN−1 the sets J1,ξu(x) are singletons
with element the gradient:

(4.11) J1,ξu(x) =
{

Du(x)
}
.

Moreover, whenever (Du(x),X±) ∈ J2,±ξu(x) 6= ∅, we have the inequality

(4.12) ξ ∨
[
X− −X+

]
≤⊗ 0

which is equivalent to

(4.13) ξ⊥
[
X− −X+

]
= 0 , ξ>

[
X− −X+

]
≤ 0.

(c) If u is twice differentiable at x, then for all ξ ∈ SN−1 the sets J2,ξu(x) are
nonempty, they contain (Du(x),D2u(x)) and also

J2,ξu(x) =
{(

Du(x),D2u(x) + ξ ⊗A
)

: A ≥ 0
}
.(4.14)

Moreover, we have the characterisations

J2,ξu(x) =
{

(Du(x),X) : ξ ∨
[
D2u(x)−X

]
≤⊗ 0

}
=
{

(Du(x),X) : ξ ∨
[
D2u(x)−X

]
≤ 0

}
(4.15)

=

{
(Du(x),X) :

{
ξ>
[
D2u(x)−X

]
≤ 0,

ξ⊥
[
D2u(x)−X

]
= 0

}
.

(d) If v : Rn ⊇ Ω −→ RN is twice differentiable at x and λ, µ ≥ 0, then

(4.16) J2,ξ(λu+ µv)(x) = λJ2,ξu(x) + µ
(
Dv(x), D2v(x)

)
.

Proof of Theorem 15. (a) Let P± ∈ J1,±ξu(x) 6= ∅. Then, by (3.3), we have

±ξ ∨
[
u(z + x)− u(x)− P±z

]
: η ⊗ η ≤ o(|z|),(4.17)

if η ∈ RN , where “o(1)” is realised by T (z) : η ⊗ η. We set z := εw for ε > 0 and
|w| = 1 fixed and add the ± inequalities in (4.17) to obtain

(4.18) ξ ∨
[
(P− − P+)w

]
: η ⊗ η ≤ o(ε)

ε

as ε → 0+. By taking the limit to (4.18) and then replacing w with −w, we
obtain ξ ∨

[
(P+ − P−)w

]
: η ⊗ η = 0. By applying Proposition 14, we find that

ξ∨ (P−−P+) vanishes. By Lemma 13, we obtain that zero is the unique eigenvalue
of ξ ∨ (P+ − P−), that is, σ

(
ξ ∨ (P+ − P−)

)
= {0}. Hence, we have

(4.19)
∣∣(P+ − P−)w

∣∣ = ±ξ>
(
(P+ − P−)w

)
= 0,
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for any w ∈ Sn−1. As a result we get P+ = P−. Let us denote their common value
by P. Then, by (4.17) we have

(4.20) ξ ∨
[
u(z + x)− u(x)− Pz

]
: η ⊗ η = o(|z|),

as z → 0. Since the numerical radius (cf. [27])

(4.21) ‖A‖ := max
η∈SN−1

∣∣A : η ⊗ η
∣∣

is a norm on RN×Ns equivalent to the Euclidean, (4.20) implies as z → 0 that

o(|z|) = max
η∈SN−1

∣∣ξ ∨ [u(z + x)− u(x)− Pz] : η ⊗ η
∣∣(4.22)

≥ 1

C

∣∣ξ ∨ [u(z + x)− u(x)− Pz]
∣∣,

for some C > 0. By applying (2.7), (4.22) gives

o(|z|) =
1

2C2

{∣∣u(z + x)− u(x)− Pz
∣∣2 +

[
ξ>(u(z + x)− u(x)− Pz)

]2}
≥ 1

2C2

∣∣u(z + x)− u(x)− Pz
∣∣2,

as z → 0. Consequently, we have P = Du(x) and J1,ξu(x) =
{

Du(x)
}

.

(b) If u is differentiable at x, by applying ξ ∨ (·) to the Taylor expansion u(z) −
u(x) − Du(x)z = o(|z|) which holds as z → 0, we discover

{
Du(x)

}
⊆ J1,ξu(x),

for any ξ ∈ SN−1. Since then both J1,±ξu(x) 6= ∅, application of (a) implies that
J1,ξu(x) =

{
Du(x)

}
. Let (P,X) ∈ J2,ξu(x). By (3.4), we have

ξ ∨
[
u(z + x)− u(x)− Pz

]
≤ 1

2
ξ ∨

[
X : z ⊗ z

]
+ o(|z|2) = o(|z|),(4.23)

as z → 0. Hence, (a) implies that P = Du(x) whenever (P,X) ∈ J2,ξu(x) and u is
differentiable. If X± ∈ J2,±ξu(x), we have as z → 0

± ξ ∨
[
u(z + x)− u(x)−Du(x)z − 1

2
X± : z ⊗ z

]
≤ o(|z|2),(4.24)

We set z := εw for ε > 0, |w| = 1 and add the ± inequalities in (4.24) to find

(4.25) ξ ∨
[(

X− −X+
)

: w ⊗ w
]

: η ⊗ η ≤ o(ε2)

ε2
,

as ε→ 0+, for all η ∈ RN . By passing to the limit in (4.25) we obtain

0 ≥ ξ ∨
[(

X− −X+
)

: w ⊗ w
]

: η ⊗ η

=
1

2
ξα
(
X− −X+

)
βij
wiwjηαηβ +

1

2
ξβ
(
X− −X+

)
αij
wiwjηαηβ

=
1

2

[
ξα
(
X− −X+

)
βij

+ ξβ
(
X− −X+

)
αij

]
(ηαwi)(ηβwj)

=
[
ξ ∨

(
X− −X+

)]
: (η ⊗ w)⊗ (η ⊗ w),

for all η ∈ RN , w ∈ Rn. Hence, by Definition 1 we obtain ξ ∨
(
X− −X+

)
≤⊗ 0.

By Proposition 14, the equivalence of the rank-one inequality with (4.13) follows.
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(c) We first observe that by applying Proposition 14, all four sets appearing in
the right hand sides of of (4.14), (4.15) are equal. Hence, it suffices to prove that
J2,ξu(x) equals one of those. By applying ξ ∨ (·) to the Taylor expansion

(4.26) u(z + x)− u(x)−Du(x)z − 1

2
D2u(x) : z ⊗ z = o(|z|2),

which holds as z → 0, we find that (Du(x),D2u(x)) ∈ J2,ξu(x) for all ξ ∈ SN−1.
By applying (b) for X− := D2u(x) and X+ := X, we obtain the inclusion

(4.27) J2,ξu(x) ⊆
{

(Du(x),X)
∣∣∣ ξ ∨ [D2u(x)−X

]
≤⊗ 0

}
.

For the reverse inclusion, let us assume that ξ ∨
[
D2u(x) − X

]
≤⊗ 0. Then by

applying ξ ∨ (·) to (4.26), we have

ξ ∨
[
u(z + x)−u(x)−Du(x)z

]
: η ⊗ η

=
1

2

[
ξ ∨D2u(x)

]
:
(
η ⊗ z

)
⊗
(
η ⊗ z

)
+ o(|z|2)(4.28)

≤ 1

2

[
ξ ∨X

]
:
(
η ⊗ z

)
⊗
(
η ⊗ z

)
+ o(|z|2),

as z → 0. By (4.28), we obtain

(4.29) ξ ∨
[
u(z + x)− u(x)−Du(x)z − 1

2
X : z ⊗ z

]
≤ o(|z|2),

as z → 0. Hence, (Du(x),X) ∈ J2,ξu(x).

(d) follows easily by arguing similarly as in (a), (b), (c). �

The next lemma is an essentially scalar fact which will allow to formulate equiv-
alent definitions of J1, J2. For the proof we refer to [24].

Lemma 16. Suppose T : Rn −→ RN×Ns is a continuous symmetric tensor map
satisfying |T (z)| → 0 as z → 0. Then, there exists an increasing function τ ∈
C2(0,+∞) with τ(0+) = 0 such that T (z) ≤ τ(|z|)I, as z → 0.

Now we derive equivalent formulations of contact jets. We shall consider only
the case on J2; analogous results hold for J1, with the obvious modifications. For
simplicity we fix x = 0.

Proposition 17 (Equivalent formulations of J2). Suppose u : Rn ⊇ Ω −→ RN
is continuous at 0 ∈ Ω and let ξ ∈ SN−1 and (P,X) ∈ RN⊗ (Rn × Rn×ns ). The
following are equivalent:

(a) (P,X) ∈ J2,ξu(0).
(b) There exists τ ∈ C2(0,∞) increasing with τ(0+) = 0 such that, as Ω 3 z → 0

(4.30) ξ ∨
[
u(z)− u(0)− Pz − 1

2
X : z ⊗ z

]
≤ τ(|z|)|z|2I,

(c) We have

(4.31) lim
Ω3z→0

max
|η|=1

1

|z|2

(
ξ ∨

[
u(z)− u(0)− Pz − 1

2
X : z ⊗ z

])
: η ⊗ η ≤ 0.

(d) We have as Ω 3 z → 0 that

(4.32) maxσ

(
ξ ∨

[
u(z)− u(0)− Pz − 1

2
X : z ⊗ z

])
= o(|z|2).
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(e) We have as Ω 3 z → 0 that∣∣∣∣u(z)− u(0)− Pz − 1

2
X : z ⊗ z

∣∣∣∣
+ ξ>

(
u(z)− u(0)− Pz − 1

2
X : z ⊗ z

)
= o(|z|2).(4.33)

Note that for N = 1 we recover known properties of scalar semi-jets J2,±. In
particular, (e) reduces to differentiability of the positive part

(
u(z)−u(0)−Pz− 1

2X

: z ⊗ z
)+

. The proof of proposition 17 is very simple and therefore we omit it.

The following simple properties of J1,ξ, J2,ξ are in complete analogy with the
scalar counterparts J1,±, J2,± and are a direct consequence of Proposition 17.

Proposition 18. Let u : Rn ⊇ Ω −→ RN be continuous at x ∈ Ω and let ξ ∈ SN−1.
(a) Both J1,ξu(x), J2,ξu(x) are convex subsets of RN⊗Rn and RN⊗Rn×ns respec-
tively.
(b) J1,ξu(x) is closed in RN⊗ Rn. Moreover, for any P ∈ RN⊗ Rn, the “slice”

(4.34)
{

X ∈ RN⊗ Rn×ns

∣∣ (P,X) ∈ J2,ξu(x)
}

is closed in RN⊗ Rn×ns .
(c) If J2,ξu(x) 6= ∅, then it has infinite diameter. Moreover,

(4.35) (P,X) ∈ J2,ξu(x) =⇒ (P,X + ξ ⊗A) ∈ J2,ξu(x) , A ≥ 0.

