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ABSTRACT 

Invasive plant species represent a serious threat to biodiversity, precipitating a sustained global 

effort to eradicate or at least control the spread of this phenomenon. Current distribution ranges of 

many invasive species are likely to be modified by climate and land use change. This thesis presents 

a series of papers that aims at mapping the current distribution and predicting the potential future 

distribution of Rhododendron ponticum L. (family: Ericaceae). The series of papers aims to determine, 

a) the most important abiotic (environmental) factors affecting the distribution of R. ponticum in 

the UK, focussing on Wales as a case study, b) whether the niche of this species has shifted or 

remained conserved in the UK (compared to its native range), c) the selection of optimum 

modelling parameters for correlative species distribution model, d) future land use and land cover 

change maps for the study area and finally, e) assessing the combined effects of land use and 

climate change on potential future distribution of R. ponticum in the UK. The main results suggest 

that land cover and topography are critical in limiting the distribution of this invasive plant. 

Furthermore, ecological niche of R. ponticum has shifted in the UK compared to the Iberian 

Peninsula (native range), arguably due to hybridization. Model performance in the training areas 

improve with decreasing grain size of predictors (50 m > 300m > 1 km). However, model 

transferability requires optimum grain size which should be determined by testing a range of grain 

sizes. In most of the future land use and climate change scenarios, invasiveness of R. ponticum is 

likely to decrease by as much as 40 % of the currently invaded area. The results highlight the 

importance of considering a range of land use and climate change scenarios and including regional 

policy-based land use change projections to test the potential of invasive species to expand or 

retreat in future. Eastern belt and south western parts of Wales are vulnerable to future invasion 

of R. ponticum because of possible increase in temperature and forest cover under future scenarios. 

Invasion risk maps produced in this study could guide pre-emptive management strategies.   
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INTRODUCTION 

1. BIOLOGICAL INVASION 

Over centuries, species have been transported across the globe by humans. In the recent past, the 

intensification of international trade has accelerated species’ displacement [1]. The displaced 

species were often introduced to the environments where they did not exist before [2]. Many of 

these species had the potential to cause modifications to the landscape or ecosystem function in the 

area where they were introduced [3]. Such species became invasive and are now considered a major 

threat to the native biodiversity [4]. Invasive species are non-native species that are introduced by 

humans either accidentally or intentionally and are potentially able to spread to a level that causes 

ecological or economic damages [5]. The European Union defines invasive species as those species 

which are present outside of their natural range or distributional area and threaten biodiversity 

[6]. Although introduction of exotic species to long-established ecosystems is a natural 

phenomenon, the phenomenon is greatly accelerated by human migrations, earlier in the age of 

discovery, and more recently for international trade [7].  

There are four stages in biological invasion; transportation, colonization, establishment, and spread 

[8]. Transportation: This is the first stage of a biological invasion in which a potential invader is 

transported to a new region, where its previous absence was usually as a result of geographical 

distance from its native range. Colonization: Species transported to a new area may not necessarily 

colonize their destination as survival of the introduced species depends on the abiotic 

environmental conditions and biotic processes in the neighbourhood. To successfully colonise new 

environment, the introduced species needs to achieve a positive growth rate at low densities. If the 

introduced species survives the new conditions and achieves a positive growth rate in the 

introduced territory, it is said to have colonized the area. Generally, around 10% of transported or 
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introduced species lead to naturalized populations [8]. Establishment: This is the third stage of 

biological invasion, where an invasive species develops self‐sustaining and expanding 

populations. Spread: This is the last stage of biological invasion where an invasive species is able 

to disperse within the new region over long periods of time [8]. 

There is a suite of typical traits of introduced species which help them to outcompete native species. 

Although there are contradicting opinions on whether invasive species can be identified using 

species’ traits, evidence suggest that traits of invasive species can be considered as ‘invasiveness 

markers’ since they allow to identify the invasive potential of a large number of invasive species 

[9][10]. Such traits include fast individual and population growth, higher rates of reproductions, 

high seed dispersal potential, phenotype plasticity, a wide range of tolerance to environmental 

conditions, ability to feed on a range of sources (generalists), and prior history of invasion [11]. An 

introduced species may become invasive by outcompeting native species for carbohydrates, water, 

light, nutrients or other critical resources or it may also use the resources that were previously not 

available to the native species (e.g., colonizing previously uninhabited soil types or exploiting deep 

water table through longer roots). Also, some invasives colonize large areas by limiting growth of 

native species by the release of toxic chemicals (allelopathy) or harbouring pathogens which are 

harmful to native species [12].  

In addition to the traits of introduced species that may help to identify the invasive potential of a 

species, some studies have highlighted characteristics of ecosystems vulnerable to invasion. For 

example, some earlier studies suggested that ecosystems with high species richness are less 

vulnerable to biological invasion due to fewer available niches [13]. Furthermore, ecosystems that 

are similar to those where potential invaders have evolved are more likely to experience invasion. 

Also, ecosystems that have experienced human-induced disturbances are vulnerable to potential 

invasion. For example, human activities typically favour the establishment of invasive species by 
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simplifying existing ecosystem structure and thus reducing competitive pressure from natives 

and/or by enhancing resource availability by creating underutilised or empty niches [14]. 

In ecosystems, the amount of available resources and the extent to which those resources are used 

by organisms modifies the effects of additional species on the ecosystem. In uninvaded ecosystems, 

equilibrium exists in the use of available resources. When an invasive species is introduced in an 

ecosystem, it competes with the native species for the available resources. Some forms of the 

competition – in case of invasive plant species  may include shielding a plant from sunlight, making 

use of most of the nutrients found in the soil, or limiting the amount of water a native plant receives, 

while consuming it. If the invasive species is not controlled, the ecosystem, in general, can severely 

suffer, especially the native organisms of the ecosystem. In some cases, an invasive species can 

cause native species of an ecosystem to face extinction. This would, in turn, reduce the biodiversity 

of that ecosystem. Therefore, these mechanisms describe a situation in which the ecosystem suffers 

a disturbance, which changes the fundamental nature of the ecosystem [15]. 

Invasive species, particularly woody plant species, have caused large-scale degradation of invaded 

ecosystems [16]. Invasive species complicate biodiversity conservation and challenge the integrity 

of ecosystems by reducing genetic variation, altering ecosystem functions, and eroding gene pools 

by eliminating local species [17]. In addition to ecological consequences, invasive species have 

economic impacts, which are often valued as financial costs based on extrapolations of some of the 

most widespread invasive species [16]. Economic damages from invasive species are either direct 

costs, which are the financial losses in the form of production losses in agriculture and forestry 

sector or management costs, which include the expenditures of eradiating or controlling the invasive 

species. It is estimated that the total cost of invasive species in the US alone exceeds $138 billion 

annually. Besides, there could be other costs associated with invasive species, such as loss of 

recreational or tourism sites. An accurate estimation of the financial value of the impacts of invasive 



Introduction 
 

5 | P a g e  

species is difficult because of complicated invasion dynamics and the difficulty of monetizing 

biodiversity and ecosystem service [18]. 

2. SPECIES DISTRIBUTION MODELLING 

With increasingly numerous and evident impacts of invasive species across the globe, forecasting 

future patterns of invasion by identifying susceptible areas has become a key subject in ecological 

research [19]. This is primarily because once established in an area, a complete eradication of 

invasive species is unlikely to take place due to significant financial costs, labour requirements, 

and logistical problems [20][17]. Thus, forecasting the introduction of invasive species could be 

critical to preventing the introduction or expansion of invasive species [20]. Species distribution 

models (SDMs) - also known as ecological niche models, habitat suitability models or climate 

envelope models – are used to generate invasion risk maps that forecast the potential distribution 

of invasive species as a function of a set of variables, most importantly climate gradients [21]. SDMs 

show the relative likelihood of establishment of invasive species, should the invasives be 

introduced to the study area being modelled [22]. These invasion risk maps can help prioritizing 

the potential hotpots of future invasion and thus aid surveillance and management [23] of potential 

spread of emerging invasive species [21]. Moreover, SDMs help understanding the mechanisms 

underpinning the invasions [24]. Conservation agencies around the world are now investing in 

predictive modelling to forecast invasion risks. For example, ‘Pratique’ 

(www.secure.fera.defra.gov.uk/pratique/) is an initiative of European Union that is aimed at pest 

risk analysis and focusses on mapping pest ranges. Similarly, in the United States, NAPPFAST [25] 

database is being used by the Animal and Plant Health Inspection Service to run risk assessment 

models, while in Australia, climate suitability of ecologically important species is modelled by the 

Department of Agriculture, Forestry and Fisheries using a climate matching system called, 
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CLIMATE [26]. Thus, there is a global interest in combining different biodiversity databases to 

modelling tools to conduct risk mapping. 

The philosophy of SDMs largely rest upon the idea of a ‘niche’, which was first presented in early 

1900’s by Joseph Grinnell and Charles Elton. Grinnell [27] defined niche as a subdivision of the 

habitat that contains the environmental resources or conditions required for a species for survival 

and reproduction. These environmental conditions determine the distribution and abundance of 

species. In 1920’s - a decade after Grinnell presented this idea of ecological niche - Elton [28] 

presented his notion of niche and focussed on the functional role of a species in a community. 

Unlike Grinnell, Elton’s focus was more on species interaction in a community rather than where 

a species could occur. Elton's idea of niche laid the foundation for the later elaborations and 

applications of this concept, most importantly the contribution of Hutchinson [29] who devised the 

distinction between the fundamental and the realized niche. Hutchinson defined fundamental 

niche as “the set of resources—physical and biological—that a species could use that would enable 

it to exist indefinitely”. Therefore, the fundamental niche is determined by intrinsic properties of a 

species—how it responds to the environment—rather than by extrinsic properties of the 

environment independent of the species. On the other hand, the realized niche is defined as, “the 

subset of the fundamental niche to which a species is constrained by interactions with other species 

(competition, predation) with which its fundamental niche overlaps”. The concepts of fundamental 

and realized are critical to contemporary ecological niche modelling. 

There are generally two approaches in ecological niche modelling; roughly based on whether the 

fundamental or the realized niche is adopted as the frame of reference [30][31][32]. One approach 

is “mechanistic modelling” that involves using information on the intrinsic traits of species in order 

to determine species’ response to the environment; for example, using information on species’ 

characteristics such as physiology, life-history, tolerance ranges, genetic plasticity, etc. to identify 



Introduction 
 

7 | P a g e  

current and future sites where species’ desired conditions may occur [33][34]. The second approach 

is called “correlative modelling” that uses values of environmental variables as measured in places 

where the species exists and correlates its presence with the values of the environmental variables. 

It is also possible to extrapolate and predict future occurrences in places where the correlated 

environmental features are projected to be present. Since correlative SDMs are based on species’ 

observed distribution, they model the realized niche (the environments where a species is found), 

as opposed to mechanistic models which model the fundamental niche (the environments where a 

species can be found, or where the environment is appropriate for the survival) [35]. Most of the 

studies on species distribution have used correlative modelling approach, primarily because of 

lack of mechanistic information for species. 

SDMs rests upon four basic assumptions. First, species are at equilibrium with environmental 

conditions in the native range, i.e., a species is assumed to be present on all locations within the 

training area where environmental conditions are suitable for the species. Second, niche stability 

is assumed, i.e. environmental factors which limit the occurrence of a species in its native range 

also limit its occurrence in the introduced area. Third, the training samples are representative of 

the environmental conditions across the current range, and fourth, assumption is that the climatic 

conditions in the native and introduced areas are analogous. Violations of these assumptions can 

lead to errors of omission or commission (false negatives or false positives) [36]. 

SDMs predict the species’ distribution across a geographic space (and time) by using a variety of 

environmental data sources, e.g. precipitation, temperature, soil types, topography, land cover, etc. 

These models establish a relationship between species current occurrence and the value of the 

environmental variables on the occurrence locations and then project this relationship to predict 

distribution across space and time. SDMs are used to understand how different environmental 

factors influence the distribution of species and thus find a number of applications in ecology, 
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conservation biology and evolutionary studies. SDM-based predictions can be used to predict 

species’ distribution under future climate change, to track past distribution of the species to 

investigate evolutionary processes or potential spread of invasive species in future. SDM 

predictions can also provide habitat suitability for species which in turn can help in several 

management applications such as translocation of species, reintroduction of vulnerable species or 

conservation of endangered species in anticipation of climate change [37].  

Although application of SDMs to invasive species and risk assessment is relatively new, it is 

evolving very rapidly [38][39][40][41][42][43][44]. A recent study reporting a detailed review of 

literature on SDMs and invasive species suggested that the major applications of SDMs are 

investigating species invasion ecology, estimating possible range shifts of invasive species under 

climate change scenarios and assessments of land use and land cover change and human footprint 

on the spread of invasive species [45].  

3. RHODODENDRON PONTICUM 

While choosing an invasive species for the studies presented in this thesis, I considered a number 

of important points. I asked questions about the ecological and economic importance of the species. 

Are there reliable and accurate historical presence location data available for the species? Has the 

species not been modelled before? How could ecological modelling of species contribute to 

ongoing theoretical debates and on-field policy-making and management plans? After a detailed 

review of literature, I considered Rhododendron ponticum L. (family: Ericaceae) for this thesis as this 

species ticked ‘Yes’ to all the questions mentioned above. Ecological modelling for R. ponticum 

would not only help understanding the spread of this species (which is highly problematic in the 

UK and Europe), but the models built for this species can be replicated for similar invasive species, 

e.g. Prosopis juliflora in Asia. R. ponticum (Figure 1) is an evergreen shrub of up to 8 m in height, 

native to the Iberian Peninsula, Black Sea Coast, and Caucasus region. R. ponticum was brought to 



Introduction 
 

9 | P a g e  

the British Isles in 1763 as an ornamental plant [46]. Since its introduction, it has invaded a range 

of habitats in Britain, including native woodlands and non-native conifer plantations, heath, bogs, 

and upland grasslands [47][48]. R. ponticum, once established, forms a dense canopy that 

suppresses the growth of most plant species in the understorey due to low light intensity [46]. 

Eventually, this inhibits the growth of most ground flora seedlings, leading to reduced native 

habitat regeneration [46][49]. Since mature trees are not replaced, vast areas of dense R. ponticum 

monoculture are seen with aging tree canopies [50]. 

A number of factors have led to the successful invasion of R. ponticum in Britain. Although its native 

habitat is the Mediterranean, it thrives in the moist temperate climate in Britain, which increases 

its seedling establishment [47][49][51]. Also, it is well suited to the acidic soils along with uplands 

of Britain and the wetter western coast [47][48]. Another important factor responsible for the 

successful invasion of R. ponticum is a very high seed production; one bush produces more than a 

million seeds per year, which are small and wind-dispersed, allowing them to rapidly spread over 

vast distances [46][51][52]. Furthermore, R. ponticum is unpalatable to most herbivores due to high 

concentrations of phenolic compounds and grayanotoxins in its foliage, which protect it from 

grazing. Consequently, this species has few natural enemies in Britain, lending it a competitive 

advantage over native flora [46][52][53][54]. Evidence suggests that R. ponticum decreases soil pH 

and can alter nutrient cycling, which makes its invasion successful in most of the native habitats 

[55][56][57]. Also, this species is known to release a number of bioactive compounds into soil, 

which have phytotoxic effects on other flora, which inhibits the growth and germination of native 

plants [54]. For example, root elongation of native tree species is limited in soils where 

Rhododendron  grows or on sites where Rhododendron was present for two months [58]. 

In Rhododendron-invaded woodlands, the only way for a plant species to survive is to grow over 

the dense Rhododendron canopy. This is problematic even for tree species which normally 
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outgrow Rhododendron. For example, a fast growing tree such as Silver Birch finds it impossible 

to regenerate as seedlings struggle for sunlight. In addition to substantial biodiversity losses, the 

control and removal of Rhododendron cost significant amounts of money. For example, in Ireland, 

Rhododendron costs the Irish forestry service almost £1m a year. In Northern Ireland, the control 

and removal of Rhododendron cost £270,000 per year [59]. Similarly, in Snowdonia National Park 

(Wales), the removal of Rhododendron was estimated to cost £10m over five years [60]. However, 

despite such massive costs, R. ponticum has not  been completely eradicated in most of Wales and 

Scotland. For example, Snowdonia National Park authorities state that, “In several places, we are 

making a real impact and Rhododendron is well on its way to being eliminated. Elsewhere the battle has 

hardly begun.” (https://www.snowdonia.gov.wales/looking-after/invasive-species/rhododendron). 

This suggests that the actual cost control could be much higher than the estimates brought to light 

so far.  

Figure 1: Rhododendron ponticum plant. 
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4. STUDY AREA 

R. ponticum is an established non-native invasive species within the UK, threatening a variety of 

natural and semi-natural habitats and the associated flora and fauna. It has invaded almost all parts 

of the UK and causes significant damages to forestry, agriculture, and livestock sector. Of the 

various parts of U.K. invaded by R. ponticum, Wales is one of the worst affected regions and 

therefore it was considered a suitable study area for examining the effects of climate and land use 

change on the distribution of R. ponticum. Wales is a country with an area of nearly 21 000 km2 and 

a population of over 3 million, most of which live in rural communities [61]. The population is 

unequally distributed, with most people living in coastal areas in the northeast and south Wales. 

The country is characterized by a wide variety of landscapes, reflecting both its rugged topography 

and a long history of agricultural settlement and industrialization. Significant areas of land 

(approx. 6000 km2) are at an altitude above 300 m. Welsh countryside contains a range of important 

habitats, including woodlands, semi-natural grasslands, heathland, fens, bogs, coastal ecosystems 

including sand dunes and saltmarshes, and a diverse range of upland and montane habitats 

[62][63]. Only a small proportion—6%—of the country is occupied by arable agriculture, while the 

major land use types are grazing (77%) and forestry (15%) [64][65][66]. Significantly, most decisions 

affecting the Welsh landscape have been devolved to the Welsh Assembly and the country thus 

represents a uniform regulatory environment. Figure 2 shows topographic variation and land 

cover classes in Wales, UK. 

In addition to the UK, I included the Iberian Peninsula for the study presented in Chapter 3 of this 

thesis. This is because the British population of Rhododendron is native to Iberia. Thus, to examine 

the ecological niche conservatism of Rhododendron, ecological niche occupied by Rhododendron 

in the UK was compared to the one occupied by this species in Iberia. 
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Figure 2. a) Altitude (m) and Land cover (2015) of Wales. 

5. KNOWLEDGE GAPS 

Ecological modelling of invasive species generally starts by asking some basic questions: What is 

the current distribution of the species in its invaded region? What are the key environmental 

determinants (environmental factors) of its distribution? What is the native range of the invasive 

and does it occupy the same ecological niche in its invaded range as it does in its native range? Are 

the current and future projections of the required data available to map the current distribution 

and patterns of invasion? While considering these questions, I found some knowledge gaps in 

literature which became the foundation of a series of studies compiled in this thesis. Following are 

brief notes on the identified knowledge gaps.  

i. Mapping Current and Forecasting Future Distribution of R. ponticum In Wales 

Mapping current distribution of an invasive species and generating risk maps is critical to invasive 

species management [67]. There is currently no study published on mapping current and future 

distribution of R. ponticum in the UK under current and future land cover and climatic conditions. 

Also, prior to this study, there was no literature or risk assessments maps delineating invasion 
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hotspots for R. ponticum in Wales, which is the most invaded part of the UK. Although several 

studies had highlighted environmental factors critical to the establishment of R. ponticum, no 

ecological model was built to verify the relationship of R. ponticum distribution to the identified 

ecological factors driving the spread of R. ponticum in the UK. 

ii. Testing Niche Conservation Hypothesis for R. ponticum 

A critical assumption in SDMs is that the niche of a species is conserved, i.e. it occupies the same 

environmental conditions in the invaded range as it does in the native range [68]. R. ponticum was 

introduced to the British Isles as an ornamental plant from mainland Europe in the eighteenth 

century [69]. At the moment, there is no consensus on whether the niche of R. ponticum is conserved 

between its native range in the Iberian Peninsula and invaded range, Britain. The suitability of R. 

ponticum to the British environment and its invasiveness were first thought to result from a 

hybridization of R. ponticum with R. catawbiense, (a North American species), a process which 

supposedly lent frost hardiness to the British R. ponticum population [69]. However, this thesis was 

later rejected by other reports which did not find any genetic evidence of such hybridization [70]. 

The spread of R. ponticum thus represents an opportunity to test how the current niche occupied in 

Britain corresponds to that in its native Iberia. Knowledge gaps thus exist as to whether, (a) the 

native and invaded niches are equivalent (native and invasive niches are interchangeable), and (b) 

the native and invaded niches are similar (the native and invasive niches are more similar than 

expected by chance). 

iii. Understanding the Role of Grain Size in SDMs Performance and Transferability 

The role of grain size (the spatial resolution of GIS data layers) is critical in SDMs [71] but only a 

handful of studies had addressed this issue. A detailed review of literature revealed that over-

reliance on bioclimatic variables may lead to an unnecessary compromise on the grain size of 

critical variables, with potentially negative impact on the accuracy of model predictions and 
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transferability. An important knowledge gap is to test the accuracy of SDMs with and without 

bioclimatic variables and assess whether the decreasing the grain size improves model 

performance. 

iv. Projection of Land Use Change of Wales Under Contrasting Policy Scenarios 

A large majority of SDMs, when projecting into future, rely only on future climate change scenarios 

[72][73][74][75]. However, it is repeatedly reported that land cover is critical to predicting the 

distribution of invasive species [76]. Currently no study exists on the projecting likely future trends 

of land use and land cover (LULC) change in Wales. Thus, a knowledge gap  is to map historical 

patterns of LULC and LULC change in Wales and develop contrasting future LULC scenarios 

based on (i) current trends and (ii) an alternative policy which may then be fed into SDMs to model 

the distribution of R. ponticum under different land use change scenarios. 

v. Combined Effects of Climate and Land Use Changes on The Future Distribution of R. 

ponticum 

Effects of land use and climate change on the distribution of species are often studied in isolation, 

with only a handful of studies assessing the combined effect of these two drivers on the distribution 

of species [76]. Particularly, no study exists that studies the effects of policy-driven land use change 

scenarios and future climate change scenarios on the distribution of invasive species. A knowledge 

gap bridged by this study relates to the combined effect of climate change and LULC projections 

on future distribution of R. ponticum in Wales to make a theoretical contribution to the debate on 

combining climate change and LULC changes to predict species distribution and, at the same time, 

generate risk assessment maps that are directly applicable to managing future invasion patterns of 

R. ponticum in Wales. 
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6. AIMS & OBJECTIVES 

The aim of this thesis is to understand the drivers of distribution of R. ponticum in the UK and 

predict its distribution in near future under a set of climate and land use change scenarios.  

To achieve the above-mentioned aims, following objectives were set: 

i. To test the effects of bioclimatic, topographic and anthropogenic (proximate) factors on the 

distribution of R. ponticum in Wales.  

ii. To test if the ecological niche of R. ponticum is conserved in its invaded range (UK) as compared 

to its native range (Iberian Peninsula). 

iii. To generate policy-driven land use change scenarios for Wales. 

iv. To test the combined effects of future climate and land use change on the future distribution 

of R. ponticum in Wales. 

7. HYPOTHESES 

At the start of the research, I anticipated that land cover would be the most important predictor of 

R. ponticum distribution because it is a ‘habitat specialist’ (i.e. its distribution is strictly associated 

with woodlands - be it conifer, broadleaf or mixed species woodlands – as it inevitably requires 

canopy cover to spread under ‘the cover’) and therefore likely to be strictly associated with its 

preferred habitat type. Moreover, as is the case with many other invasive species reported in 

literature, I thought that the future land use and climate change would increase the invasive 

potential of this species and expected the niche of R. ponticum to be conserved in its invaded range.  

Therefore, I formulated following main hypotheses and designed the studies to test them which 

are presented in this thesis: 

i. Ecological niche of R. ponticum in conserved in its invaded niche. 

ii. Land cover is a more important determinant of the distribution of R. ponticum as compared to 

climate.  
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iii. Species distribution models improve with decreasing grain size of predictor variables. 

iv. Climate and land use change will enhance R. ponticum invasion in the UK. 

8. EVOLUTION OF RESEARCH IDEAS AND THESIS OUTLINE 

The basic idea of this PhD research sprung in 2015 when I studied the severity of damage caused 

by Prosopis juliflora (L.), an invasive shrub in the irrigated forest plantations of Pakistan. I submitted 

a research proposal for ecological modelling of invasive plant species quoting P. juliflora as an 

example and was awarded Commonwealth PhD scholarship to study at the University of Reading, 

UK in 2016. While reviewing the literature in the first few weeks of my PhD, I found surprising 

similarities between R. ponticum in the UK and P. juliflora in Pakistan. Both are shrub-like plants, 

invade woodlands and cause substantial economic and ecological damage to invaded ecosystems. 

At that point, I decided to replace Prosopis with Rhododendron as the focal species of my PhD due 

to better historical data availability and easier access to local expertise. The plan is to adapt the UK 

models and the modelling methodology for Prosopis in Pakistan at a later stage. In late 2016, I 

conducted a pilot study in which I mapped the current distribution of R. ponticum in Wales using 

climatic, topographic, and land cover variables. I concluded that land cover is central to predicting 

the future distribution of this invasive species in Wales. Based on the initial findings, I designed 

the first study (Chapter 2), where I modelled the current and future distribution of R. ponticum in 

Snowdonia National Park, Wales, using future climate and LULC change scenarios. In a pattern 

typical of many research undertakings, the results of this study raised a number of further research 

questions:  

i. A reviewer of the resulting paper (presented in Chapter 2) questioned why the species 

distribution model for R. ponticum was not trained in its native range (Iberian Peninsula) 

to predict its distribution in the UK? At that time, there were no reports on the ecological 

niche conservatism of R. ponticum. This simple question eventually led to the plan to 
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investigate the ecological niche dynamics of R. ponticum. Chapter 4 of this thesis addresses 

this question. 

ii. The SDM presented in Chapter 2 had a spatial resolution of 1 km. Thinking about the 

assumption that finer scale representation of landscape processes is able to represent them 

better, I decided to test this notion by running the model at a different spatial resolutions 

and see how it would affect its performance and transferability across space. This question 

was addressed in Chapter 3 of this thesis. 

iii. The future LULC change scenario used in Chapter 2 was just a business-as-usual projection 

of past trends. But future changes are not likely to follow a linear trajectory of change (e.g. 

Brexit). How would the current land management policies of Welsh government affect the 

future LULC changes in Wales and to what extent would such a scenario differ from the 

B-a-U scenario? The study presented in Chapter 5 attempts to answer this question.  

iv. After the completion of the first four studies (Chapters 2-5), I thought it would be 

interesting to combine the individual lessons learnt each by combining them to run the 

SDM for R. ponticum at national scale in Wales using the optimum grain size, a range of 

climate and LULC change scenarios to test the effect of climate and land use on the future 

distribution of this invasive species (presented in Chapter 6 of this thesis). 

A conceptual framework of this thesis is presented in Figure 3.
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Figure 3. Conceptual framework of thesis.
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LAND COVER AND CLIMATE CHANGE MAY LIMIT 

INVASIVENESS OF RHODODENDRON PONTICUM IN WALES 

 

ABSTRACT 

Invasive plant species represent a serious threat to biodiversity precipitating a sustained global 

effort to eradicate or at least control the spread of this phenomenon. Current distribution ranges of 

many invasive species are likely to be modified in the future by land cover and climate change. 

Thus, invasion management can be made more effective by forecasting the potential spread of 

invasive species. Rhododendron ponticum (L.) is an aggressive invasive species which appears well 

suited to western areas of the UK. We made use of MAXENT modelling environment to develop a 

current distribution model and to assess the likely effects of land cover and climatic conditions 

(LCCs) on the future distribution of this species in the Snowdonia National park in Wales. Six 

general circulation models (GCMs) and two representative concentration pathways (RCPs), 

together with a land cover simulation for 2050 were used to investigate species’ response to future 

environmental conditions. Having considered a range of environmental variables as predictors and 

carried out the AICc-based model selection, we find that under all LCCs considered in this study, 

the range of R. ponticum in Wales is likely to contract in the future. Land cover and topographic 

variables were found to be the most important predictors of the distribution of R. ponticum. This 

information, together with maps indicating future distribution trends will aid the development of 

mitigation practices to control R. ponticum. 
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1. INTRODUCTION 

Invasive alien species are considered the second biggest threat to global biodiversity, after habitat 

degradation [1][2]. Invasive plant species alter the dynamics of plant communities and thus 

threaten the stability and functioning of established ecosystems by affecting nutrient cycles and net 

primary productivity, affecting soil health by increasing soil acidity, posing risk for pollinators, 

inhibiting regeneration of native species, and competing with native flora [3][4][5][6]. Plant 

invasion causes significant economic losses to crop and livestock farmers around the world [7]. 

Various studies estimate that the global monetary value of direct damage and associated control 

of invasives exceeds $100 billion per annum [8]. However, since there are many invasive species 

with no recorded damage costs, the true figure is likely to be many times higher than these 

estimates [9]. Several studies have highlighted the potential impacts of global climate change on 

population dynamics of invasive species, with secondary effects on host plant communities and 

ecosystems [10][7]. During the last century, global average temperatures have increased by 0.85◦C 

above pre-industrial levels and are expected to further increase by 0.3–4.8◦C by 2100 (IPCC, 2013). 

Changes in climatic conditions may render some regions more or less suitable for invasive plants 

thus increasing or decreasing their range [12]. Effects of climate change on invasiveness of alien 

species must be considered and any prediction of future distribution should include a range of 

climate change scenarios. 

Once an invasive species has established itself, one of the most cost-effective ways to reduce its 

threat is to map its current distribution and take pre-emptive measures to prevent further 

expansion [13]. Such targeted management of biological invasions is not possible without 

information about the likely future distribution of invasive species. In this context, species 

distribution models (SDMs) present a workable opportunity to examine future changes in species 

distribution [14]. As climate is a strong determinant of habitat suitability of plant species [15], SDMs 
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are often driven by environmental variables. Also known as ecological niche models, they are 

successfully being used for projecting the impacts of climate change on plant distributions [16][17]. 

In principle, species are assumed to exist in a “niche” described by ecological requirements of the 

species. SDMs characterize the ecological space of a species and subsequently identify vulnerable 

locations based on the environmental suitability of the species [18]. 

In addition to climate, distribution of invasive plant species is often strongly linked to land cover 

type. For instance, transportation corridors, continuous grasslands, forest areas, and proximity to 

human settlements are often reported as strong determinants of species spread [19]. A score of 

SDM studies indicates that land cover is often a far better predictor of species habitat suitability 

than climatic variables [20][21][22][23][24]. Changes in land cover can affect both quality and 

quantity of suitable habitat, in some instances the landscape variables alone can accurately predict 

the distribution of a species [25]. It is therefore recommended to consider climate and land cover 

change in combination when exploring species’ niche shifts in future [26]. However, despite the 

fact that land cover is an integral part of species’ ecological niche, the majority of SDM studies 

investigating species’ future distribution ignore it and assume that species’ future distribution is 

only driven by shifts in climatic variables [27][28][29]. The history of climatic changes and human 

land use shows that land cover types will shift, any modelling of species’ future distribution based 

merely on climatic variables may lead to a severely misleading prediction [30]. 

In Europe, Rhododendron ponticum (L.) is an invasive plant species that was introduced to the United 

Kingdom in the eighteenth century as an ornamental plant. It is a perennial, evergreen shrub that 

generally invades woodlands [6], although it has been shown to colonize other types of habitats 

too. The main ancestor is reported to be the population of R. ponticum resident at the southern tip 

of Spain. The successful invasion of R. ponticum in the UK is attributed to a range of its ecological 

and biological characteristics: it produces great amounts of seeds which are wind-dispersed, can 
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tolerate shade and thus outcompetes flora under closed canopies and can easily colonize low-

nutrient sites [31]. It often prevents germination of native plant species by casting a dense shade 

and by releasing toxins into the soil [32]. Germination of R. ponticum seeds may occur on a number 

of substrates, including tree stumps and mosses covering bare ground [33]. The UK invasion by 

this shrub has been more intense in Western and North Western parts, which are the comparatively 

cooler and wetter areas of Britain. A genetic analysis of the British population of R. ponticum has 

confirmed the presence of genes from R. catawbiense (Michx), suggesting past hybridization 

between the two species. R. catawbiense is a species native to North America and characterized by 

greater cold tolerance [34][5][35], a trait that may increase invasiveness of R. ponticum in the UK. 

