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Worsening drought of Nile 
basin under shift in atmospheric 
circulation, stronger ENSO 
and Indian Ocean dipole
Shereif H. Mahmoud1, Thian Yew Gan1*, Richard P. Allan2, Jianfeng Li3 & Chris Funk4

Until now, driving mechanisms behind recurring droughts and hydroclimate variations that controls 
the Nile River Basin (NRB) remains poorly understood. Our results show significant hydroclimatic 
changes that contributed to recent increasing aridity of NRB since the 1970s. Besides climate 
warming, the influence of stronger ENSO and Indian Ocean dipole (IOD) in NRB has increased after 
1980s, which have significantly contributed to NRB’s drought severity at inter-annual to inter-decadal 
timescales. Our results demonstrate that warming, El Niño and IOD have played a crucial role on 
NRB’s inter-decadal hydroclimate variability, but IOD has played a more important role in modulating 
NRB’s hydroclimate at higher timescales than El Niño. Results also indicate that the impacts of 
positive phases of ENSO and IOD events are larger than the negative phases in the NRB hydroclimate. 
Further, the southward (westward) shift in stream functions and meridional (zonal) winds caused 
an enhancement in the blocking pattern, with strong anticyclonic waves of dry air that keeps 
moving into NRB, has resulted in drier NRB, given stream function, geopotential height and U-wind 
anomalies associated with El Niño shows that changes in regional atmospheric circulations during 
more persistent and stronger El Niño has resulted in drier NRB. After 1970s, El Niño, IOD, and drought 
indices shows significant anti-phase relationships, which again demonstrates that more frequent 
and severe El Niño and IOD in recent years has led to more severe droughts in NRB. Our results also 
demonstrate that IOD and and the western pole of the Indian Ocean Dipole (WIO) are better predictors 
of the Nile flow than El Niño, where its flow has decreased by 13.7 (upstream) and by 114.1  m3/s/
decade (downstream) after 1964. In summary, under the combined impact of warming and stronger 
IOD and El Niño, future droughts of the NRB will worsen.
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AET  Actual evapotranspiration
BCP  Bayesian change point detection
BIC  Bayesian information criterion
BNB  Blue Nile basin
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IOD  Indian Ocean dipole
IPCC  Intergovernmental panel on climate change IPCC
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NDVI  Normalized difference vegetation index
PELT  Optimal multiple change point algorithms
PET  Potential evapotranspiration
RH  Relative humidity
DP  Segmentation by dynamic programming
sc-PDSI  Self-calibrating palmer drought severity index
SMC  Soil moisture content
SEIO  Southeast Indian ocean
SPI  Standard precipitation index
SPEI  Standardized precipitation-evapotranspiration index
SCFM  Structure change features method
20CRv3  The 20th century reanalysis V3 dataset
AR5  The fifth assessment report
TWS  Total water storage
Udel.  University of delaware precipitation dataset
CRU.TS4.03  University of East Anglia’s Climate Research Unit
WTC   Wavelet coherence
WIO  Western pole of the Indian Ocean dipole

Since the beginning of ancient civilizations in Africa, the Nile River has been the major source of water supply to 
its eleven riparian countries. However, since the 1970s, recurring  droughts1–4, changes to the timing and amount 
of precipitation, and increasing population have led to rising tension between competing users for water and 
growing political  instability5. The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate 
Change (IPCC) concluded that drying had occurred over much of Africa and the number of hydrologic extremes 
and heat stress have doubled since the middle of the twentieth  century5,6. Past studies predominantly confined 
to a specific sub-basin and have not provided us with a clear perspective on the driving mechanisms behind 
recurring droughts and the hydroclimate variations that controls the Nile River Basin (NRB). Among various 
causes of droughts identified in  Africa1–4 are the decline in precipitation related to warming caused by rising 
concentration of greenhouse  gases4,7. Past studies also show that precipitation in the Blue Nile Basin (BNB) 8–11 
with high spatial and temporal variability is affected by El Niño Southern Oscillation (ENSO) such that positive 
anomalies (wet years) tend to occur during the negative phase of ENSO 12–14, while negative anomalies (dry 
years) during the positive phase of ENSO. Additionally, the BNB’s precipitation and flow tend to be high during 
La Niña years but low during El Niño  years15–17, and extreme droughts correspond to strong El Niño events. The 
frequency of severe droughts occurring in NRB at inter-annual to inter-decadal time scales is linked to a long 
period of below average  precipitation3. An important question to address is: are NRB droughts primarily caused 
by precipitation anomalies attributed to ENSO/IOD, or have other factors also contributed to its drought sever-
ity, such as the warming trend of  Africa18, increasing frequency of extreme El Niño  events16,19, and changes in 
atmospheric  circulation20 associated with anthropogenic greenhouse gas or aerosol forcing, volcanic effects or 
internal unforced  variability21. In view of limited knowledge and lack of detailed analysis of the hydroclimatic 
changes in the NRB, there is an urgent need to better understand changes in the hydrological cycle of NRB.