Proof of Proposition 18. (a) is obvious. For (b), it suffices to establish that
the set (4.34) is closed, since the other is similar. Let (P,Xm) ∈ J2,ξu(x) and
Xm −→ X∞ as m → ∞. Fix ε > 0. Then, there is an m(ε) ∈ N such that
|Xm(ε) −X∞| ≤ ε. By Proposition 17, we have as δ → 0+

max
|z|≤δ,|η|=1

(
ξ ∨

[
u(z + x)− u(x)− Pz − 1

2X∞ : z ⊗ z
|z|2

]
: η ⊗ η

)
≤ ε + max

|z|≤δ,|η|=1

(
ξ ∨

[
u(z + x)− u(x)− Pz − 1

2Xm(ε) : z ⊗ z
|z|2

]
: η ⊗ η

)
(4.36)

≤ ε + o(1).

By passing to the limit δ → 0+ in (4.36) and letting ε→ 0+, we obtain (P,X∞) ∈
J2,ξu(x), as a result of Theorem 17. Finally, for any η ∈ RN , z ∈ Rn, we have[

ξ ∨
(
X + ξ ⊗A

)]
: (η ⊗ z)⊗ (η ⊗ z)

=
(
ξ ∨ (X : z ⊗ z)

)
: η ⊗ η + (ξ>η)2(A : w ⊗ w)(4.37)

≥
(
ξ ∨ (X : z ⊗ z)

)
: η ⊗ η

Consequently, (4.35) follows. �

Lemma 33 at the end of Section 6 supplements Proposition 18 by showing how
we can modify the contact jet J2,ξ along directions perpendicular to ξ, that is,
when we can add to (P,X) elements of the form (0, η ⊗ I) for η⊥ ξ. Now we give
an explicit concrete example of jets.
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Example 19 (Calculation of contact jets, cf. [24]). Let u : R −→ RN be given by

(4.38) u(z) := −Az χ(−∞,0](z) +

(
Bz +

C

2
z2

)
χ(0,+∞)(z),

where A,B,C ∈ RN , A+B 6= 0. The contact jets of u at zero are

J1,ξu(0) =

{
Ø, ξ 6= A+B

|A+B| ,{
B−A

2 + tB+A
2 : t ∈ [−1,+1]

}
, ξ = A+B

|A+B| ,
(4.39)

J2,ξu(0) =

{
Ø, ξ 6= A+B

|A+B| ,{(
B−A

2 + tB+A
2 ,X

)
: (t,X) ∈ S

}
, ξ = A+B

|A+B| ,
(4.40)

where

S :=
(

(−1,+1)× RN
)⋃(

{−1} × {C − s(A+B) : s ≥ 0}
)

⋃(
{+1} × {−s(A+B) : s ≥ 0}

)
.(4.41)

The proof of the above facts follows by a simple but lengthy computation by using
directly the definition of contact jets.

5. Ellipticity and consistency with classical notions

Now we introduce the appropriate notion of ellipticity for fully nonlinear second
order PDE systems and establish compatibility between classical and CS.

Definition 20 (Degenerate elliptic second order systems). Let u : Rn ⊇ Ω −→ RN
be a C2 map. The PDE system (3.1) is called degenerate elliptic when for all
(x, η,P) ∈ Ω × RN × (RN ⊗ Rn) the map F(x, η,P, . ) : RN ⊗ Rn×ns −→ RN is
monotone, in the sense that the following matrix inequality holds

(5.1)
(

F
(
x, η,P,X

)
− F

(
x, η,P,Y

))>(
X−Y

)
≥ 0

for all X, Y ∈ RN⊗ Rn×ns , namely(
F
(
x, η,P,X

)
− F

(
x, η,P,Y

))>(
(X−Y) : w ⊗ w

)
≥ 0, for all w ∈ Rn.

By restricting (5.1) to the cases of N = 1 ≤ n and of n = 1 ≤ N , we recover
standard monotonicity notions which (5.1) extends to the general case. If N =
1 ≤ n then (5.1) reduces to the standard ellipticity of VS up to a change of sign
depending on the convention (see e.g. [14])

(5.2) X ≤ Y =⇒ F
(
x, η,P,X

)
≤ F

(
x, η,P,Y

)
If n = 1 ≤ N , then (5.1) reduces to the standard monotonicity of maps RN −→ RN .
We now derive a characterisation of Definition 20 which is the form of ellipticity
we will actually employ in our analysis.

Lemma 21. Let G : RN⊗ Rn×ns −→ RN . Then, the following are equivalent:
(i) For all ξ ∈ SN−1 and all X, Y ∈ RN⊗ Rn×ns , we have

(5.3) ξ ∨ (X − Y) ≤⊗ 0 =⇒ ξ>
(
G(X) − G(Y)

)
≤ 0.

(ii) For all X, Y ∈ RN⊗ Rn×ns , we have

(5.4)
(
G(X) − G(Y)

)>(
X − Y

)
≥ 0.
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Proof of Lemma 21. By Proposition 14, (5.3) is equivalent to

(5.5)
ξ⊥
(
X − Y

)
= 0,

ξ>
(
X − Y

)
≤ 0

}
=⇒ ξ>

(
G(X) − G(Y)

)
≤ 0.

Assuming (5.5), we have ξ>(X − Y) ≤ 0 and ξ ⊗ ξ>(X − Y) = X − Y and also
ξ>
(
G(X) − G(Y)

)
≤ 0. These relations yield

0 ≤
(
ξ>
(
G(X) − G(Y)

)) (
ξ>(X − Y)

)
=
(
G(X) − G(Y)

)> (
ξ ⊗ ξ>(X − Y)

)
=
(
G(X) − G(Y)

)>
(X − Y) .

Hence, we obtain (5.4). Conversely, assuming (5.4) and that ξ ∨ (X−Y) ≤⊗ 0, by
Proposition 14 we have X−Y = ξ ⊗ ξ>(X−Y) and hence we get

0 ≤
(
G(X) − G(Y)

)>
(X − Y) =

((
G(X) − G(Y)

)>
ξ
)(
ξ>(X − Y)

)
.

Since ξ>(X−Y) ≤ 0, we deduce that ξ>(G(X)−G(Y)) ≤ 0, as claimed. �

The main result of this section is that CS and classical solutions are compatible
for fully nonlinear second order systems which are degenerate elliptic and have
continuous coefficients.

Theorem 22 (Consistency). Let u : Rn ⊇ Ω −→ RN be a continuous map and
consider second order system (3.1).

(a) If u is a contact solution of (3.1) and the nonlinearity F is continuous, then u
solves (3.1) classically at points of twice differentiability.

(b) If u is a twice differentiable solution of (3.1) and the nonlinearity F is degenerate
elliptic, then u is a contact solution of (3.1).

Proof of Theorem 22. (a) If u : Rn ⊇ Ω −→ RN is a contact solution of (3.1),
then, in view of Theorem 15, if u is twice differentiable at x ∈ Ω we have that
(Du(x),D2u(x)) ∈ J2,±ξu(x) for any ξ ∈ SN−1. Hence, by Lemma 12, we have

(5.6) (±ξ)∗F
(
x, u(x),Du(x),D2u(x)

)
≥ 0.

Since F is continuous, ξ-envelopes coincide with ξ-projections and we obtain

(5.7) 0 ≤ ξ>F
(
x, u(x),Du(x),D2u(x)

)
≤ 0,

for all ξ ∈ SN−1. Since ξ is arbitrary, we deduce that u solves (3.1) classically.

(b) Suppose u is a twice differentiable solution of (3.1) and F satisfies (5.1). Then, if
(P,X) ∈ J2,±ξu(x), by Theorem 15 we have P = Du(x) and moreover ξ∨

(
D2u(x)−

X
)
≤⊗ 0. By applying Lemma 2, it follows that whenever (P,X) ∈ J2,ξu(x),

0 = ξ>F
(
x, u(x),Du(x),D2u(x)

)
≤ ξ>F

(
x, u(x),Du(x),X

)
(5.8)

≤ ξ∗F
(
x, u(x),P,X

)
.

Thus, (5.8) and Lemma 12 imply that u is a contact solution of (3.1). �
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A particular important class of second order PDE systems to which the theory
applies (and has partly been motivated by) is that of quasilinear ones in non-
divergence form. For

A = A(x, η,P) : Ω× RN × (RN ⊗ Rn) −→ RNn×Nn,(5.9)

B = B(x, η,P) : Ω× RN × (RN⊗ Rn) −→ RN ,(5.10)

the general form of such systems is

(5.11) A
(
·, u,Du

)
: D2u + B

(
·, u,Du

)
= 0

(cf. (2.3), (2.4)). According to the next Lemma, in the quasilinear case of (5.11)
the condition of degenerate ellipticity is equivalent to the rank-one positivity of
A. The latter is the (weak) Legendre-Hadamard condition, when A is symmetric,
namely when A ∈ RNn×Nns .

Lemma 23. Suppose that A ∈ RNn×Nn. Then, the linear map X 7→ A : X from
RN⊗ Rn×ns to RN is monotone if and only if A ≥⊗ 0.

We note that symmetry of A is not required for this equivalence.

Proof of Lemma 23. The monotonicity of A reads
(
A : X

)>
X ≥ 0. Let us fix

η ∈ RN , w ∈ Rn and set X := η ⊗ w ⊗ w. Then, we have

0 ≤
(
A : (η ⊗ w ⊗ w)

)>
(η ⊗ w ⊗ w) : w ⊗ w

= Aαiβj : (ηαwi)(ηβwj)(wkwk)2

= |w|4A : (η ⊗ w)⊗ (η ⊗ w).

Hence, A ≥⊗ 0. Conversely, if A : (η ⊗ w) ⊗ (η ⊗ w) ≥ 0 for all η ∈ RN and all
w ∈ Rn, we suppose that ξ ∨X ≤⊗ 0 for some ξ ∈ RN . Then, by Proposition 14
we have X = ξ ⊗ X where X := ξ>X ≤ 0. If X1/2 is the symmetric square root

of X, then we have that Xij = X
1/2
ik X

1/2
jk . Hence, X is a sum of positive matrices

w(k) ⊗ w(k) with w(k) := X
1/2
ik ei ∈ Rn. Hence, we have

ξ>
(
A : X

)
= ξαAαiβjξβXij = Aαiβj(ξαw

(k)
i )(ξβw

(k)
j ) = A : (ξ⊗w(k))⊗(ξ⊗w(k))

and therefore ξ>
(
A : X

)
≤ 0. By Lemma 21, the map X 7→ A : X is monotone. �

Now we construct a large class of fully nonlinear systems which satisfies the
ellipticity condition (5.1).