However, an in-depth analysis is still required to identify the other key environmental factors 

responsible for colonization and spread of this species. Of the various parts of U.K. invaded by R. 

ponticum, Wales is one of the worst affected regions. In this study, we focus on the Snowdonia 

National Park in Wales where R. ponticum is identified as a major invasive species affecting large 

areas of the National Park [36] indicating that current environmental, topographic and land cover 

conditions in Snowdonia represent a range of conditions very suitable for R. ponticum. 

We examine the current and future distribution of R. ponticum in Snowdonia National Park, Wales, 

UK under current and future land cover and climatic conditions (LCCs). Our modelling effort aims 

to, (a) delineate “invasion hotspots” for R. ponticum in Snowdonia National Park, (b) identify key 

ecological factors driving the spread of R. ponticum in the park, and (c) identify likely spatial 

patterns of habitat suitability under future climate conditions to establish a theoretical reference 

framework for management plans to combat the potential invasion of R. ponticum. 

2. METHODOLOGY 

We used MAXENT, a maximum entropy-based machine learning algorithm to model the 

distribution R. ponticum in Snowdonia National Park. MAXENT predicts the probability 
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distribution of a species on the basis of a given set of environmental variables and presence-only 

species occurrence data [37]. We selected MAXENT because, (a) it does not require absence data 

[38], (b) it efficiently handles complex interactions between predictor and response variables [16], 

(c) being a generative model, it performs better than discriminative models when it comes to 

modelling with presence-only records and, (d) it can be run with both categorical and continuous 

data variables [39]. There are several known limitations of the MAXENT modelling environment; 

(a) sensitivity to small sample size and questionable occurrence records [39], (b) use of overly 

complex models due to user over-reliance on default model calibration settings [40], and (c) biased 

performance due to errors in sampling effort or spatial autocorrelation of occurrence records [41]. 

In this study, we countered these model limitations by; (a) using reasonably large sample size and 

applying recommended screening and verification of occurrence records, (b) tuning the model by 

identifying optimal model calibration settings, and (c) accounting for sampling bias and applying 

spatial filters to reduce clustering. 

2.1. Pre-Processing of Occurrence Records and Predictor Variables 

Presence-only occurrence records of R. ponticum were obtained from COFNOD (Local 

Environmental Records Centre in Wales, UK). A dataset totaling 436 occurrence records 

originating from a continuous field observation campaign spanning the period between 1981 and 

2016. COFNOD has confirmed that the entire area of Snowdonia National Park had been 

thoroughly surveyed by ground surveys and remote sensing tools, thus minimizing the possibility 

of sampling bias in the dataset. Consequently, in our modelling effort we covered the entire area 

of the national park, generating 10,000 random background points to be selected from in each 

replicate run of the model. Spatial uncertainty of all occurrence records was verified, and all 

duplicate or not georeferenced occurrence points were removed. Occurrence data were spatially 

rarefied by eliminating all but one point present within a single grid cell of the predictor variable 
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layers to reduce clustering. As a result, the number of occurrence points used for model calibration 

and verification was reduced from 452 to 92. 

We considered a total of 23 predictor variables (Table 1) covering Snowdonia National Park at a 

cell resolution of 30– arc-seconds (∼1 km, worldclim.org, version 1.4) [42]. These 23 variables were 

selected on the basis of published information on plant-habitat associations of R. ponticum. We 

included bioclimatic variables, together with a land cover variable as R. ponticum is a habitat-

specialist and thus sensitive to land cover type. In addition, we included topographic factors such 

as slope, aspect and altitude as these factors are also known to limit the distribution of this species 

[43][44][32][45]. In all, our predictor dataset consisted of 19 climatic variables which were 

complemented by 3 topographic and 1 land cover variable. A Digital Elevation Model (Shuttle 

Radar Topography Mission, https://lta.cr.usgs.gov/SRTM1Arc) with spatial resolution of 30m was 

used to derive three topographic variables: altitude, aspect and slope. Land Cover data originates 

from “The European Space Agency CCI” global land cover product available at 300m of spatial 

resolution (www.esalandcover- cci.org). The whole set of 23 variables (19 climatic, 1 land cover, 

and 3 topographic) was re-sampled to 1 km spatial resolution and masked to the extent of 

Snowdonia National Park. A combination of expert knowledge, published studies on R. ponticum 

invasiveness in the UK and statistical methods was used to select an appropriate set of predictor 

variables to reduce the negative impact of multicollinearity and to conform to statistical 

assumptions [46].We removed highly correlated variables by applying a Pearson correlation 

coefficient cut-off of r ≤0.85 to select the variable layers for use in final model runs [47]. 
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Table 1. Predictor variables used in the study; variables highlighted in bold were selected to run 

all models presented in this study. 

Code Predictor Variable Unit 

BIO 1 Annual Mean Temperature °C 

BIO 2 Mean Diurnal Range (monthly (max temp - min temp)) °C 

BIO 3 Isothermality (BIO2/BIO7)* 100 
 

BIO 4 Temperature Seasonality (standard deviation *100) C of V 

BIO 5 Max Temperature of Warmest Month °C 

BIO 6 Min Temperature of Coldest Mont °C 

BIO 7 Temperature Annual Range (BIO5-BIO6) °C 

BIO 8 Mean Temperature of Wettest Quarter °C 

BIO 9 Mean Temperature of Driest Quarter °C 

BIO 10 Mean Temperature of Warmest Quarter °C 

BIO 11 Mean Temperature of Coldest Quarter °C 

BIO 12 Annual Precipitation mm 

BIO 13 Precipitation of Wettest Month mm 

BIO 14 Precipitation of Driest Month mm 

BIO 15 Precipitation Seasonality (Coefficient of Variation) C of V 

BIO 16 Precipitation of Wettest Quarter mm 

BIO 17 Precipitation of Driest Quarter mm 

BIO 18 Precipitation of Warmest Quarter mm 

BIO 19 Precipitation of Coldest Quarter mm 

Altitude Altitude m 

Aspect Aspect ° 

Slope Slope ° 

Land Cover Land cover 
 

 

2.2. Habitat Suitability Under Climate and Land Cover Change Scenarios 

Projected future climatic conditions for the year 2050 based on the IPCC 5th assessment report was 

used to assess the potential effects of climate change on R. ponticum habitat suitability in Snowdonia 

National Park. We used the following six GCMs projections: BCC-CSM1-1, CCSM4, GISS-E2-R, 

MIROC5, HadGEM2-ES, and MPI-ESM-LR. These are some of the most recent GCMs, also used in 

the Fifth Assessment IPCC report and are currently considered the most reliable GCMs for future 

climate projections [48]. The assessment was made under two Representative Concentration 

Pathways: RCP 4.5 and RCP 8.5. RCP 4.5 describes a scenario where GHG emissions are stabilized 
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and thus represents a stable scenario, while RCP 8.5 is a scenario depicting an extreme situation 

where GHG emissions increase until 2100 [49]. 

Land cover for 2050 was simulated in Terrset software [50] using recommended protocols 

[51][52][53]. Making use of the Multi-layer Perceptron-Markov Chain (MLP-MC) model, we 

projected the future land cover changes of Snowdonia National Park in 2050 based on historical 

changes in the land cover between 2005 and 2015. The land cover maps for 2005 and 2015 were 

acquired from “The European Space Agency CCI” global land cover product. Land cover 

transitions were modeled using a Multi-layer Perceptron neural network. A transition matrix was 

created to quantify the transition potential between the two time periods. For the sake of simplicity, 

we assumed that the transition probabilities (patterns of change) would remain unchanged in 

future and used these to predict land cover for 2050. We used a number of driver or explanatory 

variables to generate transition potential maps to improve the prediction accuracy of the model. 

These driver variables included elevation, aspect, hillshade, slope, distance to roads, distance to 

road nodes, distance to water channels, distance to hydro nodes, distance to green space sites, and 

distance to access points. A flow chart of the land cover and species distribution modelling is 

shown in Figure 1. 
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Figure 1. Flow chart detailing sequential steps carried out in land cover simulation (Step I) and 

Maxent based species distribution modelling (Step II) of R. ponticum in Snowdonia National Park, 

Wales. 

 

2.3. Maxent Model Complexity and Tuning 

The complexity of models resultant in MAXENT environment is primarily driven by the following 

two factors; feature type and regularization parameter [40]. Maxent offers a range of five function 

forms known as “feature types” to explain the relationship between predictor variables and the 

probability of species occurrence. These feature types are labelled as Linear (L), Quadratic (Q), 

Hinge (H), Product (P), and Threshold (T) (see [37][38][39] for details). Maxent allows users to 

select and combine different function forms manually or picks functions or their combinations 
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automatically when left in the default “Auto Feature” mode. Most of the published MAXENT-

based studies rely on the default options of feature type and regularization parameters, which 

means that model complexity and the risk of over-fitting is completely ignored by the researchers 

[51]. The second key factor that determines the complexity of MAXENT models is the 

regularization parameter. As part of the modelling process, MAXENT pushes or modifies the 

predictor values (such as variance and mean) of environmental variables as close as possible to the 

values describing actual presence points, which frequently leads to overfitting of the model. To 

counter over-fitting, MAXENT uses the regularization parameter to control the complexity of 

models (the default value is 1). The regularization parameter limits the number of “features” in the 

model, depending on the number of presence records (fewer records allow for fewer features to be 

included). A higher value of the regularization parameter penalizes the number of features and 

thus leads to less complex models [52]. Various studies have confirmed that calibrating MAXENT 

models with default settings frequently leads to highly complex models, a species-specific tuning 

of the model is thus recommended [40]. In this study, we generated all possible combinations of 

features types in combination with a range of regularization parameter values; 0.1, and then 1–10 

with an increment of 1. We then used ENMeval R package to select the model with the lowest AICc 

(corrected Akaike Information Criterion) value which was then used as the most appropriate (least 

over-fitted model) out of the whole suite of models [53][51]. 

2.4. Model Calibration and Evaluation 

We ran MAXENT (version 3.3.3a) with the default convergence threshold of 10−6 and with 5,000 

iterations. This number of iterations was set to allow the model a reasonable scope for convergence, 

thus reducing the risk of over-predicting or under-predicting the model relationships. The selected 

model used the “Linear” and “Quadratic” feature types and the regularization parameter of 2, as 

indicated by the lowest AICc value. We processed 20 model replications with bootstrap resampling 



  Chapter 2 

33 | P a g e  

which randomly allocated 75% of the occurrence records to calibration and 25% to validation. We 

used the average of the 20 replicate models to produce habitat suitability maps under current and 

future scenarios. MAXENT produces continuous suitability index in its output, 10 percentile 

training presence thresholds was employed to convert this index into binary form (suitable and 

unsuitable habitat) [54]. 

AUC (Area under the receiver operating characteristic curve) was used to test the performance of 

the model against actual observations [16]. An AUC value of 0.5 shows that the model does not 

predict any better than random chance, whereas a value closer to 1 indicates better performance of 

the model. Based on the AUC value, a conventionally used guide for ranking the model 

performance is: 0.5–0.6 = Failed; 0.6– 0.7 = Poor; 0.7–0.8 = Fair; 0.8–0.9 = Good; 0.9–1 = Excellent [55]. 

Jackknife test and percent variable contribution were used to assess the relative significance of 

predictor variables. Fitted response curves were used to visually investigate the relationship 

between individual variables and predicted index of environmental suitability of R. ponticum. 

AUC was suggested not being sufficiently reliable for model evaluation, as an alternative, the 

Continuous Boyce Index (CBI) can be utilized a complementary evaluation index [56]. The Boyce 

index requires presence data only and measures how much model predictions differ from random 

distribution of observed presence across the prediction gradient. The continuous values of Boyce 

index vary between −1 and +1. Positive values indicate a model where predictions are consistent 

with the distribution of actual presence data, values close to zero mean that the model is not 

different from a random model and negative values indicate counter predictions (e.g., predicting 

no occurrence in areas where actual presence is recorded, [57][58]. 
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3. RESULTS 

3.1. Model Performance 

The calibration test of the model specification selected on the basis of the lowest AICc showed 

encouraging predictive capacity: AUCtrain = 80.0, AUCtest = 75.61, and CBI = 0.82. These results 

suggest that the predictor variables used during model calibration can predict the presence of R. 

ponticum in the Snowdonia National park with a fairly good degree of accuracy. Current 

distribution of R. ponticum on a continuous habitat suitability map for the present day LCCs is 

shown in Figure 2. 

Comparing the predictor variables used in this model, Land Cover type contributed the most 

predictive power (43.3%), followed by aspect (21.5%), and altitude (15.5%, Table 2). The Jackknife 

test suggests that the variable which decreases the gain the most when omitted is land cover, 

indicating that it contains the most information absent in the other variables (Figure 3). 

Table 2. Analysis of variable contribution 

Variable Description of variables Percent contribution 

Landcover - 43.3 

Aspect - 21.5 

Altitude - 15.5 

Bio15 Precipitation Seasonality 9.4 

Bio3 Isothermality 4.1 

Bio9 Mean Temperature of Driest Quarter 3.4 

Bio2 Mean Diurnal Range 1.6 

Slope - 0.9 

Bio4 Temperature Seasonality 0.3 
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Figure 2. Continuous habitat suitability map of R. ponticum generated in Maxent model under 

current LCCs in Snowdonia National Park. Blue dots on the map show current distribution of 

species occurrence records. 

 

 
Figure 3. Jackknife of regularized training gain for presence of Rhododendron ponticum as 

predicted by the set of 9 selected predictor variables. 
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Close inspection of individual response curves Figure 4 shows how the logistic prediction by a 

variable changes when the rest of the predictor variables are artificially kept at their average values. 

Starting with Land Cover, the only categorical predictor used in this study, it suggests that the 

presence of several land use types may have a major influence on the probability of R. ponticum 

occurrence in Snowdonia National park. The likelihood of presence is the highest in Land Cover 

type “8” (Mosaic tree and shrub), followed by Land Cover type “6” (Needle leaved forest). Aspect 

was found to be an efficient predictor of R. ponticum distribution, indicating that the probability of 

occurrence is the highest in Northern Aspect (azimuth values ranging from 337.5 to 360◦). The 

response curve of Altitude shows that the probability of presence is negatively correlated with this 

variable as increasing altitude suggests a gradual decrease in the probability of species occurrence. 

Precipitation seasonality (BIO 15) was shown to be negatively correlated to the probability of the 

presence of R. ponticum; the species is not likely to tolerate higher seasonal variability in 

precipitation in Wales. It is noteworthy that the probability of species occurrence decreases from 

67 to as low as 27 within a narrow band defined by 22 and 25mm of precipitation seasonality. 

Response curve of BIO 9 (Mean Temperature of the Driest Quarter) shows a similar trend, R. 

ponticum probability of occurrence decreases as the mean temperature of the driest quarter 

increases. BIO 2 (Mean Diurnal Range) and BIO 3 are only two climatic variables which appear to 

be positively correlated with the probability of R. ponticum occurrence. BIO 4 (the coefficient of 

variation of the mean of monthly temperatures, represents the seasonal variation in temperature) 

and Slope contributed the least to the model. Response curves of both these variables suggest that 

probability of species occurrence would decrease with increasing values of these variables. 

Our land cover change simulation of Snowdonia National Park for the year 2050 revealed that 

broadleaved deciduous trees, needle-leaved evergreen trees and grasslands may experience a 
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contraction in their extent, while the area under herbaceous cover, mosaic tree and shrub, mosaic 

herbaceous cover and shrub, or herbaceous cover may increase (Table 3). 

 

Figure 4. Probability of presence of Rhododendron ponticum in Snowdonia National Park, as 

influenced by A) aspect (° azimuth), B) altitude (m.a.s.l), C) precipitation seasonality (BIO15, 

mm), D) isothermality (BIO3), E) mean temperature of the driest quarter (BIO9, ℃), F) mean 

diurnal range (BIO2, ℃), F) G) slope (°) and H) E) coefficient of variation of mean of monthly 

temperatures (BIO4) 
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Table 3: Change in area (sq. km) under the 16 land cover classes of Snowdonia National Park 

between current (2015) and projected (2050) maps.   

Class ID Land Use Class 2015 (km2) 2050 (km2) Change (%) 

1 Cropland 0.5586 0.5586 0 

2 Herbaceous cover 3.72 4.9 28.7 

3 Mosaic cropland 8.19 8.19 0 

4 Mosaic natural vegetation 6.08 6.08 0 

5 Broadleaved Deciduous Trees 19.61 12.53 -36.1 

6 Needle-leaved Evergreen Trees 229.64 223.62 -2.62 

7 Needle-leaved Deciduous Trees 0.3724 0.3724 0 

8 Mosaic tree and shrub 141.44 147.84 4.52 

9 Mosaic herbaceous cover 627.55 637.98 1.66 

10 Grassland 930.37 925.28 -0.54 

11 Sparse Vegetation 85.15 85.15 0 

12 Shrub or herbaceous cover 25.75 25.94 0.73 

13 Urban Areas 2.85 2.85 0 

14 Bare Areas 10.42 10.42 0 

15 Unconsolidated Bare Areas 1.55 1.55 0 

16 Water Bodies 32.27 32.27 0 

  

3.2. Habitat Suitability Under Current & Future Land Use and Climate Change Scenarios 

Binary maps of predicted distribution of R. ponticum in Snowdonia National park under current 

and future LCCs are shown in Supplementary Data S1. Based on the output of our model, nearly 

50% of the total area of the park (1,050 of 2,132 km2) is currently suitable for R. ponticum invasion. 

Looking into the future, the extent of habitat suitable for R. ponticum in Snowdonia National park 

is likely to be negatively affected by land cover and climate change under all considered scenarios 

(Table 4). 
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Table 4: Variation in suitable area (in %) for R. ponticum in Snowdonia National Park for current 

time with those identified in land cover & six future climate change scenarios for 2050 at two 

Representative Concentration Pathways (4.5 & 8.5) 

GCM’s RCP 4.5 (%) RCP 8.5 (%) 

BCC-CSM1-1 -39.23 -31.84 

CCSM4 -10.73 -19.13 

GISS-E2-R -35.67 -44.07 

HadGEM2-ES -8.39 -7.97 

MIROC5 -3.45 -12.91 

MPI-ESM-LR -40.13 -46.78 

 

Under RCP 4.5, minimum contraction (−3.45%) is predicted under MIROC5 while maximum 

contraction (−40.13%) in suitable area may take place under MPI-ESM-LR. Under RCP 8.5, 

minimum (−7.97%) and maximum (−46.78%) reduction in suitability range for R. ponticum may be 

expected under GCMs HadGEM2-ES and MPI-ESM-LR, respectively. A comparison of the current 

habitat suitability with the minimum and maximum future range contraction (binary maps) is 

shown in Figure 5. Results indicate that most of the northern, northeastern and central areas of the 

national park are likely to become unsuitable for R. ponticum by 2050 (in case of maximum 

contraction under GCMMPI-ESM, RCP 8.5). Detailed habitat suitability maps of all future LCCs 

are presented in Supplementary Data S1. 
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Figure 5. Comparison of suitable habitat range of R. ponticum in Snowdonia National Park under 

current LCCs with the minimum and maximum range contraction scenarios in future LCCs.  

 

4. DISCUSSION 

This study presents the first attempt to delineate current distribution and investigate the impacts 

of changing landscape and climate on future distribution of R. ponticum in Snowdonia National 

Park. Both current and future distributions of this invasive plant are governed by an interaction of 

a range of factors. In the case of R. ponticum in Snowdonia, land cover and topography have been 

shown as the most influential, complemented by a range of climatic factors. 

Land use has repeatedly been shown to be the key predictor variable determining plant species 

distribution [20]. R. ponticum can invade a range of land cover categories, including natural to semi-

natural, upland heaths, and occasionally grasslands. In Britain, earlier studies reporting on its 

occurrence suggest that woodland is the land cover type most affected by the invasion of R. 

ponticum [59]. Our findings are in agreement with these reports; R. ponticum has the highest 
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probability of occurrence in land cover categories representing “6: Mosaic Tree & Shrub” and “8: 

Needle Leaved Forest.” There are numerous reasons why R. ponticum favours woodland in Wales, 

for example, the availability of a microenvironment suitable for seed germination [32] or growing 

under tree canopies to spread “under-cover” and thus avoid eradiation likely play a role. Crucially, 

the presence of dead plant material or moss cover may be critical to R. ponticum establishment [33]. 

In our study, Mosaic Tree & Shrub and Forests were the land cover categories which are likely to 

contain these substrates in the understory. Both of these land cover categories favored by R. 

ponticum are predicted to experience only a minor change (a decrease of −2.62% in category “6” 

while an increase of 4.52% in category “8”). Thus, the range contraction in R. ponticum seems to be 

much larger than the predicted change of suitable habitat types. This suggests that the predicted 

contraction in R. ponticum future range may not be primarily governed by land cover changes. 

These results are in agreement with some earlier studies suggesting that species’ range may 

drastically contract even if there is only a little shift in land cover types [60]. Among topographic 

variables, aspect makes a major contribution in our model. We show that R. ponticum clearly favors 

the northern aspect for its establishment and growth. North-facing slopes at the latitude of Wales 

are likely to offer greater soil moisture, in addition to lower direct insulation intensity. Many other 

studies on R. ponticum, R. simsii, and R. ferrugineum suggest that northern slopes (in the Northern 

hemisphere) offer more favourable conditions for Rhododendron growth [61][62][63]. Our results 

show that the probability of occurrence of R. ponticum in Snowdonia is negatively correlated with 

slope. Earlier studies have suggested that shallow-slope areas are typically those with high soil 

moisture and nutrient availability, thus offering more favourable microenvironment for plant 

proliferation [64]. Altitude explained a minor share of the variation in the training set of occurrence 

observations in this study. Even though altitude is considered an indirect variable since it has no 

direct effect on plant growth and physiology, it acts as a very good proxy of other un-measured or 
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un-used variables. The reported altitudinal range of Rhododendron in Snowdonia National Park 

is well within the global range inhabited by this species. Therefore, it is likely that altitude per se 

does not represent a set of critically limiting variables in our study, but more likely acts as a proxy 

for auxiliary variables such as hydrology, exposure to light, wind speed, soil type and others which 

are not included in our model. There is strong evidence that the inclusion of indirect variables can 

enhance the predictive performance of SDMs, however their collinearity with direct variables must 

be addressed [65][66].  

For climatic variables, our results indicate that both temperature- and precipitation-related 

variables make significant contribution to model prediction, which is in agreement with earlier 

studies which posit that the future distribution of R. ponticum in Wales may be affected by climatic 

predictors [64]. Under all GCMs considered here, habitat suitability range decreases from the 

current situation. Global mean temperatures may increase by as much as 4◦C by the end of next 

century [48]. Increasing temperature and changes in precipitation are likely to impact species 

distribution [67], however, existing investigations paint a mixed picture; plant species may 

experience an increase or a decrease of their current range [12][68]. A study investigating potential 

changes in the future distribution of a 100 of the world’s worst invasive species concluded that 

potential range of the majority of these species would increase [69]. Contrary to this, there is 

evidence of a range reduction of over 80 invasive species in South Africa under varying climate 

change scenarios [67]. Similarly, many other ecological modelling studies have reported a possible 

contraction in suitable habitat of different species [70]. There are studies even predicting a complete 

loss of species’ suitable habitat [71][72][72][73]. Detailed studies are thus required to investigate 

how an existing plant invasion will be modified by changing climatic conditions; it is not likely 

that all invasive species will benefit from new conditions. 
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The fact that R. ponticum is an alien invasive species in the area under consideration is an important 

aspect of this study. Invasion is a dynamic process guided by an inherited set of traits and 

environmental conditions [43]. One of the ways to build a species distribution model is to use 

climatic data and occurrence records from the native range of the invasive species under 

consideration and to project it to the invaded region [74]. However, we argue that this approach 

may yield a poorly performing model due to the mismatch between key environmental variables 

between native and invaded regions. This argument is borne out by the notion that invasives are a 

good example of species with a potential to expand their range beyond the climatic envelope 

defined in their native range [75]. A number of studies have confirmed this idea by concluding that 

invaded locations cannot necessarily be predicted from native distribution records of invasive 

species [76]. If the goal is to evaluate range expansion of invasive species then it could be useful to 

fit the model with data from native range [77], but when building models to predict changes in the 

invaded area under climate change scenarios, it may be much more useful to use data describing 

affected location [78]. 

4.1. Recommendations for Future Studies 

Given that 14 out of 19 climatic variables originally considered for this study were excluded due 

to high correlation with variables chosen for the best performing model, an in-depth analysis of 

the sensitivity of R. ponticum distribution to the remaining variables may reveal interesting insights. 

We made use of only six GCMs and two RCPs scenarios for the sake of simplicity, but further 

studies including more numerous GCMs and RCPs may prove useful for improved prediction of 

future distribution and a better understanding of the sensitivity of R. ponticum to climate change. 

In line with the consideration of native vs. invaded climate envelope, further studies should 

compare model performance based on training on native and invaded climatic envelope range. 

Distribution models may be improved by the inclusion of high resolution variables derived from 



Land cover and climate change may limit invasiveness of Rhododendron 

44 | P a g e  

remote sensing and lidar (canopy height, cover, vertical distribution ratio etc.), variables such as 

vegetation density or stand height have been shown to significantly improve SDMs [20][79]. In this 

study, the land cover variable is considered as a proxy for the soil properties [80]. For example, R. 

ponticum is known to grow under semi-shade on moist, loamy soils. Thus, the land cover types 

“Forest” “Bog & Mosses” & “Herbaceous cover” can be thought to act as proxy for these soil types 

while land cover types such as “open fields,” “bare land”, “urban areas,” and “rocks” can be 

considered the areas where soils types are the least favourable for this species. Results of this study 

confirm these observations. However, we recommend incorporating soil variables for future 

studies to further improve the accuracy of the model. 

In this study, we projected land cover changes from 2015 to 2050 based on the land cover transition 

potential between 2005 and 2015. This is a simplistic and frequently adopted, “business-as-usual” 

approach of land use change modelling, which however may not be realistic. We suggest that the 

impact of contrasting socio-economic scenarios on likely future land use should be included to 

achieve a more representative prediction of future distribution. 

CONCLUSIONS 

This study presents the results of correlative ecological modelling exercise based on an assumption 

that land cover and climatic variables have a dominant role in current and future distribution of R. 

ponticum and that the ecological niche for this species remains conserved across time. We show 

that, contrary to expectation, future distribution range of this species in Snowdonia National Park 

may decrease as a result of projected climate and land use changes. An extension of this modelling 

approach to the entire landscape of UK might help to understand the combined effects of these 

predictor variables to future distribution of R. ponticum across the country. 
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SUPPLEMENTARY DATA S1 

 
Figure 1.  Probability of presence of Rhododendron ponticum in Snowdonia according to the land 

cover type. Red bars indicate mean response of 100 replicates while blue bars denote standard 

deviation. X-axis legend: (1) Cropland, rainfed. (2) Herbaceous cover. (3) Mosaic cropland (>50%) 

/ natural vegetation (tree, shrub, herbaceous cover) (<50%). (4) Mosaic natural vegetation (tree, 

shrub, herbaceous cover) (>50%) / cropland (<50%). (5) Tree cover, broadleaved, deciduous, 

closed to open (>15%). (6) Tree cover, needleleaved, evergreen, closed to open (>15%). (7) Mosaic 

tree and shrub. (>50%) / herbaceous cover (<50%). (8) Mosaic herbaceous cover. (>50%) / tree and 

shrub. (<50%) (9) Shrubland. (10) Grassland. (11) Lichens and mosses. (12) Sparse vegetation 

(tree, shrub, herbaceous cover) (<15%). (13) Shrub or herbaceous cover, flooded, 

fresh/saline/brakish water. (14) Urban areas. (15) Bare areas. (16) Water bodies. 
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Figure 2. Binary habitat suitability maps of R. ponticum in Snowdonia National Park under current 

land cover and climatic conditions (A) and future land cover and climate change scenarios: BCC-

CSM1-1 (B), BCC-CSM1-1 (C), CCSM4 (D), CCSM4 (E), GISS-E2-R (F), GISS-E2-R (G), HadGEM2-

ES (H), HadGEM2-ES (I), MIROC5 (J), MIROC5 (K), MPI-ESM-LR (L), MPI-ESM-LR (M
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ABSTRACT 

Species distribution models have been used to predict the distribution of invasive species for 

conservation planning. Understanding spatial transferability of niche predictions is critical to promote 

species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor 

variables is an important factor affecting the accuracy and transferability of species distribution models. 

Choice of grain size is often dependent on the type of predictor variables used and the selection of 

predictors sometimes rely on data availability. This study employed the MAXENT species distribution 

model to investigate the effect of the grain size on model transferability for an invasive plant species. 

We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance 

and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive 

to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic 

variables may lead to less accurate models as it often compromises the finer grain size of biophysical 

variables which may be more important determinants of species distribution at small spatial scales. 

Model accuracy is likely to increase with decreasing grain size. However, successful model 

transferability may require optimization of model grain size. 
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1. INTRODUCTION 

Species distribution models (SDMs) are becoming increasingly important in predicting spatial patterns 

of biological invasions, identification of hotspots for early detection and informing management of 

invasive species [1]. SDMs relate the presence/absence records of species to relevant environmental 

variables and subsequently project modelled relationships across geographical space using gridded 

layers of environmental data, producing a map indicating areas of potential species distribution [2]. 

One of the key features of gridded data is the ‘grain size’ – a term describing the geographical 

representation (spatial resolution) of the map layers. Grain size of predictor variables strongly affects 

the interpretation of biogeographic characteristics of modelled species [3]. Use of smaller or finer grain 

size allows for a more accurate representation of the effect of local environmental conditions and biotic 

interactions in model prediction [4]. 

The challenge in using smaller grain size in SDMs is finding the optimum balance between data quality, 

data availability, and model performance [5]. Grain size represents the geographical space unit which 

contains all the information on characteristic attributes of the study area [6]. A decrease in grain size 

enhances the details of the landscape by sharpening the features it contains and by making the rare 

land use types in the landscape more prominent and distinguishable [7]. Conversely, coarse grain size 

of predictor variables in SDMs negatively affects the delineation of habitat features in a landscape, a 

feature of critical importance to modelling species presence. Selection of grain size and its relationship 

with habitat features is a crucial factor in SDM based studies [3][7][8][9]. Most literature to date reports 

on species distribution models built at a grain size of 1 km, a fact recently subjected to some scrutiny 

and critique [7][10]. Earlier observations indicate that the use of 1 km grain size may be too coarse to 

generate reliable SDM outputs [7], especially for studies at small spatial scales. The challenge, therefore, 

is to establish the threshold grain size at which predictor variables correctly describe local conditions 

and biotic interactions which play an important role in defining species’ range [11]. 

The choice of grain size in SDM studies is sometimes based on data availability [12] rather than relevant 

factors like species’ ecology and spatial scale of study. A review of more than 200 SDM-based research 
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papers concluded that the choice of variables is ‘frequently opportunistic’ and that the majority of the 

studies, instead of making a tailored choice of variables, rely on a standard set of 19 bioclimatic 

variables [13] which are available at a minimum of 1 km grain size. In a complementary analysis 

designed to provide an overview of current practice, we reviewed 59 recent SDM based studies 

published in peer-reviewed journals in 2016–2017 (Supplementary Data S1). We confirmed that the 

most frequently used variables in MAXENT based ecological modelling studies are indeed, the 19 

bioclimatic variables available from the ‘Global Climate Data’ (www.worldclim.org). We found that 55 

out of the 59 studies selected the above-mentioned bioclimatic variables as input. Of these 55 studies 

34 had used additional biophysical variables such as topography and land cover. These biophysical 

variables are available at a grain size as 100 meters or less. Since the grain size of all input variables in 

SDMs need to be harmonized, these biophysical variables are resampled to 1 km in when used in 

combination with the bioclimatic variables. Intriguingly, the results of 22 out of these 34 studies (which 

had both bioclimatic and biophysical variables) suggest that the variables critical to accurate species 

distribution prediction were the biophysical variables. Given the earlier argument that a finer grain size 

is more likely to improve model accuracy, the following speculation can be made: had these 22 studies 

not coarsened the biophysical variables – by avoiding the ‘customary’ choice of bioclimatic variables - 

this would have resulted in a more accurate prediction of species distribution. This speculation might 

appear to question the significance of bioclimatic variables in ecological models. It is a fact that 

bioclimatic variables are among the most frequently used variables in SDM based studies and rightly 

so as climate is a strong determinant of species’ distribution. However, an injudicious use of these 

variables without considering factors like species’ ecology, scale of study and optimal grain size is 

questionable [13][14]. Thus, we speculate that in many SDM based studies – especially at small spatial 

scale of study area - biophysical variables may be the more important ones and inclusion of bioclimatic 

variables in such cases may reduce the model accuracy. 