The flow of NRB comes from two sources, the Blue Nile, and the White Nile, which join at Khartoum, the capi-
tal city of Sudan (Fig. 1). The BNB occupies about 11% of the NRB but it contributes about 60% of the Nile River 
 flow22. With a total catchment area of 3.1 million  km2, the NRB is shared by eleven countries, namely, Burundi, 
Rwanda, Uganda, Kenya, Tanzania, South Sudan, Democratic Republic of Congo, Sudan, Eritrea, Ethiopia, and 
Egypt. About 86% of NRB’s area lies in Sudan, Ethiopia, and Egypt. Despite its recurrent occurrences, we have 
yet to explain droughts of NRB satisfactorily because most past drought studies mainly focus on precipitation 
anomalies, soil moisture, and vegetation indices of the  BNB8–10,12. Here, we analyzed the hydroclimate data of 
NRB to identify key driving forces behind climate warming and droughts in NRB, and the variability of the 
Nile flow data over 1900–2012 in three gaging stations, and implications of flow variability to the severity and 
intensity of hydrological droughts in each riparian country of the NRB. We also identify mechanisms that control 
sensitivities of droughts, and the teleconnection of droughts and hydroclimate of NRB to ENSO and the dipole 
modes of the Indian Ocean. This study is first to investigate the full range of possible climate change impacts 
on NRB’s hydroclimate, droughts, and correct some results reported in past studies. The results from this study 
would help us to develop more effective mitigation strategies for these riparian countries against the potential 
impact of future droughts.

Results and discussion
Abrupt changes in the NRB’s hydroclimate under climate warming. To conduct a broad-scale 
analysis of the hydroclimatic changes of NRB, Pettitt’s test and Mann–Kendall (MK) were applied to monthly 
precipitation, surface temperature, geopotential height, relative humidity, specific humidity, potential and actual 
evapotranspiration, wind speed, zonal and meridional wind stresses, Nile flow, surface runoff, soil moisture con-
tent (SMC), and total water storage (TWS) data of the NRB (see methods sections). The NRB has experienced 
significant climate change impact in recent decades, as shown in a statistically significant change point (1976) 
in surface temperature, with a statistically significant warming trend of 0.19 °C/decade over 1976–2017 (Fig. 1a, 
supplementary Table 1). A statistically significant change point was also detected (1970) in the monthly precipi-
tation anomaly data from five different datasets (Udel., GPCC, 20CRv3, CRU.TS4.03, and GPCC V2018) with an 
overall decreasing trend of 16.2 mm/decade (Fig. 1b) and increasing trend in wind speed and zonal wind stress 
(NCEP– NCAR) at 0.02 m/decade and 1.51  m2/s2/decade respectively since 1975 (Fig. 1c). For the 1948–2017 
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Figure 1.  A detailed map of the Nile River Basin (NRB) basin showing the main riparian of the Nile generated 
with ArcMap Version 10.1 (http:// www. esri. com/ en/ arcgis/ arcgis- for- deskt op/). The observed streamflows 
analysed are taken from the Blue Nile station in Khartoum, Dongola station, and the Aswan station. The 
analysed hydroclimate data and drought index are averaged over the NRB, as well as for each riparian country of 
the Nile. Figure 1 shows: (a) temperature anomaly, where Mb is the long-term average before the change point, 
and Ma the long-term average after the change point. (b) precipitation anomaly from five different datasets, (c) 
wind speed, (d) relative humidity, (e) specific humidity, (f) geopotential height, and (g) ERSST relative (without 
global warming signal) and absolute El Niño3.4 index time series, Fig. 1g also shows El Niño3.4 intensification 
by global warming (red-line). Figure 1 also shows a decreasing trend in precipitation at 16.2 mm/decade since 
1970s, increasing trend in wind speed and zonal wind stress at 0.02 m/decade and 1.51  m2/s2/decade respectively 
since 1975, increasing trend in geopotential height (GPH) at 3.1 m/decade since 1976, warming trend at 0.19 °C/
decade, and decreasing trend in relative humidity (RH) since 1977.

http://www.esri.com/en/arcgis/arcgis-for-desktop/


4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8049  | https://doi.org/10.1038/s41598-022-12008-8

www.nature.com/scientificreports/

relative humidity data (RH) (20CRv3), a statistically significant change point was detected in 1977, with a sig-
nificant decreasing trend of 0.35% /decade after 1977 (Fig. 1d). Similarly, a statistically significant change point 
(1976) was detected in monthly 1000-mb geopotential height (GPH) data (20CRv3), and an increasing trend of 
3.1 m/decade (Fig. 1f). As expected, higher surface temperature had resulted in higher  GPH23, which means the 
lower atmosphere had become warmer. A statistically significant change point (1994) was also detected in the 
monthly specific humidity data of 1948–2017, and a slight increasing trend of 0.15 g/kg per decade, with the 
mean specific humidity increasing from 8.6 g/g in 1948–1994 to 8.8 g/g in 1994–2017 (Fig. 1e).