Example 24 (Fully nonlinear degenerate elliptic systems). For any nonlinearity
F = (F1, ...,FN )> with components of the form

(5.12) Fα : Rn × RN × (RN⊗ Rn)× Rn −→ RN

such that Fα(x, η,P; ·) is odd and each lj 7→ Fα(x, η,P; l1, ..., lj , ..., ln) is homoge-
neous and increasing for all indices j, α, the next system is degenerate elliptic:

(5.13) Fα
(
·, u,Du, σ(D2uα)

)
= 0.

The claim above follows by the next result.

Lemma 25 (Monotone functions of the eigenvalues of the hessian). Suppose that
g : Rn −→ RN is odd with each component gα homogeneous. Suppose further each
function lj 7→ gα(l1, ..., lj , ..., ln) is increasing, for all indices j, α. Consider

(5.14) G : RN⊗ Rn×ns −→ RN , Gα(X) := gα
(
λ1(Xα), ..., λn(Xα)

)
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where Xα := Xαijei⊗ ej and
{
λ1(Xα), ..., λn(Xα)

}
denotes the eigenvalues of Xα,

placed in increasing order. Then, G is monotone in the sense of (5.3).

Proof of Lemma 25. Fix ξ ∈ SN−1, w ∈ Rn, X,Y ∈ RN⊗Rn×ns , an index α and
suppose that ξ ∨

(
X−Y

)
≤⊗ 0. Then, we have

0 ≥ ξ ∨
(
X−Y

)
: (eα̂ ⊗ w)⊗ (eα̂ ⊗ w)

=
1

2

[
ξγ
(
X−Y

)
βij

+ ξβ
(
X−Y

)
γij

]
δγα̂wiδβα̂wj

= ξα̂
(
X−Y

)
α̂ij
wiwj

= ξα̂(X − Y )α̂ : w ⊗ w,

where α̂ denotes free index (no summation). Hence, we obtain ξα̂Xα̂ ≤ ξα̂Yα̂. Since
the k-eigenvalue function is odd and homogeneous, we have ξα̂λk(Xα̂) ≤ ξα̂λk(Yα̂),
for any α̂ = 1, ..., N and each k = 1, ..., n. Since each gα is increasing in each of its
arguments, we get

(5.15) gα̂

(
ξα̂λ1(Xα̂), ..., ξα̂λn(Xα̂)

)
≤ gα̂

(
ξα̂λ1(Yα̂), ..., ξα̂λn(Yα̂)

)
.

Since gα is homogeneous and odd, we obtain

(5.16) ξα̂gα̂

(
λ1(Xα̂), ..., λn(Xα̂)

)
≤ ξα̂gα̂

(
λ1(Yα̂), ..., λn(Yα̂)

)
.

By summing with respect to α̂, we obtain ξ>
(
G(X)−G(Y)

)
≤ 0. �

Following [14], we can give numerous explicit fully nonlinear degenerate elliptic

examples. In particular, the choices gα(l) := ln, gα(l) := l2pα+1
1 , gα(l) := l1...ln and

gα(l) := (l1 + ...+ ln)2pα+1 lead for any p1, ..., pN ≥ 0 to the systems

maxσ(D2uα) = hα(·, u,Du)(5.17)

min
(
σ(D2uα)

)2pα+1
= hα(·, u,Du)(5.18)

det(D2uα) = hα(·, u,Du) , uα convex,(5.19)

|∆uα|2pα∆uα = hα(·, u,Du),(5.20)

which are fully nonlinear and degenerate elliptic for any first order nonlinearity h.

6. The finer structure of contact jets

In this section we study the structure of contact jets more deeply and demystify
the local structure of maps around the point at which a contact jet exists. The prin-
cipal results are Theorems 26-27, which reformulate the matrix inequality defining
jets to an ordinary inequality coupling the ξ-projection ξ>u and the length of the
projection |ξ⊥u| on the hyperplane normal to ξ. The inequality connects a semi-
differentiability condition for ξ>u (known from the scalar case) to a new partial
regularity condition in codimension-one for the perpendicular part ξ⊥u.

Theorem 26 (Structure of first contact jets). Let u : Rn ⊇ Ω −→ RN be con-
tinuous. Let also x ∈ Ω, ξ ∈ SN−1 and P ∈ RN ⊗ Rn. Then, the following are
equivalent:
(i) P ∈ J1,ξu(x).
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(ii) There exists an increasing σ ∈ C1(0,∞) with σ(0+) = 0, such that as z → 0

ξ>
(
u(z + x)− u(x)− Pz

)
≤ −

∣∣∣ξ⊥(u(z + x)− u(x)− Pz
)∣∣∣2

σ(|z|)|z|
+ σ(|z|)|z|.(6.1)

Theorem 27 (Structure of second contact jets). Let u : Rn ⊇ Ω −→ RN be
continuous. Let also x ∈ Ω, ξ ∈ SN−1 and (P,X) ∈ RN⊗ (Rn × Rn×ns ). Then, the
following are equivalent:
(i) (P,X) ∈ J2,ξu(x).
(ii) There exists an increasing σ ∈ C2(0,∞) with σ(0+) = 0, such that as z → 0

ξ>
(
u(z + x)− u(x)− Pz − 1

2
X : z ⊗ z

)
≤ −

∣∣∣ξ⊥(u(z + x)− u(x)− Pz − 1

2
X : z ⊗ z

)∣∣∣2
σ(|z|)|z|2

+ σ(|z|)|z|2.(6.2)

By (6.1) and (6.2) we obtain that the existence of nontrivial contact jets implies a
local structure for the map: the codimension-one projection of u on the hyperplane
ξ⊥ must be more regular than the projection ξ>u. Actually there is a bootstrap of
regularity between ξ>u and ξ⊥u, which balances at differentiability:

Corollary 28 (Codimension-one bootstrap regularity imposed by jets). Suppose
that u : Rn ⊇ Ω −→ RN is a continuous map, x ∈ Ω, ξ ∈ SN−1.

(1) Let P ∈ J1,ξu(x) and L(z) := u(z + x)− u(x)− Pz. Then

ξ>L(z) = O(|z|β) =⇒ ξ⊥L(z) = o(|z|β+ 1−β
2 ),

as z → 0, for any β ∈ [0, 1]. In particular, for β ∈ {0, 1} the following holds: since

ξ>u is C0 at x, ξ⊥u is C
1
2 + near x. If ξ>u is differentiable at x, then so is ξ⊥u.

(2) Let (P,X) ∈ J2,ξu(x) and Q(z) := u(z + x)− u(x)− Pz − 1
2X : z ⊗ z. Then

ξ>Q(z) = O(|z|γ) =⇒ ξ⊥Q(z) = o(|z|γ+ 2−γ
2 ),

as z → 0,for any γ ∈ [0, 2]. In particular, for γ ∈ {0, 2} the following hold: since
ξ>u is C0 at x, ξ⊥u is C1 near x. If ξ>u is twice differentiable at x, so is ξ⊥u.

Proof of Corollary 28. We rewrite (6.1) and (6.2) as∣∣ξ⊥L(z)
∣∣2 ≤ σ(|z|)|z|

(
− ξ>L(z) + σ(|z|)|z|

)
(6.3) ∣∣ξ⊥Q(z)

∣∣2 ≤ σ(|z|)|z|2
(
− ξ>Q(z) + σ(|z|)|z|2

)
(6.4)

and the desired conclusions readily follow. �

The fact of existence of nowhere improvable Hölder functions implies

Corollary 29. For any ξ ∈ SN−1, there exists a map u ∈ (C0\C 1
2 )(Rn)N such that

u does not possess nontrivial first ξ-jets anywhere. Similarly, for any ξ ∈ SN−1,
there exists a map u ∈ (C0 \ C0,1)(Rn)N such that

{
x ∈ Rn | J2,ξu(x) 6= ∅

}
= ∅.

Hence, obstructions arising in the vectorial case imply that first contact jets are
efficient for Hölder C

1
2 maps and second contact jets are efficient for Lipschitz C0,1

maps. In the scalar case obstructions disappear and semi-jets J2,± are efficient
for merely C0 functions. We interpret this fact by saying that “in the vectorial
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case only 1/2 of the derivatives can be interpreted weakly, the rest 1/2 must exist
classically”.

In order to prove Theorems 26-27, we need a technical tool. Let R ∈ RN and
ξ ∈ SN−1. By Lemma 13, the tensor product ξ∨R is a rank-two symmetric tensor.

Lemma 30 (Representations of the spectrum of symmetrised tensor products).

For any R ∈ RN , set s(R) := 2
(

sgn(ξ>R)
)+ − 1. Then, we have the identities

maxσ(ξ ∨R) =
(
ξ>R

)+
+
|R|
4

∣∣∣ sgn(R)− s(R)ξ
∣∣∣2,(6.5)

maxσ(ξ ∨R) = max
{
ξ>R, 0

}
+
|R|
4

min
∣∣∣ sgn(R)± ξ

∣∣∣2.(6.6)

Proof of Lemma 30. By observing that for any a ∈ R, we have

2
(

sgn(a)
)+ − 1 =

(
χ(0,∞) − χ(−∞,0]

)
(a),

we obtain that s(R) =
(
χ(0,∞) − χ(−∞,0)

)
(ξ>R). We assume R 6= 0, since (6.5) is

trivial if R = 0. Let l(R) denote the right hand side of (6.5). Then, we compute

l(R) =
(
ξ>R

)+
+
|R|
4

∣∣∣∣ R|R| − ξ(χ(0,∞) − χ(−∞,0]

)
(ξ>R)

∣∣∣∣2
=

∣∣ξ>R∣∣+ ξ>R

2
+
|R|
2

(
1 − ξ>R

|R|
(
χ(0,∞) − χ(−∞,0]

)
(ξ>R)

)
=

1

2

[∣∣ξ>R∣∣+ ξ>R + |R| − ξ>R
(
χ(0,∞) + χ(−∞,0]

)
(ξ>R)

]
=

1

2

[∣∣ξ>R∣∣ + |R| + 2ξ>Rχ(−∞,0](ξ
>R)

]
=

1

2

[∣∣ξ>R∣∣ + |R| + 2ξ>R
]
χ{ξ>R≤0}(R) +

1

2

[∣∣ξ>R∣∣ + |R|
]
χ{ξ>R>0}(R),

which gives l(R) = maxσ(ξ ∨ R), as a result of Lemma 13. This establishes (6.5).
Let us now establish (6.6). The elementary identity

(6.7)
|R|
4

∣∣∣ sgn(R) − ξ
∣∣∣2 =

|R|
4

∣∣∣ sgn(R) + ξ
∣∣∣2 + ξ>R

implies that

|R|
4

min
∣∣∣ sgn(R)± ξ

∣∣∣2 =


|R|
4

∣∣∣ sgn(R) + ξ
∣∣∣2, if ξ>R ≤ 0,

|R|
4

∣∣∣ sgn(R) − ξ
∣∣∣2, if ξ>R > 0,

=
|R|
4

∣∣∣∣ R|R| − ξ
(
χ(0,∞) − χ(−∞,0]

)
(ξ>R)

∣∣∣∣2(6.8)

=
|R|
4

∣∣∣ sgn(R) − s(R)ξ
∣∣∣2.