One of the motivations for creating SDMs is to use them to predict the behaviour of a species colonizing 

new territory. Successful transferability of SDMs across space or time is extremely valuable in context 
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of conservation planning. A basic assumption underlying SDMs is that the model is spatially and 

temporally transferable, i.e. the niche attributes are conserved across space and time [2]. Although the 

effect of grain size in SDMs is well documented [15][16][17], its role in model transferability has not 

been put to sufficient scrutiny. There is evidence that although SDMs can accurately predict species 

distribution in the training area, their transferability to new areas is challenging due to numerous 

complex phenomena [18][19]. Among many factors, grain size has been reported as critical to 

satisfactory model performance and transferability [20][21]. 

In this study we aim to test the role of grain size in SDMs both in the training and the transfer areas. 

Based on our review of literature, we speculate that over-reliance on easily available bioclimatic 

variables may lead to an unnecessary compromise on the grain size of critical variables, with potentially 

negative impact on the accuracy of model predictions and transferability. Specifically, we use a 

MAXENT modelling environment [22] to model the distribution of Rhododendron ponticum (L.) in the 

Snowdonia National Park, Wales and then transfer the model to the Brecon Beacons National Park, 

Wales. The objectives of this study were to assess whether the decreasing the grain size improves model 

performance both in the training and the transfer area. 

2. Methodology  

2.1. Species Description 

Rhododendron ponticum (L.) is an invasive plant species in the United Kingdom, having been introduced 

in the 18th century as an ornamental plant. The main ancestor is reported to be the population of R. 

ponticum resident in the southern tip of Spain [23]. It is a perennial, evergreen shrub that generally 

invades woodlands [24], although it has been shown to colonize other types of habitat too. The UK 

invasion by this shrub has been more intense in Western and North-Western areas of Britain, which are 

comparatively cooler and wetter. We chose Wales as the study region because it is one of the most 

affected regions of the UK to be impacted by invasions of R. ponticum. In this study, we trained the 

model on the dataset for the Snowdonia National Park in Wales [25] and then transferred the model to 

the Brecon Beacons National Park. Given the scale of the invasion, it is clear that the current 
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environmental, topographic and land cover conditions both in Snowdonia and the Brecon Beacons 

represent a range of conditions very suitable for R. ponticum. 

2.2. Species Distribution Modelling Algorithm 

We used MAXENT, a maximum-entropy based machine learning (presence/pseudo-absence) 

algorithm to model the distribution R. ponticum (L.) in Snowdonia National Park (the training area) and 

projected the model to the Brecon Beacons National Park (the transfer area). MAXENT predicts the 

probability distribution of a species on the basis of a given set of predictor variables and presence-only 

species occurrence data [22]. We selected MAXENT because, a) it does not require absence data [26], b) 

it efficiently handles complex interactions between predictor and response variables [27], c) being a 

generative model, it performs better than discriminative models when it comes to modelling with 

presence-only records, d) it can be run with both categorical and continuous data variables [28] and, e) 

it efficiently transfers the model projections to another geographical area [2]. We used a reasonably 

large sample size [29] and applied the recommended screening and verification of occurrence records. 

2.3. Presence Records for Model Training and Validation 

For the training area (Snowdonia National Park), presence-only occurrence records of R. ponticum (L.) 

were obtained from COFNOD (Local Environmental Records Centre in Wales, UK). A dataset of 152 

occurrence records was created by a continuous field observation campaign between 1981 and 2000. 

COFNOD has confirmed that the entire area of Snowdonia National Park was thoroughly surveyed by 

ground surveys and remote sensing tools, thus minimizing the possibility of sampling bias in the 

dataset. Consequently, we targeted the entire area of the National Park, generating 10,000 random 

background points to be selected during each replicate run of the model. We used independent 

occurrence records of R. ponticum (L.) in the Brecon Beacons National Park downloaded from the 

National Biodiversity Network (NBN) online database (www.nbnatlas.org), yielding 100 observations. 

Spatial uncertainty of all occurrence records was addressed by removing all duplicate or non-geo-

referenced occurrence points. Occurrence data were spatially rarefied using SDM toolbox 2.0 [30] in 
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ArcGIS 10.5 by eliminating all but one point present within a single grid cell of the predictor variable 

layers to avoid double counting of presence points. 

2.4. Selection of Predictor Variables 

Predictor variables were selected in the following three steps. In the first step, two categories of 

variables were compiled. The first category of variables comprised the most frequently used variables 

in SDM studies: ‘Bioclimatic Variables’ (BCV). The second category of variables was based on our 

expert knowledge and a review of literature on the ecology of R. ponticum (L.): ‘Biophysical Variables’ 

(BPV). A set of 19 bioclimatic variables from ‘Global Climate Data’ (www.worldclim.org, version 2, 

1970–2000) [31], identified as the most commonly used suite of variables in SDM research13, formed 

the BCV category. An extensive review of literature and background knowledge of the R. ponticum 

ecology yielded the most important biophysical variables, namely; topography (altitude, aspect and 

slope), land cover and ‘distance from water channels’ which formed the BPV category [32][33][34][35]. 

Although Rhododendron is sensitive to many other ecological factors, we kept the BPV category to the 

above mentioned variables as these variables were the most pertinent ones at the current spatial scale 

of study. 

In the second step of variable selection, a sub-set of variables from the BCV and BPV categories was 

created on the basis of grain size. The first variable set (VS-1) included both BCV and BPV categories, 

with the latter resampled to a 1 km grain size which is the smallest cell size of BCV. The second variable 

set (VS-2) comprised the BPV at 300 m grain size. The third variable set (VS-3) consisted of the same 

BPV but at 50 m grain size (Tables 1 and 2). The VS-1 represents the commonly reported approach used 

in SDM studies and thus can be considered the ‘control’ scenario. The VS-2 & VS-3 represent scenarios 

where bioclimatic variables are excluded to conserve the finer grain size of BPV. All input data layers 

were re-sampled using nearest neighbour (for discrete variables) and bilinear interpolation (for 

continuous variables) resampling techniques [36][37][38]. Collinearity among predictor variables 

negatively impacts the model due to the substantial amount of information shared between collinear 

variables. Therefore, collinearity in variables makes it difficult to correctly interpret the relative 
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contribution or importance of variables in the model predictions [39]. A Pearson correlation coefficient 

cut-off of r ≤ 0.70 was applied to select the variables for use in the final model runs [38] for all three sets 

of variables (VS-1, VS-2 and VS-3). The aim of this step was to reduce the negative impact of 

multicollinearity and to conform to statistical assumptions [40]. 

 

Table 1. Predictor variables used in the study. Acronyms VS-1, VS-2 & VS-3 refer to variable set 1, 

variable set 2 & variable set 3 respectively. 

VS-1 VS-2 VS-3 

Grain Size 1 km Grain Size 300 m Grain Size 50 m 

Predictor Variable Unit Predictor 

Variable 

Unit Predictor 

Variable 

Unit 

Altitude m Altitude m Altitude m 

Aspect ° Aspect ° Aspect ° 

Slope ° Slope ° Slope ° 

Land Cover 
 

Land Cover 
 

Land Cover 
 

Distance from water 

channels 

m Distance from 

water channels 

m Distance from 

water channels 

m 

Mean Diurnal Range 

(monthly (max temp - min 

temp)) 

°C 
    

Isothermality  

(BIO2/BIO7)* 100 

     

Mean Temperature of Driest 

Quarter 

°C 
    

Precipitation Seasonality 

(Coefficient of Variation) 

C of V 
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Table 2. Allocation of predictor variables to ‘variable categories’ and ‘variable sets’. Acronyms BCV, 

BPV, VS-1, VS-2 & VS-3 refer to Bioclimatic Variables, Biophysical Variables, Variable Set 1, Variable 

Set 2 & Variable Set 3 respectively. 

Predictor variable/s Grain 

Size 

Source Variables 

Category 

Variable 

Set 

19 bioclimatic variables 1 km WorldClim - Global Climate 

Data 

BCV VS-1 

Distance from water 

channels 

1 km Edina Digimap Ordnance 

Survey 

BCV VS-1 

Land Cover 300 m Edina Digimap Ordnance 

Survey 

BPV VS-2 

Topography (Altitude, 

Aspect, Slope) 

300 m Shuttle Radar Topography 

Mission USGS 

BPV VS-2 

Distance from water 

channels 

300 m Edina Digimap Ordnance 

Survey 

BPV VS-2 

Land Cover 50 m Edina Digimap Ordnance 

Survey 

BPV VS-3 

Topography (Altitude, 

Aspect, Slope) 

50 m Edina Digimap Ordnance 

Survey 

BPV VS-3 

Distance from water 

channels 

50 m Edina Digimap Ordnance 

Survey 

BPV VS-3 

 

2.5. Model Calibration 

All three modelling scenarios were run in MAXENT (version 3.3.3a) with a default convergence 

threshold of 10−6 and with 5000 iterations to allow the model scope for convergence while reducing the 

risk of over- or under-predicting modelled relationships. We processed 25 model replications with a 

bootstrap resampling method randomly allocating 75% of the occurrence records in the training area 

for calibration and 25% for validation. To avoid dubious projections by the model, we used the ‘fade-

by-clamping’ feature which removes heavily clamped (clustered) pixels from the final predictions [26]. 

Rest of the MAXENT calibration was set to default settings. 

2.6. Model Evaluation 

Training area. Area Under the ROC (Receiver Operating Characteristic) Curve (AUC) was used to test 

the performance of the model against actual observations in the training area [27]. An AUC value of 0.5 

shows that the model does not predict any better than random chance, whereas a value closer to 1 

indicates a better performance of the model [41]. Permutation importance contribution was used to 
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assess the relative significance of predictor variables. Fitted response curves were used to visually 

investigate the relationship between individual variables and predicted index of environmental 

suitability of R. ponticum. In addition to AUC, we used Continuous Boyce Index (CBI) as an additional 

assessment tool. The Boyce index requires presence data only and measures by how much model 

predictions differ from random distribution of observed presence across the prediction gradient. The 

continuous habitat suitability map is reclassified into i number of classes/bins. For each bin, Predicted 

and Expected frequencies are calculated. The Predicted Frequency is calculated by dividing the number 

of species’ occurrence points in the bin i, as forecasted by the model, by the total number of species’ 

occurrence points. The Expected Frequency is calculated by dividing the number of grid cells in bin i 

by the total number of grid cells. A P/E ratio is then calculated for each bin and a Spearman rank 

correlation coefficient rho (1-tailed test) evaluates if the ratio significantly increases as suitability 

increases (p < 0.05). The continuous values of the Boyce index vary between −1 and +1. Positive values 

indicate a model where predictions are consistent with the distribution of actual presence data, values 

close to zero mean that the model is no different from a random model and negative values indicate 

counter predictions (e.g. predicting no occurrence in areas where actual presence is recorded) [42][43]. 

2.7. Transfer Area (Model Transferability) 

MAXENT produces continuous probability maps of habitat suitability in the selected geographical area. 

We used R. ponticum (L.) presence records in the Brecon Beacons National Park to evaluate model 

projection in the transfer area. Continuous Boyce Index (CBI) was used to assess how well MAXENT 

has transferred the model to a different geographical area [42][43]. CBI is considered one of the most 

appropriate metrics for assessing model predictions applied to presence-only datasets. There is some 

indication that CBI is a more reliable metric than AUC when it comes to validating model transferability 

to a different geographical area [44]. 
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3. RESULTS  

The AUC & CBI based evaluation of the three models in the training area, where each model used a 

different subset of predictor variables at different grain size, indicated variation in the degree of 

prediction accuracy. As shown in Figure 1. AUCtrain, AUCtest and CBI values of VS-1, the variable set 

with the coarsest grain size are the lowest, indicating the least accurate predictions in the training area 

(Snowdonia). Variable sets VS-2 and VS-3, comprised of the same set of biophysical variables but at 

different grain size, indicate that the finer grain size is likely to yield better model predictions. 

We used Continuous Boyce Index (CBI) to assess the transferability of the MAXENT models to an area 

not covered by the training dataset, in our case the Brecon Beacons National Park. The model 

comprising the VS-1 variables showed the poorest model transferability with a CBI value of 0.65. In 

comparison, the model based on the VS-2 dataset showed a high CBI of 0.90, while the third model 

based on VS-3 achieved a moderate CBI of 0.77. Analysis of the predictor variable contribution to model 

prediction (Supplementary Data S2) suggests that land cover and altitude were major contributors in 

all three models. Our results also suggest that the use of finer grain size improved model transferability 

(CBI value of Models VS-2 & VS-3 > VS-1). However, model transferability decreased at the finest grain 

size (50 m) of the predictor variables. Response curves for individual variables for all three modelling 

scenarios are provided in Supplementary Data S3. 

 

Figure 1. Area Under Curve (AUC) and Continuous Boyce Index (CBI) comparing prediction accuracy 

of Maxent-based models in Snowdonia National Park using three predictor variable sets at 1 km (VS-

1), 300 m (VS-2) and 50 m (VS-3) resolution. 
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4. DISCUSSION 

A number of studies have highlighted the fact that coarse grain size of predictor variables in SDMs may 

obscure effects of biotic interactions, small-scale heterogeneity of abiotic factors and micro habitat of 

species [45][46]. A review of 149-peer reviewed publications concluded that the choice of grain size is 

a highly neglected aspect in species distribution modelling and is a factor that significantly impacts 

modelling outcomes [12]. 

4.1. Model Performance in the Training Area 

The results from this study show that MAXENT model predictions in the training area are likely to 

improve with smaller grain size of predictor variables (AUC in the order of 50 m > 300 m > 1000 m grain 

size). The Snowdonia National Park is characterized by diverse topography, with altitude ranging from 

sea-level to above 1000 m over a relatively short distance. Altitude is one of the key factors affecting the 

invasive potential of alien species and the effect of altitude was shown to be most pronounced at fine 

grain size [47]. It has been claimed that too coarse a grain size in SDMs leads to spatial smoothing and 

thus obscures the connection between, for example, land cover types and species occurrence [48]. This 

occurs by homogenizing the dominant land types within a grid cell resulting in the loss of useful 

information for accurate modelling [49]. In accordance with this assertion, the accuracy of model 

predictions in our study improved with decreasing grain size of the predictor variables, possibly as the 

result of capturing small-scale ecological interactions critical for species distribution being maximized 

at a finer grain size (Fernandez and Hamilton, 2015)[46][50]. In our case, the rugged topography of the 

area also affects factors such as soil physical and chemical properties, atmospheric humidity and wind 

speed/exposure over very short distances. With decreasing grain size, representation of these factors 

was more pronounced and improved model predictions. As grain size becomes finer, the number of 

mixed pixels decreases, leading to an increase in ‘distinct’ pixels which clearly separate different land 

cover, topographical or environmental units (or classes) and thus enables the algorithm to build more 

accurate species-habitat relationships [7]. This improvement becomes more relevant when the species 

being modelled is a habitat specialist. Since R. ponticum is considered one such species – in Wales it has 
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a high preference for woodlands – better performance of models using small grain size data can be 

explained by improving representation of this community type. 

As a habitat specialist, R. ponticum has repeatedly been shown to be strongly correlated with land cover 

type. In Britain woodland is the most important land cover type in the context of R. ponticum invasion 

[23], largely because of the availability of suitable micro-environments for seed germination [34]. For 

example, dead plant material and moss cover is critical to R. ponticum establishment [51]. Response 

curves in our study show that Forests are the most important land cover classes for R. ponticum 

distribution. Furthermore, R. ponticum is sensitive to topographic controls [52][53][54]. Response curves 

show that R. ponticum favours a northerly aspect for its establishment and growth as north-facing slopes 

at this latitude (Wales) are generally cooler, offering higher soil moisture and lower direct insulation 

intensity. Moreover, response curves suggest that R. ponticum distribution in Snowdonia is negatively 

correlated with slope. Shallow-slope areas are typically those with high soil moisture and nutrient 

availability, thus offering more favourable microenvironment for invasive species [55]. Distance from 

water channel was an important variable determining the habitat suitability of R. ponticum. This finding 

is compliments earlier studies suggesting that R. ponticum favors areas near water bodies [56] primarily 

because soil in vicinity of water body is moist and often has dense vegetation. Many other invasive 

species have been reported to be negatively correlated with distance from water sources [57]. 

4.2. Model Performance in the Transfer Area 

After assessing model performance in the training area, the second goal of the study was to test the 

effects of grain size on the spatial transferability of the model. The results suggest that a coarse grain 

size (1000 m) produced the poorest model transferability while a medium grain size (300 m) resulted 

in the most accurate transfer of the model. The poor model transferability at 1 km grain size (CBI = 0.65) 

may be explained by the fact that key environmental factors, which in our case were land cover and 

topography, are ‘averaged out’ at coarser grain size both in the training and the transfer areas [45]. We 

expected the best model transferability when using data with the finest grain size. This was not the 

case; our transferred model had the best predictive power at medium grain size. A possible explanation 
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is that Snowdonia National Park (training area) and Brecon Beacons National Park (transfer area) differ 

in the range and the character of topographical features. Since topography and land cover are best 

represented at small grain size, a discrepancy in the typography of landscape features between the two 

areas will negatively affect model transferability. Similarly, it has been shown that species occurrence 

data needs to be highly accurate when modelled at very fine grain size as any location [10][58] errors 

in the survey data may impact model performance. 

In this study the CBI value of the SDM transferred at 300 m grain size was 0.90, a reasonably accurate 

prediction but which leaves room for improvement. We tested SDM transferability under the 

assumption that abiotic factors are the principal controls on species distribution. However, the 

distribution of any species is also likely to be constrained by biotic interactions [59]. These biotic 

interactions vary between geographical regions, just as topography, land cover and climatic factors 

differ. Even though the training and transfer areas used in the study are similar, any difference in the 

nature of the biotic interactions limiting R. ponticum may have constrained the degree of model 

transferability (Fernandez and Hamilton, 2015). In this context, this invasive species may have occupied 

only a subset of its potential niche in the invaded area so far, known as the realized niche. A species 

may fail to occupy the entire potential niche due to factors such as intra-species competition, dispersal 

limitation, scarcity of resources and other spatial limitations [60]. The distribution of species is linked 

to a framework known as ‘Biotic Abiotic Mobility’ (BAM) [61] which describes the potential niche yet 

to be inhabited by a species in the ‘unfilled niche’ [62]. Thus, correct identification of this unfilled niche 

may help to identify areas vulnerable for future invasion and may prove helpful in understanding the 

invasive behaviour of species under study [63]. Our results suggest therefore, that for habitat 

specialists, model transferability across geographical space becomes highly sensitive to the grain size 

when the model training and transfer areas differ in environmental and ecological features. 

Although our study suggests that our model was transferred more accurately at 300 m grain size, it is 

important to mention that even at 50 m grain size, the model was also transferred with considerable 

success (CBI = 0.77). From an invasive species management point of view, a habitat suitability map at 
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50 m grain size with a lower prediction accuracy could still be more acceptable than a map with a better 

predictive ‘hit rate’ but at a six times coarser grain size. As an example, we include habitat suitability 

maps generated by model transfer to the Brecon Beacons National Park at three contrasting grain sizes 

(Figure 2). The land cover map legend is provided in Supplementary Data S3. 

 

Figure 2. Rhododendron ponticum habitat suitability maps at 1 km, 300 m and 50 m resolutions generated 

in ArcGIS 10.5 (ESRI, Redlands, CA, USA, www.esri.com). A spatial distribution model was trained in 

Snowdonia National Park and transferred to the Brecon Beacons National Park. Blue dots indicate 

verified occurrence records of the species. 

 

4.3. Bioclimatic Variables in SDMs – An Inevitable Choice?  

In the context of our results it appears that unnecessary or ‘customary’ use of bioclimatic variables 

without considering the species’ ecology negatively affects the predictive potential of a SDM. Including 

these bioclimatic variables almost always comes at a cost of reducing the grain size of other variables, 
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such as topography and land cover. However, as climate is likely to be one of the determinants of a 

species’ fundamental niche, we suggest that expert knowledge of species’ ecology and an extensive 

review of the literature should be carried out before deciding whether or not to include climatic 

variables in a SDM. Naturally, when modelling large-scale distributions (continental or global) or if the 

objective is a temporal prediction, perhaps to account for climate change, there currently may not be 

many alternatives to a 1 km grain size bioclimatic variables at a global scale. Choice of predictor 

variables is also a matter of the research question. If researchers are strictly interested in estimating 

climatic suitability or sensitivity, then the climatic variables become an appropriate choice. Our results 

strictly refer to cases where researchers might be interested in mapping species’ distribution with high 

accuracy using the best possible combination of all the available predictor variables. 

4.4. Limitations of The Study and Future Recommendations 

Our study suggests that a grain size smaller than 1 km should be preferred in SDM studies conducted 

at this scale; however, models using finer grain size data should be trained and validated with carefully 

validated occurrence records. Training a model with predictor variables at very small grain size leads 

to a very specific species-habitat relationship and thus needs to be verified with accurate presence 

records. Our study modelled the distribution of R. ponticum, a habitat specialist species that showed a 

clear response to the changes in grain size. By contrast, generalist species may not be as sensitive to a 

change in grain size. Our study also suggests that there may not be a ‘gold standard’ for the grain size 

of predictor variables when it comes to model transferability across space. Ideally, transferring the 

model to another area requires the identification of optimum grain size by considering a range of grain 

sizes, perhaps on a sub-set of available occurrence data. Also, we considered only a small area for model 

training and transferability possibly explaining why climatic variables contributed the least in our 

models. For SDMs over large spatial scale, climatic variables may have greater effect in determining 

the distribution of species. In this study, we have only used two evaluation tools (AUC & CBI) which 

hint that the model with higher values might be better than the rest. For future studies we recommend 

applying more robust statistics to evaluate the significance of difference between modelling scenarios. 
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SUPPLEMENTARY DATA S1 

Review of Literature 

Research papers published on MAXENT based Species Distribution Modelling in the years 2016-2017. 

*Third column: ‘Climate data at 1 km resolution (or higher)’ – Studies which included bioclimatic 

variables 

*Fourth column: ‘Finer resolution Non-Climatic variables’ – Studies which included Non-climatic 

variables which are available at a resolution finer than variables in third column. 

*Fifth Column – NA: Studies which either had Climatic or Non-climatic variables. This classification 

is therefore Not Applicable to such studies.  

No Title of the research paper Climate 

data at 1 

km 

resolution 

(or 

higher) 

Finer 

Resolutio

n Non-

climatic 

variables 

Most 

important 

predictor 

variables 

(Climatic/Non-

climatic/NA) 

1 The influence of climate change on an 

endangered riparian plant species: The root of 

riparian Homonoia 

Yes Yes Non-climatic 

2 The importance of herbivore density and 

management as determinants of the 

distribution of rare plant specie 

Yes Yes Non-climatic 

3 Revealing areas of high nature conservation 

importance in a seasonally dry tropical forest in 

Brazil: Combination of modelled plant diversity 

hot spots and threat patterns 

Yes Yes Climatic 

4 Modelling and mapping the current and future 

climatic-niche of endangered Himalayan musk 

deer 

Yes No NA 

5 Spatial modelling of congruence of native 

biodiversity and potential hotspots of forest 

invasive species (FIS) in central Indian 

landscape 

Yes Yes Non-climatic 

6 Predicting current and future disease outbreaks 

of Diplodia sapinea shoot blight in Italy: species 

distribution models as a tool for forest 

management planning 

Yes Yes Non-climatic 

7 Species distribution modelling for wildlife 

management: Ornamental butterflies in México 

Yes No NA 

8 Environmental stress effects on reproduction 

and sexual dimorphism in the gynodioecious 

species Silene acauli 

Yes No NA 

9 Endemic grasshopper species distribution in an 

agro-natural landscape of the Cape Floristic 

Region, South Africa 

Yes Yes Non-climatic 
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10 Factors affecting seasonal habitat use, and 

predicted range of two tropical deer in 

Indonesian rainforest 

Yes Yes Non-climatic 

11 Biodiversity hotspots and conservation gaps in 

Iran 

Yes Yes Non-climatic 

12 Identifying biodiversity hotspots for threatened 

mammal species in Iran 

Yes Yes Non-climatic 

13 Potential distributional changes of invasive 

crop pest species associated with global climate 

change 

Yes Yes Climatic 

14 Habitat distribution modelling to identify areas 

of high conservation value under climate 

change for Mangifera sylvaticaRoxb. of 

Bangladesh 

Yes No NA 

15 Dynamic response of East Asian Greater White-

fronted Geese to changes of environment 

during migration: Use of multi-temporal 

species distribution model 

Yes Yes Non-climatic 

16 A bird's view of new conservation hotspots in 

China 

Yes Yes Non-climatic 

17 Probabilistic assessment of high concentrations 

of particulate matter (PM10) in Beijing, China 

Yes Yes Non-climatic 

18 Mapping priorities for conservation in 

Southeast Asia 

Yes Yes Climatic 

19 Influence of environmental factors on the 

distribution 

of Calymperes and Syrrhopodon (Calymperaceae, 

Bryophyta) in the Atlantic Forest of 

Northeastern Brazil 

Yes Yes Climatic 

20 Field validation of an invasive species Maxent 

model 

No Yes NA 

21 Maxent modelling for predicting the potential 

distribution of endangered medicinal plant (H. 

riparia Lour) in Yunnan, China 

Yes Yes Non-climatic 

22 Using species distribution models to assess the 

importance of Egypt's protected areas for the 

conservation of medicinal plants 

Yes Yes Climatic 

23 Landscape to site variations in species 

distribution models for endangered plants 

Yes Yes Non-climatic 

24 Detecting the richness and dissimilarity 

patterns of Theaceae species in southern China 

Yes Yes Climatic 

25 Predicting distribution of major forest tree 

species to potential impacts of climate change in 

the central Himalayan region 

Yes Yes Non-climatic 

26 Predicting the probable distribution and threat 

of invasive Mimosa diplotricha Suavalle 

and Mikania micrantha Kunth in a protected 

tropical grassland 

Yes Yes Climatic 

27 Impacts of the spatial scale of climate data on 

the modeled distribution probabilities of 

invasive tree species throughout the world 

Yes No NA 
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28 Efficacy of conservation strategies for 

endangered oriental white storks (Ciconia 

boyciana) under climate change in Northeast 

China 

Yes Yes Climatic 

29 Modelling impacts of future climate on the 

distribution of Myristicaceae species in the 

Western Ghats, India 

Yes No NA 

30 Surrogate species protection in Bolivia under 

climate and land cover change scenarios 

Yes No NA 

31 Modelling the distributions of useful woody 

species in eastern Burkina Faso 

Yes Yes Non-climatic 

32 Effects of climate change on the future 

distributions of the top five freshwater invasive 

plants in South Africa 

Yes No NA 

33 Spatial distribution of dry forest orchids in the 

Cauca River Valley and Dagua Canyon: 

Towards a conservation strategy to climate 

change 

Yes Yes Non-climatic 

34 Geographical boundary and climatic analysis 

of Pinus tabulaeformis in China: Insights on its 

afforestation 

Yes Yes Climatic 

35 Niche breadth and the implications of climate 

change in the conservation of the 

genus Astrophytum (Cactaceae) 

Yes No NA 

36 Niche constraints to the northwards expansion 

of the common genet (Genetta genetta, Linnaeus 

1758) in Europe 

Yes Yes Climatic 

37 Climate change and the distribution and 

conservation of the world's highest elevation 

woodlands in the South American Altiplano 

Yes No NA 

38 Preventing extinction and improving 

conservation status of Vanilla borneensis 

Rolfe—A rare, endemic and threatened orchid 

of Assam, India 

No Yes NA 

39 Influence of land use and meteorological factors 

on the spatial distribution of Toxocara 

canis and Toxocara cati eggs in soil in urban 

areas 

Yes Yes Non-climatic 

40 Species distribution modelling for wildlife 

management: Ornamental butterflies in México 

Yes No NA 

41 Impact of climate and host availability on 

future distribution of Colorado potato beetle 

Yes No NA 

42 Mapping the climatic suitable habitat of oriental 

arborvitae (Platycladus orientalis) for 

introduction and cultivation at a global scale 

Yes No NA 

43 Prediction of the potential geographic 

distribution of the ectomycorrhizal mushroom 

Tricholoma matsutake under multiple climate 

change scenarios 

Yes Yes Non-climatic 

44 Climate change and the ash dieback crisis Yes No NA 
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45 Habitat mapping as a tool for water birds 

conservation planning in an arid zone wetland: 

The case study Hamun wetland 

No Yes NA 

46 Potential distribution of Ursus americanus in 

Mexico and its persistence: Implications for 

conservation 

No Yes NA 

47 The distribution of deep-sea sponge 

aggregations in the North Atlantic and 

implications for their effective spatial 

management 

No Yes NA 

48 Current and future suitability of wintering 

grounds for a long-distance migratory raptor 

Yes Yes Non-climatic 

49 Distribution Modelling of three screwworm 

species in the ecologically diverse landscape of 

North West Pakistan 

Yes Yes Non-climatic 

50 Predicting impacts of climate change on habitat 

connectivity of Kalopanax septemlobus in South 

Korea 

Yes Yes Climatic 

51 Vulnerability to climate change of cocoa in West 

Africa: Patterns, opportunities and limits to 

adaptation 

Yes No NA 

52 Priority areas for conservation of beach and 

dune vegetation of the Mexican Atlantic coast 

Yes No NA 

53 Seasonal habitat suitability modelling and 

factors affecting the distribution of Asian 

Houbara in East Iran 

Yes Yes Non-climatic 

54 Kamala tree as an indicator of the presence of 

Asian elephants during the dry season in the 

Shivalik landscape of northwestern India 

Yes Yes Climatic 

55 The worrying future of the endemic flora of a 

tropical mountain range under climate change 

Yes No NA 

56 Taxonomy and ecological niche modelling: 

Implications for the conservation of wood 

partridges (genus Dendrortyx) 

Yes No NA 

57 Climate change fosters the decline of 

epiphytic Lobaria species in Italy 

Yes No NA 

58 Landscape to site variations in species 

distribution models for endangered plants 

Yes Yes Non-climatic 

59 Performance of one-class classifiers for invasive 

species mapping using airborne imaging 

spectroscopy 

No Yes NA 
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SUPPLEMENTARY DATA S2 

Analysis of Variables Contribution to Maxent-based Models 

Permutation Importance of variables - Model VS-3 

Variable Permutation importance 

Altitude 87.8 

Land cover 5.9 

Distance from water channels 5.4 

Aspect 0.5 

Slope 0.4 

 

 Permutation Importance of variables - Model VS-2 

Variable Permutation importance 

Altitude 88.7 

Land cover 4.7 

Distance from water channels 2.5 

Aspect 3.8 

Slope 0.3 

 

Permutation Importance of variables - Model VS-1 

Variable Permutation importance 

Altitude 60 

Land cover 14.4 

Distance from water channels 14.1 

bio_3 0.3 

bio_2 1.7 

Aspect 1 

bio_9 1.4 

Slope 2.3 

bio_15 4.9 
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SUPPLEMENTARY DATA S3 

Response curves 

These curves show how each environmental variable affects the Maxent prediction. The curves show 

how the predicted probability of presence changes as each environmental variable is varied, keeping 

all other environmental variables at their average sample value. The curves show the mean response 

of the 25 replicate Maxent runs (red) and the mean +/- one standard deviation (blue, two shades for 

categorical variables). 

