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IMPLICATIONS FOR PRACTICE 37 

• Consideration of soil microbiota in mine site rehabilitation and restoration is 38 

important for returning functional, self-sustaining biodiverse ecosystems and 39 

improving restoration practices. 40 

• Bacterial community variation can be high among reference sites which 41 

highlights the need for appropriate sampling design in assessing soil microbial 42 

recovery trajectories. 43 

• Our study shows how changes in bacterial communities across a restoration 44 

chronosequence can be routinely monitored to provide insights into the 45 

recovery of soil microbiota towards restoration targets. 46 

  47 
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ABSTRACT 48 

Mining activities modify both above- and below-ground ecological communities, 49 

presenting substantial challenges for restoration. The soil microbiome is one of these 50 

impacted communities and performs important ecosystem functions but receives 51 

limited focus in restoration. Sequencing soil DNA enables accurate and cost-52 

effective assessment of soil microbiota, allowing for comparisons across land use, 53 

environmental, and temporal gradients. We used amplicon sequencing of the 54 

bacterial 16s rRNA gene extracted from soil samples across a 28-year post-mining 55 

rehabilitation chronosequence to assess soil bacterial composition and diversity 56 

following rehabilitation at a bauxite mine in Western Australia’s jarrah forest. We 57 

show that while bacterial alpha diversity did not differ between reference and 58 

rehabilitated sites, bacterial community composition changed dramatically across the 59 

chronosequence, suggesting strong impacts by mining and rehabilitation activities. 60 

Bacterial communities generally became increasingly similar to unmined reference 61 

sites with time since rehabilitation. Soil from sites rehabilitated as recently as 14 62 

years ago did not have significantly different communities to reference sites. Overall, 63 

our study provides evidence indicating the recovery of soil bacterial communities 64 

towards reference states following rehabilitation. Including several ecological 65 

reference sites revealed substantial natural variability in bacterial communities from 66 

within a single mine site. We urge future restoration chronosequence studies to 67 

sample reference sites that geographically span the restored sites and/or are 68 

spatially paired with restored sites to ensure this variability is captured and to 69 

improve any inferences on recovery.  70 
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INTRODUCTION 71 

The global mining sector is reliant on access to mineral deposits and expansions into 72 

intact biodiverse ecosystems (Stevens & Dixon 2017). In Australia, it is estimated 73 

that mining has impacted approximately 10 million hectares of land (Grant 2009). 74 

Mining activities extensively modify landscapes, directly impacting on both above- 75 

(e.g., animal, plant) and below-ground ecological communities (e.g., soil microbiota) 76 

(Banning et al. 2011; Stevens & Dixon 2017; Kneller et al. 2018). These often-severe 77 

ecosystem impacts present challenges in restoring or rehabilitating biodiverse and 78 

functional ecosystems (Doley et al. 2012; Tibbett 2015). Indeed, as the ecological 79 

impacts of mining continue to grow, so does the need for improved understanding of 80 

how best to repair the damage done. 81 

 82 

Restoration projects have tended to focus on recreating aboveground plant 83 

communities, often overlooking soil biodiversity (Heneghan et al. 2008; Farrell et al. 84 

2020). However, there is increasing attention paid to soil biodiversity and plant-soil-85 

biota relationships, which has largely been enabled by DNA sequencing 86 

technologies (Breed et al. 2019). The important role of soil in ecological restoration 87 

has long been known, especially regarding physical and chemical processes such as 88 

nutrient cycling and soil formation (Heneghan et al. 2008; Kardol & Wardle 2010). 89 

However, soil microbiota (i.e., communities of bacteria, archaea, eukaryotes) and 90 

their interactions within the soil system and with aboveground biota have received 91 

less attention (Harris 2009; Eisenhauer et al. 2017; Mendes et al. 2019). The 92 

question of whether soil microbial communities recover following aboveground 93 

revegetation is still unclear, with some observational studies finding a transition 94 

towards reference ecosystem states (e.g., Barber et al. 2017; Gellie et al. 2017), 95 
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while others have found either that recovery had stalled (e.g., Farrell et al. 2020; 96 

Lem et al. 2022) or recovery is dependent on organism or topsoil handling methods 97 

(Van der Heyde 2020). This presents a problem since soil microbiota are highly 98 

diverse and functionally important ecosystem components and therefore 99 

understanding their ecology and responses to both impacts and restoration or 100 

rehabilitation is integral to ecosystem restoration (Cameron et al. 2018; Delgado-101 

Baquerizo et al. 2020).  102 

 103 

Surface strip mining results in strong and long-lasting impacts on soil biotic and 104 

abiotic properties, including decreases in soil microbial activity and organic matter 105 

content, and changes in pH and salinity levels (George et al. 2010; Lewis et al. 2010; 106 

Sheoran et al. 2010; Banning et al. 2011). These impacts can be driven by the 107 

removal and stockpiling of topsoils for extended periods of time, which can expose 108 

soils to high temperatures and subsequent drying (Golos & Dixon 2014). Although 109 

best practice for the rehabilitation of surface mining is to directly return topsoil, and 110 

where necessary, stockpile soil for the shortest time possible (Rokich et al. 2000; 111 

Tibbett 2010; Lewis et al. 2010; Spain et al 2015) In reality, topsoils are still routinely 112 

stockpiled for extended periods before being used to restore mine sites (Golos & 113 