By comparing (6.5) and (6.8), we see that (6.6) follows. �

The following is the first step towards Theorems 26, 27.

Theorem 31 (Equivalent formulations of contact jets). Let R : Rn ⊇ Ω −→ RN
be continuous, 0 ∈ Ω, R(0) = 0, ξ ∈ SN−1. Let also p ∈ {1, 2}. Then, the following
statements are equivalent:
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(i) 0 ∈ Jp,ξR(0), that is, maxσ(ξ ∨R(z)) ≤ o(|z|p) as Ω 3 z → 0.
(ii) We have

(6.9) ξ>R(z) ≤ o(|z|p) and

∣∣ξ⊥R(z)
∣∣2

|R(z)|
= o(|z|p) as Ω 3 z → 0.

(iii) There exist maps ρ : Rn −→ ξ⊥ ⊆ RN and σ : Rn −→ [0,∞) satisfying that
ρ(z) = o(|z|p/2) and σ(z) = o(|z|p) as Ω 3 z → 0 and also

(6.10) ξ>R ≤ σ and ξ⊥R = ρ
(1

2
|ρ|2 +

(1

2
|ρ|2
)2

+
∣∣ξ>R∣∣2)1/2

on Ω.

(iv) If we set T :=
{
|ξ⊥R| ≤ |ξ>R|

}
⊆ Ω, then

(6.11)


ξ>R(z) ≤ o(|z|p),∣∣ξ⊥R(z)

∣∣2∣∣ξ>R(z)
∣∣ = o(|z|p),

 as Ω ∩ T 3 z → 0,

|R(z)| = o(|z|p), as Ω \ T 3 z → 0.

We observe that when N = 1, then ξ⊥ ≡ 0 and we recover a single inequality
along ξ ⊗ ξ ∼= R which coincides with that of scalar semijets.

Proof of Theorem 31. We begin by proving that (i) is equivalent to (ii). If we
assume (i), then by the representation formula (6.5), it is equivalent to

(6.12) ξ>R(z) ≤ o(|z|p) and |R(z)|
∣∣ sgn(R(z)) − s(R)ξ

∣∣2 = o(|z|p),

as Ω 3 z → 0. By (6.12), we have
∣∣R−|R|s(R)ξ

∣∣(z) ≤ o(|z|p|R(z)| 12
)
, as Ω 3 z → 0.

Hence, there exists an r : Ω −→ RN with |r(0+)| = 0 such that

(6.13)
(
R− |R|s(R)ξ

)
(z) = r(z)|z|

p
2 |R(z)| 12 ,

on Ω. By projecting (6.13) onto ξ⊥, we obtain ξ⊥R(z) = (ξ⊥r)(z)|z|
p
2 |R(z)| 12 on

Ω. We set ρ(z) := (ξ⊥r)(z)|z|
p
2 . Therefore∣∣ξ⊥R(z)
∣∣2

|R(z)|
= |ρ(z)|2 = o(|z|p),(6.14)

as Ω 3 z → 0. By (6.12) and (6.14), (ii) follows. Conversely, assume (ii). It suffices
to verify that maxσ(ξ∨R(z)) ≤ o(|z|p) as Ω∩{R 6= 0} 3 z → 0. Then, we calculate

|R|
4

∣∣∣ sgn(R)− s(R)ξ
∣∣∣2 =

1

4|R|

∣∣∣R− s(R)|R|ξ
∣∣∣2

=


1

4|R|

∣∣∣R − |R|ξ∣∣∣2, on Ω ∩ {ξ>R > 0} ∩ {R 6= 0},
1

4|R|

∣∣∣R − |R|ξ∣∣∣2, on Ω ∩ {ξ>R ≤ 0} ∩ {R 6= 0}.
(6.15)

=


(
|R| − ξ>R

)
2

, on Ω ∩ {ξ>R > 0},(
|R| + ξ>R

)
2

, on Ω ∩ {ξ>R ≤ 0} ∩ {R 6= 0}.

Since ξ⊥ = I − ξ ⊗ ξ, we have that(
|R(z)| − ξ>R(z)

)(
|R(z)|+ ξ>R(z)

)
= |ξ⊥R(z)|2 = o

(
|z|p|R(z)|

)
,
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as Ω 3 z → 0. Since on Ω ∩ {ξ>R > 0} we have 1 ≤
(
|R| + ξ>R

)
/|R| and on

Ω ∩ {ξ>R ≤ 0} ∩ {R 6= 0} we have 1 ≤
(
|R| − ξ>R

)
/|R|, we infer that

|R|
4

∣∣∣ sgn(R)− s(R)ξ
∣∣∣2 ≤ (

|R|2 − |ξ>R|2
)

2|R|
(z) = o(|z|p),(6.16)

as Ω 3 z → 0. Thus, (6.9) and (6.16) imply (6.12), which is equivalent to (i). Let
us now prove the equivalence between (ii) and (iii). If we assume (ii), we define

(6.17) σ :=
(
ξ>R

)+
, ρ :=

(
ξ⊥R|R|− 1

2

)
χ{R 6=0}∩Ω.

It follows that σ, ρ have the desired properties and by (6.17), we have |R||ρ|2 =
|ξ⊥R|2 = |R|2− |ξ>R|2. It follows that |R| is the positive solution of the quadratic
equation t2 − |ρ|2t− |ξ>R|2 = 0. Hence,

(6.18) |R| =
1

2
|ρ|2 +

((1

2
|ρ|2
)2

+ |ξ>R|2
)1/2

.

Thus, (6.17) and (6.18) imply (6.10). Conversely, if we assume (iii) and let S be
defined by the formula giving R above, then S solves the equation t2 − |ρ|2t −
|ξ>R|2 = 0. Hence, by the above and perpendicularity, we have

(6.19) S2 = |ξ>R|2 + |ρ|2S = |R|2 − |ξ⊥R|2 + |ρ|2S = |R|2.

This, S = |R| and hence ξ⊥R = ρ|R| 12 . As a result, (6.10) implies (6.9) as claimed.
We conclude by proving that (iv) is equivalent to (ii). For, let us split RN as ξ>⊕ξ⊥
and equip it with the norm ‖R‖ := max

{
|ξ>R|, |ξ⊥R|

}
. Then, we have

|ξ⊥R|2

‖R‖
=

|ξ⊥R|2

max
{
|ξ>R|, |ξ⊥R|

} =
|ξ⊥R|2

|ξ>R|
χΩ∩T + |ξ⊥R|χΩ\T .(6.20)

By the above and norm equivalence on RN , (6.9) is equivalent to

(6.21)


ξ>R(z) ≤ o(|z|p), as Ω 3 z → 0,

|ξ⊥R(z)|2

|ξ>R(z)|
= o(|z|p), as Ω ∩ T 3 z → 0,

|ξ⊥R(z)|2 = o(|z|p), as Ω \ T 3 z → 0,

Since on Ω \ T we have |ξ>R(z)| < |ξ⊥R(z)| = o(|z|p) as Ω \ T 3 z → 0, (6.21) is
equivalent to (6.11) and the theorem follows. �

Proof of Theorems 26, 27. By Theorem 31, it suffices to prove the following:

Claim 32. If R : Rn −→ RN is continuous, R(0) = 0, ξ ∈ SN−1, p ∈ {1, 2}, then

(6.22) 0 ∈ Jp,ξR(0) ⇐⇒ ξ>R(w)− (σ(|w|)|w|)p ≤ −
∣∣ξ⊥R(w)

∣∣2
(σ(|w|)|w|)p

as w → 0, for some increasing σ ∈ Cp(0,∞) which satisfies σ(0+) = 0.

To this end, assume 0 ∈ Jp,ξR(0). Then, by Theorem 17, there exists an increasing
ρ ∈ Cp(0,∞) with 0 ≤ ρ(w) = o(|w|p) as w → 0 such that

(6.23) ξ ∨R(w) ≤ ρ(w)I.
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Let {ξ1, .., ξN−1} be an orthonormal base of the hyperplane ξ⊥ ⊆ RN . Then, R
and the identity I can be written as:

(6.24) R = (ξ>R)ξ +

N−1∑
α=1

(ξα
>R)ξα, I = ξ ⊗ ξ +

N−1∑
α=1

ξα ⊗ ξα.

By plugging (6.24) into (6.23), we obtain

(6.25) ξ ∨

[
(ξ>R)ξ +

N−1∑
α=1

(ξα
>R)ξα

]
≤ ρ ξ ⊗ ξ + ρ

N−1∑
α=1

ξα ⊗ ξα.

By applying “: ξ ⊗ ξ” to (6.25) and employing orthonormality of the base, we infer
that − ξ>R+ρ ≥ 0.. Let now t ∈ R\{0} and β ∈ {1, ..., N −1} be fixed and apply
again “: (tξβ + ξ)⊗ (tξβ + ξ)” to (6.25) to obtain

|ξ|4ξ>R +

N−1∑
α=1

(
ξ>αR

)(
ξ>α (tξβ + ξ)

)(
ξ>(tξβ + ξ)

)
≤ ρ|ξ|4 + ρ

N−1∑
α=1

(
ξ>α (tξβ + ξ)

)2
.