1. Model at 1km 
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2. Model at 300 m 
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2. Model at 50 m 

 

Legend for Land cover categories  

11 Broad leaved woodland 

21 Coniferous woodland 

41 Arable cereals 

42 Arable horticulture 

43 Non Rotational Horticulture 

51 Improved Grassland 

52 Setaside Grassland 

61 Neutral Grassland 

71 Calcareous grassland 

81 Acid grassland 

91 Bracken 

101 Dense dwarf shrub heath 

102 Open dwarf shrub heath 

111 Fen, marsh, swamp 

121 Bog 
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131 Inland water 

151 Montane habitat 

161 Inland rock 

171 Sub urban/rural developed 

172 Continuous urban 

181 Supra-littoral rock 

191 Supra-littoral sediment 

201 Littoral rock 

211 Littoral sediment 

212 Saltmarsh 

221 Sea/Estuary 
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ABSTRACT 

Significant changes in the composition and extent of the UK forest cover are likely to take place in the 

coming decades. Current policy targets an increase in forest area, for example, the Welsh Government 

aims for forest expansion by 2030, and a purposeful shift from non-native conifers to broadleaved tree 

species, as identified by the UK Forestry Standard Guidelines on Biodiversity. Using the example of 

Wales, we aim to generate an evidence-based projection of the impact of contrasting policy scenarios 

on the state of forests in the near future, with the view of stimulating debate and aiding decisions 

concerning plausible outcomes of different policies. We quantified changes in different land use and 

land cover (LULC) classes in Wales between 2007 and 2015 and used a multi-layer perceptron–Markov 

chain ensemble modelling approach to project the state of Welsh forests in 2030 under the current and 

an alternative policy scenario. The current level of expansion and restoration of broadleaf forest in 

Wales is sufficient to deliver on existing policy goals. We also show effects of a more ambitious 

afforestation policy on the Welsh landscape. In a key finding, the highest intensity of broadleaf 

expansion is likely to shift from south-eastern to more central areas of Wales. The study identifies the 

key predictors of LULC change in Wales. High-resolution future land cover simulation maps using 

these predictors offer an evidence-based tool for forest managers and government officials to test the 

effects of existing and alternative policy scenarios. 
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1. INTRODUCTION 

Global forest cover has receded rapidly in the recent past, largely due to the conversion of forests into 

pasture and croplands [1]. In contrast to many other parts of the world where forest cover is still 

declining, Europe has reversed this deforestation trend and forest cover here is increasing as a 

consequence of land abandonment and subsequent secondary succession [2] and as a result of 

deliberate planting [3]. Afforestation of Great Britain is a good example of such reversal: forest cover 

stood at 5% in the 1920s but increased to 13% by 2013 [4]. Early twentieth-century forestry policy in 

Britain focused on planting fast-growing non-native conifer tree species to boost domestic timber 

supply [5], nearly tripling forest cover in the process. However, extensive plantations of single-species 

non-native conifers resulted in the loss of important habitats [6][7], with a direct negative effect on 

species diversity [8]. In the latter part of the twentieth century, British forestry policy gradually changed 

to address a wider set of objectives to complement timber production, resulting in a broad focus on the 

expansion of native tree species cover [5]. 

At present, non-native conifers constitute 36% of the total forest area in Britain. Typically represented 

by Sitka spruce (Picea sitchensis Bong.), the conversion of these woodlands to native species, where 

appropriate, is an aspiration stated in the UK Forestry Standard Guidelines on Biodiversity (UKFS) [9]. 

Non-native plantations often consist of even-aged and often single-species conifers mostly present in 

the uplands. UKFS guidelines on biodiversity encourage the large-scale expansion of native 

woodlands, primarily by replacing non-native species by native broadleaves or Scots pine (Pinus 

sylvestris L.). ‘Forest conversion’ in this context thus refers to the silvicultural process of changing forest 

stands dominated by non-native conifers into forests composed of native tree species [9]. 

There are several reasons why this type of forest conversion should become an important tool of 

forestry policy in Britain. When compared to a conifer plantation, broadleaf tree species tend to increase 

soil pH [10], improve growth condition for ground vegetation and soil fauna [11][12][13], enhance 

nesting opportunities and seasonal availability of food to bird communities [14] and decrease the 

prevalence of insect pests [15] and plant pathogens [16]. Further, and no less important in densely 
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populated landscapes, forest conversion to native broadleaves impacts on landscape aesthetics—an 

attribute keenly perceived and appreciated by the public [17]. The conversion of conifer stands to 

broadleaf woodland is also supported by forestry policy in Wales, specifically the rules governing the 

restoration of planted ancient woodland sites (PAWS) that have historically been afforested with 

conifers [18]. This strategy is also supported by the objectives of the UK Biodiversity Action Plan. 

There is strong political interest to enhance forest cover of the UK (e.g. [19], with the Welsh Government 

committed to increasing the overall forest area in Wales as its contribution to sustainable development. 

In 2010, the Welsh Assembly Government’s Climate Change Strategy [20] recommended that 

woodland establishment rates be increased to 5000 ha per year for 20 years as an option for meeting 

Wales’ carbon emission reduction targets. This figure was subsequently adopted by Welsh Government 

as a policy target in the form of planting 100 000 ha of new, primarily broadleaved, woodland by 2030. 

However, actual planting levels over the following years were insufficient to meet this. The Welsh 

Government then regressively reduced the target, first to 50 000 ha, and eventually to the current 

commitment to plant at least 2000 ha of woodland a year between 2020 and 2030 [19]. Despite these 

reductions in aspiration, the broad commitment to increasing woodland cover has been bolstered by 

recent legislation and policy development. The Environment (Wales) Act (2016) requires the Welsh 

Government’s principal advisor on the environment and natural resources, Natural Resources Wales, 

to periodically produce a State of Natural Resources Report that makes an assessment of the state of 

natural resources in Wales and the extent to which they are sustainably managed. The first such report 

highlighted the need for the increased woodland cover to deliver multiple benefits [21]. In this context, 

maintaining a balance between conservation and sustainable development is seen as a challenge in 

policy making and landscape management in Wales. 

Where possible, forest management policies should be evidence-based [22][23]. One tool that can be 

used to generate evidence and test policy scenarios is landscape modelling which can project the spatial 

and temporal implications of policies under consideration [24]. Spatially explicit land use and land 

cover (LULC) models can project land use change patterns according to given policy objectives and 



Scenario-led modelling of broadleaf forest expansion in Wales 

84 | P a g e  

generate alternative scenarios [25][26], thus establishing a link between policy and implications on the 

ground [27]. The LULC change models offer an evidence-based approach to visualize, analyse and 

quantify LULC changes in what-if future scenarios, thus providing useful insights to policy makers and 

relevant stakeholders to set priorities and reasonable goals for sustainable forest management [28]. 

To date, several spatially explicit modelling environments have been developed by incorporating 

remote sensing and geographical information system tools to project future LULC change scenarios. 

Some of the most widely used models are based on Markov chain, logistic regression, artificial neural 

network and cellular automata models [29]. Integrated use of these models is often advised to overcome 

limitations of individual models and generate robust LULC change simulations [30]. In this study, we 

employed an integrated multi-layer perceptron–Markov chain analysis (MLP–MCA) method to 

quantify historic LULC change and to model future scenarios of LULC change in Wales. The MLP–

MCA is a robust and well documented approach for modelling spatial and temporal LULC changes 

[31][32][33]. To develop realistic future scenarios of LULC change, it is critical to understand the spatial 

patterns of current LULC and to develop an understanding of the potential impacts of current and 

future policies affecting LULC change and, specifically, native woodland expansion. A key assumption 

underlying most LULC modelling is that socio-economic drivers of change remain stable over time; 

this is, however, unlikely in reality [34]. To meet this challenge, we considered the following key 

questions prior to embarking on the modelling exercise: 

1. Under recent policies, what would the state (type and area) of forests in Wales be in 2030?  

2. What are the implications of an alternative policy scenario designed to stimulate new woodland 

creation while considering other objectives, such as the conservation value of non-woodland habitats? 

Thus, this paper presents an analysis of the current situation and likely future trends, together with an 

indication of policy requirements necessary to achieve the stated afforestation goal for Wales. We 

mapped historical patterns of LULC and LULC change in Wales and developed two contrasting future 

LULC scenarios based on (i) current trends and (ii) an alternative policy. We also discuss the usefulness 

of the resulting future LULC maps of Wales for habitat, biodiversity and ecosystem services analysis. 
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2. METHODOLOGY 

2.1. Study Area  

Wales is a country with an area of nearly 21 000 km2 and a population of over 3 million, most of which 

live in rural communities [35]. The population is unequally distributed, with most people living in 

coastal areas in the northeast and south Wales. The country is characterized by a wide variety of 

landscapes, reflecting both its rugged topography and a long history of agricultural settlement and 

industrialization. Significant areas of land (approx. 6000 km2) are at an altitude above 300 m. Welsh 

countryside contains a range of important habitats, including woodlands, semi-natural grasslands, 

heathland, fens, bogs, coastal ecosystems including sand dunes and saltmarshes, and a diverse range 

of upland and montane habitats [6][36]. Only a small proportion—6%—of the country is occupied by 

arable agriculture, while the major land use types are grazing (77%) and forestry (15%) [37][38][39]. 

2.2. Modelling Methodology  

We made use of TerrSet Geospatial Monitoring and Modelling System (version 18.31, Clark Labs, Clark 

University, USA) [40]. Specifically, we used the ‘Land Change Modeler’ (LCM) tool in TerrSet to 

generate two future LULC change scenarios: business-as-usual and an alternative scenario. 

2.3. Analysis of Past Change  

The first step of this type of analysis generates the spatial pattern of changes that are discernible from 

the comparison of historical LULC maps. A minimum of two maps is required (describing two different 

points in time), the comparison seeking to understand the nature of LULC change and to generate 

samples of transitions to be projected [40]. We used high-resolution (25 m) LULC maps of the country 

from 2007 and 2015, generated from satellite imagery by the Centre for Ecology & Hydrology, UK 

(https://digimap.edina.ac.uk) [41]. Both LULC maps had the same legend and spatial resolution. By 

comparing the two maps, LCM evaluates LULC change and generates a visual representation of net 

change, persistence, losses and gains and transitions between different LULC categories covered by the 

two raster maps. In this study, we excluded LULC categories that showed a negligible transition 

between 2007 and 2015 and thus are not expected to change over the time horizon under consideration 
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(e.g. urban areas) and those not relevant to our objectives (e.g. water bodies or coastal areas). The final 

list of LULC categories selected for our modelling exercise is presented in the electronic Supplementary 

Data S1, table 1. We then generated change analysis maps indicating which LULC classes changed and 

the spatial pattern of changes across the Welsh landscape. This analysis of LULC change in Wales 

between 2007 and 2015 resulted in a total of 28 transition types between different LULC classes 

(electronic Supplementary Data, table 1). 

2.4. Explanatory Variables 

2.4.1. Rationale for the Choice of Explanatory Variables 

Land use change modelling is complex, and a wide range of factors is likely to affect future decisions 

of landowners [42]. Therefore, the kind and number of explanatory factors for future land use change 

can vary considerably. Spatial and temporal scale of the study also affects the choice of explanatory 

variables [42]. Given that the spatial focus of this study is regional (i.e. Wales) and temporal scale is 

only 15 years (2015–2030), we applied the following rationale to the choice of explanatory variables: 

— Biophysical variables. Biophysical factors such as topography or soil type influence land use and 

allocation decisions. For example, expansion of arable land may be limited by slope incline and/or 

altitude, planting new woodlands could be driven by soil quality or land parcel accessibility. 

Biophysical variables, especially at a fine spatial resolution of 25 m, are very strong proxies of climatic 

variables which are otherwise only available at a spatial resolution of 1 km or higher and thus cannot 

be used in fine-scale land use change modelling (e.g. altitude is a strong proxy for temperature, wind 

speed, etc.) [42][43].  

— Proximate variables. At a regional scale, variables such as distance to markets or roads are strong 

determinants of landowners’ decision-making [42][44]. For example, areas closer to roads or green 

spaces often have a higher market price. Areas in close proximities to major road junctions are more 

likely to experience change [45]. Furthermore, we used variables such as distance to exiting the 

broadleaf forest and arable land because the expansion of a habitat is very likely to be in the near 

vicinity of the already existing patches of that habitat [24][46].  
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— Evidence likelihood of land use transition. We mapped transitions from all land cover classes to the 

broadleaf forest and vice versa during 2007–2015 and used the evidence likelihood function to convert 

the patterns of these transitions into usable continuous variables. Evidence likelihood is an empirical 

probability of change for a qualitative map [47] and describes the relative frequency with which 

different LULC categories occurred within areas that transitioned between 2007 and 2015. These 

variables thus represent the likelihood of finding a specific LULC at the pixel in question, if the pixel 

covers an area suitable for the transition. Since the decision of change on a land parcel is strongly 

influenced by the decisions of the neighbouring land parcel [48][49][50], these variables can have 

important information. 

2.4.2. Explanatory Variables Used in the Study  

As shown in table 1, we considered 20 variables in total as having the potential to explain LULC 

transitions occurring in Wales between 2007 and 2015. We collected a range of explanatory variables 

such as topography, soil factors or distance from key biophysical features such as water bodies and 

existing forests [34][51][52]. Six variables—distances between each of the six LULC classes—were 

dynamic, while the rest were static. Values of a dynamic variable change at each time step of the model 

run and thus need to be recalculated (e.g. the distance from the broadleaf forest as these forests expand). 

By contrast, static variables remain constant over time (e.g. altitude, slope, soil type). 

Furthermore, we used the ‘Evidence Likelihood Transformation’ tool in the LCM to convert categorical 

variables to continuous [40]. The following transformations were made: 

(1) We generated two Boolean images: first, change from all LULC types to Broadleaf Forest (All to 

Broadleaf ) and change from Broadleaf Forest to all other LULC types (Broadleaf to All). In these 

images, 0 represents no change while 1 represents the indicated change. The Boolean images were then 

used in the Evidence Likelihood Transformation process to generate two continuous variables: 

‘Evidence Likelihood of change from Broadleaf Forest to All Other Classes’ and ‘Evidence Likelihood 

of change from All Other Classes to Broadleaf Forest’.  
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(2) Welsh soil type data used in this research consisted of 27 soil classes. We used the ‘Evidence 

Likelihood Transformation’ option to generate the following two continuous variables from this 

categorical variable: ‘Evidence Likelihood of change from Broadleaf Forest to All Other Classes based 

on Soil type’ and ‘Evidence Likelihood of change from All Other Classes to Broadleaf Forest based on 

Soil type’. 

The potential of each of the 20 variables to explain observed LULC change was tested by calculating 

Cramer’s V [40]. Six variables were dropped from the final list on the basis of low Cramer’s V value (V, 

0.15) [52]. 

Table 1. List of explanatory variables considered in the study. Variables in italics were chosen in the 

final model based on Cramer’s V values (V . 0.15). 

  Explanatory Variables Cramer's V Type of 

Variable 

1 Altitude 0.345 Static 

2 Aspect 0.077 Static 

3 Slope 0.168 Static 

4 Hillshade 0.135 Static 

5 Distance from Access Points 0.224 Static 

6 Distance from Green Spaces 0.223 Static 

7 Distance from Water Channels 0.011 Static 

8 Distance from Roads 0.254 Static 

9 Distance from Hydronodes 0.065 Static 

10 Distance from Motorway Junctions 0.161 Static 

11 Distance from Broadleaf Forest 0.155 Dynamic 

12 Distance from Conifer Forest 0.081 Dynamic 

13 Distance from Arable Land 0.21 Dynamic 

14 Distance from Improved Grassland 0.155 Dynamic 

15 Distance from Semi Natural Grassland 0.161 Dynamic 

16 Distance from Mountain, Heath & Bog 0.013 Dynamic 

17 Evidence Likelihood of change from Broadleaf Forest to All Other Classes 

based on earlier land use transition 

0.249 Static 

18 Evidence Likelihood of change from All Other Classes to Broadleaf Forest 

based on earlier land use transition 

0.533 Static 

19 Evidence Likelihood of change from Broadleaf Forest to All Other Classes 

based on Soil type 

0.251 Static 

20 Evidence Likelihood of change from All Other Classes to Broadleaf Forest 

based on Soil type 

0.256 Static 
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2.4.3. Transition Sub-Models (Training and Validation)  

LCM enlists all shortlisted transitions between the two LULC maps, each represented by a transition 

sub-model. Explanatory variables which have Cramer’s V. 0.15 were used to explain the observed 

transitions; the accuracy rates of the transition sub-models are given in electronic Supplementary Data 

S1, table 2. MLP procedure in LCM was then used to run the transition sub-models to empirically model 

future LULC. MLP used a backwards stepwise variable selection in which all variables are tested 

individually and in pairs for their impact on model accuracy and finally the likelihood of model 

overfitting is reduced by selecting an optimum number of variables to be included in the final model. 

When training and validating a transition sub-model, MLP makes use of sample pixels that have 

undergone a transition between the two time periods. By default, MLP takes 10 000 randomly selected 

pixels for running each transition sub-model. One half of these pixels is used to train the model, while 

the other half is used for model validation. At the end of each model training run, MLP generates 

accuracy results for each transition sub-model. The details of transition sub-models considered in this 

study and their respective accuracy are given in the electronic Supplementary Data, table 2. To project 

future changes, we generated a projected potential map—a map of the study area showing the potential 

of each pixel across the landscape to undergo each of the LULC transitions. The potential map was 

subsequently used to project LULC change to desired future date (2030). 

2.4.4. Change Demand Modelling  

In this step, we used the ‘Change Demand Modelling’ procedure in LCM to determine the amount of 

change that is likely to occur in selected LULC categories at some point in the future. By default, LCM 

uses a Markov chain prediction process which calculates the amount of change based on historical 

observations and determines the area of land expected to undergo such transition in the future. At this 

stage, LCM generates a transition potential file in the form of a matrix which shows the probability of 

each LULC category to change to every other category. This potential file matrix generated by Markov 

chain showing probabilities of all transitions for the year 2030 is shown in table 2. LCM allows the user 
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to manipulate these transition probabilities to create different modelling scenarios in the future. In this 

study, the following two scenarios for LULC transitions by 2030 were considered. 

2.4.4.1. The Business-as-Usual Scenario 

 This is the default scenario created in the Markov chain probability matrix. The business-as-usual (B-

a-U) scenario represents a linear projection of current trends to 2030; the trends were identified and 

modelled based on changes observed between 2007 and 2015. 

2.4.4.2. Ecosystem Conservation Scenario 

By manipulating the transition probability matrix generated by the Change Demand Modelling panel, 

we created an ecosystem conservation (EC) scenario reflecting forestry and environmental policies 

currently in place: 

(a) Conversion of conifer to broadleaf woodland in Wales would deliver a range of environmental 

benefits and is specifically required to deliver policies aimed at restoring PAWS. To accommodate these 

considerations in the EC scenario, we assumed that the probability of Conifer-to-Broadleaf Forest 

conversion would increase by 50% as compared to the current trend (B-a-U scenario).  

(b) Conservation of ecologically important non-forest LULC categories such as Mountain, Heath and 

Bog is an integral part of Welsh forestry policy, for reasons of climate change in addition to biodiversity 

[53]. For this reason, we assumed that in 2015–2030, the probability of the LULC class ‘Mountain, Heath 

and Bog’ persisting itself will increase by 50% as compared to the current trend (B-a-U scenario).  

(c) The Climate Change Strategy for Wales [20] inspired the Welsh Government to set a target of 

expanding existing Welsh woodland by 100 000 ha by 2030, although subsequently reduced to a 

minimum of 20 000 ha for this period [54]. Such expansion reflects wider aspirations for woodland 

expansion in the UK, e.g. in the ‘UK 25 years environmental plan’ [19]. We assumed, therefore, that the 

current trend of LULC classes such as Semi-Natural Grassland and Improved Grassland converting to 

Broadleaf Forest would continue, but Broadleaf Forest will not be converted to any other LULC 

category during 2015–2030. 

 



Chapter 4 

91 | P a g e  

Table 2. Markov chain transition probability matrix (business-as-usual scenario, ecosystem 

conservation scenario) showing probability of change to 2030 in Wales, UK. 

Business-as-Usual Scenario 

Given Probability of Changing to   
Broadleaf 

Forest 

Conifer 

Forest 

Arable 

Land 

Improved 

Grassland 

Semi-

natural 

Grassland 

Mountain, 

Heath, 

Bog 

Broadleaf Forest 0.57 0.142 0.019 0.191 0.062 0.013 

Conifer Forest 0.188 0.754 0.003 0.029 0.02 0.004 

Arable Land 0.052 0.009 0.098 0.752 0.079 0.007 

Improved Grassland 0.04 0.008 0.057 0.784 0.103 0.006 

Semi Natural Grassland 0.073 0.049 0.034 0.411 0.381 0.051 

Mountain, Heath & Bog 0.061 0.088 0.019 0.167 0.452 0.211        

Ecosystem Conservation Scenario 

Given Probability of Changing to   
Broadleaf 

Forest 

Conifer 

Forest 

Arable 

Land 

Improved 

Grassland 

Semi-

natural 

Grassland 

Mountain, 

Heath, 

Bog 

Broadleaf Forest 1 0 0 0 0 0 

Conifer Forest 0.282 0.659 0.003 0.029 0.02 0.004 

Arable Land 0.052 0.009 0.098 0.752 0.079 0.007 

Improved Grassland 0.04 0.008 0.057 0.784 0.103 0.006 

Semi Natural Grassland 0.073 0.049 0.034 0.411 0.381 0.051 

Mountain, Heath & Bog 0.061 0.088 0.019 0.167 0.347 0.316 

 

2.5. Step 5: Change Projection 

In the final step, we generated future LULC maps based on the transition probability matrices of the 

two scenarios considered in this study. 

3. RESULTS 

3.1. LULC Changes (2007–2015) 

We computed LULC transitions between different LULC classes that have occurred in Wales, UK 

between 2007 and 2015 by applying the cross-tabulation module in LCM (Figure 1a). The predictor 

variables considered in this study explained the LULC transitions between 2007 and 2015 well; the 

average accuracy of all transition sub-models considered in this study was 79% (electronic 

Supplementary Data S1, table 2). An accuracy rate of 75% or above is considered indicative of good 

model performance (Clark Labs, 2015). Gains and losses between different LULC types and net change 

calculation (Figure 1a) show that ‘Improved Grassland’ and ‘Broadleaf Forest’ experienced the biggest 
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expansion (148 521 and 39875 ha, respectively). Moreover, an analysis of contributions to the net change 

of individual LULC types (electronic Supplementary Data S1, Figure 1) suggests that the biggest 

contributor to ‘Broadleaf Forest’ during 2007–2015 is the ‘Semi-Natural Grassland’ category (19 589 ha). 

On the other hand, around 6458 ha of ‘Broadleaf Forest’ was lost to ‘Coniferous Forest’ during this time. 

Of the other major LULC changes in this period, around 80 778 ha of ‘Semi-Natural Grassland’ and 69 

688 ha of ‘Arable Land’ were converted to ‘Improved Grassland’. A visual overview of historical and 

projected spatial distribution of LULC transitions in Wales is presented in electronic Supplementary 

Data S1, Figure 2. 

 

Figure 1. In Wales, UK, gains, losses and net changes between different LULC classes (hectares) during 

(a) 2007– 2015, (b) 2015 – 2030 (B-a-U scenario) and (c) 2015– 2030 (EC scenario). 

 

3.2. Land Use Change Projections For 2030 

3.2.1. The business-as-usual scenario  

Based on LULC change observed over the period between 2007 and 2015, we generated a map showing 

projected LULC map of Wales for the year 2030 under the B-a-U scenario (Figure 2) which is based on 

the projected potential for transition in Wales (electronic Supplementary Data, table 2 and Figure 3). 

An analysis of the B-a-U scenario shows that the ‘Broadleaf Forest’ is likely to experience a net increase 
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of 43 366 ha of area (Figure 1b), most of which is likely to come at the expense of ‘Semi-Natural 

Grassland’ (21 321 ha), ‘Improved Grassland’ (8815 ha) and ‘Coniferous Forest’ (7480 ha). 

3.2.2. The Ecosystem Conservation Scenario 

Projected transition potential map for the second scenario considered in this study is shown in Figure 

5. An analysis of the LULC transition under this modelling scenario reveals that ‘Broadleaf Forest’ 

LULC category is expected to gain 127 129 ha of the area between 2015 and 2030 (Figure 1c). Most of 

the expansion in the area of ‘Broadleaf Forest’ under this modelling scenario is expected to come at the 

cost of ‘Coniferous Forest’ (45 322 ha), ‘Improved Grassland’ (39 494 ha) and ‘Semi-Natural Grassland’ 

(31 318 ha).  

 

Figure 2. Current (a) and projected land use map of Wales, UK for the year 2030 under B-a-U (b) and 

EC (c) modelling scenarios. 

3.3. State of Forests in Wales In 2030 

Compared to the baseline of 159 951 ha in 2015, the ‘Broadleaf Forest’ category is likely to expand to 

203 317 and 287 080 ha under the B-a-U and EC modelling scenarios, respectively. Existing conifer 

woodlands are expected to experience a conversion to broadleaf of 19% and 28% under the B-a-U and 

EC scenarios, respectively. The total forest area in Wales (combining broadleaf and conifer forests) is 
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expected to increase by 66 358 and 112 280 ha under the B-a-U and EC scenarios, as compared to the 

total area under forests in 2015. Historically (2007–2015), most of the conversion took place in the south-

eastern part of Wales. A slight modification of the geographical distribution of conversion is expected 

in both future scenarios modelled in this study: the contour map of conversion intensity indicates a 

westward and northward shift (Figure 3). As an example, showing projected change of the area of the 

broadleaf forest against topographic detail, we show the detail of an area of Snowdonia National Park 

in Wales in Figure 4. 

 

 

Figure 3. Spatial trend of conifer to broadleaf forest conversion in Wales, UK during 2007– 2015 (a), 

2015– 2030 B-a-U scenario (b) and 2015– 2030 EC scenario (c). 
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Figure 4. Projected conifer to broadleaf forest conversion in Wales during 2015 and 2030 under the EC 

modelling scenario. Broadleaf forest expansion in Snowdonia National Park is enlarged for detailed 

view (OS Crown copyright Edina Digimap). 

 

Figure 5. Projected potential for transition in Wales, UK for A. Business-As-Usual Scenario & B. 

Ecosystem Conservation Scenario, based on the land cover transition during 2007-2015. Areas coded 

with numbers 0 to 1 indicate minimum to maximum potential of transition in future. 
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4. DISCUSSION  

Forests covered nearly 15% of the total area of Wales in 2015. Most Welsh forests were privately owned 

(59%), the remainder was owned by the Welsh Government Woodland Estate [55]. The forestry sector 

makes a significant contribution to the Welsh economy. Recent data (2015–2016) indicate that this sector 

contributes a gross value added of £528.6 million, supports around 700 businesses and provides over 

10 000 jobs. Overall, the value of publicly owned forest in Wales in 2015 was estimated to be £642 million 

[55]. Besides their economic value, Welsh woodlands provide a range of ecosystem services by 

sequestering 1 419 000 tonnes of carbon dioxide equivalent per year and by playing a crucial role in soil 

and water management by reducing nutrient runoff, diffusing pollution, reducing flood risk and 

improving water quality [18]. Recent forest planting in Wales, however, has changed its focus from the 

twentieth century, the planting of broadleaf tree species increasing in comparison to conifers. Since 

2001, the estimated area under conifer forests has decreased by 18 000 ha, while the estimated area 

under broadleaf species has increased by 35 000 ha [56]. The forested land area in Wales is very low for 

a European country, the average forest cover in Europe being 37% [18]. In order to increase the amount 

of land under forests, with the main motivation being ecosystem service provision, the Climate Change 

Strategy for Wales prompted the Welsh Government to set a target of increasing forest from 15% up to 

19%; because of perceived the low levels of planting this target has been progressively reduced, and 

currently is the equivalent 20 000 ha by 2030 [54]. At the same time, the conversion of non-native 

conifers to native broadleaf species, primarily in the PAWS, is an aim of the UKFS [53]. In our B-a-U 

scenario, we found that if the current rate of change continues, the total forest area in Wales by 2030 is 

likely to increase from current 15 to 17%. However, in the EC scenario where the rates of afforestation 

and conversion to broadleaf are prioritized, future forest cover could reach the original target: 19% of 

the total Welsh area. This is considerably in excess of Welsh Government’s revised target. This disparity 

is interesting and highlights the need for more informed projections of forest cover to help set policy 

targets. Historical conifer-to-broadleaf conversion rate projected to 2030 indicates that about 19% of 

existing conifers will undergo conversion, the EC scenario increases the rate by half to 28%. In standard 
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forestry practice in Wales, where the average rotation of non-native conifers in Wales is about 60 years, 

the expectation is to harvest one-sixth of these woodlands every decade. The modelled B-a-U 

conversion rate of 19% is thus very close to the natural rotation harvest and replanting. Aiming for a 

higher conversion rate by 2030 implies shortening the rotation in some forests. 

Although the major policy driver of conifer-to-broadleaf woodland conversion in Wales is PAWS, there 

are other factors that may motivate this type of conversion. For instance, the UKFS encourages 

diversifying forested areas in a way that a forest management unit should have at least 5% of native 

broadleaf trees species and should not contain more than 75% of a single species. The UKFS guidelines 

also advocate large-scale conversion in areas with the potential to enhance existing ancient semi-natural 

woodlands and on sites which are sufficiently large to overcome edge effects [53]. In a survey of private 

woodland managers in England, Scotland and Wales tasked with managing planted non-native conifer 

woodlands (but excluding PAWS), the managers were interviewed about their intentions regarding 

conversion to broadleaves and the reasons behind their plans. The results suggested that woodland 

managers are considering a conversion of anywhere between 5 and 95% of their woodlands from 

conifers to native broadleaf forest, even if not required to do so by environmental policy. Those willing 

to convert indicated biodiversity conservation, improved resilience and recreation as the chief factors 

behind their intention, while those unwilling to make large-scale conversions mentioned timber 

production, cost of conversion and—crucially—lack of guidance and advice [9]. 

In the recent past, considerable research has been carried out to improve understanding of costs and 

benefit of converting PAWS to the native broadleaf forest; however, no dedicated effort has been made 

on the conversion of non-PAWS, leaving a potential research gap [9]. Since the conversion needs to be 

gradual and well planned [9][57], our study presents a useful spatially explicit decision-making aid that 

pinpoints sites most suitable for conifer-to-broadleaf conversion across Wales. Projected maps of 

conifer-to-broadleaf conversion may also prove useful for forest managers who are hesitant of 

conversion by indicating site suitability on the basis of past experience. Concerns such as suitability of 

site and distance to already existing broadleaf seed source have been indicated by forest managers [9]; 
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our projected LULC models address these concerns as we incorporate past LULC changes, soil factors, 

slope, water availability, road access and distance to the broadleaf forest as predictor variables in the 

models. 

Analysis of the conifer-to-broadleaf forest conversion between 2007 and 2015 indicated that altitude is 

the most influential factor, altitude alone resulting in an accuracy of 80% of the ‘conifer forest to 

broadleaf forest’ sub-model. Most of the transitions from conifer plantation to broadleaf forests in Wales 

took place between altitudes of 100 and 250 m. Conversion was minimal close to sea level and above 

275 m. Most of the land between 0 and 100 m of altitude is dedicated to agriculture and grasslands, 

while forests are less likely to occur above 275 m in Wales as land use above this altitude predominantly 

belongs to the Mountain, Heath and Bog category. In addition to altitude, the distance from roads made 

a notable contribution in explaining the conifer-to-broadleaf conversion between 2007 and 2015. Most 

of the conifers converted to broadleaves were located in areas 200–300 m from a road. Habitat 

expansion or restoration activity is more likely to be within 1 km of the road network as easy and 

frequent access is generally possible in this range [52]. 