In addition, from the 1950–2017 reference and actual evapotranspiration (AET) estimated for NRB using 
a surface energy balance algorithm (see methods section), the AET of NRB has increased significantly with an 
upward trend of 14.4 mm/decade (supplementary Fig. 1b, and supplementary Table 2) since 1990s. Furthermore, 
a statistically significant change point was detected in monthly SMC and TWS in 1979, and after the change point, 
SMC and TWS data exhibit significant negative trends of 0.84 mm/decade and 1.44 mm/decade, respectively 
(supplementary Figs. 2c and 3c). Analysis of Niño3.4 data shows a statistically significant change point in 1978 
(Fig. 1g), and statistically significant increasing trend of 0.17 °C/decade. Since 1970s, changes between the El 
Niño index and the “relative” El Niño24 (relative to 20S-20 N, i.e., without global warming trend) shows that 
El Niño have become stronger with higher intensity in recent years (Fig. 1g). To further confirm the location 
of the abrupt variations in the NRB’s hydroclimate, seven commonly used nonparametric single and multiple 
change detection methods were applied to the NRB’s hydroclimate data (see methods section). Supplementary 
Table 2 shows the exact location of these variations using each detection method. The results obtained from these 
methods confirm the location of the hydroclimate variations in the NRB. For instance, posterior probability-
based methods sch as BCP, PELT, and Pettitt clearly confirm the statistically significant change points in NRB’s 
precipitation, RH, wind speed, specific humidity, GPH, AET, SMC, and TWS in 1970, 1977, 1975, 1994, 1976, 
1995, and 1979, respectively.

A composite analysis of NRB’s hydroclimate data between 1948 and 2017 also shows significant changes across 
the entire NRB (supplementary Figs. 4 and 5). For instance, surface temperature has increased at 0.16–0.4 °C/
decade over the NRB, with the highest increase in Ethiopia, Uganda, Sudan, and Egypt (supplementary Fig. 4a). 
RH has also decreased by 1–5%/decade after 1985, with the largest decrease in Ethiopia, Uganda, and Sudan 
where warming has also been the worst (supplementary Fig. 4b). The SMC shows high spatial variabilities in 
NRB but at a decreasing trend of 16–45 mm/decade between 1985 and 2017 (supplementary Fig. 4c). The lower 
atmosphere stream function of supplementary Fig. 4f at 0.8458 sigma level, which depicts the rotational part of 
the flow (the flow is along the contours), indicates that main waves emanating from northern towards southern 
parts of NRB, have shifted further south from 1948–1984 to 1985–2017. These changes had resulted in lower 
daily precipitation (supplementary Fig. 5a), marginally higher specific humidity (supplementary Fig. 5b), lower 
annual surface runoff (supplementary Fig. 4d), but higher PET (supplementary Fig. 4e). At a positive trend 
of 0.2–0.8  m2/sec2 between 1985 and 2017, the increase in scalar wind was maximum in Uganda, Sudan, and 
northwestern regions of Ethiopia, where both meridional and zonal wind have also increased (supplementary 
Fig. 5c–e). These results also show that higher wind speed and wind stresses tend to blow away humid air from 
land, resulting in a drier atmosphere. This long-term southward shift in the stream function over NRB would 
have also contributed towards the long-term drying of NRB, as part of multiple changes attributed to climate 
warming, e.g., changes in precipitation, Ts, wind stresses, GPH, RH, SMC, TWS, surface runoff, and AET.As 
expected, higher AET is found in irrigated land and water bodies in the Ethiopian highlands and in countries 
of southern NRB such as Uganda, Egypt, Sudan, Burundi, Congo, Kenya, Rwanda, and Tanzania, where water 
losses from high AET can be substantial (Fig. 2).

Attribution of changes in NRB’s hydroclimate. To examine how ENSO and IOD amplitudes vary 
over at inter-annual to inter-decadal timescales and their influence on the observed warming and changes in 
atmospheric circulation over the NRB, we computed their amplitudes over 20-, 30-, 40- and 50-year window 
following the method adopted in Kim et al.16. From the SD (standard deviation) of the Niño3.4 index and rela-
tive El Niño3.4 (El Niño3.4r) estimated over 20-, 30-, 40- and 50-year windows in Fig. 3a,b, it is clear that the 
degree of ENSO variability has increased in NRB over the 1980–2017 period with increasing intensity in ENSO 
activities signified by several extreme El Niño events occurring over this period. The difference between El 
Niño amplitudes with and without the global warming signal in Fig. 3a,b clearly shows that ENSO events have 
grown to be stronger in recent years. As a result, the impact of El Niño events in the hydroclimate of NRB have 
become stronger by climate warming, which have contributed to the observed long-term trends in Fig. 1 since 
the 1970s. Figure 3b also suggest that natural variability modulates ENSO amplitude over multidecadal time 
 scales25, as demonstrated by SD of Niño3.4r over 20-, 30- 40-, and 50-year windows, which consistently show 
that the amplitude of Niño3.4r variability has enhanced over the past several decades even after removing the 
global warming signal. In Fig. 3d, the Indian Ocean dipole (IOD) defined by a zonal SST gradient, also exhib-
ited increasing variability similar to ENSO, where the SD of IOD over 1970–2018 was characterized by strong 
and frequent occurrences of positive events associated with El Niño events. Figure 3c also shows a statistically 
significant change point in 1993, and increasing trend of about 0.1 °C/decade, for IOD had been in a positive 
phase since 1993. Figure 3e,f also show that higher zonal wind stresses are associated with stronger El Niño, their 
amplitude in terms of wind speed and discharging effect also increased with stronger El Niño events , which 
could have also contributed to more severe aridity in NRB, such as statistically significant increasing trends in 
the warm spell duration and maximum daily temperature over NRB at about 3.1 day/decade and 0.35 °C/decade 
since 1975, respectively (supplementary Fig. 1a and supplementary Table 1).

