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ABSTRACT
Invasive plant species represent a serious threat to biodiversity, precipitating a sustained global
effort to eradicate or at least control the spread of this phenomenon. Current distribution ranges of
many invasive species are likely to be modified by climate and land use change. This thesis presents
a series of papers that aims at mapping the current distribution and predicting the potential future
distribution of Rhododendron ponticum L. (family: Ericaceae). The series of papers aims to determine,
a) the most important abiotic (environmental) factors affecting the distribution of R. ponticum in
the UK, focussing on Wales as a case study, b) whether the niche of this species has shifted or
remained conserved in the UK (compared to its native range), c) the selection of optimum
modelling parameters for correlative species distribution model, d) future land use and land cover
change maps for the study area and finally, e) assessing the combined effects of land use and
climate change on potential future distribution of R. ponticum in the UK. The main results suggest
that land cover and topography are critical in limiting the distribution of this invasive plant.
Furthermore, ecological niche of R. ponticum has shifted in the UK compared to the Iberian
Peninsula (native range), arguably due to hybridization. Model performance in the training areas
improve with decreasing grain size of predictors (50 m > 300m > 1 km). However, model
transferability requires optimum grain size which should be determined by testing a range of grain
sizes. In most of the future land use and climate change scenarios, invasiveness of R. ponticum is
likely to decrease by as much as 40 % of the currently invaded area. The results highlight the
importance of considering a range of land use and climate change scenarios and including regional
policy-based land use change projections to test the potential of invasive species to expand or
retreat in future. Eastern belt and south western parts of Wales are vulnerable to future invasion
of R. ponticum because of possible increase in temperature and forest cover under future scenarios.

Invasion risk maps produced in this study could guide pre-emptive management strategies.
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Chapter1

INTRODUCTION
1. BIOLOGICAL INVASION

Over centuries, species have been transported across the globe by humans. In the recent past, the
intensification of international trade has accelerated species’ displacement [1]. The displaced
species were often introduced to the environments where they did not exist before [2]. Many of
these species had the potential to cause modifications to the landscape or ecosystem function in the
area where they were introduced [3]. Such species became invasive and are now considered a major
threat to the native biodiversity [4]. Invasive species are non-native species that are introduced by
humans either accidentally or intentionally and are potentially able to spread to a level that causes
ecological or economic damages [5]. The European Union defines invasive species as those species
which are present outside of their natural range or distributional area and threaten biodiversity
[6]. Although introduction of exotic species to long-established ecosystems is a natural
phenomenon, the phenomenon is greatly accelerated by human migrations, earlier in the age of
discovery, and more recently for international trade [7].

There are four stages in biological invasion; transportation, colonization, establishment, and spread
[8]. Transportation: This is the first stage of a biological invasion in which a potential invader is
transported to a new region, where its previous absence was usually as a result of geographical
distance from its native range. Colonization: Species transported to a new area may not necessarily
colonize their destination as survival of the introduced species depends on the abiotic
environmental conditions and biotic processes in the neighbourhood. To successfully colonise new
environment, the introduced species needs to achieve a positive growth rate at low densities. If the
introduced species survives the new conditions and achieves a positive growth rate in the

introduced territory, it is said to have colonized the area. Generally, around 10% of transported or
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introduced species lead to naturalized populations [8]. Establishment: This is the third stage of
biological invasion, where an invasive species develops self-sustaining and expanding
populations. Spread: This is the last stage of biological invasion where an invasive species is able
to disperse within the new region over long periods of time [8].

There is a suite of typical traits of introduced species which help them to outcompete native species.
Although there are contradicting opinions on whether invasive species can be identified using
species’ traits, evidence suggest that traits of invasive species can be considered as ‘invasiveness
markers’ since they allow to identify the invasive potential of a large number of invasive species
[9][10]. Such traits include fast individual and population growth, higher rates of reproductions,
high seed dispersal potential, phenotype plasticity, a wide range of tolerance to environmental
conditions, ability to feed on a range of sources (generalists), and prior history of invasion [11]. An
introduced species may become invasive by outcompeting native species for carbohydrates, water,
light, nutrients or other critical resources or it may also use the resources that were previously not
available to the native species (e.g., colonizing previously uninhabited soil types or exploiting deep
water table through longer roots). Also, some invasives colonize large areas by limiting growth of
native species by the release of toxic chemicals (allelopathy) or harbouring pathogens which are
harmful to native species [12].

In addition to the traits of introduced species that may help to identify the invasive potential of a
species, some studies have highlighted characteristics of ecosystems vulnerable to invasion. For
example, some earlier studies suggested that ecosystems with high species richness are less
vulnerable to biological invasion due to fewer available niches [13]. Furthermore, ecosystems that
are similar to those where potential invaders have evolved are more likely to experience invasion.
Also, ecosystems that have experienced human-induced disturbances are vulnerable to potential

invasion. For example, human activities typically favour the establishment of invasive species by
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simplifying existing ecosystem structure and thus reducing competitive pressure from natives
and/or by enhancing resource availability by creating underutilised or empty niches [14].

In ecosystems, the amount of available resources and the extent to which those resources are used
by organisms modifies the effects of additional species on the ecosystem. In uninvaded ecosystems,
equilibrium exists in the use of available resources. When an invasive species is introduced in an
ecosystem, it competes with the native species for the available resources. Some forms of the
competition — in case of invasive plant species may include shielding a plant from sunlight, making
use of most of the nutrients found in the soil, or limiting the amount of water a native plant receives,
while consuming it. If the invasive species is not controlled, the ecosystem, in general, can severely
suffer, especially the native organisms of the ecosystem. In some cases, an invasive species can
cause native species of an ecosystem to face extinction. This would, in turn, reduce the biodiversity
of that ecosystem. Therefore, these mechanisms describe a situation in which the ecosystem suffers
a disturbance, which changes the fundamental nature of the ecosystem [15].

Invasive species, particularly woody plant species, have caused large-scale degradation of invaded
ecosystems [16]. Invasive species complicate biodiversity conservation and challenge the integrity
of ecosystems by reducing genetic variation, altering ecosystem functions, and eroding gene pools
by eliminating local species [17]. In addition to ecological consequences, invasive species have
economic impacts, which are often valued as financial costs based on extrapolations of some of the
most widespread invasive species [16]. Economic damages from invasive species are either direct
costs, which are the financial losses in the form of production losses in agriculture and forestry
sector or management costs, which include the expenditures of eradiating or controlling the invasive
species. It is estimated that the total cost of invasive species in the US alone exceeds $138 billion
annually. Besides, there could be other costs associated with invasive species, such as loss of

recreational or tourism sites. An accurate estimation of the financial value of the impacts of invasive
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species is difficult because of complicated invasion dynamics and the difficulty of monetizing

biodiversity and ecosystem service [18].

2. SPECIES DISTRIBUTION MODELLING

With increasingly numerous and evident impacts of invasive species across the globe, forecasting
future patterns of invasion by identifying susceptible areas has become a key subject in ecological
research [19]. This is primarily because once established in an area, a complete eradication of
invasive species is unlikely to take place due to significant financial costs, labour requirements,
and logistical problems [20][17]. Thus, forecasting the introduction of invasive species could be
critical to preventing the introduction or expansion of invasive species [20]. Species distribution
models (SDMs) - also known as ecological niche models, habitat suitability models or climate
envelope models — are used to generate invasion risk maps that forecast the potential distribution
of invasive species as a function of a set of variables, most importantly climate gradients [21]. SDMs
show the relative likelihood of establishment of invasive species, should the invasives be
introduced to the study area being modelled [22]. These invasion risk maps can help prioritizing
the potential hotpots of future invasion and thus aid surveillance and management [23] of potential
spread of emerging invasive species [21]. Moreover, SDMs help understanding the mechanisms
underpinning the invasions [24]. Conservation agencies around the world are now investing in
predictive  modelling to  forecast invasion risks. For example, ‘Pratique’
(www.secure.fera.defra.gov.uk/pratique/) is an initiative of European Union that is aimed at pest
risk analysis and focusses on mapping pest ranges. Similarly, in the United States, NAPPFAST [25]
database is being used by the Animal and Plant Health Inspection Service to run risk assessment
models, while in Australia, climate suitability of ecologically important species is modelled by the

Department of Agriculture, Forestry and Fisheries using a climate matching system called,
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CLIMATE [26]. Thus, there is a global interest in combining different biodiversity databases to
modelling tools to conduct risk mapping.

The philosophy of SDMs largely rest upon the idea of a ‘niche’, which was first presented in early
1900’s by Joseph Grinnell and Charles Elton. Grinnell [27] defined niche as a subdivision of the
habitat that contains the environmental resources or conditions required for a species for survival
and reproduction. These environmental conditions determine the distribution and abundance of
species. In 1920’s - a decade after Grinnell presented this idea of ecological niche - Elton [28]
presented his notion of niche and focussed on the functional role of a species in a community.
Unlike Grinnell, Elton’s focus was more on species interaction in a community rather than where
a species could occur. Elton's idea of niche laid the foundation for the later elaborations and
applications of this concept, most importantly the contribution of Hutchinson [29] who devised the
distinction between the fundamental and the realized niche. Hutchinson defined fundamental
niche as “the set of resources —physical and biological —that a species could use that would enable
it to exist indefinitely”. Therefore, the fundamental niche is determined by intrinsic properties of a
species—how it responds to the environment—rather than by extrinsic properties of the
environment independent of the species. On the other hand, the realized niche is defined as, “the
subset of the fundamental niche to which a species is constrained by interactions with other species
(competition, predation) with which its fundamental niche overlaps”. The concepts of fundamental
and realized are critical to contemporary ecological niche modelling.