One of the motivations for designing the EC scenario in this study was conservation of the ‘Mountain, 

Heath and Bog’ habitat. Heaths and peat bogs include all inland and coastal, dry and wet heaths and 

mires [58]. These are some of Britain’s most scarce habitats having a unique ecological value as these 

habitat types support a range of animals, insects and plants and provide food and shelter to migrating 

birds [59]. Moreover, heath and peat bogs—which can be thousands of years old—contain a wealth of 

historical data on climate, landscape and biodiversity. A study in 1995 had indicated that around 20% 

of upland heather moorland present in England and Wales in the mid-1940s was lost by 1990, high 

grazing pressure being one of the chief reasons for this loss [59]. 

A recent study modelled species richness in heath and peat bog habitat in the UK and warned of major 

declines in this habitat by 2030 [58]. Our data show that 70% of Welsh heather moorland present in 

1990s is ‘at risk of change’ in future. During 2007–2015, 40% of ‘Mountain, Heath and Bog’ was lost, 

three-quarters of the loss due to the conversion to ‘Semi-Natural Grassland’ category. Under the B-a-U 
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scenario, 47% of the 2015 area under this LULC class is likely to be lost by 2030. Under the EC scenario—

where we increased the probability of ‘Mountain, Heath and Bog’ to persist by 50%—we still saw a 38% 

loss. This indication of serious threats to ‘Mountain, Heath and Bog’ habitat suggests that major 

interventions are required to conserve this highly valuable and scarce habitat. 

4.1. Applications of Future Land Use and Land Cover Maps for Ecosystem Services and 

Biodiversity Analysis in Wales 

In addition to the utility as a decision support tool for broadleaf forest expansion in Wales, the output 

LULC maps of this study can be used for a range of habitat, ecosystem services and biodiversity 

analysis, some of which are discussed in the following. 

4.1.1. Modelling the Abundance of Crop Pollinators  

It is estimated that 20% of agricultural crops in the UK depend on pollinators; the economic value of 

pollinators to UK agriculture is estimated to be £690 million per year [61]. The National Ecosystem 

Assessment showed that the abundance of wild pollinators in the UK has declined in the last 30 years 

and this trend is likely to continue [60]. In Wales, the declining abundance of pollinators is an 

increasingly important issue and several action plans have been proposed in the recent past to conserve 

pollinators [61][62]. The future LULC maps of Wales can be used to evaluate the likely effects of 

contrasting LULC scenarios on the future abundance of wild bees as pollinators for agricultural crops. 

The abundance of wild bees largely depends on factors like nesting site availability and flight range, 

and models based on current and future LULC maps can be used to estimate the number of wild bees 

visiting agricultural sites and identifying areas that are likely to gain the most benefits from wild 

pollination [47]. 

4.1.2. Predicting Carbon Storage and Sequestration  

The Welsh Government has a commitment to reduce annual carbon equivalent emissions by 3% per 

annum [63][64]. In this regard, monitoring the rates of carbon emissions and sequestration is a 

challenge. Carbon sequestration models are being used to estimate future carbon stocks and rates of 

sequestration [65]. The future LULC maps of Wales can be used to estimate future amounts of carbon 
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stored in the landscape and sequestered over time. Current and future LULC maps along with rates of 

wood harvest, degradation rates of harvested products and carbon stocks in the current LULC classes 

can be used to calculate carbon storage and sequestration. Additionally, these maps can also be used to 

calculate the market value of sequestered carbon in current and future land cover of Wales [47]. 

4.1.3. Future Landscape Change Process Analysis  

As stated in the State of Nature (2016) report for Wales, major changes in ecosystem services and 

abundance of species have occurred due to degradation and fragmentation of habitat in Wales [66]. 

Current and projected future LULC maps of Wales can be used to measure the nature of the change 

underway within each land use class under different policy scenarios of broadleaf forest expansion in 

Wales. In spatial analysis environments such as TerrSet, it is done by using a decision tree method that 

compares the land cover patches in each LULC category between the two time periods and calculates 

the changes in the perimeter and area of the corresponding patches [47]. The output map helps 

visualizing where in future a given LULC category is likely to experience persistence, fragmentation or 

aggregation of patches. In the context of Wales where there is a major drive to conserve and repair rare 

natural habitat such as bogs, this could be an important analysis as it would allow one to visualize the 

nature of landscape change that might occur under different future land use change scenarios. 

4.1.4. Invasive Species Distribution Modelling in Wales  

Invasive species are major drivers of ecosystem degradation in Wales costing the Welsh economy 

approximately £7 million per annum [67]. Predicting the future distribution of invasive species is key 

to effective invasive species management and planning [68]. Future distribution of invasive species is 

often governed by land cover type. Evidence suggests that in Wales the spread of invasive species such 

as Rhododendron ponticum is more sensitive to the land cover type than any other biophysical or climatic 

factor [68]. The projected future maps of our study can be used to run species distribution models of 

different invasive as well as any other species of interest. Contrasting the future scenarios may help 

understand how the different policy approaches are likely to affect the course of invasive species 

distribution in Wales. 
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4.2. Limitations of The Study 

Explanatory variables used in land use change modelling studies are generally divided into three 

categories: biophysical, proximate and socio-economic variables [42]. In this study, we did not include 

socio-economic variables (e.g. GDP, population density, etc.) owing to the coarse resolution of available 

datasets. Instead, we preserved the fine spatial resolution of biophysical and proximate variables which 

are likely to be stronger determinants of land use change and reasonable proxies for the socio-economic 

variables. However, it is advisable to bear in mind that the resulting future projection does not directly 

represent the socio-economic landscape. Availability of fine-scale socio-economic and climatic variables 

may improve the modelling outputs in the future. Moreover, we used LULC maps generated by the 

Centre for Ecology & Hydrology, UK [41] which, to the best of our knowledge, are currently the most 

accurate, verified and finest-resolution LULC temporally repeated maps covering the UK. The fact that 

we used only two time points is a limitation of our study; we did not have a map of LULC after 2015 

that could have been used for verification of the future projection. Although we adopted published 

protocols for future LULC projections [69][70], we suggest that the use of three or more historical LULC 

time points be considered for verification of projections. As we gather more archived LULC data, this 

approach should become the norm. Finally, a key limitation of this type of analysis is its ‘blindness’ to 

major shifts of socio-economic landscape and hence its inability to factor these into projections. A case 

in point is Brexit, where a set of self-imposed trade sanctions threatens a severe adjustment of existing 

drivers of land use. 

CONCLUSION  

This study reveals the changes in LULC in Wales from 2007 to 2015 by using a combined approach of 

GIS and land change prediction models. An integrated MLP–MCA method was applied to improve 

understanding of the scale and location of probable LULC changes under linear projection (B-a-U) and 

a policy-based future scenario (EC) up to 2030. Broadleaf forest expansion is likely to reach the targets 

set by the Welsh Government under the EC scenario. The study shows the potential of LULC 

predictions to test alternative policy aims and to generate evidence at a scale useful to local decision 
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makers. This type of tool can contribute to sustainable development by providing an evidence-based 

spatial framework to support restoration and conservation of ecologically important habitats in Wales. 

Since land use and land cover change is a highly complex phenomenon affected by a range of ecological, 

political and socioeconomic factors, we contend that models incorporating the widest range of factors 

be used to test future LULC scenarios. 
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SUPPLEMENTARY DATA S1 

Table S1. Actual and revised land use classes in the historical land use maps of Wales. Column 1 & 2 show the default legends of the land use maps acquired 

from Edina Digimap. Column 3 shows the harmonized/revised land use classes. Column 4 shows the finally selected land use classes for the model. 

Land use Map 2015 Land use Map 2007 
Revised/Harmonized Land use 

Categories 

Land use Categories Used in the 

Model  

Broadleaved woodland Broadleaved, mixed and yew woodland Broadleaved woodland Broadleaved woodland 

Coniferous woodland Coniferous woodland Coniferous woodland Coniferous woodland 

Arable and horticulture Arable and horticulture Arable and horticulture Arable and horticulture 

Improved grassland Improved grassland Improved grassland Improved grassland 

Neutral grassland Rough grassland 

Semi-Natural grassland Semi-Natural grassland 
Calcareous grassland Neutral grassland 

Acid grassland Calcareous grassland 

Fen, Marsh and Swamp Acid grassland 

Heather Fen, marsh and swamp 

Mountain, Heath, Bog Mountain, Heath, Bog 
Heather grassland Heather 

Bog Heather grassland 

Inland rock Bog 

Saltwater Montane habitats 
Water Bodies 

 Category Excluded 

Freshwater Inland rock 

Supra-littoral rock Saltwater 

Coastal 

Category Excluded 

Supra-littoral sediment Freshwater 
 

Littoral rock Supra-littoral rock 
 

Littoral sediment Supra-littoral sediment 
 

Saltmarsh Littoral rock 
 

Urban Littoral sediment 
Built Areas 

Category Excluded 

Suburban Saltmarsh 
 

 
Urban 

  

 
Sub-Urban 
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Table S2. Transition sub-models in the study. Accuracy rate determines the precision with which the 

sub models were trained and validated. 

  Sub model Accuracy Rate (%) 

1 Broadleaf Forest to Conifer Forest 78.56 

2 Broadleaf Forest to Arable Land 75.41 

3 Broadleaf Forest to Improved Grassland 50.06 

4 Broadleaf Forest to Semi Natural Grassland 50.07 

5 Broadleaf Forest to Mountain, Heath & Bog 81.85 

6 Conifer Forest to Broadleaf Forest 85.47 

7 Conifer Forest to Improved Grassland 83.35 

8 Conifer Forest to Semi Natural Grassland 70.27 

9 Arable Land to Broadleaf Forest 76.81 

10 Arable Land to Conifer Forest 93.29 

11 Arable Land to Improved Grassland 68.4 

12 Arable Land to Semi Natural Grassland 88.7 

13 Arable Land to Mountain, Heath & Bog 78.4 

14 Improved Grassland to Broadleaf Forest 70.35 

15 Improved Grassland to Conifer Forest 80.02 

16 Improved Grassland to Arable Land 69.3 

17 Improved Grassland to Semi Natural Grassland 88.27 

18 Improved Grassland to Mountain, Heath & Bog 75.74 

19 Semi Natural Grassland to Broadleaf Forest 91.81 

20 Semi Natural Grassland to Conifer Forest 72.28 

21 Semi Natural Grassland to Arable Land 95.94 

22 Semi Natural Grassland to Improved Grassland 89.33 

23 Semi Natural Grassland to Mountain, Heath & Bog 68.87 

24 Mountain Heath & Bog to Broadleaf Forest 93.75 

25 Mountain Heath & Bog to Conifer Forest 78.88 

26 Mountain, Heath & Bog to Arable Land 93.91 

27 Mountain, Heath & Bog to Improved Grassland 92.74 

28 Mountain, Heath & Bog to Semi Natural Grassland 65.13 
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Figure 1. Contributions to net change in Broadleaf Forest, Coniferous Forests, Arable Land, Improved 

Grasslands, Semi Natural Grasslands and Mountain, Health & Bog in Wales, UK during 2007-2015 

(hectares).  
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Figure 2. Historical land use transition maps for Wales between 2007 and 2015 (A), predicted land use 

transition from 2015 to 2030 under the Business-as-Usual scenario (B) and Ecosystem conservation 

scenario (C). 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

107 | P a g e  

REFERENCES 

1.  Liu, Y.Y.; Van Dijk, A.I.J.M.; De Jeu, R.A.M.; Canadell, J.G.; McCabe, M.F.; Evans, J.P.; Wang, 

G. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang. 2015, 5, 470–474. 

2.  Lavorel, S.; Grigulis, K.; Leitinger, G.; Kohler, M.; Schirpke, U.; Tappeiner, U. Historical 

trajectories in land use pattern and grassland ecosystem services in two European alpine 

landscapes. Reg. Environ. Chang. 2017, 17, 2251–2264. 

3.  FAO Global Forest Resources Assessment 2010. FAO For. Pap. 2010, 163, 350 pp. 

4.  Forestry Commission NFI 2011 woodland map GB 2013. 

5.  Quine, C.P.; Bailey, S.A.; Watts, K. PRACTITIONER’S PERSPECTIVE: Sustainable forest 

management in a time of ecosystem services frameworks: Common ground and consequences. 

J. Appl. Ecol. 2013, 50, 863–867. 

6.  Blackstock, T.; Howe, E. a.; Stevens, J.; Howe, L.; Jones, P. Habitats of Wales: A 

Comprehensive Field Survey, 1979-1997 2010, 240. 

7.  Procter, D.S.; Cottrell, J.; Watts, K.; Robinson, E.J.H. Do non-native conifer plantations provide 

benefits for a native forest specialist, the wood ant Formica lugubris? For. Ecol. Manage. 2015, 

357, 22–32. 

8.  Eşen, D.; Zedaker, S.M.; Kirwan, J.L.; Mou, P. Soil and site factors influencing purple-flowered 

rhododendron (Rhododendron ponticum L.) and eastern beech forests (Fagus orientalis Lipsky) 

in Turkey. For. Ecol. Manage. 2004, 203, 229–240. 

9.  Barsoum, N.; Henderson, L. Converting planted non-native conifer to native woodlands: a 

review of the benefits, drawbacks and experience in Britain. 2016, 1–10. 

10.  Brandtberg, P.O.; Lundkvist, H.; Bengtsson, J. Changes in forest-floor chemistry caused by a 

birch admixture in Norway spruce stands. For. Ecol. Manage. 2000, 130, 253–264. 

11.  Crawford, R.M.M.; Jeffree, C.E.; Rees, W.G. Paludification and forest retreat in northern 

oceanic environments. Ann. Bot. 2003, 91, 213–226. 

12.  Morison, J.; Matthews, R.; Miller, G.; Perks, M.; Randle, T.; Vanguelova, E.; White, M.; 

Yamulki, S. Understanding the carbon and greenhouse gas balance of forests in Britain.; 2012; ISBN 

9780855388553. 

13.  Gärtner, S.; Reif, A. The response of ground vegetation to structural change during forest 

conversion in the southern Black Forest. Eur. J. For. Res. 2005, 124, 221–231. 

14.  Sweeney, O.F.M.D.; Wilson, M.W.; Irwin, S.; Kelly, T.C.; O’Halloran, J. The influence of a 

native tree species mix component on bird communities in non-native coniferous plantations 

in Ireland. Bird Study 2010, 57, 483–494. 

15.  Brockerhoff, H.J. and E.G. Tree diversity reduces herbivory by forest insects. Ecol. Lett. 2007, 

10, 835–848. 

16.  Haas, S.E.; Hooten, M.B.; Rizzo, D.M.; Meentemeyer, R.K. Forest species diversity reduces 

disease risk in a generalist plant pathogen invasion. Ecol. Lett. 2011, 14, 1108–1116. 

17.  Edwards, D.; Jay, M.; Jensen, F.S.; Lucas, B.; Marzano, M.; Montagné, C.; Peace, A.; Weiss, G. 

Public preferences for structural attributes of forests: Towards a pan-European perspective. 

For. Policy Econ. 2012, 19, 12–19. 

18.  Welsh Government Woodlands for Wales, The Welsh assembly government’s startegy for 

woodlands and trees. 2009, 57. 

19.  HM Government 25-Year-Environment-Plan. 2018, 1–151. 

20.  Government, W.A. Climate Change Strategy for Wales. Business 2010. 

21.  NRW A summary of the State of Natural Resources Report : 2016. 

22.  Yanhui, W.; Bonell, M.; Feger, K.-H.; Pengtao, Y.; Wei, X.; Lihong, X. Changing Forestry Policy 

by Integrating Water Aspects into Forest/Vegetation Restoration in Dryland Areas in China. 

Bull. Chinese Acad. Sci. Agric. Water Ecol. Bull. Chinese Acad. Sci. BCAS 2012, 2626, 59–67. 

23.  Chappell, N.A. “Forests and floods: Moving to an evidence-based approach to watershed and 

integrated flood management” by Ian R. Calder (UK) and Bruce Aylward (USA). Water Int. 



Scenario-led modelling of broadleaf forest expansion in Wales 

108 | P a g e  

2006, 31, 541–543. 

24.  Kamusoko, C.; Wada, Y.; Furuya, T.; Tomimura, S.; Nasu, M.; Homsysavath, K. Simulating 

Future Forest Cover Changes in Pakxeng District, Lao People’s Democratic Republic (PDR): 

Implications for Sustainable Forest Management. Land 2013, 2, 1–19. 

25.  Soares-Filho, B.S.; Nepstad, D.C.; Curran, L.M.; Cerqueira, G.C.; Garcia, R.A.; Ramos, C.A.; 

Voll, E.; McDonald, A.; Lefebvre, P.; Schlesinger, P. Modelling conservation in the Amazon 

basin. Nature 2006, 440, 520–523. 

26.  Koomen, E.; Koekoek, A.; Dijk, E. Simulating Land-use Change in a Regional Planning 

Context. Appl. Spat. Anal. Policy 2011, 4, 223–247. 

27.  GoL Forestry Strategy to the Year 2020. Vientiane Lao PDR 2005, 1–89. 

28.  Buenemann, M.; Martius, C.; Jones, J.W.; Herrmann, S.M.; Klein, D.; Mulligan, M.; Reed, M.S.; 

Winslow, M.; Washington-Allen, R.A.; Lal, R.; et al. Integrative geospatial approaches for the 

comprehensive monitoring and assessment of land management sustainability: Rationale, 

Potentials, and Characteristics. L. Degrad. Dev. 2011, 22, 226–239. 

29.  Mishra, V.N.; Rai, P.K. A remote sensing aided multi-layer perceptron-Markov chain analysis 

for land use and land cover change prediction in Patna district (Bihar), India. Arab. J. Geosci. 

2016, 9. 

30.  Zhang, Q.; Ban, Y.; Liu, J.; Hu, Y. Simulation and analysis of urban growth scenarios for the 

Greater Shanghai Area, China. Comput. Environ. Urban Syst. 2011, 35, 126–139. 

31.  Nasiri, V.; Darvishsefat, A.A.; Rafiee, R.; Shirvany, A.; Hemat, M.A. Land use change 

modelling through an integrated Multi-Layer Perceptron Neural Network and Markov Chain 

analysis (case study: Arasbaran region, Iran). J. For. Res. 2018. 

32.  Ahmed, B.; Ahmed, R. Modelling Urban Land Cover Growth Dynamics Using 

Multi‐Temporal Satellite Images: A Case Study of Dhaka, Bangladesh. ISPRS Int. J. Geo-

Information 2012, 1, 3–31. 

33.  Ozturk, D. Urban growth simulation of Atakum (Samsun, Turkey) using cellular automata-

Markov chain and Multi-layer Perceptron-Markov chain models. Remote Sens. 2015, 7, 5918–

5950. 

34.  Sleeter, B.M.; Sohl, T.L.; Bouchard, M.A.; Reker, R.R.; Soulard, C.E.; Acevedo, W.; Griffith, 

G.E.; Sleeter, R.R.; Auch, R.F.; Sayler, K.L.; et al. Scenarios of land use and land cover change in 

the conterminous United States : Utilizing the special report on emission scenarios at 

ecoregional scales. Glob. Environ. Chang. 2012, 22, 896–914. 

35.  Statistical Bulletin: Annual Mid year Population Estimates: 2013; 2014; 

36.  Swetnam, R.D.; Tweed, F.S. A tale of two landscapes: Transferring landscape quality metrics 

from Wales to Iceland. Land use policy 2018, 0–1. 

37.  Forestry Commission Chapter 1: Woodland Areas and Planting. For. Stat. 2017 2017, 37. 

38.  Research Service Natural Resources Wales Forestry in Wales Quick Guide. For. Comm. For. 

Stat. 2013, 1–5. 

39.  Park, C.; Park, T. Review of Land Use Climate Change An assessment of the evidence base for 

climate change action in the agriculture , land use and wider foodchain sectors in Wales. 2014. 

40.  Clark Labs TerrSet Tutorial; Clark Labs, Clark University: Worcester, MA, USA, 2015 2015. 

41.  Morton, D.; Rowland, C.; Wood, C.; Meek, L.; Marston, C.; Smith, G.; Wadsworth, R.; Simpson, 

I.C. Countryside Survey: Final Report for LCM2007 – the new UK Land Cover Map. Countrys. 

Surv. Tech. Rep. No 11/07 NERC/Centre Ecol. Hydrol. 2011, 112 (CEH Project Number: C03259). 

42.  Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current 

practice and research priorities. GeoJournal 2004, 61, 309–324. 

43.  Manzoor, S.A.; Griffiths, G.; Lukac, M. Species distribution model transferability and model 

grain size – finer may not always be better. Sci. Rep. 2018, 1–9. 

44.  Hou, J.; Wu, W.; Lin, Y.; Wang, J.; Zhou, D.; Guo, J.; Gu, S.; He, M.; Ahmed, S.; Hu, J.; et al. 

Localization of cerebral functional deficits in patients with obsessive-compulsive disorder: A 

resting-state fMRI study. J. Affect. Disord. 2012, 138, 313–321. 



Chapter 4 

109 | P a g e  

45.  Megahed, Y.; Cabral, P.; Silva, J.; Caetano, M. Land Cover Mapping Analysis and Urban 

Growth Modelling Using Remote Sensing Techniques in Greater Cairo Region—Egypt. ISPRS 

Int. J. Geo-Information 2015, 4, 1750–1769. 

46.  Verburg, P.H.; Ritsema van Eck, J.R.; de Nijs, T.C.M.; Dijst, M.J.; Schot, P. Determinants of 

land-use change patterns in the Netherlands. Environ. Plan. B Plan. Des. 2004, 31, 125–150. 

47.  Eastman, J.R. Guide to GIS and Image Processing. Clark Univ. Worcester, MA, USA 2006, 1, 87–

131. 

48.  Laine, T.; Busemeyer, J. Comparing Agent-Based Learning Models of Land-Use Decision 

Making. In Proceedings of the Iccm; 2004; pp. 142–147. 

49.  Romano, G.; Abdelwahab, O.M.M.; Gentile, F. Modelling land use changes and their impact 

on sediment load in a Mediterranean watershed. Catena 2018, 163, 342–353. 

50.  Beygi Heidarlou, H.; Banj Shafiei, A.; Erfanian, M.; Tayyebi, A.; Alijanpour, A. Effects of 

preservation policy on land use changes in Iranian Northern Zagros forests. Land use policy 

2019, 81, 76–90. 

51.  Dadhich, P.N.; Hanaoka, S. Markov Method Integration with Multi-layer Perceptron Classifier 

for Simulation of Urban Growth of Jaipur City. 6th Wseas Int. Conf. Remote Sens. , Iwate Prefect. 

Univ. Japan 2010, 118–123. 

52.  Iizuka, K.; Johnson, B.A.; Onishi, A.; Magcale-Macandog, D.B.; Endo, I.; Bragais, M. Modelling 

Future Urban Sprawl and Landscape Change in the Laguna de Bay Area, Philippines. Land 

2017, 6, 26. 

53.  Forestry Commission The UK Forestry Standard; 2011; ISBN 9780855388300. 

54.  Wales, F. commission Woodlands for Wales; 2018; ISBN 9781473456464. 

55.  Warren-Thomas, Eleanor Henderson, E. Woodlands in Wales: a quick guide. 2017. 

56.  Forestry Commission Woodlands for Wales Indicators 2015-16; 2016; ISBN 9781473456464. 

57.  Harmer, R.; Morgan, G. Storm damage and the conversion of conifer plantations to native 

broadleaved woodland. For. Ecol. Manage. 2009, 258, 879–886. 

58.  Stevens, C.J.; Payne, R.J.; Kimberley, A.; Smart, S.M. How will the semi-natural vegetation of 

the UK have changed by 2030 given likely changes in nitrogen deposition? Environ. Pollut. 

2016, 208, 879–889. 

59.  Thompson, D.B.A.; MacDonald, A.J.; Marsden, J.H.; Galbraith, C.A. Upland heather moorland 

in Great Britain: A review of international importance, vegetation change and some objectives 

for nature conservation. Biol. Conserv. 1995, 71, 163–178. 

60.  Polce, C.; Termansen, M.; Aguirre-Gutiérrez, J.; Boatman, N.D.; Budge, G.E.; Crowe, A.; 

Garratt, M.P.; Pietravalle, S.; Potts, S.G.; Ramirez, J.A.; et al. Species Distribution Models for 

Crop Pollination: A Modelling Framework Applied to Great Britain. PLoS One 2013, 8. 

61.  Biodiversity and Nature Conservation Branch Welsh Government The Action Plan for 

Pollinators in Wales.; 2013; p. 28. 

62.  TACP Green Infrastructure Action Plan for Pollinators in South-east Wales; 2015; 

63.  Georgakaki, A.; Ghandi, K.; Eames, M.; Kerr, N.; Gouldson, A. Scenario Modelling for a Low 

Carbon Wales. 2013. 

64.  Committee for Climate Change Building a low-carbon economy in Wales Setting Welsh carbon 

targets. 2017. 

65.  Quijas, S.; Boit, A.; Thonicke, K.; Murray-Tortarolo, G.; Mwampamba, T.; Skutsch, M.; Simoes, 

M.; Ascarrunz, N.; Peña-Claros, M.; Jones, L.; et al. Modelling carbon stock and carbon 

sequestration ecosystem services for policy design: a comprehensive approach using a 

dynamic vegetation model. Ecosyst. People 2019, 15, 42–60. 

66.  State of Nature 2016. 2016. 

67.  Snowdonia Rhododendron Partnership The Ecosystem Benefits of managing the invasive 

non–native plant Rhododendron ponticum in Snowdonia Snowdonia Rhododendron Partnership 

2015 Rhododendron in Snowdonia. 2015. 

68.  Manzoor, S.A.; Griffiths, G.; Iizuka, K.; Lukac, M. Land Cover and Climate Change May Limit 



Scenario-led modelling of broadleaf forest expansion in Wales 

110 | P a g e  

Invasiveness of Rhododendron ponticum in Wales. Front. plant Sci. Pap. 2018, 9. 

69.  Uddin, K.; Chaudhary, S.; Chettri, N.; Kotru, R.; Murthy, M.; Chaudhary, R.P.; Ning, W.; 

Shrestha, S.M.; Gautam, S.K. The changing land cover and fragmenting forest on the Roof of 

the World: A case study in Nepal’s Kailash Sacred Landscape. Landsc. Urban Plan. 2015, 141, 1–

10. 

70.  Ye, X.; Yu, X.; Yu, C.; Tayibazhaer, A.; Xu, F.; Skidmore, A.K.; Wang, T. Impacts of future 

climate and land cover changes on threatened mammals in the semi-arid Chinese Altai 

Mountains. Sci. Total Environ. 2018, 612, 775–7



  Chapter 5 

This chapter is published as: 

  

MANZOOR, S.A.; GRIFFITHS, G.; OBIAKARA, M.C.; ESPARZA-ESTRADA, C.E.; 

LUKAC, M. EVIDENCE OF ECOLOGICAL NICHE SHIFT IN RHODODENDRON PONTICUM 

(L.) IN BRITAIN: HYBRIDIZATION AS A POSSIBLE CAUSE OF RAPID NICHE 

EXPANSION. ECOL. EVOL. 2020, 2040–2050 

 

EVIDENCE OF ECOLOGICAL NICHE SHIFT IN RHODODENDRON 

PONTICUM (L.) IN BRITAIN: HYBRIDIZATION AS A POSSIBLE 

CAUSE OF RAPID NICHE EXPANSION 

ABSTRACT 

Biological invasions threaten global biodiversity and natural resources. Anticipating future invasions 

is central to strategies for combating the spread of invasive species. Species distribution models are 

thus increasingly used to predict potential distribution of invasive species. A critical assumption in 

species distribution models is that the ecological niche of species is conserved. However, recent studies 

suggest that this assumption is not valid for all species. In this study, we compare ecological niches of 

Rhododendron ponticum in its native (Iberian Peninsula) and invasive (Britain) ranges. Here we test the 

conservation of ecological niche between invasive and native populations of R. ponticum using principal 

component analysis, niche dynamics analysis and MaxEnt-based reciprocal niche modelling. We show 

that the two niches and not equivalent and are dissimilar, leading us to conclude that this species has 

occupied novel environmental conditions in Britain. We then frame our results in the context of 

contradicting genetic evidence on possible hybridization of this invasive species in Britain. 
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1. INTRODUCTION 

Uncontrolled biological invasions by plants are among the most severe phenomena attributable to 

climate change and environmental disturbance by humans [1]. Invasive species replace native 

vegetation, which often leads to an alteration of ecosystem structure and function due to the 

simplification of plant community. Invasion may cause a disruption of nutrient cycles, reduction of soil 

health and a decrease of net primary productivity [2]. Understanding the factors that define the 

geographic range of a species, and prevent it from invading other environments, is one of the 

fundamental goals in ecology. Niche theory suggests that the area occupied by a species is defined by 

a set of biotic and abiotic factors and dispersal barriers. Successful biological invasions must thus be 

facilitated by a sequence of events. Breaching a dispersal barrier must be supported by climatic 

similarity between the native and invasive (also referred to as invaded, introduced or exotic) ranges 

and followed by attaining a competitive advantage against native species [1][3]. In most invasive 

species, however, the relative contribution of these factors to the shaping of range limits is not clearly 

understood [1]. A standard approach to studying invasive species’ niche is to analyse the similarity of 

environmental conditions between the native and invasive ranges, as the correlation between the 

environment and the observed distribution of species is considered pivotal to species’ introduction, 

establishment, and expansion in new environments [4][5].   

Anticipating the spread of invasive species is central to the creation and application of effective 

management strategies [6]. Species distribution models (SDMs) are by far the most widely used 

predictive tool used to assess invasiveness of species [7]. The predictive power of SDMs rests upon the 

assumption that the relationship between a species and its ecological niche is conservative over space 

and time (i.e., the fundamental niche remains unchanged or changes very slowly due to evolution) 

[1][4][8]. This assumption, known as the niche conservatism hypothesis, implies that a species in the 

invasive range is likely to occupy environmental conditions similar to those typical for its native range 

[9]. Modern SDMs, and the increasing availability of species presence data, offer an opportunity to test 

this hypothesis. This endeavour is interesting for two reasons; (i) a significant violation of niche 
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conservatism in a species is a strong indicator of adaptive [10] or evolutionary [11] changes during the 

invasion and (ii) in an era of rapid environmental change, improved understanding of if and when an 

environment suitable for an invasion will appear may be crucial to ecosystem management and 

conservation.  

Recent studies on niche conservatism of species report conflicting results. While there is a plethora of 

evidence confirming spatial and temporal niche conservatism [9], this theory has been shown not to 

hold true for some insects [12], plants [13] and fish [14] either due to absence of natural enemies in the 

introduced range, availablity of unoccupied niches or adaptation to novel envrionmental conditions as 

a result of hybridization. Latter observations imply that some species can occupy different 

environmental niches in their invasive range, when compared to the niche they occupy in their native 

range. A mismatch between the native and the invasive environmental niche signifies either a shift in 

the fundamental niche (“the requirements of a species to maintain a positive population growth rate, 

disregarding biotic interactions”[15]) or the realized niche (“the portion of the fundamental niche in 

which a species has positive population growth rates, given the constraining effects of biological 

interactions such as competition”[15]) [4]. Thus, a shift in the fundamental niche may be a consequence 

of evolutionary change (i.e. genetic drift and/or hybridization) [13]. A shift in the realized niche of a 

species may then be attributable to the availability of unoccupied niches in the invasive range or to a 

release from top-down regulators due to their absence in the new environment (i.e., predators or 

pathogens) [16].  

Assuming that an invasive species occupies all suitable conditions in its native range, any difference 

between its niche in the native and invasive ranges can be attributed to three distinct processes: niche 

expansion (invasive species occupies new environmental conditions in the invasive range compared to 

its native range), niche unfilling (partial filling of the native niche in the invasive range) [9] and niche 

stability (proportion of native niche of an invasive species overlapping with its invasive niche) [4]. Two 

different hypotheses need to be tested to determine which of these processes drives niche 

differentiation for a given invasive species; niche equivalency (native and non-native niches are 
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indistinguishable and interchangeable) and niche similarity (native and invasive niches are more 

similar than expected by chance) [17][18]. 

In addition to the spread of a species entirely novel to the invasive environmental space, biological 

invasion may also lead to hybridization if similar but historically isolated taxa come into contact. 