By orthogonality of the base, we deduce that tξ>β R ≤ ρt2 + ρ + ξ>R. Since this
holds for both ±t, we infer that

(6.26)
∣∣ξ>β R∣∣ ≤ ρ|t| +

ρ − ξ>R

|t|

and the choice t :=
(
(ρ− ξ>R)/ρ

)1/2
in (6.26) implies

∣∣ξ>β R∣∣2 ≤ 4ρ
(
ρ+ ξ>R

)
. By

summing with respect to β, we obtain∣∣ξ⊥R∣∣2 =

N−1∑
β=1

∣∣ξ>β R∣∣2 ≤ 4(N − 1)
(
− ξ>R + 4(N − 1)ρ

)
ρ.

The above estimate implies the direction “=⇒” of Claim 32 for the choice σ(|w|) :=

|w|−1
(4(N−1)ρ(|w|))1/p. Conversely, assume the validity of the inequality in (6.22)

for such a σ and set ρ(w) := (σ(|w|)|w|)p. Then, we have

(6.27)
∣∣ξ⊥R∣∣2 ≤ ρ

(
− ξ>R + ρ

)
,

locally near 0 ∈ Rn. Since ρ > 0 near zero, (6.27) readily gives ξ>R ≤ ρ(w) =
o(|w|p) as w → 0. By setting T :=

{∣∣ξ⊥R∣∣ ≤ ∣∣ξ>R∣∣} and Ω :=
{∣∣ξ>R∣∣ > ρ

}
, the

inequality (6.27) implies on T ∩ Ω that∣∣ξ⊥R∣∣2∣∣ξ>R∣∣ (w) ≤
ρ(w)

(
− ξ>R(w) + ρ(w)

)∣∣ξ>R(w)
∣∣ ≤ ρ(w) +

ρ2(w)∣∣ξ>R(w)
∣∣ ≤ 2ρ(w),

as T ∩Ω 3 w → 0. Hence, by the implication (iv) =⇒ (i) of Theorem 31, we obtain

(6.28) maxσ
(
ξ ∨R(w)

)
≤ o(|w|p),

as T ∩ Ω 3 w → 0. On the other hand, on T \ Ω we have
∣∣ξ>R∣∣ ≤ ρ and also∣∣ξ⊥R∣∣ ≤ ∣∣ξ>R∣∣, hence by Lemma 13 we estimate

maxσ
(
ξ ∨R(w)

)
=

1

2

(
|R(w)| + ξ>R(w)

)
≤ |R(w)| =

=
(∣∣ξ>R∣∣2 +

∣∣ξ⊥R∣∣2) 1
2 ≤

(
ρ2(w) + ρ2(w)

) 1
2 =

√
2ρ(w),
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as T \ Ω 3 w → 0. Therefore, we deduce that

(6.29) maxσ
(
ξ ∨R(w)

)
≤ o(|w|p),

as T 3 w → 0. Now, by (6.27) on Rn \ T =
{∣∣ξ>R∣∣ < ∣∣ξ⊥R∣∣} we have that∣∣ξ⊥R∣∣2 ≤ ρ

(
− ξ>R + ρ

)
≤ ρ

∣∣ξ>R∣∣ + ρ2 ≤ ρ
∣∣ξ⊥R∣∣ + ρ2.(6.30)

Hence, it holds that
∣∣ξ⊥R∣∣2 − ρ∣∣ξ⊥R∣∣ − ρ2 ≤ 0 and by comparing

∣∣ξ⊥R∣∣ with the

solutions of the binomial equation t2 − ρt− ρ2 = 0, we find∣∣ξ⊥R(w)
∣∣ ≤ 1 +

√
5

2
ρ(w) = o(|w|p),(6.31)

as Rn \ T 3 w → 0. Thus, by employing again Lemma 13, we estimate

maxσ
(
ξ ∨R(w)

)
=

1

2

(
|R(w)|+ ξ>R(w)

)
≤
(∣∣ξ>R∣∣2 +

∣∣ξ⊥R∣∣2) 1
2 ≤ 1 +

√
5√

2
ρ(w),

(6.32)

as Rn \ T 3 w → 0. By estimates (6.29) and (6.32) we deduce maxσ
(
ξ ∨R(w)

)
≤

o(|w|p) as w → 0 and consequently 0 ∈ Jp,ξR(0). As a result, Claim 32 follows. �

The following result certifies that the projections along ξ⊥ of second contact ξ-
jets are “stiff” and if the map is twice differentiable, no variations can be performed.

Lemma 33. Let u : Rn ⊆ Ω −→ RN be continuous and fix x ∈ Rn, ξ ∈ SN−1,
η ∈ SN−1 ∩ ξ⊥ and A ∈ Rn×n+ . Then, if (P,X) ∈ J2,ξu(x), we have

(6.33)

(
η>P , η>X− 1

2
A

)
∈ J2,+(η>u)(x) =⇒ (P,X− η ⊗A) ∈ J2,ξu(x).

Lemma 33 says that we can modify (P,X) by adding an element of the form
(0,−η ⊗ A) with A ≥ 0 along a direction η in the normal hyperplane ξ⊥ if we
can add the element

(
0,− 1

2A
)

from the superjet J2,+ of the projection η>u. For
modifications along the ξ-direction, see Proposition 18.

Proof of Lemma 33. We set

(6.34) QP,X(z) := u(z + x)− u(x)− Pz − 1

2
X : z ⊗ z.

By employing that η⊥ ξ, we estimate∣∣∣ξ⊥(QP,X(z)− η ⊗A : z ⊗ z
)∣∣∣2 =

∣∣ξ⊥(u−QP,X

)
(z)
∣∣2 +

1

4

∣∣A : z ⊗ z
∣∣2

+
(
A : z ⊗ z

)
η>
(
u−QP,X

)
(z)

≤ o(|z|2)
[
− ξ>

(
u−QP,X

)
(z) + o(|z|2)

]
(6.35)

+
(
A : z ⊗ z

)[ A
4

: z ⊗ z + η>
(
u−QP,X

)
(z)
]
,

as z → 0. Hence, by assumption we have∣∣∣ξ⊥(QP,X(z)− η ⊗A : z ⊗ z
)∣∣∣2 ≤ o(|z|2)

[
− ξ>

(
u−QP,X

)
(z) + o(|z|2)

]
+
∥∥A∥∥|z|2η>(u(z + x)− u(x)− Pz − 1

2

(
X− η

2
⊗A

)
: z ⊗ z

)
(6.36)

≤ o(|z|2)
[
− ξ>

(
u−QP,X

)
(z) + o(|z|2)

]
+ o(|z|4),
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as z → 0. By increasing the o(1) functions appearing in the summands appropri-
ately, we incorporate the o(|z|4) term in the first summand and therefore obtain
that (P,X− η ⊗A) ∈ J2,ξu(x), as claimed. �

7. The extremality notion of contact maps

So far, our central objects of study have been contact jets, a certain type of
generalised pointwise derivatives. Jets in fact introduce in an implicit non-trivial
fashion an extremality notion for maps, which we will now exploit. This notion
extends min and max of scalar functions to the vector-valued case, effectively ex-
tending the “Maximum Principle calculus” (Du = 0 and D2u ≤ 0 at maxima of u)
to the vectorial case. This device allows the “nonlinear passage of derivatives to test
maps”. This extremality notion, although simple in its form, presents peculiarities
and is not obvious how it arises. Hence, we have chosen to base the PDE theory
of CS to jets rather than to extrema, since jets seem more reasonable due to the
formal resemblance to their scalar counterparts.

Motivation. We begin by motivating the notions that follow. Let u : R −→ RN be
a smooth curve. Every reasonable definition of extremal point u(x̄) ∈ RN at x̄ ∈ R
must imply that |u′(x̄)| = 0. However, this is impossible if N ≥ 2 as the example of
unit speed curves certifies for which |u′| ≡ 1. In order to succeed we must radically
change our point of view of “extremals”. The idea is to relax the pointwise notion to
a flexible functional notion of “extremal map” which takes into account the possible
“twist”. Our viewpoint is the following: if N = 1 and u : R −→ R has a maximum
u(x̄) ∈ R at x̄ ∈ R, then we can identify the extremum u(x̄) with the constant
function ψ ≡ u(x̄) : R −→ R which passes through x̄ (Figure 1(a)).

Figure 1(a). Figure 1(b).

When N ≥ 2 we can view extrema as maps ψ : R −→ RN passing at x through
u(x̄) which generally are nonconstant (Figure 1(b)).

Going back to N = 1, we see that maximum can be viewed as a constant function
ψ “touching u” at x in the direction ξ = +1 and minimum as “touching u” at x in
the direction ξ = −1. When N ≥ 2, there still exists a stiffer notion of “touching
u” at x by a map ψ in a unit direction ξ ∈ RN . We will call this stronger touching
notion contact.

There are two intriguing properties associated with contact which are source
of difficulties. Firstly, the notion of contact comprises a notion of extremum not
connected to any ordering of RN (when N ≥ 2). Its main utility is the “nonlinear
passage of derivatives to test maps” in our PDE systems. Secondly, the contact has
order itself: roughly, “first order contact” implies “gradient equality” and “second
order contact” implies an appropriate “hessian inequality”.

To begin, let Cx denote a generic cone function with vertex at x ∈ Rn and some
slope L > 0, that is Cx(z) := L|z − x|.
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Definition 34 (Contact maps). Let u : Rn ⊇ Ω −→ RN be continuous and fix
x ∈ Ω and ξ ∈ SN−1.

(1) The map ψ ∈ C1(Rn)N is a first contact ξ-map of u at x if ψ(x) = u(x) and
for every cone Cx, there is a neighbourhood of x in Ω such that, thereon, we have

(7.1)
∣∣ξ⊥(u− ψ)

∣∣2 ≤ Cx
[
− ξ>(u− ψ)

]
.

(2) The map ψ ∈ C2(Rn)N is a second contact ξ-map of u at x if ψ(x) = u(x) and
for every cone Cx, there is a neighbourhood of x in Ω such that, thereon, we have

(7.2)
∣∣ξ⊥(u− ψ)

∣∣2 ≤ (Cx)2
[
− ξ>(u− ψ)

]
.