There are generally two approaches in ecological niche modelling; roughly based on whether the
fundamental or the realized niche is adopted as the frame of reference [30][31][32]. One approach
is “mechanistic modelling” that involves using information on the intrinsic traits of species in order
to determine species’ response to the environment; for example, using information on species’

characteristics such as physiology, life-history, tolerance ranges, genetic plasticity, etc. to identify
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current and future sites where species’ desired conditions may occur [33][34]. The second approach
is called “correlative modelling” that uses values of environmental variables as measured in places
where the species exists and correlates its presence with the values of the environmental variables.
It is also possible to extrapolate and predict future occurrences in places where the correlated
environmental features are projected to be present. Since correlative SDMs are based on species’
observed distribution, they model the realized niche (the environments where a species is found),
as opposed to mechanistic models which model the fundamental niche (the environments where a
species can be found, or where the environment is appropriate for the survival) [35]. Most of the
studies on species distribution have used correlative modelling approach, primarily because of
lack of mechanistic information for species.

SDMs rests upon four basic assumptions. First, species are at equilibrium with environmental
conditions in the native range, i.e., a species is assumed to be present on all locations within the
training area where environmental conditions are suitable for the species. Second, niche stability
is assumed, i.e. environmental factors which limit the occurrence of a species in its native range
also limit its occurrence in the introduced area. Third, the training samples are representative of
the environmental conditions across the current range, and fourth, assumption is that the climatic
conditions in the native and introduced areas are analogous. Violations of these assumptions can
lead to errors of omission or commission (false negatives or false positives) [36].

SDMs predict the species” distribution across a geographic space (and time) by using a variety of
environmental data sources, e.g. precipitation, temperature, soil types, topography, land cover, etc.
These models establish a relationship between species current occurrence and the value of the
environmental variables on the occurrence locations and then project this relationship to predict
distribution across space and time. SDMs are used to understand how different environmental

factors influence the distribution of species and thus find a number of applications in ecology,
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conservation biology and evolutionary studies. SDM-based predictions can be used to predict
species” distribution under future climate change, to track past distribution of the species to
investigate evolutionary processes or potential spread of invasive species in future. SDM
predictions can also provide habitat suitability for species which in turn can help in several
management applications such as translocation of species, reintroduction of vulnerable species or
conservation of endangered species in anticipation of climate change [37].

Although application of SDMs to invasive species and risk assessment is relatively new, it is
evolving very rapidly [38][39][40][41][42][43][44]. A recent study reporting a detailed review of
literature on SDMs and invasive species suggested that the major applications of SDMs are
investigating species invasion ecology, estimating possible range shifts of invasive species under
climate change scenarios and assessments of land use and land cover change and human footprint

on the spread of invasive species [45].
3. RHODODENDRON PONTICUM

While choosing an invasive species for the studies presented in this thesis, I considered a number
of important points. I asked questions about the ecological and economic importance of the species.
Are there reliable and accurate historical presence location data available for the species? Has the
species not been modelled before? How could ecological modelling of species contribute to
ongoing theoretical debates and on-field policy-making and management plans? After a detailed
review of literature, I considered Rhododendron ponticum L. (family: Ericaceae) for this thesis as this
species ticked ‘Yes’ to all the questions mentioned above. Ecological modelling for R. ponticum
would not only help understanding the spread of this species (which is highly problematic in the
UK and Europe), but the models built for this species can be replicated for similar invasive species,
e.g. Prosopis juliflora in Asia. R. ponticum (Figure 1) is an evergreen shrub of up to 8 m in height,

native to the Iberian Peninsula, Black Sea Coast, and Caucasus region. R. ponticum was brought to
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the British Isles in 1763 as an ornamental plant [46]. Since its introduction, it has invaded a range
of habitats in Britain, including native woodlands and non-native conifer plantations, heath, bogs,
and upland grasslands [47][48]. R. ponticum, once established, forms a dense canopy that
suppresses the growth of most plant species in the understorey due to low light intensity [46].
Eventually, this inhibits the growth of most ground flora seedlings, leading to reduced native
habitat regeneration [46][49]. Since mature trees are not replaced, vast areas of dense R. ponticum
monoculture are seen with aging tree canopies [50].

A number of factors have led to the successful invasion of R. ponticum in Britain. Although its native
habitat is the Mediterranean, it thrives in the moist temperate climate in Britain, which increases
its seedling establishment [47][49][51]. Also, it is well suited to the acidic soils along with uplands
of Britain and the wetter western coast [47][48]. Another important factor responsible for the
successful invasion of R. ponticum is a very high seed production; one bush produces more than a
million seeds per year, which are small and wind-dispersed, allowing them to rapidly spread over
vast distances [46][51][52]. Furthermore, R. ponticum is unpalatable to most herbivores due to high
concentrations of phenolic compounds and grayanotoxins in its foliage, which protect it from
grazing. Consequently, this species has few natural enemies in Britain, lending it a competitive
advantage over native flora [46][52][53][54]. Evidence suggests that R. ponticum decreases soil pH
and can alter nutrient cycling, which makes its invasion successful in most of the native habitats
[55][56][57]. Also, this species is known to release a number of bioactive compounds into soil,
which have phytotoxic effects on other flora, which inhibits the growth and germination of native
plants [54]. For example, root elongation of native tree species is limited in soils where
Rhododendron grows or on sites where Rhododendron was present for two months [58].

In Rhododendron-invaded woodlands, the only way for a plant species to survive is to grow over

the dense Rhododendron canopy. This is problematic even for tree species which normally
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outgrow Rhododendron. For example, a fast growing tree such as Silver Birch finds it impossible
to regenerate as seedlings struggle for sunlight. In addition to substantial biodiversity losses, the
control and removal of Rhododendron cost significant amounts of money. For example, in Ireland,
Rhododendron costs the Irish forestry service almost £1m a year. In Northern Ireland, the control
and removal of Rhododendron cost £270,000 per year [59]. Similarly, in Snowdonia National Park
(Wales), the removal of Rhododendron was estimated to cost £10m over five years [60]. However,
despite such massive costs, R. ponticum has not been completely eradicated in most of Wales and
Scotland. For example, Snowdonia National Park authorities state that, “In several places, we are
making a real impact and Rhododendron is well on its way to being eliminated. Elsewhere the battle has
hardly bequn.” (https://www.snowdonia.gov.wales/looking-after/invasive-species/rhododendron).
This suggests that the actual cost control could be much higher than the estimates brought to light

so far.

Figure 1: Rhododendron ponticum plant.
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4. STUDY AREA

R. ponticum is an established non-native invasive species within the UK, threatening a variety of
natural and semi-natural habitats and the associated flora and fauna. It has invaded almost all parts
of the UK and causes significant damages to forestry, agriculture, and livestock sector. Of the
various parts of UK. invaded by R. ponticum, Wales is one of the worst affected regions and
therefore it was considered a suitable study area for examining the effects of climate and land use
change on the distribution of R. ponticum. Wales is a country with an area of nearly 21 000 km? and
a population of over 3 million, most of which live in rural communities [61]. The population is
unequally distributed, with most people living in coastal areas in the northeast and south Wales.
The country is characterized by a wide variety of landscapes, reflecting both its rugged topography
and a long history of agricultural settlement and industrialization. Significant areas of land
(approx. 6000 km?) are at an altitude above 300 m. Welsh countryside contains a range of important
habitats, including woodlands, semi-natural grasslands, heathland, fens, bogs, coastal ecosystems
including sand dunes and saltmarshes, and a diverse range of upland and montane habitats
[62][63]. Only a small proportion —6% —of the country is occupied by arable agriculture, while the
major land use types are grazing (77%) and forestry (15%) [64][65][66]. Significantly, most decisions
affecting the Welsh landscape have been devolved to the Welsh Assembly and the country thus
represents a uniform regulatory environment. Figure 2 shows topographic variation and land
cover classes in Wales, UK.

In addition to the UK, I included the Iberian Peninsula for the study presented in Chapter 3 of this
thesis. This is because the British population of Rhododendron is native to Iberia. Thus, to examine
the ecological niche conservatism of Rhododendron, ecological niche occupied by Rhododendron

in the UK was compared to the one occupied by this species in Iberia.
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Figure 2. a) Altitude (m) and Land cover (2015) of Wales.

5. KNOWLEDGE GAPS

Ecological modelling of invasive species generally starts by asking some basic questions: What is
the current distribution of the species in its invaded region? What are the key environmental
determinants (environmental factors) of its distribution? What is the native range of the invasive
and does it occupy the same ecological niche in its invaded range as it does in its native range? Are
the current and future projections of the required data available to map the current distribution
and patterns of invasion? While considering these questions, I found some knowledge gaps in
literature which became the foundation of a series of studies compiled in this thesis. Following are
brief notes on the identified knowledge gaps.

i. Mapping Current and Forecasting Future Distribution of R. ponticum In Wales

Mapping current distribution of an invasive species and generating risk maps is critical to invasive
species management [67]. There is currently no study published on mapping current and future
distribution of R. ponticum in the UK under current and future land cover and climatic conditions.