Hybridization of invasive species can produce genetically superior populations and, in some cases, new 

taxa [19][20][21]. Hybrids of invasive species are potentially better at exploiting new environmental 

conditions as compared to their parents [22], chiefly due to fast selection of new combinations of traits 

by the specific environment where hybridization occurs. Undetected hybridization of closely related 

species may thus lead to an apparent shift in fundamental niche of either or both parent species [23]. 

Despite the potentially large impact of rapid evolution of new species by hybridization, to date only a 

limited number of investigations have been made to explore the role of hybridization in niche 

occupancy [21][24]. 

In Great Britain, Rhododendron ponticum (L.) is a classic example of an invasive species that has spread 

at a massive scale and caused significant environmental and economic damage [25]. R. ponticum is an 

invasive plant species that was introduced to the British Isles as an ornamental plant from mainland 

Europe in the eighteenth century. It is a perennial, evergreen shrub that generally invades woodlands 

[26], although it is known to colonize other types of habitats too [2]. The success of the invasion of R. 

ponticum in Britain is attributed to its ecological and biological characteristics; it produces copious 

amounts of seeds and can tolerate shaded and nutrient-depleted soils [27]. Its growth prevents 

germination of native plant species by releasing allelochemicals into the soil [28][29]. 

The suitability of R. ponticum to the British environment and its invasiveness were first thought to result 

from a hybridization of R. ponticum with Rhododendron catawbiense, (a North American species), a 

process which supposedly lent frost hardiness to the British R. ponticum population [30]. However, this 

thesis was later rejected by other reports which did not find any genetic evidence of such hybridization 

[31]. The spread of R. ponticum thus represents an opportunity to test whether the current niche 

occupied in Britain corresponds to that in its native Iberia. To evaluate this, we tested two different 
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hypotheses: a) the native and invaded niches are equivalent (species’ native and invasive niches are 

interchangeable), and b) the native and invaded niches are similar (the native and invasive niches are 

more similar than expected by chance). Thus, in this study we examine the environmental niche of R. 

ponticum in its invasive and native ranges and interpret our findings in the context of contradicting 

reports on the hybridization if the British population of R. ponticum. 

2. METHODOLOGY 

2.1. Species Description and Geographic Ranges 

The native range of R. ponticum covers the southern reaches of Spain, western Portugal and Georgia. 

However, the main ancestor of Rhododendron in Britain is reported to be the population of R. ponticum 

resident in southern Spain and western Portugal [27]. We thus consider the Iberian Peninsula as the 

native range R ponticum. We obtained distribution records of this species from the Global Biodiversity 

Information Facility (www.gbif.org/) using the dismo R package. These records were then 

complemented by a selection of background points (i.e. set of randomly sampled geographical locations 

that represent the environmental conditions available to an organism [32]). These points must cover the 

area where the species can easily disperse. In the absence of detailed information regarding the natural 

dispersal limits of R. ponticum, we used terrestrial ecoregions proposed by Oslon et al. [33] to define 

native and invaded range boundaries.  

2.2. Variable Selection 

Ideally, the selection of predictor variables in species distribution models should take into account the 

ecological requirements of the species under investigation [34]. However, like most invasive species, R. 

ponticum does not lend itself to the provision of autecological information, which makes it difficult to a 

priori select a specific set of biologically relevant predictors. Following a detailed literature review, we 

chose 19 bioclimatic variables to model the distribution of R. ponticum [2]. Current (1960–2000) climate 

data were downloaded from the WorldClim database [35] at a resolution of 30 arc-seconds, which was 

shown to provide optimal prediction of R. ponticum distribution [2]. The WorldClim database consists 

of 19 derived bioclimatic variables that represent climate average, extremes and variability.  
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Collinearity among predictor variables negatively impacts the model due to the substantial amount of 

information shared between variables, making it difficult to correctly interpret the relative contribution 

or importance of variables to model predictions [36]. Pearson correlation coefficient cut-off of -0.75 ≤ r 

≤ 0.75 was applied to select bioclimatic variables to be used in the final model runs [36], chiefly to reduce 

the negative impact of multicollinearity and to conform to statistical assumptions [37]. Consequently, 

we selected four variables: annual mean temperature (Bio 1), minimum temperature of the coldest 

month (Bio 6), annual mean precipitation (Bio 12), and precipitation of the coldest month (Bio 14) for 

this study. 

2.3. Climatic Niche Analysis  

The Principal Component Analysis (PCA-env) approach proposed by Broennimann [38] was used to 

visualise the native and invaded niches of R. ponticum in a 2D climatic space. The PCA-env method 

compares the environmental conditions available for a species within the study area (background) with 

observed occurrences and calculates available environmental space defined by the first two axes from 

the PCA-env. This method corrects for sampling bias using a smooth kernel density function [38]. We 

estimated niche overlap between the two geographical ranges using Schoener's D index [39], which 

ranges from 0 to 1 (i.e. no to complete niche overlap). Niche shift was statistically tested as described 

by Broennimann [38]. 

2.3.1. Niche Equivalence Test 

The niche equivalence test, as initially proposed by Graham et al. [40], asks whether niches under 

comparison are indistinguishable from each other. For this test, the occurrence points from both ranges 

were pooled together and then randomly split into two sets, maintaining the actual number of 

occurrences in each range. Niche equivalence was then determined by comparing the observed niche 

overlap values (D) to a null distribution of 1000 overlap values. Rejection of the niche equivalency 

hypothesis means that native and invaded niches are not environmentally identical (i.e. not equivalent) 

[18]. Thus, if the value of the observed niche overlap falls outside the 95% confidence intervals of the 

null distribution, the null hypothesis of the equivalency is rejected [38].  
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2.3.2. Niche Similarity Test 

The niche similarity test examines whether the overlap between the observed native and invaded niches 

of R. ponticum is different from the overlap between the observed niche in one range and a randomly 

selected niche in the other range (based on 1000 repetitions). Rejection of the niche similarity hypothesis 

means that overlap of native and non-native niches is larger than random expectation, i.e. the 

environmental conditions occupied by the species in the non-native range are more similar to the 

conditions occupied in the native range than would be expected by chance [18]. Thus, for the niche 

similarity test, a p-value > 0.05 is considered to indicate that niches are no more similar than expected 

by chance. Niche similarity test was used in the current study to estimate niche divergence. Niche 

overlap value above 95% confidence interval of the null hypothesis indicates niche divergence [38]. 

Niche equivalence and similarity tests only verify whether niche shifts have occurred but do not 

address their causal mechanism [41]. To understand R. ponticum invasion process, we disentangled 

niche changes into the processes of niche stability (S, the overlap of invaded niche with native niche), 

unfilling (U, the non-overlapping part of native niche in the invaded niche) and expansion (E, the non-

overlapping part of the invaded niche in the native niche) as described by Guisan et al. [5]. All analyses 

were done in the statistical software R, version 3.1.3 using the ecospat package [42]. 

2.4. Reciprocal Distribution Modelling  

We used the Reciprocal Distribution Modelling approach [12] to estimate the potential distribution of 

R. ponticum in its invaded range. Following this approach, a model was first calibrated in the native 

range (Iberian Peninsula) and projected onto the invaded range (Great Britain). Then, a second model 

was calibrated in the invaded range and projected onto the native range. Furthermore, each model 

(native and invasive) was also projected in the same range and the degree of similarity between 

projected models (calibrated in the other range) and observed models (calibrated and projected in the 

same range) was assessed. 

We used MaxEnt, a maximum-entropy based machine learning (presence/pseudo-absence) algorithm 

for distribution modelling. MaxEnt predicts the probability distribution of a species on the basis of a 
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given set of predictor variables and presence-only species occurrence data [43]. We used a reasonably 

large sample size (79 in the Iberian Peninsula and 6579 in Britain) and applied the recommended 

screening and verification of occurrence records [34][44]. The complementary log-log output of MaxEnt 

was used to produce an estimate of occurrence probability for each model. 

2.4.1. Model Complexity and Tuning 

Various studies have confirmed that calibrating MaxEnt models with default settings frequently leads 

to highly complex models, a case-specific tuning of the model is thus recommended [45] (for details see 

[34]). To select the modelling parameters which give the best trade-off between model goodness of fit 

and complexity, we used ENMeval [46] to build models with all possible combinations of these 

parameters. We produced a total of 48 models using six combination of these feature classes (L, H, LQ, 

LQH, LQHP, LQHPT) and eight regularization multipliers (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0) [32]. All 

models were built using 10,000 background points randomly selected within the calibration area (the 

Iberian Peninsula for the model calibrated with native records and Great Britain for the model 

calibrated with invasive records). We used the “block” method implemented in ENMeval to partition 

data into four geographically distinct calibration and evaluation datasets, in order to conduct spatially 

independent tests of model performance. Finally, we selected the most suitable model using the Akaike 

information criterion corrected for small sample sizes (ΔAICc< 2) [47]. 

2.4.2. Model Evaluation 

Area Under the ROC (Receiver Operating Characteristic) Curve (AUC) was used to test the 

performance of the model against actual observations in both the ranges [48]. An AUC value of 0.5 

shows that the model does not predict any better than random chance, whereas a value closer to 1 

indicates a better performance of the model [49]. Percentage of contribution and permutation 

importance contribution were used to assess the relative significance of predictor variables. In addition 

to AUC, we used Continuous Boyce Index (CBI) as an additional assessment tool. The Boyce index 

requires presence data only and measures by how much model predictions differ from a random 

distribution of observed presence across the prediction gradient (for details, see [34]). The continuous 



  Chapter 5 

119 | P a g e  

values of the Boyce index vary between -1 and +1. Positive values indicate a model where predictions 

are consistent with the distribution of actual presence data, values close to zero mean that the model is 

no different from a random model and negative values indicate counter predictions (e.g. predicting no 

occurrence in areas where actual presence is recorded) [47][50].  

3. RESULTS 

The climatic space occupied by R. ponticum in its native and invaded ranges is represented in Fig 1. The 

correlation circle in pane b shows that the first two PCA axes explained 95.51% of the variance in the 

set of four predictor variables. Annual mean temperature (Bio 1) and annual mean precipitation (Bio 

12) were the most important variables in the first and second principal components. Niche overlap of 

R. ponticum between the Iberian Peninsula and Great Britain was very low (Schoener's D = 0.005) 

following the classification scheme of Rödder and Engler [78]. The test of equivalence between native 

and invaded realized niches of R. ponticum showed statistically significant differences, which are clearly 

visible in Fig. 2. Therefore, we reject the null hypothesis of niche equivalency and accept the alternative 

that the niches are ecologically distinct [17]. In addition, the similarity test results in a non-significant 

value of D, suggesting that the two niches are no more similar than random chance (Table 1). In other 

words, environmental conditions occupied by the species in the invasive range are no more similar to 

conditions occupied in the native range than would be expected by chance. Furthermore, given the low 

niche overlap and high expansion values (E = 0.996), the niche dynamics test suggests that R. ponticum 

currently occupies new environment in Britain. Similarly, a very high unfilling (U) value suggests that 

the conditions occupied by the species in the native range are still unoccupied in the invasive range. 

Furthermore, the results of the reciprocal distribution modelling suggest that the model calibrated in 

the native range failed to predict occurrence in the invasive range with reasonable accuracy, and vice 

versa (Fig. 3). The models calibrated and projected to the same range, however, predicted the 

distribution of R. ponticum reasonably well. The AUC and Boyce Index values for all combinations of 

projections are presented in Table 2. 
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Figure. 1. (a) Principal component analysis of niche shift of R. ponticum. Green and red contour lines 

demarcate available niche in the native (Iberia) and invaded (GB) ranges, the blue arrow indicates a 

shift of the centroid of available niche. Green and yellow areas represent occupied niches in the native 

and invasive ranges, respectively. The red arrow links the centroid of the native and invasive 

distribution. (b) Correlation circle indicates the weight of each variable on the niche space as defined 

by the first two principal component axes.  

 

Figure 2. Niche equivalency and similarity test results comparing native and invaded ranges of R. 

ponticum. “D” denotes the Schoener's D index which takes values from 0 (none) to 1 (complete) niche 

overlap. Red lines indicate the value of observed overlap (D) compared to the simulated null 

distribution of 1000 random replicates to test for niche conservatism between native and invasive 

ranges.  
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Figure 3. Current distribution of R. ponticum in a) Britain and, b) Iberian Peninsula. Predictive maps of 

R. ponticum distribution, based on models (c) trained in the invasive range and projected to the invasive 

range, (d) trained in the native range and projected to the invasive range, (e) trained in the native range 

and projected to the native range and finally (f) trained in the invasive range and projected the native 

range. 

 

Table 1. Schoener's D values indicate niche overlap (corresponding P values show statistical 

significance). Expansion and Stability are proportions of non-overlapping and overlapping invasive 

niche compared to the native niche, respectively. Unfilling represents the proportion of the native niche 

available, but not occupied in the exotic niche. 

Equivalence Similarity Expansion  Stability Unfilling 

  Native -> Native Native -> Invasive       

D = 0.005 D = 0.005                 0.005 
0.9996 0.0003 0.9964 

P = 0.009 P = 0.692                    0.151 

 

Table 2. AUC and Boyce Index values showing indicating the accuracy of model transfer.   
Native -> Native Native -> Invasive Invasive -> Invasive Invasive -> Native 

AUC 0.952 0.4 0.7 0.52 

Boyce Index 0.94 0.52 0.81 0.3 
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4. DISCUSSION 

In this study, we compared the ecological niche of R. ponticum in its native and invasive ranges and 

tested the hypothesis of niche divergence. While previous studies have analysed the genetic material 

of R. ponticum populations to look for evidence of hybridization [31], our study is the first effort to 

model ecological niches and spatial distribution of this species in its native and invasive ranges by 

comparing niche differences in a gridded environmental space. We found a very limited niche overlap 

between R. ponticum populations in the Iberian Peninsula and Britain, as suggested by very high values 

of niche expansion and niche unfilling. Our results indicate that R. ponticum largely occupies novel 

niches in Britain. Conversely, large values of Unfilling (U) indicate that a large proportion of 

environmental conditions occupied in the native niche are available, but unoccupied in the invasive 

range [15]. The results of niche equivalency and niche similarity test show that the two niches are not 

equivalent and that the ecological niche of R. ponticum has shifted in the invasive range (i.e. the native 

niche is not conserved). We also show that MaxEnt-based reciprocal distribution models fail to predict 

species distribution in target ranges, confirming the earlier finding that environmental conditions 

occupied by R. ponticum in its native range differ from those occupied in the invasive range.  

The pattern and the extent to which species’ niches are conserved or shift over space and time is a key 

determinant of their response to local and global environmental change [51]. Predictive maps generated 

by reciprocal distribution models suggest that the current distribution of R. ponticum in Britain is mostly 

clustered in the western and northern parts which are the cooler and more humid parts of the country, 

whereas in its native range the species is present in the southern tips of Spain and southern and western 

parts of Portugal typical for milder temperature regime and less rainfall. Thus, the distribution model 

calibrated in Iberia incorrectly places the distribution to eastern Britain. This part of Britain is 

ecologically similar to conditions occupied by the species in the Iberian Peninsula, but it is not where 

the species is currently found. The actual distribution of R. ponticum in Britain is centred in Wales and 

the Scotland, areas with some of the lowest mean annual temperatures in the whole of Britain. This 

mismatch also explains the high value of niche expansion (E = 0.996), suggesting that R. ponticum in 
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Britain is present in locations where the environmental conditions are very different from those of its 

native range on the Iberian Peninsula. This type of invasive behaviour is very similar to that reported 

by a remarkable number of studies where hybridization fostered the emergence of successful invasive 

populations [52][53]. 

Although niche shift in terrestrial plants is rare [9], even large shifts in environmental niches such 

as the one observed in our study could potentially be a result of evolutionary changes.  Hybridization 

of the invading species with a local or another introduced species has been shown to produce superior 

adaptive traits [52]. For example, the abundance of R. ponticum in Wales and Scotland is often attributed 

to the frost hardiness adaptation of this species, which, in turn, is considered a consequence of 

hybridization. Therefore, how significant a role does hybridization play in successful invasion and 

divergence of ecological niches?  

4.1. The Role of Hybridization in Niche Expansion  

Ecological niche expansion is often, but not exclusively, associated with hybridization [54]. This thesis 

rests on the proposition that under continuous presence of barriers to natural dispersal and 

establishment (e.g. climate, topography, predators, or competitors [55]), it is the species in question that 

must change in order to expand its range. Populations of a species that inhabit the leading edge of an 

expansion likely need genetic adaptions to colonise new environments, currently denied to them by 

barriers to dispersal [56][57]. One way to gain such adaptations is genetic mutations, followed by 

subsequent selection, however in most species this process operates at long timescales too long to 

explain the speed of observed biological invasions [58][59]. Alternatively, the population of a species at 

the leading edge may hybridize with an established native species or another introduced species to 

produce an advantageous combination of traits [54] and thus sustain the expanding population until 

new adaptive traits arise due to mutation [60]. Theoretically, a species may overcome its dispersal 

barriers to expand its geographic range by occupying microenvironments to which its ancestral 

populations are already adapted to certain extent [61]. However, this type of expansion is be different 

from that driven by hybridization. A key implication of the ‘hybridization facilitates niche expansion’ 
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hypothesis is that the hybridizing population expands to environmental conditions where the native 

population does not occur [62]. Thus, rapid expansion into novel environments is a strong indication 

of hybridization. 

4.2. Niche Expansion of R. ponticum in Great Britain – Evidence of Possible Hybridization  

An early study of hybridization of R. ponticum in Britain reported on 260 naturalized accessions of R. 

ponticum and presented evidence that 89% of those accessions possessed a cpDNA haplotype occurring 

in the Spanish population of R. ponticum, while 10% of accessions had a haplotype unique to the 

Portuguese material [30]. Furthermore, rDNA or cpDNA evidence of hybridization from R. catawbiense 

- which is native to North America - was found only in 27 British accessions of R. ponticum. Interestingly, 

these 27 accessions were significantly more abundant in Britain’s coldest regions. Since R. catawbiense 

is more resistant to frost than R. potnicum, the conclusion that suggests itself is that R. ponticum had 

acquired frost resistance genes from R. catawbiencei, leading to the expansion of its range into the 

western and north-western parts of Britain [63].  

Our study, although focusing on climatic factors only and ignoring other critical ecological components 

such as interspecific competition, soil, and land cover composition, is compatible with the hypothesis 

that hybridization contributed to invasiveness of R. ponticum in the colder regions of Britain[52][53]. 

4.3. Hybridization May Not Be the Cause of Niche Expansion - A Counter-Narrative 

A decade after the original ‘R. ponticum x R. catawbiense’ hybridization explanation for the successful 

colonization of western Britain by R. ponticum, it was challenged by a study which sampled its 

populations in Ireland. The researchers used more advanced genetic analysis techniques and concluded 

that there is no evidence of Irish R. ponticum sharing either ecological or morphological traits with North 

American R. catawbiense [31]. Amplified Fragment Length Polymorphism (AFLP) data confirmed the 

distinctiveness of R. ponticum from its North American relative, leading the authors to reject the 

hybridization hypothesis presented in the earlier report [30]. Interestingly, increased frost tolerance – 

which is presented as evidence of hybridization - was also found in the Irish R. ponticum populations 
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where the temperatures are mild, and therefore such a trait does not seem to have an adaptive value 

[31]. 

There is a plethora of evidence that hybridization and expansion into novel environments are strongly 

correlated, however hybridization may not be the driver of niche expansion in some cases [64][65][66]. 

The mere observation that a species has expanded its range into novel environments is not sufficient to 

claim that the range expansion was enabled by hybridization. Unless backed up with consolidated 

empirical evidence from genetic investigations of the native and invasive populations, it may not be 

correct to claim that niche expansion is explained by hybridization [62]. 

4.4. The Curious Case of R. ponticum Niche Expansion 

We have shown that the native and invaded niches of R. ponticum are not equivalent and that they are 

no more similar than random chance (Fig. 2). Our analysis clearly shows that the population of R. 

ponticum in Britain has expanded and shifted its range to such an extent that using a model trained on 

its native range to predict it results in a complete mismatch. Given that the species was brought to the 

country about 200 years ago, such a shift would indicate genetic change caused by rapid introgression 

of genes rather than mutation. Both existing reports on the genetics of R. ponticum in Britain have 

limitations. Milne and Abbott (2000) posit that increased frost hardiness results from directional 

selection introgression but were limited by the lack of sufficient genetic analysis. The follow-up study 

of Erfmeier et al (2011) was limited only to the Irish population of R. ponticum and thus may not be 

generalizable for the Welsh and Scottish populations. Only a concerted testing of both an introgression 

by means of nuclear markers and the frost hardiness by means of experimental determination on a 

sample covering all populations from the British Isles may be able to identify the driver of R. ponticum 

expansion in Britain [31].  It is essential to keep in sight that the observed niche shift could either be due 

to an evolutionary process such as hybridization (changing fundamental niche hypothesis [67]) or it 

could be driven by a difference in the biotic environment between the native and invasive range 

(enemy-release hypothesis [19]), or indeed due to a combination of these reasons. The enemy release 

hypothesis is among the most widely proposed explanations for the dominance of exotic invasive 
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species. In its native range, a species has co-evolved with pathogens, parasites and predators that limit 

its population. When it arrives in a new territory, it leaves these old enemies behind, while those in its 

introduced range are less effective at constraining them. The result is sometimes rampant growth that 

threatens native species and ecosystems. 

Our niche shift and reciprocal modelling indicates a definitive shift in the environmental adaptation of 

R. ponticum in its invasive range, but a more comprehensive modelling approach using a wider set of 

environmental variables may be able to test causality rather than correlation. A future niche shift 

modelling exercise may combine data describing R. ponticum populations from North America and 

Iberian Peninsula (as native ranges) to predict observed niche shift. We based our analysis on the 

climatic factors only, however it is conceivable that in some instances these may only partially explain 

observed niche shift phenomena [11]. Other, more pertinent non-climatic factors such as soil properties, 

land cover, or land use type, may play a more decisive role in explaining niche dynamics [68]. Niche 

shift analysis is also sensitive to sample size. In our case, the sample describing the presence of R. 

ponticum in the Iberian Peninsula was small relatively to that describing Britain (although still the most 

comprehensive dataset available for Iberia).  

CONCLUSION 

Our study documented a substantial niche shift of R. ponticum in Great Britain. We show that in Britain 

the species occupies a niche that is entirely different from that in its native Iberia, both in terms of 

equivalence and similarity. On the basis of presented evidence, we believe that hybridization has driven 

the niche shift of R. ponticum in Britain, although we are not able to prove it conclusively. Observed 

expansion of species range may have been caused by biotic or abiotic factors not considered here. We 

suggest that a more comprehensive genetic analysis of R. ponticum populations in England, Scotland 

and Wales is needed to investigate any evidence of hybridization. Future development of ecological 

niche models that include a mechanistic approach for the species should be considered in order to study 

more accurately the niche differentiation of the species by hybridization and invasion. 
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Chapter 6 
 

THIS CHAPTER IS UNDER REVIEW IN “ECOLOGICAL INDICATORS 

 

LAND USE AND CLIMATE CHANGE INTERACTION TRIGGERS 

CONTRASTING TRAJECTORIES OF BIOLOGICAL INVASION 

 

ABSTRACT 

Global change drivers such as land use and climate changes are known to interact in their effects on 

biodiversity. The impact of these drivers on global biodiversity is increasingly evident in many forms 

including the spread of invasive species. Climate and land use changes affect introduction, colonization 

and spread of invasive species by affecting niche availability and dispersal potential. We tested the 

combined effects of land use and climate changes on the current and future habitat suitability of 

Rhododendron ponticum in Wales using a MaxEnt-based ecological niche model. We used two policy-

driven land use change projections for Wales, in combination with two General Circulation Models and 

two Representative Concentration Pathways to derive eight different land use and climate change 

scenarios. In seven out of eight scenarios, the habitat suitability for R. ponticum is likely to reduce by 

2030. However, in the eighth scenario representing an extreme where land use change and greenhouse 

gas emissions both accelerate, the interaction of land use and climate change forces an increase of 

habitat suitability of R. ponticum. The study highlights the importance of considering the combined 

effect of land use and climate change and including regional policy-based land use change projections 

to test the potential of an invasive species to expand or retreat in future. 
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1. INTRODUCTION 

Global environmental change triggered by human activity represents an unprecedented threat to 

ecosystem function [1]. We know that the stability and functioning of all ecosystems on Earth is 

underpinned by biodiversity, represented by communities of species inhabiting individual ecosystems 

[2]. Each ecosystem function is dependent on a community with a specific composition, a change of 

species assemblage potentially leads to change of function [3]. Invasive species, defined as organisms 

that cause ecological or economic harm in a new environment where they are not native, contribute to 

global environmental change due to their increasing presence in all types of ecosystems [4]. Biological 

invasions increasingly threaten global biodiversity, economy, and even human health [5]. The success 

of invasive species is predominantly due to their ability to spread to new territories and due to the 

availability of unoccupied niches in the new area [6]. Niche availability may be altered by climate 

change and land-use change, both phenomena disturb existing ecosystem structure and create novel 

environments in the process [7]. Invasive species thus embody an example of a positive feedback; their 

invasiveness is aided by climate and land use change, while they themselves represent a factor of 

environmental change [8]. 

Climate change is predicted to significantly alter environmental conditions for most ecosystems [9]. 

Climate is a critical driver of biome distribution on Earth [10] and one of the most important drivers of 

biodiversity levels [11]. As well as altering the climatic envelope inhabited by species, extreme hydro-

meteorological events such as floods or hurricanes may transport invasives to new regions [12]. 

Similarly, melting of icecaps is opening new Arctic shipping passages, an opportunity for many species 

to survive the journey and be introduced to a new region [13]. Most invasive species are opportunistic 

generalists with good dispersal potential, high population growth rates and a wide range of 

environmental tolerances [14]. Better capacity of invasives to adapt to new climates may potentially 

affect their interaction with native species, for example by rapidly increasing their population size or 

by affecting the extent of niche overlap between the native and invasive species [15]. Thus, climate 

change could potentially strengthen the invasive potential of these species [16]. 



Chapter 6 

133 | P a g e  
 

At the same time, Land use and Land Cover (LULC) changes are critical to the introduction, 

establishment, and proliferation of invasives [17][18][19]. Changes in LULC create dispersal corridors 

and accelerate ecosystem disturbance (e.g., fragmentation), favouring the establishment of invasives 

[17][20]. LULC changes such as forest clearing for agriculture or pastureland, urban expansion, or field 

abandonment produce conditions suitable for biological invasions [20]. Interestingly, while LULC 

changes may create favourable conditions for some invasive species, they may inhibit the invasive 

potential of others [21][22]. Understanding the impact of LULC changes on niche availability is pivotal 

to forecasting invasion and to managing landscapes to reduce the spread of invasive species [18]. 

Climate change and LULC changes are often considered in isolation in current literature reporting on 

studies of ecosystem assemblage [23], overlooking the strong interaction between these two drivers of 

global change [24]. For example, forest degradation has been shown to reduce regional rainfall, thereby 

enhancing the impacts of climate change [25]. Similarly, populations with declining genetic diversity 

due to habitat degradation or fragmentation are less likely to adapt to climate change [26]. Although 

there is a wide range of future climate change and LULC scenarios available, there are several reasons 

why they have not been combined to project species’ distribution. First, most of LULC data is available 

in coarse resolution and thus not able to reproduce ecological niches at finer scales [27]. Second, policy-

based LULC projections are rarely available for most parts of the world [28].  

Currently, one of the most efficient tools to predict the future spread of invasive species in a given area 

is the use of species distribution models (SDMs) [29]. SDMs correlate the presence of invasive species 

to environmental conditions and identify areas vulnerable to invasion, based on projected future 

conditions. Thus, it is critically important to feed SDMs with all variables that determine the spread of 

invasives and that reflect the impacts of anthropogenic activities over time [4]. Most existing SDM-

based projections are based solely on climate variables and climate change scenarios [30][31][32]. Fewer 

studies use land cover for mapping the current distribution, but exclude this variable from future 

projections, making an assumption that either the species’ future distribution is not sensitive to LULC 

changes, or the landscape composition remains constant in future [33]. However, it is no surprise that 
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in a world dominated by humans, landscape patterns and ecosystem composition are rapidly changing, 

altering ecological ranges of species. Predictive models based on climatic data only may not represent 

the most plausible scenarios of species’ future distribution [24]. There is a need to develop SDMs that 

combine climate change scenarios with policy-driven LULC projections and predict the distribution of 

ecologically important species using both of these synergistic factors [23].  

In this study, we model the current and future distribution of an invasive species, Rhododendron 

ponticum (L.), in Wales using both climate and LULC projections for 2030. R. ponticum is an invasive 

plant species that was introduced to the British Isles as an ornamental plant from mainland Europe in 

the eighteenth century. It is a perennial, evergreen shrub that generally invades woodlands [34], 

although it is known to colonize other types of habitats too [29]. The novel contribution of this study is 

the use of current and future LULC maps at high spatial resolution (25 m), based on contrasting policies 

of forest management and land-use practice in Wales. Our previous work has shown that, a) land cover 

is the critical determinant of the distribution of R. ponticum [29], b) the distribution of R. ponticum can 

be best modelled at high spatial resolution (25 m) [35], and c) combinations of current policies of forest 

expansion and restoration of ecologically important habitats in Wales may lead to diverging patchwork 

of land use types in Wales by 2030 [36]. Thus, we aim to investigate the combined effect of climate 

change and LULC projections on future distribution of this invasive species in Wales. This study makes 

a theoretical contribution to the debate on combining climate change and LULC changes to predict 

species distribution and, at the same time, our observations are directly applicable to managing future 

invasion patterns of R. ponticum in Wales. 

2. METHODOLOGY 

4.5. Study Area and Species Records 

Wales, a country in the UK, has an area of approximately 21000 km2 and a population of over 3 million 

[37]. The country is characterized by a wide variety of landscapes, reflecting both its rugged topography 

and a long history of agricultural settlement and industrialization. A significant proportion of land 

(approx. 6000 km2) is at an altitude above 300 m and considered mountainous. Welsh landscape 
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contains a range of typical habitats; woodlands, semi-natural grasslands, arable agriculture, heathland, 

fens, bogs, coastal ecosystems including sand dunes and salt marshes, and a diverse range of upland 

and montane habitats [29][38].  

We obtained distributional records for R. ponticum in Wales from the Global Biodiversity Information 

Facility (www.gbif.org/) by using the dismo R package [39]. We retrieved 8,764 presence records of R. 

ponticum, which we screened using recommended protocols [40]. Spatial uncertainty of all occurrence 

records was addressed by removing all duplicate or non-geo-referenced occurrence points. Occurrence 

records were spatially rarefied by eliminating all but one point within 1 km2 of the study area to reduce 

clustering [35]. This resulted in a dataset of 1,280 presence records which were used in our modelling 

exercise.  