Our analysis also shows that the influence of stronger El Niño and IOD in NRB has increased after 1970s, par-
ticularly the influence of IOD on NRB’s hydroclimate over inter-decadal timescales. The IOD’s power spectrum 
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and significant coherence with ENSO, demonstrate a strong coupling between them, for both exhibited similar 
change patterns, e.g., positive IOD becomes more intensive as the strength of El Niño increases (supplementary 
Fig. 6). As a result, the impact of El Niño and IOD events in the hydroclimate of NRB have increased because 
of climate warming, which have contributed to the observed long-term trends in NRB’s hydroclimate since the 
1970s. A wavelet coherence analysis (WTC) shows that the hydroclimate of NRB is strongly correlated with El 
Niño and IOD (supplementary Figs. 7 and 8). The strong WTC (anti-phase) between El Niño and IOD, and 
precipitation and RH after 1970s shows that El Niño and IOD had contributed to lower precipitation (drying) 
over NRB, and their significant in-phase relationship with surface temperature and GPH shows that stronger El 
Niño (El Niño3.4r) and IOD after 1970s resulted in a warmer NRB. In addition, WTC plots between AET and 
El Niño show in-phase, statistically significant coherent relationship at 2–4 and 8–14-years bands after 1970s 
(supplementary Fig. 9a, b), which peaked at 14–16-year time scale after 2000s. On the other hand, the WTC 
between IOD and AET show that IOD primarily lead AET after 2000s. Based on WTC and a detailed detrended 
cross correlation (ρ) analysis (DCCA), the hydroclimate of NRB is strongly teleconnected to El Niño and IOD 
(Fig. 4) at inter-annual to inter-decadal timescales, with positive or negative correlations between El Niño 3.4, 
surface temperature (ρ = 0.97) (Fig. 4a), GPH (ρ = 0.81) (Fig. 4b), RH (ρ = − 0.97) (Fig. 4c) and precipitation 
(ρ = − 0.7) (Fig. 4d).

Figure 2.  Spatial distribution of annual reference evapotranspiration (a), land cover (b), and AET (2003–2019). 
In (a) the average annual reference evapotranspiration for the NRB ranged from 746 to 2340 mm/year, with 
the highest values observed over Ethiopian highlands and the southern portion of the NRB in countries such 
as Uganda, Egypt, Sudan, Burundi, Congo, Kenya, Rwanda, and Tanzania. Our results also show that the NRB’s 
AET rates follow the rainy seasonal pattern. In (b) very high AET is observed in irrigated land and water bodies 
in these regions which lead to very high losses due to increased rate of AET. Figure 2 also shows that AET 
increases from year to year, this increasing trend expand to include other regions in the NRB. The maps were 
generated with ArcMap Version 10.1 (http:// www. esri. com/ en/ arcgis/ arcgis- for- deskt op/).

http://www.esri.com/en/arcgis/arcgis-for-desktop/
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The strong correlation between these climate variables and IOD show that IOD plays an important role on 
the hydroclimate variability of NRB. For instance, the strong negative correlation between IOD, precipitation 
(ρ = − 0.37) (p-value < 0.05) and the Standardized Precipitation Index (SPI) (ρ = − 0.87) demonstrate that besides 
El Niño, IOD has also contributed to lower precipitation and more severe droughts of NRB (Figs. 4d and 6a–f), 
similar to the teleconnection between East African precipitation, ENSO and  IOD26. The higher AET after 1970s 
can be partly attributed to stronger wind stresses associated with stronger El Niño amplitudes, as shown by 
strong WTC between zonal and meridional wind stresses and AET at 1–2-year bands (Fig. 4e–f, supplementary 
Figs. 9 and 10). DCCA also showed a significant positive correlation between AET and El Niño 3.4 (ρ = 0.93), 
and meridional wind stresses (ρ = 0.62). Apparently, increasing meridional wind stress anomalies and stronger 
El Niño and IOD events have both contributed to the increased aridity in NRB (Fig. 4f, supplementary Fig. 10). 
It is shown that whenever drought occurs, the air temperature tends to be higher than average because more net 
solar energy is received (less clouds) while less energy is used to evaporate water or soil  moisture27.