Also, prior to this study, there was no literature or risk assessments maps delineating invasion
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hotspots for R. ponticum in Wales, which is the most invaded part of the UK. Although several
studies had highlighted environmental factors critical to the establishment of R. ponticum, no
ecological model was built to verify the relationship of R. ponticum distribution to the identified
ecological factors driving the spread of R. ponticum in the UK.

ii. Testing Niche Conservation Hypothesis for R. ponticum

A critical assumption in SDMs is that the niche of a species is conserved, i.e. it occupies the same
environmental conditions in the invaded range as it does in the native range [68]. R. ponticum was
introduced to the British Isles as an ornamental plant from mainland Europe in the eighteenth
century [69]. At the moment, there is no consensus on whether the niche of R. ponticum is conserved
between its native range in the Iberian Peninsula and invaded range, Britain. The suitability of R.
ponticum to the British environment and its invasiveness were first thought to result from a
hybridization of R. ponticum with R. catawbiense, (a North American species), a process which
supposedly lent frost hardiness to the British R. ponticum population [69]. However, this thesis was
later rejected by other reports which did not find any genetic evidence of such hybridization [70].
The spread of R. ponticum thus represents an opportunity to test how the current niche occupied in
Britain corresponds to that in its native Iberia. Knowledge gaps thus exist as to whether, (a) the
native and invaded niches are equivalent (native and invasive niches are interchangeable), and (b)
the native and invaded niches are similar (the native and invasive niches are more similar than
expected by chance).

iii. Understanding the Role of Grain Size in SDMs Performance and Transferability

The role of grain size (the spatial resolution of GIS data layers) is critical in SDMs [71] but only a
handful of studies had addressed this issue. A detailed review of literature revealed that over-
reliance on bioclimatic variables may lead to an unnecessary compromise on the grain size of

critical variables, with potentially negative impact on the accuracy of model predictions and

13| Page



Chapter1

transferability. An important knowledge gap is to test the accuracy of SDMs with and without
bioclimatic variables and assess whether the decreasing the grain size improves model
performance.
iv. Projection of Land Use Change of Wales Under Contrasting Policy Scenarios
A large majority of SDMs, when projecting into future, rely only on future climate change scenarios
[72][73][74][75]. However, it is repeatedly reported that land cover is critical to predicting the
distribution of invasive species [76]. Currently no study exists on the projecting likely future trends
of land use and land cover (LULC) change in Wales. Thus, a knowledge gap is to map historical
patterns of LULC and LULC change in Wales and develop contrasting future LULC scenarios
based on (i) current trends and (ii) an alternative policy which may then be fed into SDMs to model
the distribution of R. ponticum under different land use change scenarios.
v. Combined Effects of Climate and Land Use Changes on The Future Distribution of R.
ponticum
Effects of land use and climate change on the distribution of species are often studied in isolation,
with only a handful of studies assessing the combined effect of these two drivers on the distribution
of species [76]. Particularly, no study exists that studies the effects of policy-driven land use change
scenarios and future climate change scenarios on the distribution of invasive species. A knowledge
gap bridged by this study relates to the combined effect of climate change and LULC projections
on future distribution of R. ponticum in Wales to make a theoretical contribution to the debate on
combining climate change and LULC changes to predict species distribution and, at the same time,
generate risk assessment maps that are directly applicable to managing future invasion patterns of

R. ponticum in Wales.
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6. AIMS & OBJECTIVES

The aim of this thesis is to understand the drivers of distribution of R. ponticum in the UK and

predict its distribution in near future under a set of climate and land use change scenarios.

To achieve the above-mentioned aims, following objectives were set:

i. To test the effects of bioclimatic, topographic and anthropogenic (proximate) factors on the
distribution of R. ponticum in Wales.

ii. To testif the ecological niche of R. ponticum is conserved in its invaded range (UK) as compared
to its native range (Iberian Peninsula).

iii. To generate policy-driven land use change scenarios for Wales.

iv. To test the combined effects of future climate and land use change on the future distribution

of R. ponticum in Wales.
7. HYPOTHESES

At the start of the research, I anticipated that land cover would be the most important predictor of
R. ponticum distribution because it is a ‘habitat specialist’ (i.e. its distribution is strictly associated
with woodlands - be it conifer, broadleaf or mixed species woodlands — as it inevitably requires
canopy cover to spread under ‘the cover’) and therefore likely to be strictly associated with its
preferred habitat type. Moreover, as is the case with many other invasive species reported in
literature, I thought that the future land use and climate change would increase the invasive
potential of this species and expected the niche of R. ponticum to be conserved in its invaded range.
Therefore, I formulated following main hypotheses and designed the studies to test them which
are presented in this thesis:

i.  Ecological niche of R. ponticum in conserved in its invaded niche.

ii. Land cover is a more important determinant of the distribution of R. ponticum as compared to

climate.
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iii. Species distribution models improve with decreasing grain size of predictor variables.

iv. Climate and land use change will enhance R. ponticum invasion in the UK.

8. EVOLUTION OF RESEARCH IDEAS AND THESIS OUTLINE

The basic idea of this PhD research sprung in 2015 when I studied the severity of damage caused
by Prosopis juliflora (L.), an invasive shrub in the irrigated forest plantations of Pakistan. I submitted
a research proposal for ecological modelling of invasive plant species quoting P. juliflora as an
example and was awarded Commonwealth PhD scholarship to study at the University of Reading,
UK in 2016. While reviewing the literature in the first few weeks of my PhD, I found surprising
similarities between R. ponticum in the UK and P. juliflora in Pakistan. Both are shrub-like plants,
invade woodlands and cause substantial economic and ecological damage to invaded ecosystems.
At that point, I decided to replace Prosopis with Rhododendron as the focal species of my PhD due
to better historical data availability and easier access to local expertise. The plan is to adapt the UK
models and the modelling methodology for Prosopis in Pakistan at a later stage. In late 2016, I
conducted a pilot study in which I mapped the current distribution of R. ponticum in Wales using
climatic, topographic, and land cover variables. I concluded that land cover is central to predicting
the future distribution of this invasive species in Wales. Based on the initial findings, I designed
the first study (Chapter 2), where I modelled the current and future distribution of R. ponticum in
Snowdonia National Park, Wales, using future climate and LULC change scenarios. In a pattern
typical of many research undertakings, the results of this study raised a number of further research
questions:
i. A reviewer of the resulting paper (presented in Chapter 2) questioned why the species
distribution model for R. ponticum was not trained in its native range (Iberian Peninsula)
to predict its distribution in the UK? At that time, there were no reports on the ecological

niche conservatism of R. ponticum. This simple question eventually led to the plan to
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investigate the ecological niche dynamics of R. ponticum. Chapter 4 of this thesis addresses
this question.

ii. The SDM presented in Chapter 2 had a spatial resolution of 1 km. Thinking about the
assumption that finer scale representation of landscape processes is able to represent them
better, I decided to test this notion by running the model at a different spatial resolutions
and see how it would affect its performance and transferability across space. This question
was addressed in Chapter 3 of this thesis.

iii. The future LULC change scenario used in Chapter 2 was just a business-as-usual projection
of past trends. But future changes are not likely to follow a linear trajectory of change (e.g.
Brexit). How would the current land management policies of Welsh government affect the
future LULC changes in Wales and to what extent would such a scenario differ from the
B-a-U scenario? The study presented in Chapter 5 attempts to answer this question.

iv. After the completion of the first four studies (Chapters 2-5), I thought it would be
interesting to combine the individual lessons learnt each by combining them to run the
SDM for R. ponticum at national scale in Wales using the optimum grain size, a range of
climate and LULC change scenarios to test the effect of climate and land use on the future
distribution of this invasive species (presented in Chapter 6 of this thesis).

A conceptual framework of this thesis is presented in Figure 3.
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Figure 3. Conceptual framework of thesis.
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Chapter 2

LAND COVER AND CLIMATE CHANGE MAY LIMIT
INVASIVENESS OF RHODODENDRON PONTICUM IN WALES

ABSTRACT

Invasive plant species represent a serious threat to biodiversity precipitating a sustained global
effort to eradicate or at least control the spread of this phenomenon. Current distribution ranges of
many invasive species are likely to be modified in the future by land cover and climate change.
Thus, invasion management can be made more effective by forecasting the potential spread of
invasive species. Rhododendron ponticum (L.) is an aggressive invasive species which appears well
suited to western areas of the UK. We made use of MAXENT modelling environment to develop a
current distribution model and to assess the likely effects of land cover and climatic conditions
(LCCs) on the future distribution of this species in the Snowdonia National park in Wales. Six
general circulation models (GCMs) and two representative concentration pathways (RCPs),
together with a land cover simulation for 2050 were used to investigate species’ response to future
environmental conditions. Having considered a range of environmental variables as predictors and
carried out the AICc-based model selection, we find that under all LCCs considered in this study,
the range of R. ponticum in Wales is likely to contract in the future. Land cover and topographic
variables were found to be the most important predictors of the distribution of R. ponticum. This
information, together with maps indicating future distribution trends will aid the development of

mitigation practices to control R. ponticum.

This chapter is published as:

MANZOOR, S.A.; GRIFFITHS, G.; [1ZUKA, K.; LUKAC, M. LAND COVER AND
CLIMATE CHANGE MAY LIMIT INVASIVENESS OF RHODODENDRON PONTICUM IN
WALES. FRONT. PLANT ScI. 2018, 9.
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1. INTRODUCTION

Invasive alien species are considered the second biggest threat to global biodiversity, after habitat
degradation [1][2]. Invasive plant species alter the dynamics of plant communities and thus
threaten the stability and functioning of established ecosystems by affecting nutrient cycles and net
primary productivity, affecting soil health by increasing soil acidity, posing risk for pollinators,
inhibiting regeneration of native species, and competing with native flora [3][4][5][6]. Plant
invasion causes significant economic losses to crop and livestock farmers around the world [7].
Various studies estimate that the global monetary value of direct damage and associated control
of invasives exceeds $100 billion per annum [8]. However, since there are many invasive species
with no recorded damage costs, the true figure is likely to be many times higher than these
estimates [9]. Several studies have highlighted the potential impacts of global climate change on
population dynamics of invasive species, with secondary effects on host plant communities and
ecosystems [10][7]. During the last century, global average temperatures have increased by 0.85-C
above pre-industrial levels and are expected to further increase by 0.3-4.8-C by 2100 (IPCC, 2013).
Changes in climatic conditions may render some regions more or less suitable for invasive plants
thus increasing or decreasing their range [12]. Effects of climate change on invasiveness of alien
species must be considered and any prediction of future distribution should include a range of
climate change scenarios.