In Definition 34 we allow for boundary points x ∈ ∂Ω, but we are mostly in-
terested in interior points x ∈ Ω. Inequalities (7.1) and (7.2) contain a lot of
information. Specifically, (7.2) says that for every L > 0, exists an r > 0 such that∣∣ξ⊥(u− ψ)(y)

∣∣2 ≤ L2|y − x|2
[
− ξ>(u− ψ)(y)

]
,(7.3)

for y ∈ Br(x) ∩ Ω. Hence, (7.2) is an elegant restatement of∣∣ξ⊥(u− ψ)(y)
∣∣2 ≤ o(|y − x|2)

[
− ξ>(u− ψ)(y)

]
,(7.4)

as Ω 3 y → x, by using “control by cones”. Since the left hand side of (7.4)
is nonnegative and u(x) = ψ(x), the projection ξ>(u − ψ) along the line in RN
spanned by ξ has a (local) vanishing maximum at y = x:

(7.5) ξ>(u− ψ)(y) ≤ 0 = ξ>(u− ψ)(x)

for y ∈ Ω near x (Figures 2(a), 3).

Figure 2(a). Figure 2(b). Figure 2(c).

Moreover, since the right hand side of (7.4) is of order o(|y − x|2), the projection
ξ⊥(u−ψ) along the hyperplane ξ⊥ ⊆ RN has a vanishing derivative at y = x, since
ξ⊥(u−ψ)(y) = o(|y−x|) as y → x (Figures 2(b), 3). Hence, since u coincides with
ψ at x, the codimension-one projection ξ⊥u on the hyperplane is differentiable and
D(ξ⊥u)(x) = ξ⊥Dψ(x), although Du(x) may not exist.

Figure 3.

Moreover, (7.4) reveals that there is a coupling between ξ>u and ξ⊥u, which can
be interpreted as that either the maximum of ξ>(u−ψ) is constrained by −|ξ⊥(u−
ψ)|2/C2

x or that the decay of |ξ⊥(u − ψ)|2 near x is controlled by −ξ>(u − ψ) via
cones (Figures 2(c), 3).
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We will shortly see that contact maps constitute an appropriate notion of ex-
tremum for PDE theory. Let us first connect contact maps to contact jets. We
will consider only the second order case and x ∈ Ω and we refrain from providing
details for the first order case and boundary points which can be done by simple
modifications. Given a continuous u : Rn ⊇ Ω −→ RN , x ∈ Ω and ξ ∈ SN−1, set
(7.6)

D2,ξu(x) :=

{(
Dψ(x),D2ψ(x)

)∣∣∣∣∣ ψ ∈ C2(Rn)N , ψ(x) = u(x) & ∀ cone Cx,∣∣ξ⊥(u− ψ)
∣∣2≤ (Cx)2

[
− ξ>(u− ψ)

]
near x

}
.

Theorem 35 (Equivalence between extremality and jets). If u : Rn ⊇ Ω −→ RN
is continuous, x ∈ Ω and ξ ∈ SN−1, then

(7.7) D2,ξu(x) = J2,ξu(x).

That is, contact jets coincide with the set of derivatives of contact maps.

The proof is based on the following lemma, which roughly states that we can
always absorb all of the second order Taylor remainder of a contact ξ-map into its
ξ-projection:

Lemma 36. Let ψ ∈ C2(Rn)N be a second contact ξ-map of the continuous map

u : Rn ⊇ Ω −→ RN at x ∈ Ω. There exists a second contact ξ-map ψ̂ ∈ C2(Rn)N

of u at x such that ψ = ψ̂ up to second order at x (that is, ψ(x) = ψ̂(x), Dψ(x) =

Dψ̂(x) and D2ψ(x) = D2ψ̂(x)) while the ξ⊥-projection of the second order Taylor

remainder of ψ̂ vanishes.

Proof of Lemma 36. Let T2,x and R2,x denote the operators of second order
Taylor polynomial and Taylor remainder at x respectively. Then, by (7.2), we have

(7.8)
∣∣∣ξ⊥(u− T2,xψ −R2,xψ

)∣∣∣2 ≤ C2
x

[
− ξ>

(
u− T2,xψ −R2,xψ

)]
locally in a neighbourhood of x. By employing Lemma 21 for N = 1, we can find
an increasing ρ ∈ C2(0,∞) with 0 ≤ ρ(y) ≤ o(|y− x|2) such that ρ ≥ ξ>R2,xψ and

(7.9)
∣∣∣ξ⊥(u− T2,xψ

)
− ξ⊥R2,xψ

∣∣∣2 ≤ ρ
[
− ξ>

(
u− T2,xψ

)
+ ρ

]
,

near x. By expanding the first term of (7.9), we estimate∣∣∣ξ⊥(u− T2,xψ
)∣∣∣2 ≤ ρ

[
− ξ>

(
u− T2,xψ

)
+ ρ

]
+
∣∣ξ⊥R2,xψ

∣∣2
+
(
ξ>
(
u− T2,xψ

))>(
ξ>
(
ξ⊥R2,xψ

))
= ρ

[
− ξ>

(
u− T2,xψ

)
+ ρ

]
+
∣∣ξ⊥R2,xψ

∣∣2(7.10)

+ 2
( 1√

2
ξ>
(
u− T2,xψ

))>(√
2ξ>

(
ξ⊥R2,xψ

))
.

≤ ρ
[
− ξ>

(
u− T2,xψ

)
+ ρ

]
+
∣∣ξ⊥R2,xψ

∣∣2(7.11)

+
1

2

∣∣∣ξ>(u− T2,xψ
)∣∣∣2 + 2

∣∣∣ξ>(ξ⊥R2,xψ
)∣∣∣2.

≤ 2ρ
[
− ξ>

(
u− T2,xψ

)
+ 2ρ

]
+ 2

∣∣ξ⊥R2,xψ
∣∣2.
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Hence,∣∣∣ξ⊥(u− T2,xψ
)∣∣∣2 = 2ρ

[
− ξ>

(
u− T2,xψ

)]
+
{

4ρ2 + 2
∣∣ξ⊥R2,xψ

∣∣2}
≤ 2

(
ρ+ |ξ⊥R2,xψ|

)[
− ξ>

(
u− T2,xψ

)
+ 2
(
ρ+ |ξ⊥R2,xψ|

)]
.

In view of the above, the lemma follows by defining ψ̂ := T2,xψ + 2
(
ρ+|ξ⊥R2,xψ|

)
ξ.

Indeed, by construction we have ψ(x) = ψ̂(x), Dψ(x) = Dψ̂(x), D2ψ(x) = D2ψ̂(x)

and ξ⊥R2,xψ̂ ≡ 0. Moreover, we have ξ>R2,xψ̂ = 2
(
ρ + |ξ⊥R2,xψ|

)
≥ ξ>R2,xψ.

Thus, we infer that

(7.12)
∣∣ξ⊥(u− ψ̂)

∣∣2 ≤ ξ>R2,xψ̂
[
− ξ>(u− ψ̂)

]
,

and since 0 ≤ ξ>R2,xψ̂(y) ≤ o(|y− x|2) as y → x, for every cone Cx with vertex at
x, there exists a neighbourhood of x such that, thereon,

(7.13)
∣∣ξ⊥(u− ψ̂)

∣∣2 ≤ C2
x

[
− ξ>(u− ψ̂)

]
. �

We may now establish Theorem 35.

Proof of Theorem 35. Let ψ be a second contact ξ-map of u at x. By Lemma

36, there exists a second contact ξ-map ψ̂ of u as x such that ψ̂ = ψ up to second

order at x and moreover ξ⊥R2,xψ̂ ≡ 0. By (7.2), for any L > 0, there exists an
r > 0 such that∣∣∣ξ⊥(u(z + x)− u(x)−Dψ(x)z − 1

2
D2ψ(x) : z ⊗ z

)∣∣∣2
≤ L2|z|2

[
− ξ>

(
u(z + x)− u(x)−Dψ(x)z − 1

2
D2ψ(x) : z ⊗ z

)
+ ξ>R2,xψ̂(z + x)

]
,

whenever |z| ≤ r. By Lemma 16 for N = 1, there exists an increasing function

σ ∈ C2(0,∞) such that σ(0+) = 0 and σ(|z|)|z|2 ≥ ξ>R2,xψ̂ as z → 0, and also∣∣∣ξ⊥(u(z + x)− u(x)−Dψ(x)z − 1

2
D2ψ(x) : z ⊗ z

)∣∣∣2
≤ σ(|z|)|z|2

[
− ξ>

(
u(z + x)− u(x)−Dψ(x)z − 1

2
D2ψ(x) : z ⊗ z

)
+ σ(|z|)|z|2

]
,

as z → 0. By Theorem 27, the above implies
(
Dψ(x),D2ψ(x)

)
∈ J2,ξu(x). Con-

versely, let (P,X) ∈ J2,ξu(x). Again by Theorem 27, if σ is as stated, the map

(7.14) ψ(z + x) := u(x) + Pz +
1

2
X : z ⊗ z + σ(|z|)|z|2ξ

satisfies ψ ∈ C2(Rn)N , ψ(x) = u(x) and

(7.15)
∣∣ξ⊥(u− ψ)(y)

∣∣2 ≤ o(|y − x|2)
[
− ξ>(u− ψ)(y)

]
,

as y → x. Hence, ψ is a second contact ξ-map of u at x. The theorem follows. �

In view of Theorem 35, we can reformulate Definitions 9-10 of CS as follows (we
state only the second order case for brevity):

Definition 37 (Contact solutions for second order systems, cf. Def. 9). Suppose
F is as in (3.1). Then, the continuous map u : Rn ⊇ Ω −→ RN is a contact
solution to (3.2) when for any x ∈ Ω any ξ ∈ SN−1 and any second contact ξ-map
ψ ∈ C2(Rn)N of u at x, we have

(7.16) ξ∗F
(
x, ψ(x),Dψ(x),D2ψ(x)

)
≥ 0.
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The “contact principle calculus” result we establish below explains why contact
maps of the solution play the role of smooth “test maps” for the PDE system.

Theorem 38 (Nonlinear passage of derivatives to contact maps). Suppose u : Rn ⊇
Ω −→ RN is a continuous map, twice differentiable at x ∈ Ω. Let ψ ∈ C2(Rn)N

and ξ ∈ SN−1 be given. Consider the following statements:

(i) ψ is a second contact ξ-map of u at x ∈ Ω.
(ii) We have {

D
(
u− ψ

)
(x) = 0,

ξ ∨D2
(
u− ψ

)
(x) ≤⊗ 0.

Then, (i) implies (ii). Moreover, (ii) implies (i) if moreover ξ>D2
(
u− ψ

)
(x) < 0.

Trivial modifications in the arguments of the proof of Theorem 38 that follows
readily imply the following consequence.