To better understand the independent influence of El Niño and IOD on each riparian country of NRB, we 
estimated spatial correlation between IOD and El Niño and NRB’s hydroclimate using the independent composite 
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Figure 3.  Observed ENSO and Indian Ocean dipole (IOD) amplitude, and zonal and meridional winds stresses 
over the NRB: ENSO and IOD amplitude (°C), defined as the standard deviation (s.d.) of the Niño3.4 and 
relative El Niño3.4 (El Niño3.4r) amplitude (a,b) and IOD index (d) over 20-, 30-, 40- and 50-year windows 
from 1950 to 2017, and IOD characteristics over the NRB (c) using the ERSST data sets. Zonal and meridional 
wind stresses amplitude  (10−1 N  m−2) are defined as the s.d. of zonal and meridional winds stresses over 20-, 30-, 
40- and 50-year windows from 1950 to 2017, using NCEP/NCAR data sets from 1950–2017 (e,f). An increasing 
meridional wind amplitude (e) associated with a prominent anticyclonic circulation in southern NRB have 
contributed to the observed increasing intensity of recent El Niño events (a,b).
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method adopted in Saji and  Yamagata28. Our findings show that the influence of El Niño over NRB’s hydroclimate 
varies widely across the entire basin spatially as shown by the spatial correlation between El Niño and NRB’s 
GPH, Ts, precipitation, RH, and AET for the past 70 years. El Niño events have had a stronger warming effect in 
the upper part of the NRB, as shown by the strong positive correlation (ρ = 0.3–0.9) between surface tempera-
ture and El Niño in Ethiopia, Kenya, Uganda, Rwanda, Burundi, Tanzania, Eretria, and Sudan (Fig. 5a), leading 
to higher warm spell duration over NRB at about 3.1 day/decade since 1975 (supplementary Fig. 1a), which is 
expected given more frequent and severe El Niño events in recent years. These results are within agreement with 
ENSO-induced warming over Kenya (0.15 °C /decade) and Ethiopia (0.3 °C /decade) since  1970s29,30. In addition 
to El Niño-induced warming in NRB, the spatial correlation between NRB’s precipitation and El Niño shows a 
strong negative (positive) correlation between El Niño and precipitation in lowland of Ethiopia, Sudan, Uganda, 
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Figure 4.  ENSO and IOD Teleconnections on NRB hydroclimate. IOD and El Niño 3.4 amplitudes correlations 
with NRB surface temperature (a), GPH (b), precipitation anomaly (c), relative humidity (d), AET (e), and 
AET correlation with meridional and zonal wind stress (f). Surface temperature anomaly, GPH, precipitation 
anomaly, and relative humidity are computed over 20-year running periods from 1920 to 2017, El Niño 3.4 
and IOD amplitude are the SD of El Niño 3.4 and IOD indexes over 20-year windows from 1920 to 2017 using 
the ERSST data sets. The numbers in the top right are the cross-correlation coefficient between variables and 
IOD amplitude (brown colour) and El Niño 3.4 amplitude (red colour) at the 5% level. In (a,c) black and yellow 
points represent neutral ENSO conditions and strong positive IOD in 1961, green point is the response on 
surface temperature “increase” and decrease in precipitation anomalies “decrease” in the same year.
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Rwanda, and Burundi (Kenya, Tanzania, and Egypt) (Fig. 5b). This finding agrees with that of de la Poterie et al.31, 
who reported above (below) average precipitation in Kenya (Ethiopia) during El Niño years.

Furthermore, RH (AET) is negatively (positively) correlated with El Niño in the Ethiopian’s lowlands, Sudan, 
South Sudan, Uganda, Kenya, Eritrea, Burundi, and Rwanda (Fig. 5c,d), which shows that a decrease (increase) 
in NRB’s RH (AET) attributed to El Niño warming effect in the NRB since the 1970s. Byrne and O’gorman32 
have also found a similar relationship between land RH and increased warming in recent years. The results of 
the DCCA, WTC and trend analysis between El Niño and the NRB’s hydroclimate over the past 70 years provide 
evidence of El Niño induced changes on the NRB’s hydrological cycle. Our results also indicate that El Niño 
induced impacts on the NRB’s hydroclimate can either be intensified or decreased, depending on the strength of 
IOD events. For instance, the spatial correlation between NRB’s surface temperature and IOD in Fig. 5e shows 
a mirror image of El Niño warming signal over the NRB’s riparian countries. We also demonstrate that IOD 
amplifies the impact of ENSO on NRB’s precipitation variability, as shown by the significant negative correlation 
between IOD and precipitation in Eritrea, Ethiopia, Sudan, Congo, and Egypt (Fig. 5f). Beside El Niño, IOD has 
also contributed to lower precipitation in these countries, an opposite pattern to the teleconnection between East 

Figure 5.  Spatial correlation between NRB’ surface temperature, precipitation, relative humidity, and AET with 
El Niño 3.4 (a–d) and IOD (e–h) between 1948:2017 (p < 5%). In (b) the strong negative correlation between 
El Niño and precipitation in lowland of Ethiopia, Sudan, Uganda, Rwanda, and Burundi indicates that El Niño 
plays a dominant role in precipitation variability (reduction) in these countries. On the other hand, there is 
a strong positive correlation between El Niño and precipitation in Kenya, Tanzania, and Egypt implying an 
increase in precipitation in these countries. In (d) the spatial relationship between AET and El Niño is a mirror-
opposite of the relative humidity—El Niño relationship (c) because of the strong dependence between relative 
humidity and evaporation rate i.e., a decrease in relative humidity causes evaporation rate to increase. In e, IOD 
intensified ENSO-induced warming in the upper part of the NRB. In addition, IOD seems to amplify ENSO 
impact on the NRB’s precipitation variability with reduced precipitation in Eritrea, Ethiopia, Sudan, Congo, and 
Egypt, and increased precipitation over Uganda, Kenya, Tanzania, Burundi, and Rwanda (f). In g and h, RH and 
AET show an almost opposite pattern to their relationship with ENSO. The maps were generated with NCAR 
Command Language (NCL) Version 6.2.1 (http:// www. ncl. ucar. edu/).