Once an invasive species has established itself, one of the most cost-effective ways to reduce its
threat is to map its current distribution and take pre-emptive measures to prevent further
expansion [13]. Such targeted management of biological invasions is not possible without
information about the likely future distribution of invasive species. In this context, species
distribution models (SDMs) present a workable opportunity to examine future changes in species

distribution [14]. As climate is a strong determinant of habitat suitability of plant species [15], SDMs
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are often driven by environmental variables. Also known as ecological niche models, they are
successfully being used for projecting the impacts of climate change on plant distributions [16][17].
In principle, species are assumed to exist in a “niche” described by ecological requirements of the
species. SDMs characterize the ecological space of a species and subsequently identify vulnerable
locations based on the environmental suitability of the species [18].

In addition to climate, distribution of invasive plant species is often strongly linked to land cover
type. For instance, transportation corridors, continuous grasslands, forest areas, and proximity to
human settlements are often reported as strong determinants of species spread [19]. A score of
SDM studies indicates that land cover is often a far better predictor of species habitat suitability
than climatic variables [20][21][22][23][24]. Changes in land cover can affect both quality and
quantity of suitable habitat, in some instances the landscape variables alone can accurately predict
the distribution of a species [25]. It is therefore recommended to consider climate and land cover
change in combination when exploring species” niche shifts in future [26]. However, despite the
fact that land cover is an integral part of species” ecological niche, the majority of SDM studies
investigating species’ future distribution ignore it and assume that species’ future distribution is
only driven by shifts in climatic variables [27][28][29]. The history of climatic changes and human
land use shows that land cover types will shift, any modelling of species’ future distribution based
merely on climatic variables may lead to a severely misleading prediction [30].

In Europe, Rhododendron ponticum (L.) is an invasive plant species that was introduced to the United
Kingdom in the eighteenth century as an ornamental plant. It is a perennial, evergreen shrub that
generally invades woodlands [6], although it has been shown to colonize other types of habitats
too. The main ancestor is reported to be the population of R. ponticum resident at the southern tip
of Spain. The successful invasion of R. ponticum in the UK is attributed to a range of its ecological

and biological characteristics: it produces great amounts of seeds which are wind-dispersed, can
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tolerate shade and thus outcompetes flora under closed canopies and can easily colonize low-
nutrient sites [31]. It often prevents germination of native plant species by casting a dense shade
and by releasing toxins into the soil [32]. Germination of R. ponticum seeds may occur on a number
of substrates, including tree stumps and mosses covering bare ground [33]. The UK invasion by
this shrub has been more intense in Western and North Western parts, which are the comparatively
cooler and wetter areas of Britain. A genetic analysis of the British population of R. ponticum has
confirmed the presence of genes from R. catawbiense (Michx), suggesting past hybridization
between the two species. R. catawbiense is a species native to North America and characterized by
greater cold tolerance [34][5][35], a trait that may increase invasiveness of R. ponticum in the UK.
However, an in-depth analysis is still required to identify the other key environmental factors
responsible for colonization and spread of this species. Of the various parts of U.K. invaded by R.
ponticum, Wales is one of the worst affected regions. In this study, we focus on the Snowdonia
National Park in Wales where R. ponticum is identified as a major invasive species affecting large
areas of the National Park [36] indicating that current environmental, topographic and land cover
conditions in Snowdonia represent a range of conditions very suitable for R. ponticum.

We examine the current and future distribution of R. ponticum in Snowdonia National Park, Wales,
UK under current and future land cover and climatic conditions (LCCs). Our modelling effort aims
to, (a) delineate “invasion hotspots” for R. ponticum in Snowdonia National Park, (b) identify key
ecological factors driving the spread of R. ponticum in the park, and (c) identify likely spatial
patterns of habitat suitability under future climate conditions to establish a theoretical reference

framework for management plans to combat the potential invasion of R. ponticum.
2. METHODOLOGY

We used MAXENT, a maximum entropy-based machine learning algorithm to model the

distribution R. ponticum in Snowdonia National Park. MAXENT predicts the probability
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distribution of a species on the basis of a given set of environmental variables and presence-only
species occurrence data [37]. We selected MAXENT because, (a) it does not require absence data
[38], (b) it efficiently handles complex interactions between predictor and response variables [16],
(c) being a generative model, it performs better than discriminative models when it comes to
modelling with presence-only records and, (d) it can be run with both categorical and continuous
data variables [39]. There are several known limitations of the MAXENT modelling environment;
(a) sensitivity to small sample size and questionable occurrence records [39], (b) use of overly
complex models due to user over-reliance on default model calibration settings [40], and (c) biased
performance due to errors in sampling effort or spatial autocorrelation of occurrence records [41].
In this study, we countered these model limitations by; (a) using reasonably large sample size and
applying recommended screening and verification of occurrence records, (b) tuning the model by
identifying optimal model calibration settings, and (c) accounting for sampling bias and applying
spatial filters to reduce clustering.

2.1. Pre-Processing of Occurrence Records and Predictor Variables

Presence-only occurrence records of R. ponticum were obtained from COFNOD (Local
Environmental Records Centre in Wales, UK). A dataset totaling 436 occurrence records
originating from a continuous field observation campaign spanning the period between 1981 and
2016. COFNOD has confirmed that the entire area of Snowdonia National Park had been
thoroughly surveyed by ground surveys and remote sensing tools, thus minimizing the possibility
of sampling bias in the dataset. Consequently, in our modelling effort we covered the entire area
of the national park, generating 10,000 random background points to be selected from in each
replicate run of the model. Spatial uncertainty of all occurrence records was verified, and all
duplicate or not georeferenced occurrence points were removed. Occurrence data were spatially

rarefied by eliminating all but one point present within a single grid cell of the predictor variable
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layers to reduce clustering. As a result, the number of occurrence points used for model calibration
and verification was reduced from 452 to 92.

We considered a total of 23 predictor variables (Table 1) covering Snowdonia National Park at a
cell resolution of 30— arc-seconds (~1 km, worldclim.org, version 1.4) [42]. These 23 variables were
selected on the basis of published information on plant-habitat associations of R. ponticum. We
included bioclimatic variables, together with a land cover variable as R. ponticum is a habitat-
specialist and thus sensitive to land cover type. In addition, we included topographic factors such
as slope, aspect and altitude as these factors are also known to limit the distribution of this species
[43][44][32][45]. In all, our predictor dataset consisted of 19 climatic variables which were
complemented by 3 topographic and 1 land cover variable. A Digital Elevation Model (Shuttle
Radar Topography Mission, https://lta.cr.usgs.gov/SRTM1Arc) with spatial resolution of 30m was
used to derive three topographic variables: altitude, aspect and slope. Land Cover data originates
from “The European Space Agency CCI” global land cover product available at 300m of spatial
resolution (www.esalandcover- cci.org). The whole set of 23 variables (19 climatic, 1 land cover,
and 3 topographic) was re-sampled to 1 km spatial resolution and masked to the extent of
Snowdonia National Park. A combination of expert knowledge, published studies on R. ponticum
invasiveness in the UK and statistical methods was used to select an appropriate set of predictor
variables to reduce the negative impact of multicollinearity and to conform to statistical
assumptions [46].We removed highly correlated variables by applying a Pearson correlation

coefficient cut-off of r <0.85 to select the variable layers for use in final model runs [47].
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Table 1. Predictor variables used in the study; variables highlighted in bold were selected to run

all models presented in this study.

Code
BIO 1
BIO 2
BIO 3
BIO 4
BIO 5
BIO 6
BIO 7
BIO 8
BIO 9
BIO 10
BIO 11
BIO 12
BIO 13
BIO 14
BIO 15
BIO 16
BIO 17
BIO 18
BIO 19
Altitude
Aspect
Slope
Land Cover

2.2. Habitat Suitability Under Climate and Land Cover Change Scenarios

Predictor Variable

Annual Mean Temperature

Mean Diurnal Range (monthly (max temp - min temp))

Isothermality (BIO2/BIO7)* 100
Temperature Seasonality (standard deviation *100)
Max Temperature of Warmest Month
Min Temperature of Coldest Mont
Temperature Annual Range (BIO5-BIO6)
Mean Temperature of Wettest Quarter
Mean Temperature of Driest Quarter
Mean Temperature of Warmest Quarter
Mean Temperature of Coldest Quarter
Annual Precipitation

Precipitation of Wettest Month
Precipitation of Driest Month
Precipitation Seasonality (Coefficient of Variation)
Precipitation of Wettest Quarter
Precipitation of Driest Quarter
Precipitation of Warmest Quarter
Precipitation of Coldest Quarter
Altitude

Aspect

Slope

Land cover

Projected future climatic conditions for the year 2050 based on the IPCC 5th assessment report was

used to assess the potential effects of climate change on R. ponticum habitat suitability in Snowdonia

National Park. We used the following six GCMs projections: BCC-CSM1-1, CCSM4, GISS-E2-R,

MIROC5, HadGEM2-ES, and MPI-ESM-LR. These are some of the most recent GCMs, also used in

the Fifth Assessment IPCC report and are currently considered the most reliable GCMs for future

climate projections [48]. The assessment was made under two Representative Concentration

Pathways: RCP 4.5 and RCP 8.5. RCP 4.5 describes a scenario where GHG emissions are stabilized
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and thus represents a stable scenario, while RCP 8.5 is a scenario depicting an extreme situation
where GHG emissions increase until 2100 [49].