Dixon 2014; Ngugi et al. 2018). While the intent of this ‘direct return’ process is to 114 

limit the impact of the mining process on soil properties, how the biological properties 115 

of soil respond following direct return of topsoil and subsequent rehabilitation is still 116 

unclear. 117 

 118 

While the potential use of soil microbiota as an ecosystem indicator is beginning to 119 

be explored as part of an interrelated matrix of biotic and abiotic ecosystem 120 
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components (Muñoz-Rojas 2018; Tibbett et al. 2019), cause and effect relationships 121 

regarding the response of soil microbiota post-rehabilitation and specific drivers of 122 

any recovery remains a notable knowledge gap (Lem et al. 2022). A pragmatic 123 

approach to begin to understand changes in microbiota with rehabilitation has been 124 

to use space as a proxy for time using a rehabilitation chronosequence design (i.e., 125 

sampling across a series of similar sites with different times since rehabilitation), and 126 

there are examples of this type of study in a post-mining context (Ngugi et al. 2018; 127 

Schmid et al. 2020; van der Heyde et al. 2020). Chronosequence studies provide an 128 

efficient approach to study the effect of time as an alternative to long-term 129 

longitudinal sampling (Walker et al. 2010). However, spatial and temporal 130 

confounding factors (e.g., spatial and/or temporal variation in soil, climate and 131 

rehabilitation methods), can impact inferences made from chronosequence studies 132 

(Pickett 1989; Fleming 1999). With variation of soil microbial communities being so 133 

scale dependant (Martiny et al. 2011; Fierer 2017), how spatial variability among 134 

reference sites impacts inferences from these chronosequence studies, and 135 

particularly regarding rehabilitation targets and completion criteria (Manero et al. 136 

2021), needs to be assessed. 137 

 138 

Recent advances in DNA sequencing technologies have enabled improved 139 

assessments of whole communities of soil microbiota compared to historical culture-140 

dependent methods (Thompson et al. 2017; Breed et al. 2019; Berg et al. 2020; 141 

Nkongolo & Narendrula-Kotha 2020). One such method is to use high-throughput 142 

sequencing to generate amplicon datasets, which can be used to compare the 143 

diversity and composition of targeted microbial groups (e.g., bacteria) across 144 

different environmental conditions, locations, land uses, rehabilitation interventions, 145 
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or chronosequences to determine how soil microbial diversity and community 146 

composition may be impacted (Fierer et al. 2012; Thompson et al. 2017; Breed et al. 147 

2019; Tedersoo et al. 2019). Here, we used sequencing of the bacterial 16s rRNA 148 

gene from soils collected across a 28-year rehabilitation chronosequence to 149 

investigate the recovery trajectories of soil bacterial communities with time since 150 

rehabilitation at a bauxite mine site in Western Australia’s northern jarrah 151 

(Eucalyptus marginata) forest. Given the extreme impact of the bauxite mining 152 

process on pre-disturbance soils (George et al. 2010), we expect the bacterial 153 

communities in the newly rehabilitated sites to be least similar to those of reference 154 

sites, with a successional trend of increasing similarity with time. We address the 155 

following research questions: 156 

1. Does soil bacterial diversity and community composition differ between 157 

rehabilitated sites and unmined reference sites? 158 

2. How variable are bacterial communities across multiple reference sites that 159 

geographically span the mine site? 160 

3. Does the soil bacterial community change through the chronosequence with 161 

communities in older rehabilitated sites becoming more like those found in 162 

reference sites? 163 

4. Do changes in soil bacterial communities associate with changes in soil 164 

abiotic properties across the chronosequence? 165 

Our study improves understanding of changes in soil bacterial communities over 166 

time following mine site rehabilitation and helps to enable rehabilitation practitioners 167 

to better consider soil bacteria in their interventions. Further, we highlight the 168 

variation of bacterial communities across our six reference sites pointing to the need 169 
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to account for spatially dependent factors through appropriate experimental design 170 

and reference site selection in chronosequence-based restoration studies. 171 

 172 

METHODS 173 

Study site and soil sampling 174 

This study was conducted at the Worsley Alumina mine in southwest Western 175 

Australia (Fig. 1) where bauxite has been mined since 1984. Mining and 176 

rehabilitation work are ongoing, with approximately 5900 hectares of land cleared for 177 

mining and 3200 hectares rehabilitated to date. The mine is located in northern 178 

jarrah (Eucalyptus marginata) forest within the Southwest Australian Floristic Region, 179 

an international biodiversity hotspot (Myers et al. 2000). The northern jarrah forest is 180 

a dry sclerophyllous open forest or woodland dominated by jarrah (E. marginata) and 181 

marri (Corymbia calophylla) trees with a diverse understory dominated by species 182 

from the Fabaceae, Asteraceae, Proteaceae, and Myrtaceae families (Koch & 183 

Samsa 2007). Soils within the mine are sandy-gravel, lateritic (high in aluminium and 184 

iron), nutrient poor, and slightly acidic. The mine site has a Mediterranean-type 185 

climate with dry hot summers and cool wet winters and a mean annual rainfall of 505 186 

mm (Australian Bureau of Meteorology, 2021). 187 

 188 

The mining process at this site first involves removal of all vegetation and topsoil, 189 

then overburden is stripped away to access the bauxite ore. Long term (>3 months) 190 

topsoil storage for rehabilitation is limited where possible. Instead, the preferred 191 

practice is for the ‘direct return’ of topsoil from donor locations (e.g., newly mined 192 

areas) to a previously mined area. Following bauxite extraction, mined areas are first 193 

contoured to reflect surrounding topography using non-ore and gravel material, and 194 
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then topsoil is spread to a minimum depth of 10 cm before being furrowed and 195 

seeded with a mix of local native plant species. This plant species mix has increased 196 

from 40 species in 1994 to over 200 by 2015 to better represent the diverse natural 197 

floral diversity of the sites prior to disturbance.  198 

 199 

For our study, soil sampling occurred between October and December 2019 as part 200 

of the Australian Microbiome (AM) Initiative, following the protocols of the Biomes of 201 