4.6. Predictor Variables 

We chose a set of 30 predictor variables based on a review of the literature [41][42][43][44], expert 

knowledge of the species and of the Welsh landscape, and the results of our earlier study on habitat 

suitability for R. ponticum [29]. We considered 19 bioclimatic variables (www.worldclim.org), 4 

topographic variables (altitude, slope, hillshade and aspect, https://lta.cr.usgs.gov/SRTM1Arc), soil 

organic matter content (0-15 cm, https://soilgrids.org), land cover [36] and 5 proximate variables 

(distance from roads, watercourses, green spaces, motorway junctions and access points, 

https://digimap.edina.ac.uk). Based on the results presented in Chapter 3 of this thesis, all variables 

were resampled to 25 m spatial resolution as R. ponticum could be most accurately modelled at this 

scale [35]. We removed highly correlated variables to select the variable layers for use in final model 

runs by applying a Pearson correlation coefficient cut-off of r ≤ 0.70 [45]. This step reduced the impact 

of multicollinearity and improved model conformity with statistical assumptions [46]. After omitting 

highly correlated variables, we were left with mean diurnal temperature range (bio 2), annual 

precipitation (bio 12), land cover, altitude, soil organic matter, distance from roads, and distance from 

motorway junctions. 
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4.7. Future Climate Change Scenarios 

We used climate change scenarios for the year 2030 based on the IPCC 5th assessment report to model 

the effect of climate change on future distribution of R. ponticum. In an earlier investigation of the 

distribution of R. ponticum in Wales [29], we had tested future climate projections of six of the most 

recent General Circulation Models (GCMs): BCC-CSM1-1, CCSM4, GISS-E2-R, MIROC5, HadGEM2-

ES, and MPI-ESM-LR. Three of these projections predicted a minor deviation from the current species 

distribution, whereas the other three GCMs depicted strong effects on the future distribution of this 

species. To account for this dichotomy, in the current study we use GISS-E2-R and MIROC5 to represent 

the high and low ends of the environmental conditions spectrum that may affect the distribution of R. 

ponticum in future. Furthermore, under each of the two GCMs, we consider two Representative 

Concentration Pathways (RCPs) - RCP 2.6 & RCP 8.6 to represent the best and the worst-case scenario 

of future GHG concentration [47]. In Chapter 2 of this thesis, I had used RCP 4.5 and 8.5, here, I chose 

RCP 2.6 as this trajectory of GHG concentration presents the best case scenario. The idea was to compare 

it with the worst case scenario (RCP 8.5) to increase the contrasting effects of climate change on the 

distribution of R. ponticum. 

4.8. Future Land Use and Land Cover Change Scenarios 

We used two Land Use and Land Cover (LULC) change projections for Wales for the year 2030 [36]. These 

projections were generated through the LULC modeling exercise presented in Chapter 4 of this thesis. 

The projections are based on contrasting policies of forest expansion and land management practice in 

Wales (see [36] for details). Both projections are informed by past LULC transitions (2007 – 2015). First, 

past LULC changes were explained by a suite of explanatory variables and then the trajectory of past 

LULC change was projected into the future using the Markov Chain and Multi-layer perceptron (MC-

MLP) ensemble algorithms. The two future LULC scenarios, namely “Business-as-Usual scenario” and 

“Ecosystem Conservation scenario” (Supplementary Data S1, Figure 1) were motivated by the 

following storylines:  
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• The business-as-usual scenario (B-a-U) is the default scenario, which represents a linear 

projection of past trends (2007-2015) to 2030. This scenario assumes that the past trend and 

intensity of LULC change (e.g., new forest plantations, conversion of existing coniferous forests 

to broadleaf forests or the degradation of heath and bog) would continue until 2030.  

• The ecosystem conservation scenario (E-C) is based on existing and  proposed policies of the 

Welsh government and Natural Resources Wales on planting new woodlands, increasing the 

rate of conversion of coniferous forests to broadleaf forests, and improved conservation of 

heath and bog (see [36] for details). In the E-C scenario, the probability of Conifer-to-Broadleaf 

Forest conversion and the rate of conservation of heath and bog both increase by 50% as 

compared to the current rate. The scenario further assumes no deforestation of broadleaf forest 

until 2030. A detailed analysis of predicted LULC under both projections is presented in 

Supplementary Data S1 (Figure 2). 

Thus, by combining the climate change and LULC change scenarios, we created eight future Land Use 

Land Cover and Climate (LULCC) change scenarios to model the effects of climate and land use change 

on the future distribution of R. ponticum in Wales (Table 1). 

Table 1. Reference list of eight Land Use Land Cover & Climate (LULCC) Change scenarios for Wales 

in 2030, based on combinations of two Land Use & Land Cover (LULC) change scenarios, two 

General Circulations Models (GCMs) and two Representative Concentration Pathways (RCPs). 

LULCC Change Scenarios LULC Scenario Climate Change Scenarios 

GCMs RCPs 

1 B-a-U GISS-E2-R 2.6 

2 B-a-U GISS-E2-R 8.5 

3 B-a-U MIROC5 2.6 

4 B-a-U MIROC5 8.5 

5 E-C GISS-E2-R 2.6 

6 E-C GISS-E2-R 8.5 

7 E-C MIROC5 2.6 

8 E-C MIROC5 8.5 

 

4.9. Species Distribution Modelling Algorithm 

We used MaxEnt, a maximum-entropy based machine learning (presence/pseudo-absence) algorithm 



Land Use and Climate Change Interaction Triggers Contrasting Trajectories of 

Biological Invasion 

138 | P a g e  

to model the current and future distribution of R. ponticum (L.). MaxEnt predicts the distribution of a 

species on the basis of a given set of predictor variables and presence-only occurrence data [48]. We 

selected MAXENT primarily because it allows for the use of both continuous and categorical 

predictor variables [49], can handle complex interactions between predictor and response variables 

[50], and performs better than discriminative models while using presence-only records [49]. We used 

a reasonably large sample size [51] and applied the recommended screening and verification of 

occurrence records [35]. 

In MaxEnt, model complexity is primarily controlled by two factors: feature classes and regularization 

parameters [52]. Feature classes - Linear (L), Quadratic (Q), Hinge (H), Product (P), and Threshold (T) 

- transform predictor variables, whereas regularization multipliers penalize for overparameterization 

(for details, see [29]). MaxEnt-based models are prone to over-fitting due to their reliance on default 

options describing feature classes and regularization parameters [53][52]. Thus, an optimization of 

MaxEnt setting is recommended to avoid over-simplified or overly complex models [29]. To tune up 

the model, we used ENMeval [53] to create all possible combinations of selected parameters. We 

produced a total of 48 models using six combination of these feature classes (L, H, LQ, LQH, LQHP, 

LQHPT) and eight regularization multipliers (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0) [54]. We then used 

corrected Akaike Information Criterion (AICc) to choose the best combination of feature class and 

regularization parameters.  

We then ran MAXENT (version 3.4.1) with the default convergence threshold of 10−6 and with 5,000 

iterations to allow the model a reasonable scope for convergence, thus reducing the risk of over-

predicting or under-predicting the model relationships. The selected model used the “Linear,” 

“Quadratic” “Product,” and “Hinge” feature types and the regularization parameter of 2, as indicated 

by the lowest AICc value. We processed 25 model replications by bootstrap resampling, randomly 

allocating 80% of the occurrence records to calibration and 20% to validation. Habitat suitability maps 

under current and future LULCC change scenarios represent the average of the 25 replicate models. 
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MAXENT produces continuous suitability index in its output; 10 percentile training presence threshold 

was employed to convert this index into binary form (suitable or unsuitable habitat) [55]. 

4.10. Model Evaluation 

We used the Area Under the ROC (Receiver Operating Characteristic) Curve (AUC) to test the 

performance of the model against presence observations [50]. An AUC value of 0.5 shows that the 

model does not predict any better than random chance, whereas a value of 1 indicates a perfect 

performance of the model [56]. Percentage of contribution and permutation importance contribution 

were used to assess the relative significance of predictor variables. In addition to AUC, we used 

Continuous Boyce Index (CBI) as an additional assessment tool. The Boyce index requires presence data 

only and measures by how much model predictions differ from a random distribution of observed 

presence across the prediction gradient (for details, see [40]). The continuous values of the Boyce index 

vary between -1 and +1. Positive values indicate a model where predictions are consistent with the 

distribution of actual presence data, values close to zero mean that the model is no different from a 

random model and negative values indicate counter predictions (e.g., predicting no occurrence in areas 

where actual presence is recorded) [57][58].  

5. RESULTS 

3.1. Species Distribution Model Accuracy  

We used 1280 presence points of R. ponticum and employed 6 least correlated variables to model the 

current and future distribution of this species in Wales under a range of LULCC change scenarios. The 

Maxent-based model with the lowest AICc showed encouraging predictive capacity: AUCtrain = 81.8, 

AUCtest = 80.01, and CBI = 0.78. These results suggest that the predictor variables used during model 

calibration predicted the presence of R. ponticum in Wales with decent accuracy. Continuous and binary 

habitat suitability maps of the current distribution of R. ponticum in Wales are presented in Figure 1. 
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Figure 1. Present day continuous (a) and binary (b) habitat suitability maps of R. ponticum generated 

in MaxEnt-based R. ponticum distribution model.  

 

3.2. Key Environment Variables  

We used percentage contribution, permutation importance, and jack-knife test to assess the relative 

importance of environmental variables used to model the distribution of R. ponticum in Wales. As 

shown in Table 2, land cover has the highest contribution and permutation importance in predicting 

the distribution of R. ponticum whereas the distance from motorway junctions had the least 

percentage contribution and permutation importance. Furthermore, the Jack-knife test indicated that 

the land cover and distance from roads are the most significant variables, contributing the most to the 

models’ predictive power (Figure 2). 
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Table 2. Percentage contribution and permutation importance of each variable for predicting the 

distribution of R. ponticum in Wales. 

Variable Percent contribution Permutation importance 

Land Cover 62.8 36.7 

Distance from Roads 15.1 8.2 

Altitude 5.6 27.9 

bio_2 5.5 6.1 

bio_12 5.4 5.7 

Soil Organic Matter 4.2 14.1 

Distance from Motorway Junction 1.5 1.3 

 

 

Figure 2. Jack-knife test of variable importance in the MaxEnt-based model for predicting the 

distribution of R. ponticum in Wales. Regularized training gain indicates how much better the MaxEnt 

distribution fits the present data compared to a uniform distribution. Dark blue bars indicate the gain 

from using each variable in isolation, light blue bars indicate the loss of gain by removing a single 

variable from the full model, the red bar indicates the gain using all variables.  

 

Close inspection of individual response curves (Supplementary Data S2, Figure 3) shows logistic 

predictions by a specific variable, when the rest of the predictors are artificially kept at their average 

values. The response curve for land cover shows that land use category 1 and 2 (Broadleaf forest and 

coniferous forest, respectively) are the strongest predictors of R. ponticum distribution. Similarly, the 

response curves of distance from roads and distance from motorway junctions show that the invasive 

species is more likely to invade areas close to transportation networks. Furthermore, the presence of R. 
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ponticum is negatively associated with altitude. The response curves of bioclimatic variables (bio 2 and 

bio 12) show that its presence is lowest at extreme values of these variables.  

3.3. Impact of LULCC Change on the Future Distribution of R. ponticum 

Our models show that nearly 67 % or 1,396,607 ha is currently suitable for R. ponticum invasion, out of 

the total land area of 2,073,500 ha. Looking ahead on the basis of different LULCC change scenarios, 

the extent of habitat suitable for R. ponticum in Wales park is likely to contract under most of the LULCC 

change scenarios considered in this study (Figure 3). 

 

Figure 3. Area suitable for R. ponticum in Wales under eight LULCC change scenarios predicted for 

2030. Recent Past refers to the baseline land cover and climatic conditions (2015), Scenario 1: GISS-E2-

R x RCP 2.6 x B-a-U, Scenario 2: GISS-E2-R x RCP 8.5 x B-a-U, Scenario 3: MIROC5 x RCP 2.6 x B-a-U, 

Scenario 4: MIROC5 x RCP 8.5 x B-a-U, Scenario 5: GISS-E2-R x RCP 2.6 x E-C, Scenario 6: GISS-E2-R 

RCP 8.5 x E-C, Scenario 7: MIROC5 x RCP 2.6 x E-C, Scenario 8: MIROC5 x RCP 8.5 x E-C. 

 

In all scenarios based on GCMs GISS-E2-R and GCM MIROC5 (Table 1), habitat suitability of R. 

ponticum is likely to decrease in future. The lowest habitat suitability is predicted by scenario 2 (B-a-U 

x GISS-E2-R x RCP 8.5), whereas the only instance of net expansion of habitat suitability is scenario 8 

(E-C x MICROC5 x RCP 8.5). Binary habitat suitability maps of R. ponticum in Wales for all LULCC 

change scenarios are presented in Supplementary Data S1, Figure 5. 

In all scenarios, including GCM GISS-E2-R (scenarios 1-2 & 5-6), new areas in the north-eastern and 

north-western edges of Wales are likely to become suitable for R. ponticum (Figure 4, a-b & e-f) and 
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existing suitable areas of R. ponticum are likely to become unsuitable in the central and southern parts 

of Wales (Figure 5, a-b & e-f). In other scenarios, including GCM MIROC5 (3-4 & 7-8), new suitability 

spots are likely to emerge in the south-western coastal areas of Wales (Figure 4, c-d & g-h) whereas 

reduced suitability is likely along the eastern and northern parts of Wales (Figure 5, c-d & g-h). 

 

Figure 4. Maps showing areas of potential R. ponticum invasion in Wales by 2030 under future LULCC 

changes scenarios. a-h represent scenarios 1-8. (a) Scenario 1: GISS-E2-R x RCP 2.6 x B-a-U, (b) Scenario 

2: GISS-E2-R x RCP 8.5 x B-a-U, (c) Scenario 3: MIROC5 x RCP 2.6 x B-a-U, (d) Scenario 4: MIROC5 x 

RCP 8.5 x B-a-U, (e) Scenario 5: GISS-E2-R x RCP 2.6 x E-C, (f) Scenario 6: GISS-E2-R RCP 8.5 x E-C, (g) 

Scenario 7: MIROC5 x RCP 2.6 x E-C, (h) Scenario 8: MIROC5 x RCP 8.5 x E-C. 

 

Figure 5. Maps showing areas in Wales which are likely to become unsuitable for R. ponticum by 2030 

under future LULCC changes scenarios. a-h represent scenarios 1-8. Scenario a) Scenario 1: GISS-E2-R 

x RCP 2.6 x B-a-U, (b) Scenario 2: GISS-E2-R x RCP 8.5 x B-a-U, (c) Scenario 3: MIROC5 x RCP 2.6 x B-

a-U, (d) Scenario 4: MIROC5 x RCP 8.5 x B-a-U, (e) Scenario 5: GISS-E2-R x RCP 2.6 x E-C, (f) Scenario 

6: GISS-E2-R RCP 8.5 x E-C, (g) Scenario 7: MIROC5 x RCP 2.6 x E-C, (h) Scenario 8: MIROC5 x RCP 8.5 

x E-C. 
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4. DISCUSSION 

Accurate predictions of invasive species distribution and invasion trends are critical to understanding 

the impacts of global environmental change on terrestrial ecosystems and hence, pivotal to the 

development of global environmental change adaptation policy [59]. Such predictions are even more 

relevant in the contemporary world where the anthropogenic changes are likely to drive the sixth mass 

extinction event on Earth [60]. A considerable number of studies have looked at biological invasion, 

most however considering climate and LULC change - two key factors of global change - in isolation 

[61][62][63][64]. When considered together, the effect of climate and LULC change on ecosystems may 

be synergistic [65], leading to an under or overestimation of the effects of anthropogenic change on 

global ecosystems and biodiversity by the majority of the ecological models [66]. To the best of our 

knowledge, ours is one of the few investigations testing the combined effects of climate and LULC 

change and is the first attempt to model the distribution of an invasive species in Wales under these 

future scenarios. 

4.1. Significance of Predictor Variables 

Our results suggest that landscape features exert more influence than climate over the distribution of 

R. ponticum in Wales. Land cover is the most important variable determining its distribution, as it is 

often the critical variable limiting the distribution of a plant species [67]. LULC changes are closely 

associated with human population size and activity; invasive species are likely to take advantage of 

transportation networks and environments simplified by humans [68]. R. ponticum can invade a wide 

range of land cover classes, including forests, upland heaths and grasslands [69]. In Britain, forests 

represent the land cover class most susceptible to R. ponticum invasion [69]. In an earlier investigation 

of the distribution of R. ponticum in Snowdonia National Park, Wales, we found that this invasive 

species is most often found in “Mosaic Tree & Shrub” & “Needle Leaved Forest” [29]. This current 

study supports the earlier report by showing the preference of R. ponticum for conifer forests. A strong 

presence of R. ponticum in woodlands can be attributed to many reasons; environment suitable for seed 
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germination [43], forest floor litter that supports R. ponticum growth [70] and shelter of woods that 

provides the necessary “cover” to spread without being eradicated [29].   

In the current study, distance from roads is the second most important variable determining the 

distribution of R. ponticum in Wales. This is unsurprising, a number of studies have confirmed the 

strong relationship between road networks and the spread of invasive species [71][72][73]. In many 

ecosystems, roads facilitate biological invasions by providing the necessary corridors for the spread of 

invasives [72]. Roadsides are often typical for nutrient-rich soils and frequent disturbance [74]. 

Furthermore, surface permeability, increased exposure, and traffic on the roads affect the movement 

and direction of wind, water, and sometimes animals, which in turn affects the spread of invasive 

species [75][71]. Invasive species presence often declines with increasing distance from the road 

network; sometimes decreasing be a factor of 2 over tens of metres [72].  

Land cover and distance from roads are followed by altitude and mean diurnal temperature range (bio 

2) in terms of variable importance in the MaxEnt-based model in this study. The response curve 

(Supplementary Data S1, Figure 3) shows that the likelihood of R. ponticum presence is negatively 

correlated with altitude. Altitude may not have a direct effect on plant growth, but it is often considered 

a strong proxy for other variables important to species distribution. For example, exposure to sunlight, 

hydrology, soil physical and chemical properties, and wind speed may vary with increasing altitude, 

which in turn may be critical for the colonization by R. ponticum [76]. Earlier research has confirmed a 

strong relationship between mean diurnal temperature range (‘bio 2’ in the current study) and invasive 

plant species distribution [77]. Mean diurnal temperature range may affect biological invasion in many 

ways. For example, diurnal fluctuations in temperature increase seed germination and positively affect 

photosynthetic activity, especially in colder parts of the world [77]. Response curve (Supplementary 

Data S1, Figure 3) indicates that R. ponticum favours areas with higher values of ‘bio 2’, which is in 

agreement with earlier reports [77]. Furthermore, mean diurnal temperature range in Iberian Peninsula 

(the native range of R. ponticum) is ◦C 5.2 – 13.0 compared to the ◦C 5.4 – 7.0 (Table 3) in Wales which 
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indicates that an increase in mean diurnal temperature range in Wales under future climate change 

scenarios is likely to improve habitat suitability for R. ponticum in Wales.  

 

Table 3. Ranges of Bio 2 (mean diurnal range) and Bio 12 (mean annual precipitation) at present and 

under future climatic scenarios predicted for 2030.  
  

GISS-E2-R MIROC5  

 
Current RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5 

Bio 2 (◦C) 5.3 - 7.1 5.2 - 7.0 5.2 - 7.0 5.4 - 7.4 5.4 - 7.4 

Bio 12 (mm) 718 - 1738 765 - 1783 790 - 1809 739 - 1757 788 – 1801 

 

4.2. Effect of Climate and LULC Change Scenarios on Suitability of R. ponticum in Wales 

Our analysis shows that the area suitable for R. ponticum is likely to contract in future. In our case, 7 out 

of the 8 LULCC change scenarios considered in this study indicate smaller suitable area than that at 

present. One of the main reasons for this could be the decline of coniferous forest cover from the current 

scenario under both B-a-U and E-C in future (Table 3). As shown by the response curves 

(Supplementary Data S1, Figure 3), presence of coniferous forests is the strongest predictor of R. 

ponticum occurrence, followed by the presence of broadleaf forest. R. ponticum favours acidic soils, 

coniferous forests may thus offer ideal growing conditions for this invasive species [78]. Existing UK 

Forestry Standard Guidelines on Biodiversity [79] and the UK Biodiversity Action Plan [36] both 

encourage large-scale conversion of coniferous forests to native broadleaf forests. This may benefit 

native species as native broadleaf woodland species would improve soil conditions for local flora and 

fauna, increase food availability and nesting opportunities for birds, reduce insect pests prevalence and 

enhance the overall aesthetics of the landscape [80][81][36]. Our model suggests that, alongside overall 

contraction, there is a possibility of an expansion in the R. ponticum habitat suitability in the southern-

western and north-eastern parts of Wales. This could be attributed to increased forest cover in the south, 

which is likely to provide the required habitat, cover, and corridor for establishment and spread of R. 
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ponticum (Figure 6). In the north, appearance of new suitability hotspots could be due to expected 

change in the mean diurnal temperature range which may suit R. ponticum (Table 3, Figure 7). Evidence 

suggests that invasive species generally have higher energy demand for intense physiological activities; 

mean diurnal temperature range may affect species distribution.  

 

Figure 6. Spatial distribution of broadleaf (red pixels) and coniferous forests (blue pixels) in Wales 

under current (a) and future land use & land cover change scenarios (b and c).  

 

 

Figure 7. Spatial maps of bio 2 (mean diurnal range) and bio 12 (mean annual precipitation) under 

future climate change scenarios, a) GISS-E2-R x RCP 2.6, b) GISS-E2-R x RCP 8.5, c) MIROC5 x RCP 2.6, 

d) MIROC5 x RCP 8.5. 
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The increase in future habitat suitability predicted by the GCM MIROC5 x RCP 8.5 x E-C scenario is 

very interesting. The E-C LULC change scenario depicts a future where overall forest cover will increase 

from the current 320,210 ha to 415,273 ha (Table 4). At the same time, RCP 8.5 indicates the highest 

projected GHG concentration pathway under which the mean diurnal temperature range will increase 

the most along the eastern foothills of Wales. It is possible that R. ponticum might take advantage of 

rapidly increasing forest cover and even though future forests are likely to be broadleaved and not 

conifers, their increasing extent will create an expanding niche for this invasive species. This 

observation underlines the importance of incorporating regional policy-driven LULC projections into 

invasive species distribution models. Extreme climate change and current plans for forest management 

may thus conspire to improve the future prospects of R. ponticum in Wales. 

 

Table 4. Area under broadleaf, conifer and overall forest in Wales at present and under future business-

as-usual (B-a-U) and ecosystem conservation (E-C) scenarios (data in hectares). 
 

Broadleaf forest Coniferous forest Total Forest Cover 

Current 159951 160259 320210 

B-a-U 203317 152780 356097 

E-C 300367 114906 415273 

 

4.3. Regional Policy-Driven LULC Change Scenarios Deserve More Attention 

There is a strong consensus that models combining climate and LULC predictions are very good tools 

to predict species’ distribution, usually far more accurate than climate-only models [82][83]. At fine 

spatial scales, land-use is often the factor driving the distribution and dispersal of species [4]. The 

interplay of climate and LULC changes may limit the spread of invasives in some cases, while 

promoting invasion in others [84][29][85][86]. To date, most invasive species distribution models have 

assumed homogenous and unchanging landscapes, mainly focussing on climate as the critical dynamic 

variable [87][62]. The attention has recently shifted towards considering landscape as a heterogenous 

variable that can affect the rate and trend of biological invasions [88]. This approach needs to be 

improved further because landscapes are not only heterogeneous but also subject to significant human 

pressure. Species distribution models cannot rely only on B-a-U projections to predict future species 
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distributions, the trajectory and intensity of LULC change in the future is not likely to copy the past. 

The trajectory of change may vary, depending upon the socio-political and socio-economic factors of 

the region under study [89]. Researchers have considered global or continental LULC change scenarios 

to predict at local scale [82], we however argue that capturing the impact of local land management 

plans and policies is essential to develop realistic scenarios. One of the uses of the scenarios presented 

in our study is to relate the spread of R. ponticum or other invasive species to possible changes in both 

future landscapes and climate. A possible outcome of this type of modelling exercise is the design and 

targeting of land management policies to ecosystem conservation [90]. 

4.4. Implications for Landscape Management  

Management of invasive species requires screening potential invasives through a process of risk 

assessment, which determines the likelihood that an invasive species would enter and inhabit a 

recipient area [82]. Most studies used in this type of screening of invasive species suggest either an 

increase [91] or a decrease in invasiveness [29]. We show that, for a single species in a well-defined area, 

expected LULC and climate changes may result in both an overall decrease or increase in future habitat 

suitability. If the purpose of the modelling exercise is to anticipate future trends of species distribution 

at fine spatial resolution, we suggest that (a) multiple regional change drivers should be considered, (b) 

future LULC change scenarios based on regional socio-economic and socio-political policies must be 

included, and (c) multiple combinations of climate and LULC change scenarios should be run to have 

confidence in predictions of future distribution of the species in question. We illustrate the use of this 

modelling framework against the backdrop of an invasive species spread, however its use to model 

distribution of all types of species can be easily envisaged. Alongside theoretical implications, our study 

has important traction for practical decisions on land management in Wales. We show that while the 

Welsh government aims to increase forest cover and cites biodiversity conservation as one of the 

reasons to do so, it is important to factor in and anticipate the spread of R. ponticum or other invasive 

species associated with woodlands. Specifically, a strategy combating the expansion of R. ponticum in 
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the north-eastern and south-western regions should be considered. This is further discussed in Chapter 

7 of this thesis. 

CONCLUSION 

This work demonstrates the need to understand and evaluate the combined effects of climate and 

policy-driven LULC scenarios on current and future distribution of R. ponticum in Wales. We show that 

the presence of R. ponticum is strongly associated with land cover but may be modified by strong 

climate change. Habitat suitability of R. ponticum is likely to decrease by 2030 in most future LULCC 

change scenarios we explore in this study, though its increase is plausible under a scenario that assumes 

substantial expansion of forest cover and rapid climate change. The study highlights the need for 

developing more detailed LULC scenarios, driven by regional policy developments in combination 

with a range of climate change scenarios. This approach may capture the heterogeneity of landscape 

and its changes that is exploited by R. ponticum and other invasive species.
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SUPPLEMENTARY DATA S1 

 

 

Figure S1. Current (a) and projected land use map of Wales, UK for the year 2030 under B-a-U (b) and 

EC (c) modelling scenarios. [36] 

 

Figure S2. In Wales, UK, gains, losses and net changes between different LULC classes (hectares) 

during (a) 2007–2015, (b) 2015–2030 (B-a-U scenario) and (c) 2015–2030 (EC scenario) [36] 
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Figure S3. Response curves of environmental variables in the MaxEnt-based R. ponticum distribution 

model.  

 

Figure S4. Heat map of large-scale trends of conifer to broadleaf forest conversion in Wales, UK 

during 2007–2015 (a), 2015–2030 B-a-U scenario (b) and 2015–2030 EC scenario (c). [36] 
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Figure S5. Binary habitat suitability maps of R. ponticum in Wales under future LULCC changes 

scenarios. a-h represent scenarios 1-8. Scenario 1: GISS-E2-R x RCP 2.6 x B-a-U, Scenario 2: GISS-E2-R x 

RCP 8.5 x B-a-U, Scenario 3: MIROC5 x RCP 2.6 x B-a-U, Scenario 4: MIROC5 x RCP 8.5 x B-a-U, Scenario 

5: GISS-E2-R x RCP 2.6 x E-C, Scenario 6: GISS-E2-R RCP 8.5 x E-C, Scenario 7: MIROC5 x RCP 2.6 x E-

C, Scenario 8: MIROC5 x RCP 8.5 x E-C. 
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GENERAL DISCUSSION 

1. Determinants of R. ponticum Distribution 

In order to explore the environmental predictors that determine the distribution of R. ponticum in the 

UK, I considered Wales as a case study since this region is one of the hotspots of R. ponticum invasion 

in the UK. For the analysis presented in the first two chapters of this study, I selected Snowdonia and 

Brecon Beacons National parks to map current distribution, project future distribution and understand 

the species distribution model performance and transferability. These two parks were selected because 

a) R. ponticum invasion is widespread in here and, b) reliable presence data of R. ponticum is available 

for these national parks.  

The following variables were found responsible for determining the distribution of R. ponticum. 

1.1. Land Cover 

Land use has repeatedly been shown to be the critical predictor determining plant species distribution 

[1]. R. ponticum can invade a range of land cover categories, including natural to semi-natural, upland 

heaths, and occasionally grasslands. In Britain, earlier studies reporting on its occurrence suggest that 

woodland is the land cover type most affected by the invasion of R. ponticum [2]. The results of Chapter 

2 of this study are in agreement with these reports; R. ponticum has the highest probability of occurrence 

in land cover categories representing “Mosaic Tree & Shrub” and “Needle Leaved Forest.” There are 

numerous reasons why R. ponticum favours woodland in Wales, for example, the availability of a 

microenvironment suitable for seed germination [3] or growing under tree canopies to spread “under-

cover” and thus avoid eradiation likely play a role. Crucially, the presence of dead plant material or 

moss cover may be critical to R. ponticum establishment [4]. In this study, Mosaic Tree & Shrub and 

Forests were the land cover categories that are likely to contain these substrates in the understory.  

1.2. Topography 

Among the topographic variables, aspect made a significant contribution to the model presented in 

Chapter 1 of this study. R. ponticum favours the northern aspect for its establishment and growth. 
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North-facing slopes at the latitude of Wales are likely to offer greater soil moisture, in addition to lower 

direct insulation intensity. The results show that the probability of occurrence of R. ponticum in 

Snowdonia National Park is negatively correlated with slope. Earlier studies suggested that shallow-

slope areas are typically those with high soil moisture and nutrient availability, thus offering a more 

favourable microenvironment for plant proliferation [5]. Altitude, another important topographic 

variable, explained a minor share of the variation in the training set of occurrence observations in this 

study. Even though altitude is considered an indirect variable since it has no direct effect on plant 

growth and physiology, it acts as a very good proxy of other un-measured or un-used variables such 

as hydrology, exposure to light, wind speed, soil type and others which are not included in my model.  

1.3. Climate 

Both temperature and precipitation related variables made a significant contribution to model 

prediction (Chapter 2), which is in agreement with earlier studies which posit that the future 

distribution of R. ponticum in Wales may be affected by climatic predictors [5]. Under all GCMs 

considered, habitat suitability range decreases from the current situation. Increasing temperature and 

changes in precipitation are likely to impact species distribution [6]. However, existing investigations 

paint a mixed picture; plant species may experience an increase or a decrease in their current range 

[7][8]. A study investigating potential changes in the future distribution of 100 of the world’s worst 

invasive species concluded that the potential range of the majority of these species would increase [9]. 

Contrary to this, there is evidence of a range reduction of over 80 invasive species in South Africa under 

varying climate change scenarios [6].  

1.4. Distance from Roads 

Distance from roads is another important variable determining the distribution of R. ponticum in Wales. 

This is unsurprising as a number of studies have confirmed the strong relationship between road 

networks and the spread of invasive species [7][8][9]. In many ecosystems, roads facilitate biological 

invasions by providing the necessary corridors for the spread of invasives [7]. Roadsides are often 

typical for nutrient-rich soils and frequent disturbance [9]. Furthermore, surface permeability, 
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increased exposure, and traffic on the roads affect the movement and direction of wind, water, and 

sometimes animals, which in turn affects the spread of invasive species [9][10]. Invasive species 

presence often declines with increasing distance from the road network; sometimes decreasing be a 

factor of 2 over tens of metres [7].  

An important point to consider is the correlation cut-off value to drop the highly correlated variables. 

In literature, different values (i.e. 0.85, 0.75, 0.7) are reported. In Chapter 2 I used 0.85 and in subsequent 

chapters I used 0.75 and 0.7. The most widely accepted value is 0.70 and should be used as a threshold 

in future studies.  

2. Ecological Niche Shift in R. ponticum 

The fact that R. ponticum is an alien invasive species is an important aspect of this study. One of the 

ways to build a species distribution model is to use climatic data and occurrence records from the native 

range of the invasive species under consideration and to project it to the invaded region [10]. This is 

because the ecological niche of species is assumed to be conserved while developing species 

distribution models. However, invasives are a good example of species with the potential to expand 

their range beyond the climatic envelope defined in their native range [11]. Several studies have 

confirmed this idea by concluding that invaded locations cannot necessarily be predicted from native 

distribution records of invasive species [12]. In the case of R. ponticum, there was absence of any 

evidence on whether the ecological niche of R. ponticum is conserved. The results of Chapter 5 present 

evidence that the ecological niche of R. ponticum is not conserved in its invaded region, and therefore it 

is not advisable to train models in its native range if the objective is to map its distribution in the 

invaded region.  

2.1. Evidence of Niche Shift in Britain 

In this study (Chapter 5), I compared the ecological niche of R. ponticum in its native and invasive ranges 

and tested the hypothesis of niche divergence. While previous studies have analysed the genetic 

material of R. ponticum populations to look for evidence of hybridization [13], this study is the first 

effort to model ecological niches and spatial distribution of this species in its native and invasive ranges 
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by comparing niche differences in a gridded environmental space. I found a minimal niche overlap 

between R. ponticum populations in the Iberian Peninsula and Britain. The results indicate that R. 

ponticum largely occupies novel niches in Britain. Also, the MaxEnt-based reciprocal distribution 

models fail to predict species distribution in target ranges, confirming that the environmental 

conditions occupied by R. ponticum in its native range differ from those occupied in the invasive range. 