Corollary 39 (first order contact). In the setting of Theorem 38, we have that if
u is differentiable, then ψ ∈ C1(Rn)N is a first contact ξ-map of u at x if and only
if D

(
u− ψ

)
(x) = 0.

Theorem 38 has already been established implicitly, in the language of contact
jets. Indeed, one may employ Theorem 35 and Proposition 17 to remove the dis-
guise. Further, one can also easily establish the next consequence.

Corollary 40 (Rank-One Decompositions). In the setting of Theorem 38, we have
that if ψ is a second contact ξ-map of u at x, we have the rank-one decompositions

D(u− ψ)(x) = ξ ⊗D
(
ξ>(u− ψ)

)
(x),(7.17)

D2(u− ψ)(x) = ξ ⊗D2
(
ξ>(u− ψ)

)
(x),(7.18)

D
(
ξ>(u− ψ)

)
(x) = 0,(7.19)

D2
(
ξ>(u− ψ)

)
(x) ≤ 0.(7.20)

Conversely, if the relations (7.17)-(7.20) hold true, then ψ is a second contact ξ-map
of u at x if in addition the inequality (7.20) is strict.

8. Approximation and stability of contact jets

In this section we consider the problem of stability of CS under limits. We
recall that in the scalar case, VS pass to limits under merely locally uniform
convergence. This means that if the sequence of solutions (uj)

∞
1 to equations

Fj(·, uj ,Duj ,D2uj) = 0 satisfies uj → u and the nonlinearities satisfy Fj → F ,
both convergences locally uniform as j → ∞, then u solves F(·, u,Du,D2u) = 0.
This important property is a consequence of the fact that maxima perturb to max-
ima under uniform convergence.

We begin with a counterexample which shows that in the vectorial case this
property fails. More precisely, second contact maps do not perturb to second contact
maps not even under strong C1 convergence, and neither C1,α convergence suffices
for any α < 1. Moreover, the first order variant of Example 41 below shows that
first contact maps do not perturb to first contact maps under Cα convergence for
any α < 1.
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Example 41 (Instability of contact maps). For any α ∈ (0, 1), there exist u ∈
C1,α(R)2, ξ ∈ S1, a second contact ξ-map ψ ∈ C2(R)2 of u at x = 0 and a sequence
(um)∞1 ⊆ C∞(R)2 such that ξ>um → ξ>u in C1(R) and ξ⊥um → ξ⊥u in C∞(R)2

as m → ∞, but there exists no sequence of second contact ξ-maps ψm ∈ C2(R)2

of um along any xm → 0 such that
(
Dψm(xm),D2ψm(xm)

)
→
(
Dψ(0),D2ψ(0)

)
as

m→∞.
Indeed, define u by u(z) := (−|z|1+α, 0)>, fix k ∈ R\{0} and set ξ := (1, 0)> = e1

and ψ(z) := (0, k|z|2)>. We first verify that ψ is a second contact e1-map at x = 0:
for any L > 0, there is r > 0 such that for |z| < r,∣∣ξ⊥(u− ψ)(z)

∣∣2 =
∣∣0− k|z|2∣∣2 =

(
k|z|

1−α
2

)2|z|2 [−(−|z|1+α − 0)
]

which yields
∣∣ξ⊥(u−ψ)(z)

∣∣2 ≤ L2|z|2
[
−ξ>(u−ψ)(z)

]
. Consider now the sequence

um := η1/m ∗ u where η1/m is the standard mollification of u. Since ξ⊥u ≡ 0, we
obtain that um = (η1/m ∗ (ξ>u), 0)> and consequently (a) and (b) follow. Since um
is smooth, it possesses contact maps at all x ∈ R. Choose a sequence xm → 0 and
let ψm be a second contact ξ-map of um at xm. Then, by Corollary 28 we have that
ξ⊥ψm is equal up to second order to ξ⊥um at xm. Hence, as m→∞ we have

(8.1) D2ξ⊥ψm(xm) = D2ξ⊥um(xm) = 0 6−→ 2ke2 = D2ξ⊥ψ(0).

The reason of instability of contact maps is that projections on the normal
hyperplane ξ⊥ of “generalised hessians” can be the whole tensor subspace ξ⊥ ⊗
Rn×ns ⊆ RN⊗ Rn×ns . This phenomenon is a general fact, which appears when ξ>u
fails to be C1,1 near the basepoint. The next lemma exhibits the previous situation
and supplements Corollary 28. By utilising this result and the properties of the
Little Hölder space c1,α(Rn)N which is the closure of C∞c (Rn)N under the Hölder
norm, it follows that not even C1,α convergence suffices (if α < 1).

Lemma 42. Let ψ ∈ C2(Rn)N be a second contact ξ-map of the continuous map
u : Rn ⊇ Ω −→ RN at x ∈ Ω for some ξ ∈ SN−1. We set:

l− := lim inf
y→x

−ξ>(u− ψ)(y)

|y − x|2
, l+ := lim sup

y→x

−ξ>(u− ψ)(y)

|y − x|2
.

If l− =∞, then, all quadratic perturbations ψ̂(y) := ψ(y)+ 1
2ξ
⊥X : (y−x)⊗(y−x)

are also contact ξ-maps for any X ∈ RN⊗ Rn×ns . If l+ < ∞, then ξ⊥ψ is unique
(up to superquadratic perturbations o(|y − x|2) as y → x).

Proof of Lemma 42. If l− =∞, there is ω ∈ C0(0,∞) with ω > ω(0+) = 0 with

−ξ>(u− ψ)(y)

|y − x|2
≥ 1

ω2(|y − x|)
for |y − x| < 1. Hence, −ξ>(u− ψ)(y)ω2(|y − x|)|y − x|2 ≥ |y − x|4 and since ψ is
a contact ξ-map, we estimate as y → x∣∣ξ⊥(u− ψ̂)(y)

∣∣2 ≤ 2
∣∣ξ⊥(u− ψ)(y)

∣∣2 +
1

2

∣∣ξ⊥X : (y − x)⊗ (y − x)
∣∣2

≤
(
o(1) +

1

2

∥∥ξ⊥X
∥∥2
ω2(|y − x|)

)
|y − x|2

[
− ξ>(u− ψ)(y)

]
.

To see the last claim, apply Corollary 28 and Lemma 36. �

Happily enough, the discouraging instability of contact maps is not detrimental
to the stability of CS. The reason is that when we try to approximate a system by
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adding a “viscosity term”, there exists some extra information which is trivial in the
scalar case and allows convergence of the approximating solutions. In order to make
this statement precise, we introduce an auxiliary notion of sequential derivatives
needed in the exploitation of stability and approximation.

Definition 43 (Approximate derivative). let u : Rn ⊇ Ω −→ RN be a continuous
map. The set of Approximate first jets of u at x ∈ Ω is

(8.2) A1u(x) :=
{

P ∈ RN⊗ Rn
∣∣∣ lim inf

r→0
max
|z|=r

∣∣u(z + x)− u(x)− Pz
∣∣

r
= 0
}

The set of Approximate second derivatives of u at x ∈ Ω is

A2u(x) :=
{

(P,X) ∈ RN⊗
(
Rn × Rn×ns

) ∣∣∣
lim inf
r→0

max
|z|=r

∣∣u(z + x)− u(x)− Pz − 1
2X : z ⊗ z

∣∣
r2

= 0
}

(8.3)

Remark 44. Obviously, if u is (twice) differentiable at x, then A1u(x) = {Du(x)}
and A2u(x) = {(Du(x),D2u(x))}. In general, approximate derivatives may exist
at non-differentiability points, as it happens for the Lipschitz continuous func-
tion u : R → R given by u(z) := z cos(1/|z|) for z 6= 0 and u(0) = 0 for which
[−1,+1] = A1u(0) 6= ∅, while u′(0) does not exist. This follows from the observa-
tion max|z|=r(|u(z)− u(0)− pz|/r) = | cos(1/r)− p|.

The following is the main approximation result for contact jets. It follows that
contact jets perturb to contact jets under weak∗ convergence in the local Lipschitz
space, together with a technical assumption which appears to be satisfied in the cases
of interest. This assumption requires convergence of codimension-one projections
of sequential jets along a sequence of hyperplanes.

Theorem 45 (Approximation of contact jets). Let u : Rn ⊇ Ω −→ RN be contin-
uous and fix (P,X) ∈ J2,ξu(x) for some x ∈ Ω, ξ ∈ SN−1. Suppose there exists

(um)∞1 ⊆ C2(Ω)N such that um
∗−−⇀u in W 1,∞

loc (Ω)N and for some e 6∈ ξ⊥ we have

(8.4)

{
For any ym → x, there is (em)∞1 ⊆ SN−1 such that

em → e and dist
(
e⊥mDum(ym) , A1(e⊥u)(x)

)
→ 0.

Then, there exist sequences (xm)∞1 and (Pm,Xm)∞ with (Pm,Xm) ∈ J2,ξum(xm)
satisfying xm → x and also

(
Pm, ξ

>Xm

)
−→

(
P, ξ>X

)
as m→∞.

Theorem 45 is optimal: by example 41, not even C1 convergence um → u suffices
to guarantee ξ⊥Xm → ξ⊥X. There is a “loss of information” which occurs when
e ∈ ξ⊥ (i.e. when e>ξ = 0). The proof is based on the next result which relates
approximate derivatives of codimension-one projections to contact jets.

Proposition 46 (Approximate derivatives and contact jets on hyperplanes). Let
u : Rn ⊇ Ω −→ RN be continuous and x ∈ Ω and e, ξ ∈ SN−1. Then, we have:

(8.5)
P ∈ J1,ξu(x)
Q ∈ A1(e⊥u)(x)

}
=⇒ Q = e⊥P , if e 6= ±ξ.

In particular, if both sets e⊥
(
J1,ξu(x)

)
, A1(e⊥u)(x) are nonempty, they are single-

tons and coincide. If moreover J2,ξu(x) 6= ∅, then Q = e⊥P. Further:

(8.6)
(P,X) ∈ J2,ξu(x)
(Q,Y) ∈ A2(e⊥u)(x)

}
=⇒

{
Q− e⊥P = 0,

(e⊥ξ) ∨ [Y − e⊥X] ≤⊗ 0.
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Corollary 47. By (8.6) and Lemma 2, we deduce that Y = e⊥X on the hyperplane
(e⊥ξ)⊥ of RN and (e⊥ξ)>(Y − e⊥X) ≤ 0 along (e⊥ξ)⊗ (e⊥ξ) (Figures 6(a),(b)).