Australian Soil Environments (Bissett et al. 2016). Sample sites were chosen, as far 202 

as practicable, to provide an even distribution of sampling locations covering the 203 

spatial extent of mining activities and sites of varying rehabilitation age (Fig. 1). We 204 

were also conscious of the need to evenly distribute sampling locations to limit the 205 

effect of spatial autocorrelations. Six uncleared reference sites that were largely 206 

embedded within and throughout the mine area were selected to compare with the 207 

rehabilitated sites, and to capture natural spatial variation in bacterial communities 208 

across the mine site. Restored sites included: two from 1991, four from 1996, two 209 

from 1999, two from 2002, two from 2005, one from 2007, three from 2011, and 210 

three from 2017 (n = 25 sites in total). Sites rehabilitated in 2017 were rare within the 211 

main mine area, forcing samples to be taken from two sites rehabilitated in 2017 and 212 

an adjacent reference site, from a spatially separate area approximately 4km away 213 

from the main sampling sites. 214 

 215 

In each site, soil was sampled from two depths (0-10 cm and 20-30 cm) where each 216 

sample represented a composite from nine subsamples systematically chosen to 217 

represent site heterogeneity within 25 x 25 m plots. The nine subsamples from each 218 

depth were pooled into a sterile plastic bag, and then homogenised. From each 219 



 11 

pooled sample, a 500 g subsample of soil was taken for physicochemical analysis 220 

and a 50 mL subsample for DNA extraction. Soil chemical analyses were performed 221 

at CSBP Laboratories (Perth, Western Australia) to quantify soil organic carbon, 222 

ammonium, potassium, sulphur, calcium, pH, nitrate, and phosphorous. The 50 mL 223 

sample was frozen on-site and sent packed on dry ice to the Australian Genome 224 

Research Facility (AGRF) in Adelaide, South Australia for DNA extraction (described 225 

below). Each replicate had GPS coordinates and a panoramic photograph taken 226 

(Fig. S1). 227 

 228 

DNA extraction, sequencing, and bioinformatics  229 

DNA was extracted from each sample in triplicate using the Qiagen DNeasy 230 

Powerlyzer Powersoil Kit following manufacturer’s instructions and quantified 231 

fluorometricly. Soil bacterial 16S rRNA was amplified using the 27F (Lane 1991) and 232 

519R (Lane et al. 1985) primer set before sequencing (300bp PE) on the Illumina 233 

MiSeq platform. Sequence data used for this work was generated by the Australian 234 

Microbiome using their amplicon analysis workflow (Bissett et al. 2016) 235 

(https://www.australianmicrobiome.com/protocols/16sanalysisworkflow/) and were 236 

downloaded as amplicon sequence variant abundance tables from the AM portal (12 237 

Aug. 2020) (https://www.australianmicrobiome.com/; samples 102.100.100/138358-238 

138407). Paired end reads were merged using Flash2 (Magoč & Salzberg 2011), 239 

merged sequences were then further screened to remove those with ambiguities, 240 

long homopolymer runs, or too short/long using Mothur screen.seqs (Schloss et al. 241 

2009). Reads passing filter were dereplicated and denoised to zero radius 242 

operational taxonomic units (zOTU) using the UNOISE3 algorithm (Edgar 2016) in 243 

USEARCH (Edgar 2010). All reads were then mapped to zOTUs to construct a 244 
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zOTU by read count table. zOTUs were assigned taxonomy with the RDP Bayesian 245 

classifier (Wang et al. 2007) and the SILVA v132 rRNA database (Quast et al. 2013; 246 

Yilmaz et al. 2014; Glöckner et al. 2017). zOTUs not classified as “Bacteria” or 247 

classified as “Bacteria_unclassified” at the phylum level were discarded, along with 248 

those classified “Mitochondria” or “Chloroplast”. zOTUs which did not occur in at 249 

least two samples were also discarded to avoid unrepresentative taxa. 250 

 251 

 252 

Data analyses 253 

R version 4.0.2 (R Core Team, 2020) was used for all downstream statistical 254 

analyses. Rarefaction curves were generated comparing observed zOTU richness 255 

and Shannon diversity against sample sequence read depth to assess if sample 256 

diversity was adequately represented by read depth, as well as to determine an 257 

appropriate read depth for rarefaction (Fig.S2). Two samples (one 20-30 cm deep 258 

reference site and one 20-30 cm deep 2017 site) were found to have low sequence 259 

read depths (80 and 28,854 reads respectively) and were removed from analysis. 260 

The remaining samples were rarefied to the lowest remaining sample read depth (n 261 

= 54,840 reads) using the rarefy_even_depth function in Phyloseq (McMurdie & 262 

Holmes 2013) to ensure unbiased comparisons across samples. zOTUs that were 263 

not present in at least two samples were discarded to avoid non-representative taxa. 264 

 265 

Bacterial diversity and community composition 266 

We calculated observed bacterial zOTU richness, and estimated Chao1 richness, 267 