Land cover for 2050 was simulated in Terrset software [50] using recommended protocols
[61][52][53]. Making use of the Multi-layer Perceptron-Markov Chain (MLP-MC) model, we
projected the future land cover changes of Snowdonia National Park in 2050 based on historical
changes in the land cover between 2005 and 2015. The land cover maps for 2005 and 2015 were
acquired from “The European Space Agency CCI” global land cover product. Land cover
transitions were modeled using a Multi-layer Perceptron neural network. A transition matrix was
created to quantify the transition potential between the two time periods. For the sake of simplicity,
we assumed that the transition probabilities (patterns of change) would remain unchanged in
future and used these to predict land cover for 2050. We used a number of driver or explanatory
variables to generate transition potential maps to improve the prediction accuracy of the model.
These driver variables included elevation, aspect, hillshade, slope, distance to roads, distance to
road nodes, distance to water channels, distance to hydro nodes, distance to green space sites, and
distance to access points. A flow chart of the land cover and species distribution modelling is

shown in Figure 1.
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Land cover Land cover maps Current (2015) / Current R. ponticum
change drivers / (2005 & 2015) Projected (2050) /Projected (2050) occurrence data
variables Land cover maos climatic variables

Markov- MaxEnt
chain Model Modelling

Current species Future species
distribution distribution

Cellular
Automata Statistical &
model Spatial analysis

Land cover Habitat suitability maps under
projection for current & future land cover &
2050 climate chanee scenarios

Figure 1. Flow chart detailing sequential steps carried out in land cover simulation (Step I) and
Maxent based species distribution modelling (Step II) of R. ponticum in Snowdonia National Park,
Wales.

2.3. Maxent Model Complexity and Tuning

The complexity of models resultant in MAXENT environment is primarily driven by the following
two factors; feature type and regularization parameter [40]. Maxent offers a range of five function
forms known as “feature types” to explain the relationship between predictor variables and the
probability of species occurrence. These feature types are labelled as Linear (L), Quadratic (Q),
Hinge (H), Product (P), and Threshold (T) (see [37][38][39] for details). Maxent allows users to

select and combine different function forms manually or picks functions or their combinations
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automatically when left in the default “Auto Feature” mode. Most of the published MAXENT-
based studies rely on the default options of feature type and regularization parameters, which
means that model complexity and the risk of over-fitting is completely ignored by the researchers
[61]. The second key factor that determines the complexity of MAXENT models is the
regularization parameter. As part of the modelling process, MAXENT pushes or modifies the
predictor values (such as variance and mean) of environmental variables as close as possible to the
values describing actual presence points, which frequently leads to overfitting of the model. To
counter over-fitting, MAXENT uses the regularization parameter to control the complexity of
models (the default value is 1). The regularization parameter limits the number of “features” in the
model, depending on the number of presence records (fewer records allow for fewer features to be
included). A higher value of the regularization parameter penalizes the number of features and
thus leads to less complex models [52]. Various studies have confirmed that calibrating MAXENT
models with default settings frequently leads to highly complex models, a species-specific tuning
of the model is thus recommended [40]. In this study, we generated all possible combinations of
features types in combination with a range of regularization parameter values; 0.1, and then 1-10
with an increment of 1. We then used ENMeval R package to select the model with the lowest AICc
(corrected Akaike Information Criterion) value which was then used as the most appropriate (least
over-fitted model) out of the whole suite of models [53][51].

2.4. Model Calibration and Evaluation

We ran MAXENT (version 3.3.3a) with the default convergence threshold of 10-6 and with 5,000
iterations. This number of iterations was set to allow the model a reasonable scope for convergence,
thus reducing the risk of over-predicting or under-predicting the model relationships. The selected
model used the “Linear” and “Quadratic” feature types and the regularization parameter of 2, as

indicated by the lowest AICc value. We processed 20 model replications with bootstrap resampling
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which randomly allocated 75% of the occurrence records to calibration and 25% to validation. We
used the average of the 20 replicate models to produce habitat suitability maps under current and
future scenarios. MAXENT produces continuous suitability index in its output, 10 percentile
training presence thresholds was employed to convert this index into binary form (suitable and
unsuitable habitat) [54].

AUC (Area under the receiver operating characteristic curve) was used to test the performance of
the model against actual observations [16]. An AUC value of 0.5 shows that the model does not
predict any better than random chance, whereas a value closer to 1 indicates better performance of
the model. Based on the AUC value, a conventionally used guide for ranking the model
performance is: 0.5-0.6 = Failed; 0.6— 0.7 = Poor; 0.7-0.8 = Fair; 0.8-0.9 = Good; 0.9-1 = Excellent [55].
Jackknife test and percent variable contribution were used to assess the relative significance of
predictor variables. Fitted response curves were used to visually investigate the relationship
between individual variables and predicted index of environmental suitability of R. ponticum.
AUC was suggested not being sufficiently reliable for model evaluation, as an alternative, the
Continuous Boyce Index (CBI) can be utilized a complementary evaluation index [56]. The Boyce
index requires presence data only and measures how much model predictions differ from random
distribution of observed presence across the prediction gradient. The continuous values of Boyce
index vary between -1 and +1. Positive values indicate a model where predictions are consistent
with the distribution of actual presence data, values close to zero mean that the model is not
different from a random model and negative values indicate counter predictions (e.g., predicting

no occurrence in areas where actual presence is recorded, [57][58].
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3. RESULTS

3.1. Model Performance

The calibration test of the model specification selected on the basis of the lowest AICc showed
encouraging predictive capacity: AUCtrain = 80.0, AUCtest = 75.61, and CBI = 0.82. These results
suggest that the predictor variables used during model calibration can predict the presence of R.
ponticum in the Snowdonia National park with a fairly good degree of accuracy. Current
distribution of R. ponticum on a continuous habitat suitability map for the present day LCCs is
shown in Figure 2.

Comparing the predictor variables used in this model, Land Cover type contributed the most
predictive power (43.3%), followed by aspect (21.5%), and altitude (15.5%, Table 2). The Jackknife
test suggests that the variable which decreases the gain the most when omitted is land cover,
indicating that it contains the most information absent in the other variables (Figure 3).

Table 2. Analysis of variable contribution

Variable Description of variables Percent contribution
Landcover - 43.3
Aspect - 21.5
Altitude - 15.5
Biol5 Precipitation Seasonality 9.4
Bio3 Isothermality 4.1
Bio9 Mean Temperature of Driest Quarter 34
Bio2 Mean Diurnal Range 1.6
Slope - 0.9
Bio4 Temperature Seasonality 0.3
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Figure 2. Continuous habitat suitability map of R. ponticum generated in Maxent model under

current LCCs in Snowdonia National Park. Blue dots on the map show current distribution of

species occurrence records.
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Figure 3. Jackknife of regularized training gain for presence of Rhododendron ponticum as

predicted by the set of 9 selected predictor variables.
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Close inspection of individual response curves Figure 4 shows how the logistic prediction by a
variable changes when the rest of the predictor variables are artificially kept at their average values.
Starting with Land Cover, the only categorical predictor used in this study, it suggests that the
presence of several land use types may have a major influence on the probability of R. ponticum
occurrence in Snowdonia National park. The likelihood of presence is the highest in Land Cover
type “8” (Mosaic tree and shrub), followed by Land Cover type “6” (Needle leaved forest). Aspect
was found to be an efficient predictor of R. ponticum distribution, indicating that the probability of
occurrence is the highest in Northern Aspect (azimuth values ranging from 337.5 to 360¢). The
response curve of Altitude shows that the probability of presence is negatively correlated with this
variable as increasing altitude suggests a gradual decrease in the probability of species occurrence.
Precipitation seasonality (BIO 15) was shown to be negatively correlated to the probability of the
presence of R. ponticum; the species is not likely to tolerate higher seasonal variability in
precipitation in Wales. It is noteworthy that the probability of species occurrence decreases from
67 to as low as 27 within a narrow band defined by 22 and 25mm of precipitation seasonality.
Response curve of BIO 9 (Mean Temperature of the Driest Quarter) shows a similar trend, R.
ponticum probability of occurrence decreases as the mean temperature of the driest quarter
increases. BIO 2 (Mean Diurnal Range) and BIO 3 are only two climatic variables which appear to
be positively correlated with the probability of R. ponticum occurrence. BIO 4 (the coefficient of
variation of the mean of monthly temperatures, represents the seasonal variation in temperature)
and Slope contributed the least to the model. Response curves of both these variables suggest that
probability of species occurrence would decrease with increasing values of these variables.

Our land cover change simulation of Snowdonia National Park for the year 2050 revealed that

broadleaved deciduous trees, needle-leaved evergreen trees and grasslands may experience a
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contraction in their extent, while the area under herbaceous cover, mosaic tree and shrub, mosaic

herbaceous cover and shrub, or herbaceous cover may increase (Table 3).

Response of Rhododendron_ponticum to aspect

Ingiste output

Response of Rhododendron_ponticum to altitude

Response of Rhododendron_ponticum to bio15

4 200 400 600 800 1000
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320 s 330 s 10 35 30
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Figure 4. Probability of presence of Rhododendron ponticum in Snowdonia National Park, as

influenced by A) aspect (° azimuth), B) altitude (m.a.s.l), C) precipitation seasonality (BIO15,

mm), D) isothermality (BIO3), E) mean temperature of the driest quarter (BIO9, °C), F) mean

diurnal range (BIO2, °C), F) G) slope (°) and H) E) coefficient of variation of mean of monthly

temperatures (BIO4)
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Table 3: Change in area (sq. km) under the 16 land cover classes of Snowdonia National Park

between current (2015) and projected (2050) maps.