http://www.ncl.ucar.edu/


9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8049  | https://doi.org/10.1038/s41598-022-12008-8

www.nature.com/scientificreports/

African precipitation, ENSO and  IOD26, which shows positive correlation with ENSO and IOD. Figure 5f also 
shows a significant positive correlation between IOD and precipitation in Uganda, Kenya, Tanzania, Burundi, and 
Rwanda. The negative influence of IOD on Ethiopian’s precipitation was also shown by Kotecha and  Barnston28. 
In contrast to El Niño induced impacts on the NRB’s RH and AET over the past 70 years, our findings show that 
IOD have a positive effect on NRB’s RH (increase) i.e., lower AET (Fig. 5g,h). This is evident in the statistically 
significant positive (negative) correlation between IOD and RH over Egypt and northern parts of Sudan (Ethio-
pian highlands, Kenya, and Tanzania). In other words, the relationship between NRB’s RH and AET and IOD 
shows an opposite pattern to their relationship with El Niño. Figure 5g,h also shows that IOD reduced El Niño 
negative influence on RH over Egypt and northern parts of Sudan and intensified the influence over Ethiopian 
highlands, Kenya, and Tanzania resulting in higher AET over these countries.

We have analyzed composites of separate phases of ENSO and IOD to identify the distinct features of each 
phase in in NRB annual surface temperature, precipitation, RH, and evapotranspiration. First, pure El Niño and 
La Niña events were identified and were compared to non-ENSO/IOD events following the approach adopted 
in Meyers et al.33. Then, NRB surface temperature, precipitation, RH, and evapotranspiration during each phase 
were averaged and subtracted from the average of the nonevents to form the composite. The same approach 
was followed to form the composite of positive and negative phases of IOD. Differences between El Niño and 
La Niña composites show that the impacts of El Niño are larger than La Niño in the NRB (Fig. 6). For instance, 
the surface temperature anomaly composites of pure El Niño events (Fig. 6a) show higher than normal surface 
temperature over the upper part of the NRB (0.5–2 °C), and lower than normal downstream (mainly over Egypt). 
The precipitation anomaly composites of pure El Niño events in Fig. 6b show below average precipitation over 
the upper part of the NRB (− 5 to − 25 mm). The highest increase (decrease) in surface temperature (precipita-
tion) anomaly during pure El Niño events can be seen over lowland of Ethiopia, Sudan, Uganda, Rwanda, and 

Figure 6.  The effect of El Niño and La Niña events in the NRB shown by composite of NRB’ surface 
temperature associated with El Niño (a) and La Niña (e) episodes, composite of precipitation associated with El 
Niño (b) and La Niña (f) episodes, composite of relative humidity associated with El Niño (c) and La Niña (g) 
episodes, and composite of evapotranspiration associated with El Niño (d) and La Niña (h) episodes.The maps 
were generated with NCAR Command Language (NCL) Version 6.2.1 (http:// www. ncl. ucar. edu/).

http://www.ncl.ucar.edu/
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Burundi. During pure El Niño events, the upper part of the NRB experiences a large decrease in RH (− 3 to 
− 27%) (Fig. 6c), resulting in higher-than-normal evapotranspiration (30–210 mm) (Fig. 6d). Overall, we note 
that evapotranspiration is the highest above countries that showed a large increase (decrease) in surface tem-
perature (RH). Despite the cooling influence of La Niña events, surface temperature is warmer than normal in 
the majority of the NRB (0.2 to 1 °C) except for Ethiopia which shows a drop of − 0.2 to − 0.4 °C (Fig. 6e). In 
contrast, above normal precipitation occurs in most parts of the NRB during pure La Niña events (5–15 mm). 
On the other hand, Fig. 6g–h show slight decrease (increase) in RH (evapotranspiration) in comparison to the 
pattern during pure El Niño events.