Gini-Simpson (Simpson), and Shannon-Weiner (Shannon) diversity indices using 268 

phyloseq to assess any differences in sample (alpha) diversity through the 269 



 13 

chronosequence. These diversity data were compared across year of rehabilitation 270 

separately for each depth using permuted analysis of variance with the aovp function 271 

in lmperm v2.1.0 (Wheeler et al. 2016) with 5000 permutations. 272 

 273 

To explore differences in bacterial community composition across the 274 

chronosequence, variation in bacterial community composition (beta diversity) 275 

across depth and year of rehabilitation was visualised with non-metric multi-276 

dimensional scaling (NMDS) ordinations of Bray-Curtis distances from the rarefied 277 

zOTU abundances using ordinate in phyloseq. Differences in bacterial community 278 

composition across depth and year of rehabilitation were assessed using permuted 279 

multivariate analysis of variance (PERMANOVA) implemented with the adonis2 280 

method in vegan (Oksanen et al. 2013). To account for the repeated measure of two 281 

depths in soil sampling, we implemented a nested design with our PERMANOVAs 282 

with the setBlock function to constrain the permutations by a dummy variable 283 

accounting for depth as a repeated measure. Homogeneity of group dispersions was 284 

tested with the betadisper function in vegan.  285 

 286 

To evaluate the trajectory of bacterial communities in rehabilitated sites towards 287 

reference sites and establish how varied bacterial communities are among multiple 288 

unmined reference sites, we used Bray-Curtis distances to assess the ‘similarity to 289 

reference’ for each sample. This involved calculating similarity values (i.e., 100%*(1 290 

– distance)), for each sample to all reference samples, including each reference 291 

sample to all other references (Liddicoat et al. 2022). The distribution of similarity to 292 

reference values across the different years of rehabilitation were then displayed as a 293 

series of boxplots. A Kruskal-Wallis multiple comparison test was used to determine 294 
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whether the similarity to reference of samples changed with year of rehabilitation, 295 

and any significant differences between rehabilitation years were identified using 296 

post-hoc Dunn tests with Bonferroni correction to adjust p values for multiple 297 

comparisons. Heatmaps of the relative abundances of bacterial phyla, class, and 298 

order from non-rarefied zOTU data created with the plot_heatmap() function in 299 

phyloseq were used to visualise if any particular taxa were driving changes in 300 

community composition through the chronosequence for each depth. 301 

 302 

Soil chemical associations 303 

Associations between bacterial community composition and scaled (i.e., mean-304 

centred and divided by the standard deviation) soil chemical variables across the 305 

chronosequence were visualised and assessed with constrained correspondence 306 

analysis (CCA) with the ordiR2step() function in vegan separately for each depth. 307 

Highly correlated (>0.75) variables were identified (ammonium and potassium at 0-308 

10 cm and calcium at 20-30 cm) and removed using the findCorrelation() function in 309 

caret (Kuhn 2015). Model-selected soil variables were tested for significance with 310 

permuted ANOVA with 999 permutations. Nitrate and phosphorous variables were 311 

not included in analysis as they returned below-threshold measurements for multiple 312 

samples. Differences in each soil chemical variable across the chronosequence 313 

were assessed with Kruskal-Wallis tests, and Dunn post-hoc tests with Bonferroni 314 

corrections and visualised in a series of scatterplots for each soil depth. 315 

 316 

Spatial autocorrelation 317 

We investigated the association between bacterial community composition (using 318 

Bray-Curtis ecological distances) and geographic distances between replicates to 319 
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test for the presence of spatial autocorrelation. Here, we used Haversine distance 320 

matrices for each depth using the distm function in geosphere (Hijmans et al. 2017), 321 

which calculates the distance between every sample based on a spherical land 322 

surface from GPS coordinates. The relationship between the Haversine distance 323 

matrix and Bray-Curtis distance matrix was examined via a Mantel test in vegan 324 

using the spearman method with 9,999 permutations. 325 

 326 

RESULTS 327 

A total of 4,192,984 bacterial 16s rRNA reads were generated across the 50 328 

samples, which spanned the two soil depths across the 28-year rehabilitation 329 

chronosequence. There were 70,199 unique bacterial zOTUs identified with a mean 330 

of 83,859 ±19,546 SD sequence reads per sample (Table 1). Following quality 331 

filtering and rarefaction to the lowest sample read depth of 54,840 reads, 65,098 332 

unique zOTUs remained for analysis across the remaining 48 samples. 333 

 334 

Bacterial diversity and community composition 335 

Bacterial community composition varied significantly by soil depth and year of 336 

rehabilitation (Fig. 2; PERMANOVA: depth df=1, F=7.170, p=0.005; year df=8, 337 

F=2.3462.02, p=0.005). Community composition in rehabilitation sites became 338 

increasingly similar to reference sites with time since rehabilitation (Fig. 3). Bray-339 

Curtis similarity to reference values showed significant variation (Kruskal-Wallis: 0-10 340 

cm p<0.001, 20-30 cm p<0.001) and post-hoc Dunn tests with Bonferroni correction, 341 

at both the 0-10 cm and 20-30 cm depths (Fig. 3), indicated younger rehabilitation 342 

sites were significantly different to reference sites, while older rehabilitation sites 343 

were not different to reference sites. The median among reference site similarity 344 
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(similarity of each reference site to all other reference sites) was 40% in 0-10 cm 345 

soils and 47% in the deeper 20-30 cm soils. At both depths, younger sites that 346 

differed to reference sites and had 10-15% lower median similarity to reference 347 

values than the among reference site similarity values. Year of rehabilitation had no 348 

effect on observed zOTU richness, Chao1 estimated, Simpson, or Shannon diversity 349 

metrics at either soil sample depth (permuted ANOVA: p> 0.05 in each case; Table 350 