ClassID Land Use Class 2015 (km?) 2050 (km?)  Change (%)
1 Cropland 0.5586 0.5586 0

2 Herbaceous cover 3.72 4.9 28.7
3 Mosaic cropland 8.19 8.19 0

4 Mosaic natural vegetation 6.08 6.08 0

5 Broadleaved Deciduous Trees 19.61 12.53 -36.1
6 Needle-leaved Evergreen Trees 229.64 223.62 -2.62
7 Needle-leaved Deciduous Trees 0.3724 0.3724 0

8 Mosaic tree and shrub 141.44 147.84 4.52
9 Mosaic herbaceous cover 627.55 637.98 1.66
10 Grassland 930.37 925.28 -0.54
11 Sparse Vegetation 85.15 85.15 0

12 Shrub or herbaceous cover 25.75 25.94 0.73
13 Urban Areas 2.85 2.85 0

14 Bare Areas 10.42 10.42 0

15 Unconsolidated Bare Areas 1.55 1.55 0

16 Water Bodies 32.27 32.27 0

3.2. Habitat Suitability Under Current & Future Land Use and Climate Change Scenarios

Binary maps of predicted distribution of R. ponticum in Snowdonia National park under current
and future LCCs are shown in Supplementary Data S1. Based on the output of our model, nearly
50% of the total area of the park (1,050 of 2,132 km?) is currently suitable for R. ponticum invasion.
Looking into the future, the extent of habitat suitable for R. ponticum in Snowdonia National park

is likely to be negatively affected by land cover and climate change under all considered scenarios

(Table 4).
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Table 4: Variation in suitable area (in %) for R. ponticum in Snowdonia National Park for current
time with those identified in land cover & six future climate change scenarios for 2050 at two

Representative Concentration Pathways (4.5 & 8.5)

GCM'’s RCP 4.5 (%) RCP 8.5 (%)
BCC-CSM1-1 -39.23 -31.84
CCSM4 -10.73 -19.13
GISS-E2-R -35.67 -44.07
HadGEM2-ES -8.39 -7.97
MIROC5 -3.45 -12.91
MPI-ESM-LR -40.13 -46.78

Under RCP 4.5, minimum contraction (-3.45%) is predicted under MIROC5 while maximum
contraction (-40.13%) in suitable area may take place under MPI-ESM-LR. Under RCP 8.5,
minimum (-7.97%) and maximum (—46.78%) reduction in suitability range for R. ponticum may be
expected under GCMs HadGEM2-ES and MPI-ESM-LR, respectively. A comparison of the current
habitat suitability with the minimum and maximum future range contraction (binary maps) is
shown in Figure 5. Results indicate that most of the northern, northeastern and central areas of the
national park are likely to become unsuitable for R. ponticum by 2050 (in case of maximum
contraction under GCMMPI-ESM, RCP 8.5). Detailed habitat suitability maps of all future LCCs

are presented in Supplementary Data S1.
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Figure 5. Comparison of suitable habitat range of R. ponticum in Snowdonia National Park under

current LCCs with the minimum and maximum range contraction scenarios in future LCCs.

4. DISCUSSION

This study presents the first attempt to delineate current distribution and investigate the impacts
of changing landscape and climate on future distribution of R. ponticum in Snowdonia National
Park. Both current and future distributions of this invasive plant are governed by an interaction of
a range of factors. In the case of R. ponticum in Snowdonia, land cover and topography have been
shown as the most influential, complemented by a range of climatic factors.

Land use has repeatedly been shown to be the key predictor variable determining plant species
distribution [20]. R. ponticum can invade a range of land cover categories, including natural to semi-
natural, upland heaths, and occasionally grasslands. In Britain, earlier studies reporting on its
occurrence suggest that woodland is the land cover type most affected by the invasion of R.

ponticum [59]. Our findings are in agreement with these reports; R. ponticum has the highest
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probability of occurrence in land cover categories representing “6: Mosaic Tree & Shrub” and “8:
Needle Leaved Forest.” There are numerous reasons why R. ponticum favours woodland in Wales,
for example, the availability of a microenvironment suitable for seed germination [32] or growing
under tree canopies to spread “under-cover” and thus avoid eradiation likely play a role. Crucially,
the presence of dead plant material or moss cover may be critical to R. ponticum establishment [33].
In our study, Mosaic Tree & Shrub and Forests were the land cover categories which are likely to
contain these substrates in the understory. Both of these land cover categories favored by R.
ponticum are predicted to experience only a minor change (a decrease of -2.62% in category “6”
while an increase of 4.52% in category “8”). Thus, the range contraction in R. ponticum seems to be
much larger than the predicted change of suitable habitat types. This suggests that the predicted
contraction in R. ponticum future range may not be primarily governed by land cover changes.
These results are in agreement with some earlier studies suggesting that species’ range may
drastically contract even if there is only a little shift in land cover types [60]. Among topographic
variables, aspect makes a major contribution in our model. We show that R. ponticum clearly favors
the northern aspect for its establishment and growth. North-facing slopes at the latitude of Wales
are likely to offer greater soil moisture, in addition to lower direct insulation intensity. Many other
studies on R. ponticum, R. simsii, and R. ferrugineum suggest that northern slopes (in the Northern
hemisphere) offer more favourable conditions for Rhododendron growth [61][62][63]. Our results
show that the probability of occurrence of R. ponticum in Snowdonia is negatively correlated with
slope. Earlier studies have suggested that shallow-slope areas are typically those with high soil
moisture and nutrient availability, thus offering more favourable microenvironment for plant
proliferation [64]. Altitude explained a minor share of the variation in the training set of occurrence
observations in this study. Even though altitude is considered an indirect variable since it has no

direct effect on plant growth and physiology, it acts as a very good proxy of other un-measured or
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un-used variables. The reported altitudinal range of Rhododendron in Snowdonia National Park
is well within the global range inhabited by this species. Therefore, it is likely that altitude per se
does not represent a set of critically limiting variables in our study, but more likely acts as a proxy
for auxiliary variables such as hydrology, exposure to light, wind speed, soil type and others which
are not included in our model. There is strong evidence that the inclusion of indirect variables can
enhance the predictive performance of SDMs, however their collinearity with direct variables must
be addressed [65][66].

For climatic variables, our results indicate that both temperature- and precipitation-related
variables make significant contribution to model prediction, which is in agreement with earlier
studies which posit that the future distribution of R. ponticum in Wales may be affected by climatic
predictors [64]. Under all GCMs considered here, habitat suitability range decreases from the
current situation. Global mean temperatures may increase by as much as 4°C by the end of next
century [48]. Increasing temperature and changes in precipitation are likely to impact species
distribution [67], however, existing investigations paint a mixed picture; plant species may
experience an increase or a decrease of their current range [12][68]. A study investigating potential
changes in the future distribution of a 100 of the world’s worst invasive species concluded that
potential range of the majority of these species would increase [69]. Contrary to this, there is
evidence of a range reduction of over 80 invasive species in South Africa under varying climate
change scenarios [67]. Similarly, many other ecological modelling studies have reported a possible
contraction in suitable habitat of different species [70]. There are studies even predicting a complete
loss of species’ suitable habitat [71][72][72][73]. Detailed studies are thus required to investigate
how an existing plant invasion will be modified by changing climatic conditions; it is not likely

that all invasive species will benefit from new conditions.
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The fact that R. ponticum is an alien invasive species in the area under consideration is an important
aspect of this study. Invasion is a dynamic process guided by an inherited set of traits and
environmental conditions [43]. One of the ways to build a species distribution model is to use
climatic data and occurrence records from the native range of the invasive species under
consideration and to project it to the invaded region [74]. However, we argue that this approach
may yield a poorly performing model due to the mismatch between key environmental variables
between native and invaded regions. This argument is borne out by the notion that invasives are a
good example of species with a potential to expand their range beyond the climatic envelope
defined in their native range [75]. A number of studies have confirmed this idea by concluding that
invaded locations cannot necessarily be predicted from native distribution records of invasive
species [76]. If the goal is to evaluate range expansion of invasive species then it could be useful to
fit the model with data from native range [77], but when building models to predict changes in the
invaded area under climate change scenarios, it may be much more useful to use data describing
affected location [78].

4.1. Recommendations for Future Studies

Given that 14 out of 19 climatic variables originally considered for this study were excluded due
to high correlation with variables chosen for the best performing model, an in-depth analysis of
the sensitivity of R. ponticum distribution to the remaining variables may reveal interesting insights.
We made use of only six GCMs and two RCPs scenarios for the sake of simplicity, but further
studies including more numerous GCMs and RCPs may prove useful for improved prediction of
future distribution and a better understanding of the sensitivity of R. ponticum to climate change.
In line with the consideration of native vs. invaded climate envelope, further studies should
compare model performance based on training on native and invaded climatic envelope range.

Distribution models may be improved by the inclusion of high resolution variables derived from
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remote sensing and lidar (canopy height, cover, vertical distribution ratio etc.), variables such as
vegetation density or stand height have been shown to significantly improve SDMs [20][79]. In this
study, the land cover variable is considered as a proxy for the soil properties [80]. For example, R.
ponticum is known to grow under semi-shade on moist, loamy soils. Thus, the land cover types
“Forest” “Bog & Mosses” & “Herbaceous cover” can be thought to act as proxy for these soil types
while land cover types such as “open fields,” “bare land”, “urban areas,” and “rocks” can be
considered the areas where soils types are the least favourable for this species. Results of this study
confirm these observations. However, we recommend incorporating soil variables for future
studies to further improve the accuracy of the model.