The pattern and the extent to which species’ niches are conserved or shift over space and time is a key 

determinant of their response to local and global environmental change [14]. Predictive maps generated 

by reciprocal distribution models suggest that the current distribution of R. ponticum in Britain is mostly 

clustered in the western and northern parts which are the cooler and more humid parts of the country, 

whereas in its native range the species is present in the southern tips of Spain and southern and western 

parts of Portugal typical for milder temperature regime and less rainfall. Thus, the distribution model 

calibrated in Iberia incorrectly places the distribution to eastern Britain. This part of Britain is 

ecologically similar to conditions occupied by the species in the Iberian Peninsula, but it is not where 

the species is currently found. The actual distribution of R. ponticum in Britain is centred in Wales and 

the Scotland, areas with some of the lowest mean annual temperatures in the whole of Britain.  

2.2. Hybridization May Have Caused Rapid Niche Expansion of R. ponticum in Britain 

The analysis (Chapter 5) shows that the population of R. ponticum in Britain has expanded and shifted 

its range to such an extent that using a model trained on its native range to predict it results in a 

complete mismatch. It is essential to keep in sight that the observed niche shift could either be due to 

an evolutionary process such as hybridization (changing fundamental niche hypothesis [15]) or it could 

be driven by a difference in the biotic environment between the native and invasive range (enemy-

release hypothesis [16]), or indeed due to a combination of these reasons.  

Given that the species was brought to the country about 200 years ago, such a shift would indicate 

genetic change caused by rapid introgression of genes rather than mutation. There are contradicting 

reports on whether the R. ponticum population in Britain has undergone hybridization. However, both 

existing reports on the genetics of R. ponticum in Britain have limitations. Milne and Abbott in 2000 [17] 
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posit that increased frost hardiness results from directional selection introgression but were limited by 

the lack of sufficient genetic analysis. The follow-up study of Erfmeier et al. in 2011 [13] which claimed 

absence of any evidence of hybridization in R. ponticum population of Britain was limited only to the 

Irish population of R. ponticum and thus may not be generalizable for the Welsh and Scottish 

populations. Only a concerted testing of both an introgression by means of nuclear markers and the 

frost hardiness by means of experimental determination on a sample covering all populations from the 

British Isles may be able to identify the driver of R. ponticum expansion in Britain. 

3. Determining the Optimum Grain Size for R. ponticum Distribution 

Modelling 

At this stage, I had identified the key determinants of R. ponticum distribution (Chapter 2) and found 

evidence of ecological niche shift, implying that the models of this invasive should be trained within 

its invaded range to project future distribution in Britain. The next step was to identify the optimum 

grain size for developing accurate species distribution models. A number of studies have highlighted 

the fact that coarse grain size of predictor variables in SDMs may obscure effects of biotic interactions, 

small-scale heterogeneity of abiotic factors and micro habitat of species [18][19]. A review of 149-peer 

reviewed publications concluded that the choice of grain size is a highly neglected aspect in species 

distribution modelling and is a factor that significantly impacts modelling outcomes [20]. In this study 

(Chapter 3), species distribution models were built using different grain sizes (50m, 300m and 1000 m) 

and model performance and transferability was evaluated. 

3.1. Model Performance in the Training Area 

The results from this study show that MAXENT model predictions in the training area are likely to 

improve with smaller grain size of predictor variables. It has been claimed that too coarse a grain size 

in SDMs leads to spatial smoothing and thus obscures the connection between, for example, land cover 

types and species occurrence [21]. This occurs by homogenizing the dominant land types within a grid 

cell resulting in the loss of useful information for accurate modelling [22]. In accordance with this 
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assertion, the accuracy of model predictions in my study improved with decreasing grain size of the 

predictor variables, possibly as the result of capturing small-scale ecological interactions critical for 

species distribution being maximized at a finer grain size [19][23]. As grain size becomes finer, the 

number of mixed pixels decreases, leading to an increase in ‘distinct’ pixels which clearly separate 

different land cover, topographical or environmental units (or classes) and thus enables the algorithm 

to build more accurate species-habitat relationships [24]. This improvement becomes more relevant 

when the species being modelled is a habitat specialist. Since R. ponticum is considered one such species 

– in Wales it has a high preference for woodlands – better performance of models using small grain size 

data can be explained by improving representation of this community type. 

3.2. Model Performance in the Transfer Area 

After assessing model performance in the training area, the second goal of the study was to test the 

effects of grain size on the spatial transferability of the model (i.e. training the model in Snowdonia 

National Park and transferring model to Brecon Beacons National Park). The results suggest that a 

coarse grain size (1000 m) produced the poorest model transferability while a medium grain size (300 

m) resulted in the most accurate transfer of the model. The poor model transferability at 1 km grain 

size may be explained by the fact that key environmental factors, which in this case were land cover 

and topography, are ‘averaged out’ at coarser grain size both in the training and the transfer areas [18]. 

I expected the best model transferability when using data with the finest grain size. This was not the 

case; the transferred model had the best predictive power at medium grain size. A possible explanation 

is that Snowdonia National Park (training area) and Brecon Beacons National Park (transfer area) differ 

in the range and the character of topographical features. Since topography and land cover are best 

represented at small grain size, a discrepancy in the typography of landscape features between the two 

areas will negatively affect model transferability. Similarly, it has been shown that species occurrence 

data needs to be highly accurate when modelled at very fine grain size as any location [25][26] errors 

in the survey data may impact model performance. 
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3.3. Bioclimatic Variables in SDMs – An Inevitable Choice?  

In the context of our results it appears that unnecessary or ‘customary’ use of bioclimatic variables 

without considering the species’ ecology negatively affects the predictive potential of an SDM. 

Including these bioclimatic variables almost always comes at a cost of reducing the grain size of other 

variables, such as topography and land cover. However, as climate is likely to be one of the 

determinants of a species’ fundamental niche, I suggest that expert knowledge of species’ ecology and 

an extensive review of the literature should be carried out before deciding whether or not to include 

climatic variables in a SDM. Naturally, when modelling large-scale distributions (continental or global) 

or if the objective is a temporal prediction, perhaps to account for climate change, there currently may 

not be many alternatives to a 1 km grain size bioclimatic variables at a global scale. Choice of predictor 

variables is also a matter of the research question. If researches are strictly interested in estimating 

climatic suitability or sensitivity, then the climatic variables become an appropriate choice. Our results 

strictly refer to cases where researchers might be interested in mapping species’ distribution with high 

accuracy using the best possible combination of all the available predictor variables. 

Accuracy of presence/occurrence point is also critical in developing useful SDMs. A number of studies 

emphasize the significance of reliable occurrence data [20][31][35]. Especially when SDMs are run at 

high spatial resolution (100 m or higher), special attention should be paid to the quality of occurrence 

data as most global databases have occurrence records with accuracy of 500 m or 1 km. 

4. Combined Effects of Land Use and Climate Change 

Accurate predictions of invasive species distribution and invasion trends are critical to understanding 

the impacts of global environmental change on terrestrial ecosystems and hence, pivotal to the 

development of global environmental change adaptation policy [27]. Such predictions are even more 

relevant in the contemporary world where the anthropogenic changes are likely to drive the sixth mass 

extinction event on Earth [28]. A considerable number of studies have looked at biological invasion, 

most however considering climate and LULC change - two key factors of global change - in isolation 

[29][30][31][32]. When considered together, the effect of climate and LULC change on ecosystems may 
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be synergistic [33], leading to an under or overestimation of the effects of anthropogenic change on 

global ecosystems and biodiversity by the majority of the ecological models [34].  

4.1. R. ponticum Distribution in Wales in 2030 

In order to assess the combined effects of climate and LULC change on future distribution of R. ponticum 

in Wales, I projected LULC change of Wales to 2030 (Chapter 4) and then used the climate and LULC 

data for 2030 to model the distribution of R. ponticum in Wales (Chapter 6). The LULC projections 

included a Business-as-Usual (B-a-U) scenario and a regional policy-based scenario called as Ecosystem 

Conservation (E-C) scenario. The results suggested that most of the future LULC and climate change 

scenarios are likely to decrease the potential distribution of R. ponticum in Wales, though I found 

evidence of increasing range in only one of the future LULC and climate change scenarios.  

There is a strong consensus that models combining climate and LULC predictions are very good tools 

to predict species’ distribution, usually far more accurate than climate-only models [35][36]. At fine 

spatial scales, land-use is often the factor driving the distribution and dispersal of invasive species [37]. 

The interplay of climate and LULC changes may limit the spread of invasives in some cases, while 

promoting invasion in others [38][39][9][6]. To date, most invasive species distribution models have 

assumed homogenous and unchanging landscapes, mainly focusing on climate as the critical dynamic 

variable [40][30]. The attention has recently shifted towards considering landscape as a heterogenous 

variable that can affect the rate and trend of biological invasions [41]. This approach needs to be 

improved further, for that landscapes are not only heterogeneous but also subject to significant human 

pressure. Species distribution models cannot rely only on B-a-U projections to predict future species 

distributions, the trajectory and intensity of LULC change in the future is not likely to copy the past. 

The trajectory of change may vary, depending upon the socio-political and socio-economic factors of 

the region under study [42]. Researchers have considered global or continental LULC change scenarios 

to predict at local scale [35], I however argue that capturing the impact of local land management plans 

and policies is essential to develop realistic scenarios. One of the uses of the scenarios presented in my 

study is to relate the spread of R. ponticum or other invasive species to possible changes in both future 
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landscapes and climate. A possible outcome of this type of modelling exercise is the design and 

targeting of land management policies to ecosystem conservation [43]. 

5. Linking Results to Research Objectives and Hypotheses 

The research presented in this thesis was aimed to a) test the effects of bioclimatic, topographic and 

anthropogenic (proximate) factors on the distribution of R. ponticum in Wales, b) test if the ecological 

niche of R. ponticum is conserved in its invaded range (UK) as compared to its native range (Iberian 

Peninsula), c) generate policy-driven land use change scenarios for Wales, and, d)  test the combined 

effects of future climate and land use change on the future distribution of R. ponticum in Wales. These 

research objectives were comprehensively met in Chapters 2-6 of this thesis.  

The results presented in Chapter 5 reject the first hypothesis that ‘ecological niche of R. ponticum is 

conserved in its invaded niche.’ This implies that any ecological model for this species must be trained 

and projected within its invaded range (UK) if the aim of the study is to predict its future spread in the 

invaded range. Evidence generated in Chapter 1 and 5 suggest that ‘land cover is a more important 

determinant of the distribution of R. ponticum as compared to climate.’ This implies that any modelling 

exercise aimed at predicting future distribution of R. ponticum (and other species of similar nature) must 

include a future projection of LULC, preferably driven by regional land management policies. 

Moreover, the third hypothesis ‘species distribution models improve with decreasing grain size of 

predictor variables’, was supported by the results presented in Chapter 3. This implies that the choice 

of variables for ecological models should be based on ecological requirements of the species under 

question and finer grain size of more important variables should not be compromised to match the 

coarser resolution of frequently available ‘bioclimatic’ variables. Finally, the last hypothesis, ‘climate 

and land use change will enhance R. ponticum invasion in the UK’ was largely rejected by the evidence 

presented in Chapter 6 of this thesis as invasiveness of R. ponticum reduced in most of the future land 

cover and climate change scenarios. This suggests that species distribution models should not conclude 

results based on one or two future scenarios, rather a range of future land use and climate change 

scenarios must be investigated. 



General Discussion 

168 | P a g e  

6. Limitations of the Current Study and Recommendations for Future Research 

The series of experiments presented in this study is the first comprehensive attempt to model the 

distribution of R. ponticum in Britain under future climate and land use change scenarios. Although the 

results suggest good accuracy of the models developed, there are some limitations of these studies 

which are important to be kept in sight while interpreting the results. In the following sections, I discuss 

the limitations of the current study and the new research questions for future research that arise from 

identifying these limitations. 

6.1. Comprehensive Selection of Variables and Climate Change Scenarios for SDMs 

The first objective of this study was to use correlative ecological modelling exercise to test the 

assumption that land cover and climatic variables have a dominant role in current and future 

distribution of R. ponticum (Chapter 2). Although the results suggest an acceptable model performance, 

there are some limitations of this study which, I recommend, should be considered in future studies. 

First, given that 14 out of 19 climatic variables originally considered for this study were excluded due 

to high correlation with variables chosen for the best performing model, an in-depth analysis of the 

sensitivity of R. ponticum distribution to the remaining variables may reveal interesting insights. 

Second, I made use of only six GCMs and two RCPs scenarios for the sake of simplicity, but further 

studies including more numerous GCMs and RCPs may prove useful for improved prediction of future 

distribution and a better understanding of the sensitivity of R. ponticum to climate change. Third, 

distribution models may be improved by the inclusion of high resolution variables derived from remote 

sensing and lidar (canopy height, cover, vertical distribution ratio etc.), variables such as vegetation 

density or stand height have been shown to significantly improve SDMs [1][44].   

6.2. Determining Optimum Grain Size for SDMs – Important Considerations 

One of the objectives of this study was to test the effect of grain size on the accuracy of ecological niche 

models. The results (Chapter 3) suggest that a grain size smaller than 1 km should be preferred in SDM 

studies; however, I recommend some precautions while using fine-resolution predictors in SDMs. First, 

it is important to note that models using finer grain size data should be trained and validated with 
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carefully validated occurrence records. Training a model with predictor variables at very small grain 

size leads to a very specific species-habitat relationship and thus needs to be verified with accurate 

presence records. Second, this study modelled the distribution of R. ponticum, a habitat specialist 

species that showed a clear response to the changes in grain size. By contrast, generalist species may 

not be as sensitive to changes in grain size. Third, my results suggest that there may not be a ‘gold 

standard’ for the grain size of predictor variables when it comes to model transferability across space. 

Ideally, transferring the model to another area requires the identification of optimum grain size by 

considering a range of grain sizes, perhaps on a sub-set of available occurrence data. Fourth, I 

considered only a small area for model training and transferability which possibly explains why 

climatic variables contributed the least in the models. For SDMs over large spatial scale, climatic 

variables may have greater effect in determining the distribution of species. Fifth, I only used two 

evaluation tools (AUC & CBI). For future studies I recommend applying more robust statistics to 

evaluate the significance of difference between modelling scenarios. 

6.3. Improved Dataset for Projecting LULC Changes 

An important objective of this study was to project LULC changes in Wales to 2030 in order to test the 

effects of land use and climate change on the future distribution of R. ponticum (Chapter 4). The results 

indicate a reasonable accuracy of transition sub-models run in the study. However, it is important to 

acknowledge a few limitations of this study which could form interesting research questions for future 

research. First, explanatory variables used in land use change modelling studies are generally divided 

into three categories: biophysical, proximate and socio-economic variables [45]. In this study, I did not 

include socio-economic variables owing to the coarse resolution of available datasets. Instead, I 

preserved the fine spatial resolution of biophysical and proximate variables which are likely to be 

stronger determinants of land use change and reasonable proxies for the socio-economic variables. 

However, it is advisable to bear in mind that the resulting future projection does not directly represent 

the socio-economic landscape. Availability of fine-scale socio-economic (e.g. human influence index, 

population density, etc.) and climatic variables may improve the modelling outputs in the future. 
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Second, I used LULC maps generated by the Centre for Ecology & Hydrology, UK [46] which, to the 

best of my knowledge, are currently the most accurate, verified and finest-resolution temporally 

repeated maps covering the UK. The fact that I used only two time points is a limitation of our study; I 

did not have a map of LULC after 2015 that could have been used for verification of the future 

projection. Thus, although I adopted published protocols for future LULC projections [47][48], I suggest 

that the use of three or more historical LULC time points be considered for verification of projections. 

As we gather more archived LULC data, this approach should become the norm. It is important to note 

that the LULC maps used in this study come with some inaccuracies as well; for example, LULC map 

of 2007 has an accuracy of 83% ( compared against 9127 ground reference polygons in the UK). In 

future, availability of more accurate LULC maps could help refining the projections. Third, a key 

limitation of this type of analysis is its ‘blindness’ to major shifts of socio-economic landscape and hence 

its inability to factor these into projections. A case in point is Brexit, where a set of self-imposed trade 

sanctions threatens a severe adjustment of existing drivers of land use. Thus, I recommend LULC 

change model of Wales driven by regional policies, especially post-Brexit scenarios. 

6.4. Choice of Predictors, Native Range and Sample Size for Niche Shift Analysis 

The niche shift and reciprocal modelling (Chapter 5) indicates a definitive shift in the environmental 

adaptation of R. ponticum in its invasive range. However, there are three limitations of this study, which 

I recommend as research questions for future studies. First, my analysis of niche shift is primarily based 

on bioclimatic variables only, however a more comprehensive modelling approach using a wider set of 

environmental variables may be able to test causality rather than correlation. Other, more pertinent 

non-climatic factors such as soil properties, land cover, or land use type, may play a more decisive role 

in explaining niche dynamics [49]. Second, in this study I considered Iberian Peninsula as the native 

range of R. ponticum, however, a future niche shift modelling exercise may combine data describing R. 

ponticum populations from North America and Iberian Peninsula (as native ranges) to predict observed 

niche shift. This would help test the claim that the British population of R. ponticum is a hybrid of Iberian 

and North American Rhododendron populations. Third, niche shift analysis is sensitive to sample size. 
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In this study, the sample describing the presence of R. ponticum in the Iberian Peninsula was small 

relatively to that describing Britain (although still the most comprehensive dataset available for Iberia). 

A future study with a more comprehensive sample size from the native range could be interesting. 

6.5. Individual and Combined Effects of Climate and LULC Change on Invasive Species 

Distribution Modelling 

Management of invasive species requires screening potential invasives through a process of risk 

assessment, which determines the likelihood that an invasive species would enter and inhabit a 

recipient area [35]. Most studies used in this type of screening of invasive species suggest either an 

increase [7] or a decrease in invasiveness [39]. This study (Chapter 6) shows that, for a single species in 

a well-defined area, expected LULC and climate changes may result in both an overall decrease or an 

increase in future habitat suitability. If the purpose of the modelling exercise is to anticipate future 

trends of species distribution at fine spatial resolution, I suggest that (a) multiple regional change 

drivers should be considered, (b) future LULC change scenarios based on regional socio-economic and 

socio-political policies must be included, and (c) multiple combinations of climate and LULC change 

scenarios should be run to have confidence in predictions of future distribution of the species in 

question. Furthermore, the current study only tests the combined effects of land use and climate change 

on future distribution of R. ponticum. I recommend future studies testing the effects of these two drivers 

individually and analyse the comparative effects of these two drivers to further broaden the 

understanding of the key drivers of invasive species distribution.  

6.6. Process-based Modelling – The Way Forward 

In this study, the distribution of R. ponticum has been modelled using MaxEnt algorithm which employs 

a correlative approach to model species distribution. Correlative modelling is the most commonly 

applied approach to predict the impacts of global change drivers on biodiversity. This is largely because 

correlative species distribution models have minimal data requirement such as current presence 

records and coarse climate data [50]. Thus, despite being the most frequently used approach for 

ecological modelling, correlative models are often criticized since they do not account for the critical 
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processes determining species ranges (i.e., biotic interactions, dispersal limits, etc.) [50][51]. Correlative 

models assume that the effects of factors determining species’ range will remain fixed in time and space. 

However, it is reasonable to argue that future environmental conditions are likely to present novel set 

of abiotic and biotic variables and that the said species will evolve, resulting in a new situation that 

may fall outside of the range of parameters used to train the models [50]. I therefore suggest future 

studies to use mechanistic species distribution modelling approach that incorporates process-based 

variables in the modelling process and to link the extrapolated changes in climate with the processes 

that determine range of species (for example, physiological limitations, dispersal range, etc.) [51]. 

Process-based (mechanistic) models can extrapolate beyond known conditions and isolate traits that 

determine biogeography [52]. Several authors have also pointed out that the use of different types of 

models, such as both correlative and mechanistic, provides independent lines of evidence that may 

confer accuracy to projections where they converge [53][54]. 

7. Policy Implications 

This thesis presents a range of modelling exercises aimed at understanding the niche dynamics of R. 

ponticum, main drivers of its distribution in the UK and projecting its future distribution under several 

climate and land use change scenarios. Whereas some of the results presented in this thesis are of value 

to species’ ecological knowledge (Chapter 1 & Chapter 4) and improving species distribution modeling 

parameterization (Chapter 3), the results presented in Chapter 5 and Chapter 6 are of direct relevance 

of land management and control of R. ponticum in Wales. The following paragraphs briefly discuss 

what are the implications of the results for the government and regional bodies policy in Wales. 

7.1. Achieving the forest cover target by 2030 

As discussed in Chapter 4 of this thesis, the Welsh Government committed to increasing the overall 

forest area in Wales as its contribution to sustainable development. In 2010, the Welsh Assembly 

Government’s Climate Change Strategy recommended that woodland establishment rates be increased 

to 5000 ha per year for 20 years as an option for meeting Welsh carbon emission reduction targets. This 

figure was subsequently adopted by the Welsh Government as a policy target in the form of planting 
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100 000 ha of new, primarily broadleaved, woodland by 2030. However, actual planting levels over the 

following years were insufficient to meet this. The Welsh Government then retrospectively reduced the 

target, first to 50 000 ha, and eventually to the current commitment to plant at least 2000 ha of woodland 

a year between 2020 and 2030. The B-a-U scenario (Chapter 4) finds that if the current rate (2007-2015) 

of change continues, the total forest area in Wales by 2030 is likely to increase from current 15 to 17% 

(i.e. an increase of 35000 hectares). However, in the EC scenario where the rates of afforestation and 

conversion to broadleaf are prioritized, future forest cover could reach the original target: 19% of the 

total Welsh area (i.e. 95,000 hectares). The scenario can be used by policymakers to taylor the target 

expansion rate and to use it as evidence in the debate about the actual effects of such policy. The future 

projections of land use change indicate suitable sites for expansion under both scenarios. Since these 

projections are available at very fine spatial resolution (i.e. 25 m), these maps could point to potential 

sites in Wales where broadleaf expansion or conifer-to-broadleaf forest expansion could occur as a 

result of a change of policy, or as specific areas to be targeted as ‘the lowest hanging fruit’ when trying 

to stimulate expansion of woodland in Wales.  

7.2. Improved Monitoring of Future Invasion & Reducing Cost of Control 

The results presented in Chapter 6 clearly indicate that an increase in temperature and forest cover are 

critical for the potential spread of R. ponticum in Wales. Under most future climate change scenarios, 

the eastern belt of Wales will experience warming. Invasive species have generally higher energy 

requirements than natives due to unusually high rates of metabolism and growth. Interestingly, an 

increase in temperature is not likely to increase the invasion of R. ponticum, an increased forest cover in 

in combination with warmer climate would provide the necessary corridor and cover for the growth of 

R. ponticum. As suggested by the results presented in Chapter 4, most of the forest expansion would 

occur between 100-300 m altitude and between 0-200 meters distance from roads, potentially narrowing 

the extent of the monitoring zones for future invasion of R. ponticum. Since invasive species are most 

likely to be eradicated if detected in the early stages of invasion, monitoring the eastern and south 

western parts of Wales in areas where the altitude and distance from roads are within the susceptible 
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range could help reduce the cost of monitoring and increase the efficiency of monitoring campaigns. 

Currently, a range of control methods are being used in Scotland and Wales, for example, mechanical 

eradication, stem control injections, spraying herbicides, etc. These methods involve labour, cost, and 

time. With improved monitoring of the spread of species and early detection, significant cost and time 

could be saved.  

7.3. LULC Change in the post-Brexit UK – A Wider Implication of PhD research 

The methods of LULC projections presented in Chapter 4 of this thesis can be used to generate national-

scale future LULC maps of Wales in context of important socio-economic and socio-political scenarios 

such as Brexit. The UK voted to leave the European Union in June 2016, culminating with her official 

departure on January 31st, 2020. During its membership, the EU’s Common Agricultural Policy (CAP) 

was the primary driver of agricultural intensification as it guided UK’s approach to agriculture. Post-

Brexit, Wales is developing its own suite of agricultural policies as agriculture is a devolved issue in 

the UK. Despite devolution, however, the outcome of UK-EU negotiations and the nature of UK future 

trading relationships with the bloc and the rest of the world (RoW) is very likely to influence LULC in 

Wales, with the potential to enact significant changes to the landscape.  Since its inception, Brexit has 

represented a wide range of potential outcomes – ranging from a ‘soft’ departure (Brexit in name only) 

to a ‘hard’ reset of all regulation and trading agreements, including those pertinent to agriculture. I 

suggest modelling exercise of LULC change based on Brexit-related scenarios on LULC in Wales to 

2030. Existing information on agricultural and environmental policy can be used, together with a range 

of future trading arrangements to modify recently observed LULC change trends and use change 

demand modelling to predict their impact on LULC in Wales.  
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CONCLUSION 

This study presents the results of correlative ecological modelling of R. ponticum in Britain, specifically 

focusing on Wales. Future distribution range of R. ponticum in Snowdonia National Park (taken as a 

case study area in Wales), may decrease as a result of projected climate and land use changes. Land 

cover is the most important variable determining the distribution of R. ponticum. The study also 

confirms a substantial niche shift of R. ponticum in Great Britain as the species occupies a niche in Britain 

that is entirely different from that in its native Iberia, both in terms of equivalence and similarity. It is 

argued that hybridization may have driven the niche shift of R. ponticum in Britain. Thus, it is concluded 

that the species distribution models aimed at predicting potential distributional range of R. ponticum in 

the UK should be trained in its invaded range (UK) and the future distribution of R. ponticum will be 

primarily determined by the future LULC changes in the UK.   

Grain size smaller than 1 km should be preferred in SDM studies; however, models using finer grain 

size data should be trained and validated with carefully validated occurrence records. Training a model 

with predictor variables at very small grain size leads to a very specific species-habitat relationship and 

thus needs to be verified with accurate presence records. The distribution of R. ponticum, a habitat 

specialist species that showed a clear response to the changes in grain size. It is concluded that there 

may not be a ‘gold standard’ for the grain size of predictor variables when it comes to model 

transferability across space. Ideally, transferring the model to another area requires the identification 

of optimum grain size by considering a range of grain sizes.  

Combined effects of climate and policy driven LULC scenarios should be considered to determine the 

current and future distribution of invasive species. The results of LULC change modelling (Chapter 4) 

concluded that the current level of expansion and restoration of broadleaf forest in Wales is sufficient 

to deliver on existing policy goals; LULC projection modelling has the potential to test alternative policy 

aims and generate evidence at a scale useful to local decision makers. When I combined the LULC 

change projection with the future climate change projections for Wales, I concluded that the presence 
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of R. ponticum is strongly associated with land cover but may be modified by strong climate change 

(Chapter 6). Habitat suitability of R. ponticum in Wales is likely to decrease by 2030 in most future 

LULCC change scenarios explored in this study, though its increase is plausible under a scenario that 

assumes substantial expansion of forest cover and rapid climate change. The study highlights the need 

for developing more detailed LULC scenarios, driven by regional policy developments in combination 

with a range of climate change scenarios. This approach may capture the heterogeneity of landscape 

and its changes that is exploited by R. ponticum and other invasive species. 

This thesis contributes to the theoretical improvement of species distribution modelling by providing 

evidence of the importance of grain size (spatial resolution) of predictor variable and significance of the 

combined effect of climate and policy-based land use change projections to predict the future 

distribution of species. The thesis also, for the first time, presents a national-scale future LULC change 

projections of Wales based on contrasting set of policies. Besides theoretical contributions, this study 

has produced various invasion risk maps showing hotspots of projected invasion of R. ponticum in 

Wales, which may aid in devising management plans to combat further spread of this invasive species
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SUMMARY 

In Chapter 2, I made use of MAXENT modelling environment to develop a current distribution model 

of R. ponticum and assessed the likely effects of land cover and climatic conditions on the future 

distribution of this species in the Snowdonia National park in Wales. Six general circulation models 

(GCMs) and two representative concentration pathways (RCPs), together with a land cover simulation 

for 2050 were used to investigate species’ response to future environmental conditions. Having 

considered a range of environmental variables as predictors, I found that under all land cover and 

climatic conditions considered in this study, the range of R. ponticum in Wales is likely to contract in 

the future. Land cover and topographic variables were found to be the most important predictors of 

the distribution of R. ponticum.  

Based on the results of Chapter 2, I designed experiments to answer following four key questions:  

i. Does grain size (spatial resolution) of predictors affect species distribution models and 

what is the optimum grain size to develop national-scale species distribution model?  

ii. Since future LULC changes are going to be critical for the spread of R. ponticum, what could 

be the possible trajectories of LULC change in Wales under contrasting set of land 

management policies?  

iii. If the aim is to project future distribution of R. ponticum in the UK, should the SDM be 

trained in the UK or Iberian Peninsula? i.e. has R. ponticum shifted or conserved its niche 

in its invaded range (UK) compared to its native range (Iberian Peninsula)? 

iv. Given that LULC change is the most important determinant of R. ponticum distribution, 

how would current land management policies in Wales affect potential future distribution 

of this invasive in the country? And, how future LULC and climate change scenarios are 

likely to impact the distribution of R. ponticum in Wales when modelled at high spatial 

resolution?  
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In Chapter 3, I attempted to answer the first question by testing the effect of grain size of predictor 

variables on the accuracy and transferability of SDMs. Choice of grain size is often dependent on the 

type of predictor variables used and the selection of predictors sometimes rely on data availability. I 

employed MaxEnt to investigate the effect of the grain size on model transferability for an invasive 

plant species. I modelled the distribution of R. ponticum in Wales and tested model performance and 

transferability by varying grain size (50 m, 300 m, and 1 km). The results suggest that model accuracy 

is likely to increase with decreasing grain size. However, successful model transferability may require 

optimization of model grain size. 

In Chapter 4 - to answer the second question that came out of Chapter 2 - I projected future LULC 

changes in Wales to year 2030 under contrasting set of policies. I quantified changes in different LULC 

classes in Wales between 2007 and 2015 and used a multi-layer perceptron–Markov chain ensemble 

modelling approach to project the state of Welsh forests in 2030 under the current and an alternative 

policy scenario, i.e. Ecosystem Conservation Scenario. Results suggest that the current level of 

expansion and restoration of broadleaf forest in Wales is sufficient to deliver on existing policy goals. 

In a key finding, the highest intensity of broadleaf expansion is likely to shift from south-eastern to 

more central areas of Wales. 

A critical assumption in species distribution models is that the ecological niche of species is conserved. 

However, recent studies suggest that this assumption is not valid for all species. In Chapter 5, I 

compared ecological niches of Rhododendron ponticum in its native (Iberian Peninsula) and invasive 

(Britain) ranges address the fourth question based on the results of Chapter 2. I tested the conservation 

of ecological niche between invasive and native populations of R. ponticum using principal component 

analysis, niche dynamics analysis and MaxEnt-based reciprocal niche modelling. Results show that the 

two niches and not equivalent and are dissimilar, leading us to conclude that this species has occupied 

novel environmental conditions in Britain. 

In Chapter 6 of this thesis, I tested the combined effects of land use and climate changes on the current 

and future habitat suitability of R. ponticum in Wales using a MaxEnt-based SDM. I used two policy-
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driven land use change projections for Wales (Chapter 4), in combination with two General Circulation 

Models and two Representative Concentration Pathways to derive eight different land use and climate 

change scenarios. In seven out of eight scenarios, the habitat suitability for R. ponticum is likely to reduce 

by 2030. However, in the eighth scenario representing an extreme where land use change and 

greenhouse gas emissions both accelerate, the interaction of land use and climate change forces an 

increase of habitat suitability of R. ponticum. The results of this study highlighted the importance of 

considering the combined effect of land use and climate change and including regional policy-based 

land use change projections to test the potential of an invasive species to expand or retreat in future. 

In the general discussion (Chapter 7), I bring all the findings presented earlier together and wrap up 

with recommendations for future studies.
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