2, Fig. S3). Heatmaps of bacterial phylum, class, and order for both sample depths 351 

are presented as supplementary data in Figures S6-S11.  352 

 353 

Soil chemical associations 354 

At the 0-10 cm depth, CCA model selection indicated bacterial community 355 

composition associated with both pH, which decreased with age, and organic 356 

carbon, which increased with age (Fig. 4, Fig. S4). Tests of significance of the terms 357 

indicated by CCA with showed no evidence of significance for pH (permuted 358 

ANOVA: df=1, F=1.205, p=0.062) but strong evidence for organic carbon (permuted 359 

ANOVA: df=1, F=2.07, p=0.001). Although not associated with changes in bacterial 360 

communities across the chronosequence, calcium, potassium, sulphur, and 361 

ammonium all saw increases with age in the 0-10 cm soil profile (Fig. S4).  At the 362 

deeper 20-30 cm depth pH was the only CCA model selected soil variable that 363 

associated with bacterial communities across the chronosequence (permuted 364 

ANOVA: df=1, F=1.349, p=0.014, Fig. 4) and pH decreased with age (Fig. S4). No 365 

soil chemical variable significantly varied by year of rehabilitation at either sample 366 

depth following Bonferroni corrections for multiple tests (p>0.05 in all cases, Fig. S4). 367 

 368 

Spatial autocorrelation 369 
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Analysis of Bray-Curtis ecological distances representing bacterial community 370 

composition, and the geographic distances between samples showed a significant, 371 

though weak, spatial autocorrelation (Mantel test: r=0.231, p=0.012; Fig. 4a) 372 

indicating that geographic distance between samples associated with differences in 373 

bacterial community composition. To explore if this spatial autocorrelation was being 374 

driven by three sites that were geographically separate from all other sites (Fig. 1), 375 

we removed these and reran the Mantel test which resulted in no significant 376 

correlation (Mantel test: r=0.081, p=0.162; Fig. 4b). 377 

 378 

DISCUSSION 379 

Here we quantified variation in soil bacterial communities across a 28-year 380 

rehabilitation chronosequence following rehabilitation of a bauxite mine site in 381 

Western Australian jarrah forest. There was a clear association of bacterial 382 

community composition with age of rehabilitation, where older sites were more like 383 

reference sites than younger sites. In the shallow soils (0-10cm), we found strong 384 

evidence of bacterial community composition in sites rehabilitated as recently as 385 

2002 (17 years old) being as similar to the reference sites as the reference sites 386 

were to each other. In the deeper soils (20-30cm), this trajectory towards reference 387 

site bacterial community composition appeared somewhat slower, potentially 388 

exacerbated by the higher among reference median similarity of 47% compared to 389 

40% in the shallow soils. These biologically important trends with increasing age 390 

reflect a successional transition in the structure of bacterial communities, where 391 

communities in rehabilitated sites increasingly resembled those from unmined 392 

reference sites with increased time since rehabilitation. Although community 393 

composition was associated with rehabilitation age, we observed no effect of 394 
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rehabilitation age or soil depth on bacterial alpha diversity. Our findings show that 395 

while the mining process impacts bacterial communities even with direct return of 396 

topsoil, these communities can respond rapidly to environmental changes following 397 

rehabilitation. This relatively rapid change can provide an early indication of 398 

ecosystem recovery trajectories moving toward the reference ecosystem (Banning et 399 

al. 2011; Yan et al. 2019). Together, these results indicate that ecologically important 400 

soil bacterial communities are on a trajectory towards recovery following 401 

rehabilitation techniques applied at the Worsley Alumina bauxite mine. 402 

 403 

We observed associations between changes in soil pH with bacterial community 404 

structure at both sampled soil depths. Globally, soil pH is among the strongest 405 

drivers of soil bacterial community composition at local and broad spatial scales 406 

(Fierer 2017). However, these effects may not be as clear across narrower ranges of 407 

pH. At both depths soil pH decreased with time since rehabilitation, but in the deeper 408 

soils pH trended away from the pH of reference sites. This negative association 409 

between pH with time since rehabilitation at this soil depth could be impacting on 410 

deeper soil bacterial community composition and may be a barrier to future bacterial 411 

community recovery. This highlights the importance of targeting ideal site-specific 412 

soil pH levels for microbiota in mine rehabilitation and may be an avenue to 413 

investigate the potential to shorten recovery time frames by optimising soil pH earlier 414 

in the rehabilitation process.  415 

 416 

Soil organic carbon also associated with bacterial communities in the 0-10 cm soil 417 

samples, increasing with time since rehabilitation and becoming more like the 418 

reference sites. Like pH, soil organic carbon is one of the most important abiotic 419 
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factors in structuring soil bacterial community composition (Fierer 2017) and soil 420 

organic carbon is a key indicator of soil quality (Muñoz-Rojas 2018). Soil organic 421 

carbon is expected to accumulate more rapidly in surface soils compared to deeper 422 

soils due to the build-up of detritus on the surface. This change in abiotic soil 423 

properties is likely to have driven the rapid development of contrasting bacterial 424 

community composition depth profiles between our two sample depths to some 425 

degree.  426 

 427 

Soil chemical properties have large effects on the composition and diversity of soil 428 

bacterial communities (Fierer 2017; Bahram et al. 2018; Delgado-Baquerizo & 429 

Eldridge 2019). Although bauxite mining is known to impact soil abiotic properties 430 

such as calcium, phosphorous, potassium, and aluminium (George et al. 2010; 431 

Lewis et al. 2010), we did not observe significant differences in these variables 432 

across different years of rehabilitation in our chronosequence. The absence of 433 

differences in these abiotic properties could potentially be explained by decreased 434 

impacts of direct soil return procedures that are employed at this site, compared to 435 

more common soil stockpiling practices. However, more research is required to 436 

better understand the factors that are driving the observed soil chemistry variation. 437 