In this study, we projected land cover changes from 2015 to 2050 based on the land cover transition
potential between 2005 and 2015. This is a simplistic and frequently adopted, “business-as-usual”
approach of land use change modelling, which however may not be realistic. We suggest that the
impact of contrasting socio-economic scenarios on likely future land use should be included to

achieve a more representative prediction of future distribution.

CONCLUSIONS

This study presents the results of correlative ecological modelling exercise based on an assumption
that land cover and climatic variables have a dominant role in current and future distribution of R.
ponticum and that the ecological niche for this species remains conserved across time. We show
that, contrary to expectation, future distribution range of this species in Snowdonia National Park
may decrease as a result of projected climate and land use changes. An extension of this modelling
approach to the entire landscape of UK might help to understand the combined effects of these

predictor variables to future distribution of R. ponticum across the country.
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SUPPLEMENTARY DATA S1
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Figure 1. Probability of presence of Rhododendron ponticum in Snowdonia according to the land
cover type. Red bars indicate mean response of 100 replicates while blue bars denote standard
deviation. X-axis legend: (1) Cropland, rainfed. (2) Herbaceous cover. (3) Mosaic cropland (>50%)
/ natural vegetation (tree, shrub, herbaceous cover) (<50%). (4) Mosaic natural vegetation (tree,
shrub, herbaceous cover) (>50%) / cropland (<50%). (5) Tree cover, broadleaved, deciduous,
closed to open (>15%). (6) Tree cover, needleleaved, evergreen, closed to open (>15%). (7) Mosaic
tree and shrub. (>50%) / herbaceous cover (<50%). (8) Mosaic herbaceous cover. (>50%) / tree and
shrub. (<50%) (9) Shrubland. (10) Grassland. (11) Lichens and mosses. (12) Sparse vegetation
(tree, shrub, herbaceous cover) (<15%). (13) Shrub or herbaceous cover, flooded,
fresh/saline/brakish water. (14) Urban areas. (15) Bare areas. (16) Water bodies.
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[]

Figure 2. Binary habitat suitability maps of R. ponticum in Snowdonia National Park under current
land cover and climatic conditions (A) and future land cover and climate change scenarios: BCC-
CSM1-1 (B), BCC-CSM1-1 (C), CCSM4 (D), CCSM4 (E), GISS-E2-R (F), GISS-E2-R (G), HadGEM2-
ES (H), HadGEM2-ES (I), MIROCS5 (J), MIROCS5 (K), MPI-ESM-LR (L), MPI-ESM-LR (M
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Chapter 3

SPECIES DISTRIBUTION MODEL TRANSFERABILITY AND MODEL
GRAIN SIZE — FINER MAY NOT ALWAYS BE BETTER.

ABSTRACT

Species distribution models have been used to predict the distribution of invasive species for
conservation planning. Understanding spatial transferability of niche predictions is critical to promote
species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor
variables is an important factor affecting the accuracy and transferability of species distribution models.
Choice of grain size is often dependent on the type of predictor variables used and the selection of
predictors sometimes rely on data availability. This study employed the MAXENT species distribution
model to investigate the effect of the grain size on model transferability for an invasive plant species.
We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance
and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive
to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic
variables may lead to less accurate models as it often compromises the finer grain size of biophysical
variables which may be more important determinants of species distribution at small spatial scales.
Model accuracy is likely to increase with decreasing grain size. However, successful model

transferability may require optimization of model grain size.

This chapter is published as:

MANZOOR, S.A.; GRIFFITHS, G.; LUKAC, M. SPECIES DISTRIBUTION MODEL
TRANSFERABILITY AND MODEL GRAIN SIZE — FINER MAY NOT ALWAYS BE BETTER. SCI.
REP. 2018, 8, 7168.



Species distribution model transferability and model grain size

1. INTRODUCTION

Species distribution models (SDMs) are becoming increasingly important in predicting spatial patterns
of biological invasions, identification of hotspots for early detection and informing management of
invasive species [1]. SDMs relate the presence/absence records of species to relevant environmental
variables and subsequently project modelled relationships across geographical space using gridded
layers of environmental data, producing a map indicating areas of potential species distribution [2].
One of the key features of gridded data is the ‘grain size’ — a term describing the geographical
representation (spatial resolution) of the map layers. Grain size of predictor variables strongly affects
the interpretation of biogeographic characteristics of modelled species [3]. Use of smaller or finer grain
size allows for a more accurate representation of the effect of local environmental conditions and biotic
interactions in model prediction [4].

The challenge in using smaller grain size in SDMs is finding the optimum balance between data quality,
data availability, and model performance [5]. Grain size represents the geographical space unit which
contains all the information on characteristic attributes of the study area [6]. A decrease in grain size
enhances the details of the landscape by sharpening the features it contains and by making the rare
land use types in the landscape more prominent and distinguishable [7]. Conversely, coarse grain size
of predictor variables in SDMs negatively affects the delineation of habitat features in a landscape, a
feature of critical importance to modelling species presence. Selection of grain size and its relationship
with habitat features is a crucial factor in SDM based studies [3][7][8][9]. Most literature to date reports
on species distribution models built at a grain size of 1 km, a fact recently subjected to some scrutiny
and critique [7][10]. Earlier observations indicate that the use of 1 km grain size may be too coarse to
generate reliable SDM outputs [7], especially for studies at small spatial scales. The challenge, therefore,
is to establish the threshold grain size at which predictor variables correctly describe local conditions
and biotic interactions which play an important role in defining species’ range [11].

The choice of grain size in SDM studies is sometimes based on data availability [12] rather than relevant

factors like species’ ecology and spatial scale of study. A review of more than 200 SDM-based research
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papers concluded that the choice of variables is ‘frequently opportunistic’ and that the majority of the
studies, instead of making a tailored choice of variables, rely on a standard set of 19 bioclimatic
variables [13] which are available at a minimum of 1 km grain size. In a complementary analysis
designed to provide an overview of current practice, we reviewed 59 recent SDM based studies
published in peer-reviewed journals in 20162017 (Supplementary Data S1). We confirmed that the
most frequently used variables in MAXENT based ecological modelling studies are indeed, the 19
bioclimatic variables available from the ‘Global Climate Data” (www.worldclim.org). We found that 55
out of the 59 studies selected the above-mentioned bioclimatic variables as input. Of these 55 studies
34 had used additional biophysical variables such as topography and land cover. These biophysical
variables are available at a grain size as 100 meters or less. Since the grain size of all input variables in
SDMs need to be harmonized, these biophysical variables are resampled to 1 km in when used in
combination with the bioclimatic variables. Intriguingly, the results of 22 out of these 34 studies (which
had both bioclimatic and biophysical variables) suggest that the variables critical to accurate species
distribution prediction were the biophysical variables. Given the earlier argument that a finer grain size
is more likely to improve model accuracy, the following speculation can be made: had these 22 studies
not coarsened the biophysical variables — by avoiding the ‘customary’ choice of bioclimatic variables -
this would have resulted in a more accurate prediction of species distribution. This speculation might
appear to question the significance of bioclimatic variables in ecological models. It is a fact that
bioclimatic variables are among the most frequently used variables in SDM based studies and rightly
so as climate is a strong determinant of species’ distribution. However, an injudicious use of these
variables without considering factors like species’ ecology, scale of study and optimal grain size is
questionable [13][14]. Thus, we speculate that in many SDM based studies — especially at small spatial
scale of study area - biophysical variables may be the more important ones and inclusion of bioclimatic
variables in such cases may reduce the model accuracy.

One of the motivations for creating SDMs is to use them to predict the behaviour of a species colonizing

new territory. Successful transferability of SDMs across space or time is extremely valuable in context
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of conservation planning. A basic assumption underlying SDMs is that the model is spatially and
temporally transferable, i.e. the niche attributes are conserved across space and time [2]. Although the
effect of grain size in SDMs is well documented [15][16][17], its role in model transferability has not
been put to sufficient scrutiny. There is evidence that although SDMs can accurately predict species
distribution in the training area, their transferability to new areas is challenging due to numerous
complex phenomena [18][19]. Among many factors, grain size has been reported as critical to
satisfactory model performance and transferability [20][21].

In this study we aim to test the role of grain size in SDMs both in the training and the transfer areas.
Based on our review of literature, we speculate that over-reliance on easily available bioclimatic
variables may lead to an unnecessary compromise on the grain size of critical variables, with potentially
negative impact on the accuracy of model predictions and transferability. Specifically, we use a
MAXENT modelling environment [22] to model the distribution of Rhododendron ponticum (L.) in the
Snowdonia National Park, Wales and then transfer the model to the Brecon Beacons National Park,
Wales. The objectives of this study were to assess whether the decreasing the grain size improves model

performance both in the training and the transfer area.
2. Methodology

2.1. Species Description

Rhododendron ponticum (L.) is an invasive plant species in the United Kingdom, having been introduced
in the 18th century as an ornamental plant. The main ancestor is reported to be the population of R.
ponticum resident in the southern tip of Spain [23]. It is a perennial, evergreen shrub that generally
invades woodlands [24], although it has been shown to colonize other types of habitat too. The UK
invasion by this shrub has been more intense in Western and North-Western areas of Britain, which are
comparatively cooler and wetter. We chose Wales as the study region because it is one of the most
affected regions of the UK to be impacted by invasions of R. ponticum. In this study, we trained the
model on the dataset for the Snowdonia National Park in Wales [25] and then transferred the model to

the Brecon Beacons National Park. Given the scale of the invasion, it is clear that the current
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environmental, topographic and land cover conditions both in Snowdonia and the Brecon Beacons
represent a range of conditions very suitable for R. ponticum.