Figure 4(a): Illustration for N = 2 Figure 4(b): Illustration for N = 3

Remark 48. Proposition 46 is optimal, as the example u(z) := −|z| cos2(1/z)χR\{0}
shows: indeed, we have J1,+u(0) = {0} = A1u(0) but u′(0) does not exist, although
J1,+u(0) and A1u(0) coincide and are singletons. Namely, some “loss of informa-
tion” occurs when e = ±ξ (i.e. when e⊥ξ = 0).

Proof of Proposition 46. Since Q ∈ A1(e⊥u)(x), exists rj → 0 such that

(8.7) e⊥
(
u(wrj + x)− u(x)− rjQw

)
= o(rj)

as j →∞, for all w ∈ Sn−1. Fix θ ∈ e⊥. If e 6= ±ξ, then e⊥ \ ξ⊥ 6= ∅, and for any
ε > 0, exists θε ∈ e⊥ \ ξ⊥ with |θ− θε| ≤ ε. Since (θε ⊗ θε)e⊥ = θε ⊗ θε, (8.7) gives

o(rj) = − (θ>ε ξ)
[
θ>ε

(
u(wrj + x)− u(x)− rjQw

)]
(8.8)

as j →∞. Since P ∈ J1,ξu(x), we have

o(|z|) = (θ>ε ξ)
[
θ>ε

(
u(z + x)− u(x)− (e⊥P)z

)]
(8.9)

as z → 0. By choosing z = wrj in (8.9) and summing (8.9) and (8.8), we get
(θ>ε ξ)

[
θ>ε
(
Q− e⊥P

)
w
]
≤ o(1) as rj → 0. By interchanging w with −w, using that

|θ>ε ξ| > 0 and letting j → ∞, we get θ>ε
(
Q − e⊥P

)
= 0. By letting ε → 0, we

find θ>
(
Q − e⊥P

)
= 0. Since θ ∈ e⊥ is arbitrary and Q = e⊥Q, we conclude that

Q = e⊥P. If e = ±ξ and moreover J2,ξu(x) 6= ∅, Corollary 28 and Definition 43
imply that Q = e⊥P = D(e⊥u)(x). Further, if (Q,Y) ∈ A2(e⊥u)(x), it trivially
follows that Q ∈ A1(e⊥u)(x). Since (P,X) ∈ J2,ξ(x) 6= ∅, part (a) implies that
Q = e⊥P. Fix θ ∈ e⊥. By arguing as eaelier, there exists rj → 0 such that

o(r2
j ) ≥ θ ⊗ θ :

[
ξ ∨

(
u(wrj + x)− u(x)− rjQw −

r2
j

2
(e⊥X) : w ⊗ w

)]
,(8.10)

o(r2
j ) ≥ −θ ⊗ θ :

[
ξ ∨

(
u(wrj + x)− u(x)− rjQw −

r2
j

2
Y : w ⊗ w

)]
,(8.11)

as j → ∞, for all w ∈ SN−1. By writing θ = e⊥η for some η ∈ RN , using the
symmetry of e⊥ and summing (8.10) and (8.11), we obtain as rj → 0

o(1) ≥ (e⊥η)⊗ (e⊥η) :
[
ξ ∨

(
Y − e⊥X

)
: w ⊗ w

]
=
[
(e⊥ξ) ∨ (Y − e⊥X)

]
: η ⊗ w ⊗ η ⊗ w.
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By passing to the limit we conclude that (e⊥ξ) ∨ (Y − e⊥X) ≤⊗ 0. �

Proof of Theorem 45. Since (P,X) ∈ J2,ξu(x), we have (ξ>P, ξ>X) ∈ J2,+(ξ>u)
(x). By the C0 convergence ξ>um → ξ>u as m → ∞, standard arguments of the
scalar case (see e.g. [14, 24]) imply that there exists xm → x and (pm, Xm) ∈
J2,+(ξ>um)(xm) such that

(8.12) (pm, Xm) −→ (ξ>P, ξ>X) , as m→∞.

Since um ∈ C2(Ω)N , it follows that pm = ξ>Dum(xm) and Xm ≥ ξ>D2um(xm).
By Theorem 15, the set J2,ξum(xm) contains

(8.13) (Pm,Xm) :=
(

Dum(xm), D2(ξ⊥um)(xm) + ξ ⊗Xm

)
.

By decomposing Pm = ξ ⊗ pm + ξ⊥Dum(xm), in view of (8.12) and (8.13) we
see that it suffices to use (8.4) in order to show that ξ⊥Pm → ξ⊥P as m → ∞.
For the sequence xm → x, assumption (8.4) implies that there exists a convergent
sequence SN−1 3 em → e of directions and an Approximate jet Q ∈ A1(e⊥u)(x)
such that e⊥mDum(xm) → Q as m → ∞. Since (P,X) ∈ J2,ξu(x), Proposition 46
implies that Q = e⊥P and as a result we deduce that e⊥mPm → e⊥P as m → ∞.
Further, by replacing as we can {(em)∞1 , e} by {(−em)∞1 ,−e}, we may assume that
0 ≤ ξ>e ≤ 1, namely that ξ, e lie in the same halfspace (Figures 6(a),(b)). We
distinguish two cases:

Case 1: 0 < ξ>e < 1. We use expansions with respect to non-orthonormal
coordinates in order to show that ξ⊥Pm → ξ⊥P as m → ∞. We define the
codimension-two subspaces Πm := ξ⊥ ∩ e⊥m and Π := ξ⊥ ∩ e⊥ which are inter-
sections of hyperplanes (see Figures 6(a),(b)) and allow to write

(8.14) RN = Πm ⊕ span[{ξ, e⊥mξ}] = Π⊕ span[{ξ, e⊥ξ}].

Let us now de define the unit vectors ηm := sgn(e⊥mξ) and η := sgn(e⊥ξ). By
expansion on the non-orthonormal frames {ξ, ηm,Πm}, {ξ, η,Π}, we have that for
any a ∈ RN , there exists λm(a), µm(a), λ(a), µ(a) ∈ R such that

a = λm(a)ξ + µm(a)ηm + Πma,(8.15)

a = λ(a)ξ + µ(a)η + Πa.(8.16)

Since ξ, ηm are normal to Πm and |ξ| = |ηm| = 1, by projecting (8.15)-(8.16) along
ξ ⊗ ξ and ηm ⊗ ηm we obtain

(8.17)

{
η>ma = λm(a)(ξ>ηm) + µm(a),

ξ>a = λ(a) + µm(a)(ξ>ηm).

By solving the linear system (8.17), we find

(8.18) λm(a) =
ξ>a − (ξ>ηm)(η>ma)

1 − (ξ>ηm)2
, µm(a) =

η>ma − (ξ>ηm)(ξ>a)

1 − (ξ>ηm)2
, .

We observe that ξ>(ξ⊥Pm) = 0 and use (8.15) and (8.18) to expand ξ⊥Pm as

(8.19) ξ⊥Pm =

[
−(ξ>ηm)ξ ⊗ ηm

1− (ξ>ηm)2
+

ηm ⊗ ηm
1− (ξ>ηm)2

+ Πm

]
ξ⊥Pm.
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By recalling that Πm = e⊥m ∩ ξ⊥, we observe that Πmξ
⊥ = Πm. By using this and

that ξ⊥ = I − ξ ⊗ ξ, we rewrite (8.19) as

ξ⊥Pm =

[
−(ξ>ηm)ξ + ηm

1− (ξ>ηm)2

]
⊗
[
η>mPm − (ξ>ηm)(ξ>Pm)

]
+ ΠmPm

=
ξ⊥ηm
|ξ⊥ηm|2

⊗
[
η>mPm − (ξ>ηm)(ξ>Pm)

]
+ ΠmPm.

(8.20)

Similarly, we have

(8.21) ξ⊥P =
ξ⊥η

|ξ⊥η|2
⊗
[
η>P− (ξ>η)(ξ>P)

]
+ ΠP.

By using that em → e, we obtain e⊥m = I− em⊗ em −→ I− e⊗ e = e⊥, as m→∞.
Also, since e⊥mξ → e⊥ξ and |e⊥mξ| ≥ |e⊥ξ|/2 > 0 for m large enough, we have
ηm −→ η. Since by assumption e 6∈ ξ⊥, for m large we have |ξ⊥ηm| ≥ |ξ⊥η|/2 > 0.
Hence, sgn(ξ⊥ηm) −→ sgn(ξ⊥η) as m→∞. By (8.14) we have e⊥m = Πm+ηm⊗ηm
and hence Πm = e⊥m−ηm⊗ηm −→ e⊥m−η⊗η = Π as m→∞. Since ξ>Pm → ξ>P
and ξ>ηm → ξ>η, in view of (8.20), (8.21), it suffices to show that ΠmPm → ΠP
and that η>mPm → η>P as m→∞. Indeed we have the estimate∣∣ΠmPm −ΠP

∣∣ ≤ ∣∣Πm(e⊥mPm − e⊥P)
∣∣ +

∣∣(e⊥P)>(Πm −Π)
∣∣ −→ 0,

as m→∞, and similarly we conclude that η>mPm → η>P.

Case 2: ξ = e. If in addition ξ = e = em for infinitely many terms (mk)∞1 ,
then ξ⊥Pmk = e⊥mkPmk → e⊥P = ξ⊥P as k →∞ and the conclusion follows. If on

the other hand ξ>em < 1 for m large enough, then the arguments of the previous
case fail because we see that ηm 6→ η. Instead, by using that Pm = Dum(xm) and
xm → x, the local weak∗ convergence um

∗−−⇀u gives for m large enough the bound

(8.22) |Pm| ≤
∥∥Dum

∥∥
L∞(BR(x))

≤ C(R) , R :=
1

2
dist(x, ∂Ω).

By using (8.22) and that ξ = e, we estimate∣∣ξ⊥Pm − ξ⊥P
∣∣ =

∣∣∣ξ⊥(em ⊗ (e>mPm) + e⊥mPm
)
− ξ⊥P

∣∣∣
≤ |ξ⊥em|

∣∣e>mPm
∣∣ +

∣∣ξ⊥(e⊥mPm − ξ⊥P)
∣∣(8.23)

≤ |e⊥em|
(
|em− e| |Pm|+

∣∣ξ>Pm
∣∣) +

∣∣e⊥mPm − e⊥P
∣∣.

Since em → e, e⊥me → 0, e⊥mPm → e⊥P and ξ>Pm → ξ>P, the bounds (8.22) and
(8.23) allow us to conclude. �
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