 438 

Although depth explained more variation in bacterial community composition than 439 

time since rehabilitation, the recovery trajectory with time is similar across both 440 

depths with bacterial communities in rehabilitated sites becoming increasingly like 441 

reference sites with time. Even with the homogenisation of soil that occurs with direct 442 

return or storage of topsoils, our youngest sites still developed depth profiles in as 443 

short as two years following rehabilitation. This stratification of bacterial composition 444 
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across soil depth is thought to result from differential availability of macronutrients 445 

and organic carbon and/or differing environmental gradients across soil depths 446 

(Allison et al. 2007), and both these trends are supported by our results that 447 

generally show lower nutrient levels in the deeper soils. Our results support recent 448 

soil genomic research that show variation in bacterial community composition 449 

between soil depths as well as directional trends of community composition with time 450 

since rehabilitation (Gellie et al. 2017; Yan et al. 2019).While these results indicate a 451 

recovery trajectory of bacterial communities returning to their pre-disturbance 452 

condition with time since rehabilitation, ascertaining whether soil edaphic variables, 453 

aboveground plant communities, or other factors are specifically driving this recovery 454 

is still unclear. 455 

 456 

While chronosequence studies can be used to examine the effect of time following 457 

rehabilitation, changes to rehabilitation practices over time such as soil handling or 458 

revegetation seed mixes can confound conclusions from these studies. The northern 459 

jarrah forest where our site is situated is characterised by an overstory dominated by 460 

jarrah (E. marginata) and marri (Corymbia calophylla) tree species, and most of the 461 

regions floristic diversity is found in the understory and groundcover (Koch & Samsa 462 

2007). Seed mixes at our sites have changed over time, with over 200 species 463 

directly seeded in the youngest sites compared to 40 species directly seeded in our 464 

oldest sites. While these changing practises introduce confounding factors into 465 

chronosequence studies, the direct return of topsoil does also return the native 466 

seedbank that will help reduce the impact of differences in species directly seeded. 467 

However, in contrast to soil bacterial community trajectories, vegetation communities 468 

in recently restored sites more closely resemble reference sites than do older 469 
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restored sites (George et al 2009). The cause and consequences of this apparent 470 

disassociation between above and below ground trajectories requires further 471 

investigation. 472 

 473 

In natural soil systems, succession in bacterial communities is thought to be initially 474 

stochastic before becoming increasingly deterministic (Dini-Andreote et al. 2015), 475 

where soil properties (particularly pH, availability of soil carbon, and nitrogen) and 476 

plant-soil feedbacks drive succession (Fierer 2017). Succession in soil bacterial 477 

communities in human-altered systems, such as in response to rehabilitation 478 

interventions following mining and agriculture, are less understood with only a 479 

handful of recent soil genomic studies showing patterns of compositional differences 480 

in bacterial communities following rehabilitation (e.g. Barber et al. 2017; Gellie et al. 481 

2017; Ngugi et al. 2018; Yan et al. 2018; Schmid et al. 2020; van der Heyde et al. 482 

2020). None of these previous studies however address the degree of variation in 483 

bacterial communities among reference sites, or how this potential variation can 484 

impact what we determine to be an appropriate rehabilitation target to which we 485 

should be comparing rehabilitated sites against. 486 

 487 

Our results clearly indicate bacterial community composition in older rehabilitated 488 

sites was as similar to community composition in reference sites as the communities 489 

in individual reference sites are to the other reference sites. This similarity however 490 

highlights the low degree of among-reference site similarity in bacterial communities 491 

and highlights the need for future studies to better consider this high degree of 492 

variation. Our reference-to-reference comparison showed a median similarity of 40% 493 

at the zOTU level. While this degree of similarity is influenced by the analysis 494 
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methods (i.e., ecological distance measures, sequence grouping or clustering 495 

approaches, multiplexing, denoising), we do not aim to establish here if zOTU levels 496 

of resolution provide the most appropriate indication of progress towards the 497 

reference target. We conduct a comprehensive methodological investigation using 498 

soil bacterial community data in chronosequence studies that explore these points in 499 

detail in Liddicoat et al. (2022). 500 

 501 

Here, we sampled six reference sites embedded within both the mine and our 502 

rehabilitated sites to provide an indication of the variation present in the bacterial 503 

community among reference sites in general. This among-reference site variation 504 

confirms expectations from known associations between soil bacterial communities 505 

and soil physical and chemical characteristics, and how both these factors can vary 506 

spatially (Green & Bohannan 2006; Neupane et al. 2019). Previous studies using a 507 

chronosequence design to explore changes in soil microbial communities following 508 

mine site rehabilitation have only sampled limited numbers of reference sites (e.g., 1-509 