Figure 7 shows a far stronger influence from the positive phase of IOD than the negative phase IOD in the 
NRB’ climate. For instance, surface temperature anomaly composites of positive IOD events shows higher than 
normal surface temperature over the upper part of the NRB (0.3–1.5 °C) (Fig. 7a), this is a mirror image of 
the pure El Niño warming signal, but the influence is slightly lower. The composites of precipitation in Fig. 7b 
show below normal precipitation over the upper part of the NRB (− 3 to − 15 mm), which indicates that posi-
tive IOD events intensify the influence of positive ENSO events in the NRB precipitations. Like positive ENSO 
events, positive IOD events caused a decrease in RH and increase in evapotranspiration over the upper part of 
the NRB (Fig. 7c,d). On the other hand, negative IOD events impose a widespread colder-than-average surface 
temperature over the upper part of the NRB (− 0.1 to − 0.7 oC), and wormer than average surface temperature 
over Egypt (0.1–0.7 °C) (Fig. 7e). Negative IOD events also associated with higher-than-average precipitation 
(5–15 mm) over Ethiopia and Sudan, and below average precipitation (− 5 to − 15 mm) over Kenya, Uganda, 
Tanzania, Rwanda, and Burundi (Fig. 7f). Figure 7g–h also shows increase (decrease) in RH (evapotranspira-
tion) over Ethiopia, Kenya, and Tanzania. In contrast, to lower (higher) than average RH (evapotranspiration) 

Figure 7.  The effect of positive and negative IOD events in the NRB shown by composite of NRB’ surface 
temperature associated with positive IOD (a) and negative IOD (e) episodes, composite of precipitation 
associated with positive IOD (b) and negative IOD (f) episodes, composite of relative humidity associated with 
positive IOD (c) and negative IOD (g) episodes, and composite of evapotranspiration associated with positive 
IOD (d) and negative IOD (h) episodes. The maps were generated with NCAR Command Language (NCL) 
Version 6.2.1 (http:// www. ncl. ucar. edu/).

http://www.ncl.ucar.edu/
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over Sudan. Overall, we conclude that the impacts of positive phases of ENSO and IOD events are larger than 
the negative phases in the NRB hydroclimate.

The influence of ENSO and IOD on drought conditions of NRB. Past studies have teleconnected 
droughts of the upper part of the  NRB9,10 and sub-Saharan  Africa21 to ENSO based on a single drought index 
such as SPI or Normalized vegetation index (NDVI). However, in our study, the frequency, intensity, change 
point and trend of the meteorological, agricultural, and hydrological droughts of NRB under the effect of cli-
mate change were investigated based on the SPI index, the Normalized vegetation index (NDVI), the Stand-
ardized Precipitation-Evapotranspiration Index (SPEI), the self-calibrating Palmer Hydrological Drought Index 
(sc-PDSI), and runoff anomaly, estimated over 1950–2017, respectively (see methods section). In addition, to 
further investigate drought conditions and hydroclimate of the NRB, sc-PDSI, surface temperature, and precipi-
tation of each riparian country of NRB were analyzed individually (supplementary Table 3). Even though the 
degree of climate warming in NRB varies from one riparian country to another, overall impacts to meteorologi-
cal, agricultural, and hydrological droughts of most riparian countries of NRB have been severe, where regional 
warming trends have exceeded the mean global warming trend of about 0.15 °C per  decade34.

Beside ENSO, our results show that IOD plays a more crucial role on NRB’s hydroclimate variability and 
drought severity over inter-decadal and longer timescales (Fig. 8 and supplementary Fig. 8). The SPI index was 
computed at 1, 3, 6, 12 and 48-month timescales for NRB over 1950–2017. The 1-month SPI time series shows 
statistically significant change point in 1979 with a decreasing trend of 0.15/decade (supplementary Table 4). 
By defining droughts as SPI < − 1, recurrent droughts were detected in 1952, 1959, 1965, 1972, 1973, 1978, 1983, 
1984, 1987, 1991, 1994, 1999, 2002, and 2011, respectively, with increasing severity after late 1970s. The 48-month 
SPI (Fig. 8a) also exhibits overall decreasing trends since 1970s, but of higher magnitude than the 1-month SPI. 
To consider the effect of warming and potential evapotranspiration (PET) on drought severity, the SPEI index at 
1, 3, 6, 12 and 48-month timescale for 1940–2018 was computed over the NRB from five precipitation datasets 
(Udel., GPCC, 20CRv3, CRU.TS4.03, and GPCC V2018). Like the SPI index, the 48-month SPEI index from the 
five datasets consistently shows a statistically significant change point in 1983 with a decreasing trend of 0.1–0.15/
decade (Fig. 8c). The consistent results obtained from the above five datasets confirm that higher PET intensi-
fied by warming had a significant impact on NRB during the most dominant drought events between 1970 and 
2018. The sc-PDSI time series for NRB also shows a significant change point in 1983, with an overall decreasing 
trend of 0.58/decade, as reflected by hydrologic droughts in 1973 and 1987, and then recurrent droughts between 
2002 and 2011 (Fig. 8e). This means that more frequent hydrologic droughts have occurred over NRB than the 
global average since early  2000s35.