2.2. Species Distribution Modelling Algorithm

We used MAXENT, a maximum-entropy based machine learning (presence/pseudo-absence)
algorithm to model the distribution R. ponticum (L.) in Snowdonia National Park (the training area) and
projected the model to the Brecon Beacons National Park (the transfer area). MAXENT predicts the
probability distribution of a species on the basis of a given set of predictor variables and presence-only
species occurrence data [22]. We selected MAXENT because, a) it does not require absence data [26], b)
it efficiently handles complex interactions between predictor and response variables [27], c) being a
generative model, it performs better than discriminative models when it comes to modelling with
presence-only records, d) it can be run with both categorical and continuous data variables [28] and, e)
it efficiently transfers the model projections to another geographical area [2]. We used a reasonably
large sample size [29] and applied the recommended screening and verification of occurrence records.
2.3. Presence Records for Model Training and Validation

For the training area (Snowdonia National Park), presence-only occurrence records of R. ponticum (L.)
were obtained from COFNOD (Local Environmental Records Centre in Wales, UK). A dataset of 152
occurrence records was created by a continuous field observation campaign between 1981 and 2000.
COFNOD has confirmed that the entire area of Snowdonia National Park was thoroughly surveyed by
ground surveys and remote sensing tools, thus minimizing the possibility of sampling bias in the
dataset. Consequently, we targeted the entire area of the National Park, generating 10,000 random
background points to be selected during each replicate run of the model. We used independent
occurrence records of R. ponticum (L.) in the Brecon Beacons National Park downloaded from the
National Biodiversity Network (NBN) online database (www.nbnatlas.org), yielding 100 observations.
Spatial uncertainty of all occurrence records was addressed by removing all duplicate or non-geo-

referenced occurrence points. Occurrence data were spatially rarefied using SDM toolbox 2.0 [30] in
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ArcGIS 10.5 by eliminating all but one point present within a single grid cell of the predictor variable
layers to avoid double counting of presence points.

2.4. Selection of Predictor Variables

Predictor variables were selected in the following three steps. In the first step, two categories of
variables were compiled. The first category of variables comprised the most frequently used variables
in SDM studies: ‘Bioclimatic Variables’ (BCV). The second category of variables was based on our
expert knowledge and a review of literature on the ecology of R. ponticum (L.): ‘Biophysical Variables’
(BPV). A set of 19 bioclimatic variables from ‘Global Climate Data’ (www.worldclim.org, version 2,
1970-2000) [31], identified as the most commonly used suite of variables in SDM research13, formed
the BCV category. An extensive review of literature and background knowledge of the R. ponticum
ecology yielded the most important biophysical variables, namely; topography (altitude, aspect and
slope), land cover and ‘distance from water channels’ which formed the BPV category [32][33][34][35].
Although Rhododendron is sensitive to many other ecological factors, we kept the BPV category to the
above mentioned variables as these variables were the most pertinent ones at the current spatial scale
of study.

In the second step of variable selection, a sub-set of variables from the BCV and BPV categories was
created on the basis of grain size. The first variable set (VS-1) included both BCV and BPV categories,
with the latter resampled to a 1 km grain size which is the smallest cell size of BCV. The second variable
set (VS-2) comprised the BPV at 300 m grain size. The third variable set (VS-3) consisted of the same
BPV but at 50 m grain size (Tables 1 and 2). The VS-1 represents the commonly reported approach used
in SDM studies and thus can be considered the ‘control’ scenario. The VS-2 & VS-3 represent scenarios
where bioclimatic variables are excluded to conserve the finer grain size of BPV. All input data layers
were re-sampled using nearest neighbour (for discrete variables) and bilinear interpolation (for
continuous variables) resampling techniques [36][37][38]. Collinearity among predictor variables
negatively impacts the model due to the substantial amount of information shared between collinear

variables. Therefore, collinearity in variables makes it difficult to correctly interpret the relative
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contribution or importance of variables in the model predictions [39]. A Pearson correlation coefficient

cut-off of r <0.70 was applied to select the variables for use in the final model runs [38] for all three sets

of variables (VS-1, VS-2 and VS-3). The aim of this step was to reduce the negative impact of

multicollinearity and to conform to statistical assumptions [40].

Table 1. Predictor variables used in the study. Acronyms VS-1, VS-2 & VS-3 refer to variable set 1,

variable set 2 & variable set 3 respectively.

VS-1
Grain Size 1 km
Predictor Variable

Altitude

Aspect

Slope

Land Cover

Distance from water
channels

Mean Diurnal Range
(monthly (max temp - min
temp))

Isothermality

(BIO2/BIO7)* 100

Mean Temperature of Driest
Quarter

Precipitation Seasonality
(Coefficient of Variation)
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VS-2
Grain Size 300 m
Unit Predictor
Variable
m Altitude
° Aspect
° Slope
Land Cover
m Distance from

water channels
°C

°C

CofV

Unit

o

VS-3
Grain Size 50 m
Predictor
Variable
Altitude
Aspect
Slope
Land Cover
Distance from
water channels

Unit

o
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Table 2. Allocation of predictor variables to “variable categories” and ‘variable sets’. Acronyms BCV,
BPV, V5-1, VS-2 & VS-3 refer to Bioclimatic Variables, Biophysical Variables, Variable Set 1, Variable

Set 2 & Variable Set 3 respectively.

Predictor variable/s Grain Source Variables Variable
Size Category Set

19 bioclimatic variables 1 km WorldClim - Global Climate BCV VS-1
Data

Distance from water 1 km Edina Digimap Ordnance BCV VS-1

channels Survey

Land Cover 300 m Edina Digimap Ordnance BPV VS-2
Survey

Topography (Altitude, 300 m Shuttle Radar Topography = BPV VS-2

Aspect, Slope) Mission USGS

Distance from water 300 m Edina Digimap Ordnance BPV VS-2

channels Survey

Land Cover 50 m Edina Digimap Ordnance BPV VS-3
Survey

Topography (Altitude, 50 m Edina Digimap Ordnance BPV VS-3

Aspect, Slope) Survey

Distance from water 50 m Edina Digimap Ordnance BPV VS-3

channels Survey

2.5. Model Calibration

All three modelling scenarios were run in MAXENT (version 3.3.3a) with a default convergence
threshold of 10-¢ and with 5000 iterations to allow the model scope for convergence while reducing the
risk of over- or under-predicting modelled relationships. We processed 25 model replications with a
bootstrap resampling method randomly allocating 75% of the occurrence records in the training area
for calibration and 25% for validation. To avoid dubious projections by the model, we used the ‘fade-
by-clamping’ feature which removes heavily clamped (clustered) pixels from the final predictions [26].
Rest of the MAXENT calibration was set to default settings.

2.6. Model Evaluation

Training area. Area Under the ROC (Receiver Operating Characteristic) Curve (AUC) was used to test
the performance of the model against actual observations in the training area [27]. An AUC value of 0.5
shows that the model does not predict any better than random chance, whereas a value closer to 1

indicates a better performance of the model [41]. Permutation importance contribution was used to
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assess the relative significance of predictor variables. Fitted response curves were used to visually
investigate the relationship between individual variables and predicted index of environmental
suitability of R. ponticum. In addition to AUC, we used Continuous Boyce Index (CBI) as an additional
assessment tool. The Boyce index requires presence data only and measures by how much model
predictions differ from random distribution of observed presence across the prediction gradient. The
continuous habitat suitability map is reclassified into i number of classes/bins. For each bin, Predicted
and Expected frequencies are calculated. The Predicted Frequency is calculated by dividing the number
of species’ occurrence points in the bin i, as forecasted by the model, by the total number of species’
occurrence points. The Expected Frequency is calculated by dividing the number of grid cells in bin i
by the total number of grid cells. A P/E ratio is then calculated for each bin and a Spearman rank
correlation coefficient rho (1-tailed test) evaluates if the ratio significantly increases as suitability
increases (p < 0.05). The continuous values of the Boyce index vary between -1 and +1. Positive values
indicate a model where predictions are consistent with the distribution of actual presence data, values
close to zero mean that the model is no different from a random model and negative values indicate
counter predictions (e.g. predicting no occurrence in areas where actual presence is recorded) [42][43].
2.7. Transfer Area (Model Transferability)

MAXENT produces continuous probability maps of habitat suitability in the selected geographical area.
We used R. ponticum (L.) presence records in the Brecon Beacons National Park to evaluate model
projection in the transfer area. Continuous Boyce Index (CBI) was used to assess how well MAXENT
has transferred the model to a different geographical area [42][43]. CBI is considered one of the most
appropriate metrics for assessing model predictions applied to presence-only datasets. There is some
indication that CBI is a more reliable metric than AUC when it comes to validating model transferability

to a different geographical area [44].
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3. RESULTS

The AUC & CBI based evaluation of the three models in the training area, where each model used a
different subset of predictor variables at different grain size, indicated variation in the degree of
prediction accuracy. As shown in Figure 1. AUCain, AUCtest and CBI values of VS-1, the variable set
with the coarsest grain size are the lowest, indicating the least accurate predictions in the training area
(Snowdonia). Variable sets VS-2 and VS-3, comprised of the same set of biophysical variables but at
different grain size, indicate that the finer grain size is likely to yield better model predictions.

We used Con