3 sites) (Ngugi et al. 2018; Schmid et al. 2020; van der Heyde et al. 2020) and none 510 

have reported on the variation present among reference sites. With spatial variation 511 

of bacterial communities being so scale dependant (Fierer 2017), the degree of 512 

variation among reference sites will likely impact interpretations of communities 513 

being used as the target. We recommend future studies that assess recovery 514 

trajectories of soil microbiota with a chronosequence design capture spatial variation 515 

among reference sites by sampling many reference sites that geographically span 516 

the study site. This reference site selection should be done to ensure an adequate 517 

representation of soil and vegetation community heterogeneity across the study site 518 

and, where possible, pair rehabilitated sites with a nearby reference site to maximise 519 
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similarity between sites and therefore increase the chances of isolating the effect of 520 

interest. 521 

 522 

While our study design included an even spatial distribution of our rehabilitation sites 523 

with reference sites throughout the mine area, we observed a significant positive 524 

correlation between bacterial community dissimilarity and geographic distance. This 525 

association was largely driven by three sample sites, and when these sites were 526 

removed there was no longer a significant association, supporting our conclusion of 527 

an effect of time, rather than space, on bacterial communities across the 528 

chronosequence. This spatial effect on bacterial community composition is likely to 529 

be driven not only by our spatial outliers but also by associations between soil abiotic 530 

properties (e.g., pH, potassium or other unsampled soil parameters) and microbial 531 

community composition (Martiny et al. 2011). As geographic distance between 532 

samples increased, so do changes in soil properties. This environmentally driven 533 

spatial variation of soil microbial communities highlights the need for appropriate 534 

experimental designs that limit spatial confounders where practicable or address 535 

their ecological implications. Furthermore, to experimentally test cause-effect 536 

relationships in a rehabilitation context, either experiments need to be embedded 537 

into rehabilitation sites (Gellie et al. 2018) or longitudinal studies need to be done to 538 

conclusively ascertain temporal changes in soil microbiota (Lem et al. 2022). Also, to 539 

investigate any potential return of key bacterial-mediated ecological functions, future 540 

studies should incorporate shotgun metagenomic data to directly ascertain changes 541 

in functional gene abundances as inferring any functional changes from 16S data 542 

alone is problematic (Sun et al. 2020). 543 

 544 
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While we found no difference in bacterial alpha diversity across the chronosequence 545 

we do note this lack of difference may have been caused by our observed zOTU 546 

richness not reaching the species asymptote in all samples. Previous studies have 547 

shown a variety of bacterial diversity changes with rehabilitation, including higher 548 

diversity in younger sites before peaking in moderately aged sites and then diversity 549 

reductions towards reference sites (Barber et al. 2017; Sun et al. 2017). These 550 

previously published diversity patterns were explained as resulting from an initial 551 

disturbance, followed by rapid expansion of generalist and opportunistic taxa, before 552 

niche specific taxa begin to establish as the vegetation community re-establishes 553 

(Kardol & Wardle 2010; Liddicoat et al. 2019). However, these trends are by no 554 

means universal, and similar to our results, other studies have shown no change or 555 

significant differences in soil bacterial alpha diversity attributable to age across a 556 

chronosequence (Gellie et al. 2017; Yan et al. 2019; Schmid et al. 2020). These 557 

discrepancies in the response of soil bacterial alpha diversity to rehabilitation makes 558 

predicting a response of soil bacterial diversity a priori difficult. Soil microbial 559 

diversity has been shown to have links to aboveground biodiversity and ecosystem 560 

services and functions (Fierer et al. 2012; Bardgett & Van Der Putten 2014; Prober 561 

et al. 2015; Bender et al. 2016). However, higher diversity does not necessarily 562 

reflect greater ecological integrity than lower diversity, and neither does it imply 563 

greater or improved functionality (Shade 2017). To assess any change in bacterial 564 

functions, future studies would benefit from incorporating assessments of functional 565 

gene abundances through time following restoration. The initial topsoil disturbance in 566 

mining and any prolonged topsoil storage can negatively impact on soil microbial 567 

diversity, potentially reducing functionality. In this case however, the mine’s direct 568 
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return approach has potentially limited the impact of degrading processes on soil 569 

microbiota reducing impacts on soil diversity. 570 

 571 

In conclusion, by using high-throughput amplicon sequencing of the bacterial 16s 572 

rRNA gene, we show a clear recovery trajectory in soil bacterial communities 573 

following post-mining rehabilitation as well as high variability among reference sites. 574 

This among-reference variability highlights the need for restoration chronosequence 575 

studies to sample several reference sites that geographically span the rehabilitation 576 

site and/or are spatially paired with rehabilitated sites to improve inferences of a 577 

recovery trajectory. Our results provide further evidence of the association between 578 

soil pH and bacterial community composition and suggest further research is needed 579 

to determine if recovery timeframes can be improved by modifying soil pH early in 580 

the rehabilitation process. Overall, our study provides a robust perspective of how 581 

environmental DNA can be used as a monitoring tool within an improved 582 

chronosequence design to assess the recovery trajectory of degraded ecosystems 583 

following restoration interventions.  584 
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TABLES AND FIGURES 835 

Table 1. Mean (±SD) amplicon sequence variant (zOTU) abundance by year of 836 

rehabilitation and depth. *Standard deviation was not calculated for 2007 with only 837 

one sample from each depth. 838 

Year of rehabilitation Samples (n) Depth (cm) Mean zOTU abundance (±SD) 

Reference 6 0-10 84,660 ±14,314.35 
1991 2 0-10 59,787 ±6,843.38 
1996 3 0-10 89,332 ±12,136.41 
1999 2 0-10 86,825 ±4,585.59 
2002 2 0-10 78,984 ±7,860.91 
2005 2 0-10 86,476 ±19,240.36 
2007 1* 0-10 116,520 * 
2011 3 0-10 82,815 ±6,373.19 
2017 3 0-10 80,934 ±5,380.64 
    
Reference 6 20-30 77,613 ±41,010.35 
1991 2 20-30 77,149 ±5,621.5 
1996 3 20-30 91,201 ±9,412.71 
1999 2 20-30 90,964 ± 379.01 
2002 2 20-30 99,775 ±33,844.25 
2005 2 20-30 85,143 ±163.34 
2007 1* 20-30 86,817 * 
2011 3 20-30 87,982 ±4,723.58 
2017 3 20-30 69,488 ±34,863.61 

 839 
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Table 2.  Mean (±SD) amplicon sequence variant (zOTU) richness and diversity of bacterial communities assessed with permuted 840 

analysis of variance at South 32’s Worsley Bauxite mine, Western Australia. *2007 (n=1) was excluded from statistical analysis for 841 

both depths. 842 

Year of 
rehabilitation Samples (n) Depth (cm) 

zOTU Richness (±SD) Diversity (±SD) 

         Observed                Chao 1        Shannon        Simpson 
Reference 6 0-10 12576.0 ±1771.1 19695.7 ±3754.2 8.34 ±0.25 0.998 ±0.0003 
1991 2 0-10 13928.5 ±487.2 23335.8 ±510.1 8.51 ±0.09 0.999 ±0.0001 

1996 3 0-10 13156.5 ±597.5 21527.9 ±969.9 8.40 ±0.10 0.998 ±0.0004 

1999 2 0-10 15764.5 ±637.1 25034.2 ±207.7 8.82 ±0.17 0.999 ±0.0002 

2002 2 0-10 12436.5 ±2448.7 18038.6 ±6015.8 8.52 ±0.08 0.999 ±0.0003 

2005 2 0-10 10595.0 ±4736.2 14763.1 ±7808.9 8.20 ±0.70 0.998 ±0.0013 

2007* 1* 0-10 14140.0 * 22922.9 * 8.58 * 0.999 * 

2011 3 0-10 11744.0 ±2739.6 16349.4 ±4921.6 8.47 ±0.32 0.999 ±0.0003 
2017 3 0-10 12825.0 ±514.1 19235.4 ±402.2 8.49 ±0.12 0.998 ±0.0004 
P values   Df=8, p=0.371 Df=8, p=0.136 Df=8, p=0.497 Df=8, p=0.627 
       

Reference 6 20-30 12993.6 ±2390.4 18389.5 ±5026.0 8.39 ±0.19 0.999 ±0.0002 

1991 2 20-30 15152.0 ±1630.6 23301.9 ±3041.1 8.46 ±0.13 0.999 ±<0.0001 
1996 3 20-30 16331.2 ±2189.7 24477.7 ±4478.3 8.62 ±0.23 0.999 ±0.0004 
1999 2 20-30 16193.5 ±392.4 23343.4 ±752.1 8.66 ±0.24 0.998 ±0.0008 
2002 2 20-30 13864.5 ±7428.2 20227.7 ±14273.4 8.48 ±0.61 0.999 ±0.0002 

2005 2 20-30 11238.0 ±1195.0 14129.2 ±3158.1 8.39 ±0.06 0.999 ±0.0001 

2007* 1* 20-30 16000 * 23211.3 * 8.64 * 0.999 * 

2011 3 20-30 14858.3 ±2812.4 20633.8 ±5448.7 8.66 ±0.27 0.999 ±0.0001 

2017 3 20-30 13821.0 ±1548.6 19487.1 ±5208.2 8.55 ±0.03 0.999 ±<0.0001 

P values   Df=8, p=0.675 Df=8, p=0.659 Df=8, p=0.763 Df=8, p=0.847 
843 
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 844 

Figure 1. Map of sampling sites from the rehabilitation chronosequence at South 845 

32’s Worsley bauxite mine in southwest Western Australia. Circles indicate sampling 846 

sites, with colour representing year of rehabilitation. Soil was sampled from two 847 

depths (0-10 cm and 20-30 cm) at each site.  848 
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 849 

Figure 2. Non-metric multidimensional scaling (NMDS) ordinations of Bray-Curtis 850 

distance matrices indicating bacterial community composition across the 851 

rehabilitation chronosequence at Worsley Alumina, Western Australia. (A) ordination 852 

of samples from both 0-10 cm and 20-30 cm soil depths and (B) ordinations of each 853 

depth separately. Ordinations indicate a general convergence of bacterial community 854 

composition with increasing age towards the reference sites at both soil depths. 855 
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 856 

 857 

Figure 3. Boxplot indicating similarity to reference of Bray-Curtis distances for each 858 

sample at (A) 0-10 cm soil depth and (B) 20-30 cm soil depth. Horizontal lines 859 

indicate 25th, 50th (median), and 75th percentile of similarities to reference and 860 

vertical lines represent 95% confidence intervals. Kruskal-Wallis tests indicated 861 

significant differences (p<0.05) between years of rehabilitation at both depths and 862 

Dunn post hoc tests with Bonferroni correction indicated younger rehabilitated sites 863 

are different to references and older rehabilitated sites are comparable to references. 864 

Groups not sharing a letter are significantly different (2017, 2011, and 2005 are 865 
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significantly different to reference sites at the 0-10 cm depth and 2017, 2011, 2005, 866 

1999, and 1996 are different to reference sites at the 20-30 cm depth).867 
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 868 

 869 

Figure 4: Constrained correspondence analyses (CCA) between bacterial 870 

community composition (Bray-Curtis dissimilarity) and associated soil chemical 871 

variables at (A) 0-10 cm depth and (B) 20-30 cm depth. Blue arrows indicate 872 

direction of influence of soil variable on bacterial communities. 873 
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 874 

Figure 5 Scatterplot of the association between the distance between samples 875 

(Haversine distance matrix) and bacteria community composition (Bray-Curtis 876 

distance matrix), showing Mantel test statistics. (A) shows a significant correlation 877 

present with all sites included, and (B) shows no significant correlation with three 878 

geographically separate sites removed indicating these three sites are driving the 879 

spatial autocorrelation. 880 
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