In NRB, rain-fed agriculture is the prevailing agricultural system, and thus negative runoff anomalies are 
good indicators for hydrologic droughts as well as lower agricultural productivity. The monthly observed runoff 
anomalies in NRB between 1902 and 2014 in Fig. 8g show a statistically significant change point in 1970 with a 
decreasing trend of 1.2 mm/decade. Figure 8g also shows the response (drying) of agricultural and vegetation 
cover (right-hand side of Fig. 8g) to the decline in runoff between 1981 and 2014. The negative monthly runoff 
anomaly after 1970s indicate a lower runoff availability to rain-fed agriculture and ecosystems and increases the 
severity of droughts in NRB. Before 1970s, the WTC plots show that El Niño and IOD were in phase with both 
sc-PDSI, SPI, and SPEI, but after 1970s their relationships became predominantly anti-phase. These posts 1970s 
results suggest that stronger El Niño and IOD events contributed to more severe droughts in NRB after 1970s 
(Fig. 8c–e and supplementary Fig. 8e–f), as is also evident from the strong negative correlation between El Niño 
(IOD) and SPI (Fig. 8b), ρ = − 0.86 (− 0.87), SPEI (Fig. 8d), ρ = − 0.89 (− 0.25), sc-PDSI (Fig. 8f), ρ = − 0.75 (− 0.41), 
and runoff anomaly (Fig. 8h), ρ = − 0.84 (− 0.39). Results obtained from using NDVI shows that an increase in 
AET and a decline in precipitation could lead to severe agricultural droughts (supplementary Fig. 11) in irri-
gated areas of the Ethiopian highlands, Ethiopia, Eritrea, Kenya, Tanzania, Congo, and Uganda since the 1970s.

The role of the changes in NRB’s hydroclimate, hydrological cycle and warming-induced drought stress is 
evident in the consistent results obtained from drought indices representing meteorological, agricultural, and 
hydrological droughts in NRB, which show repetitive drought episodes, with increasing severity after 1970s. 
These indices support the archived historical information on drought events in NRB. For instance, the 48-month 
SPI exhibits overall decreasing trends since 1970s, the SPEI index computed over the NRB from five precipitation 
datasets confirm that higher AET intensified by warming had a significant impact on NRB during the most severe 
drought events that occurred 1970 and 2018, and the sc-PDSI index also reflected recurrent hydrologic droughts 
in the NRB after 1970s. These findings show that more frequent hydrologic droughts have occurred over NRB 
than the global average since early  2000s35, resulting in severe agricultural droughts in Ethiopia, Eritrea, Kenya, 
Tanzania, Congo, and Uganda since the 1970s.

The role of western and southeastern poles of the Indian Ocean Dipole on NRB’s hydroclimate 
and drought. To further investigate the role of IOD on the hydroclimate of NRB, using the two halves of 
IOD identified in Saji et al.36, i.e., the western pole in the Arabian Sea (western pole of the Indian Ocean Dipole) 
(50° E–70° E, 10° S–10° N) (WIO) and the southeast pole of the Indian Ocean (SEIO) (90° E–110° E, 10° S–0° 
N) we found that SST of the WIO plays a primary role on NRB’s hydroclimate over inter-decadal and longer 
timescales. The dominant anti-phase relationship between WIO and NRB’s precipitation, SPI and scPDSI at 
inter-decadal timescales (> 32-year) show that NRB’s hydroclimate is strongly linked to the SST of WIO (sup-
plementary Fig. 12a–f), which is also evident in the significant negative correlation between WIO and the pre-
cipitation variability of NRB (ρ = − 0.82). Apparently, more frequent occurrences of droughts in NRB are related 
to increased warming in the WIO (supplementary Fig. 13a) and other factors, as is also evident from the strong 
negative correlation between SPI and SST of WIO (ρ = − 0.71 for SPI and − 0.8 for sc-PDSI) (supplementary 
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Figure 8.  The influence of ENSO and IOD on drought conditions of NRB: (a) 48-month SPI versus El Niño 
3.4, (b) IOD and El Niño 3.4 amplitudes correlations with SPI, (c) SPEI calculated using five precipitation data 
sets, all SPEI indices show a statistically significant drying trend (p < 0.05) since the 1970s. (d) IOD and El Niño 
3.4 amplitudes correlations with SPEI, (e) sc-PDSI versus El Niño 3.4, (f) IOD and El Niño 3.4 amplitudes 
correlations with sc-PDSI, (g) trend and variability of monthly runoff anomaly averaged over a 3-year moving 
window between 1902 and 2014 using GRUN- Runoff observation-based global gridded runoff. The right-hand 
side of Fig. 8g shows the monthly Normalized Difference Vegetation Index (NDVI) computed from NOAA 
Climate Data Record (CDR) of AVHRR NDVI V5 and averaged over the entire Nile River basin. (h) IOD and 
El Niño 3.4 amplitudes correlations with runoff anomaly. In (b,d,f,h) the SPI, SPEI, sc-PDSI, runoff indices were 
computed over 20-year running periods from 1920 to 2017, El Niño 3.4 and IOD amplitude are the SD of El 
Niño 3.4 and IOD indexes over 20-year windows from 1920 to 2017 using the ERSST data sets. The numbers in 
the top right of (b, d, f, and h) are the detrended cross-correlation coefficient between drought indices and IOD 
amplitude (brown colour) and El Niño 3.4 amplitude (red colour) at the 5% level.
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Fig. 13b–c). There are strong anti-phase relationships at 16–32 (32–64) year bands between WIO (SEIO) and 
SMC (TWS) (supplementary Fig. 14a–d), with significant negative correlations between NRB’s SMC and SEIO 
(ρ = -0.92), and WIO (ρ = -0.83) (supplementary     Fig. 14e), e.g., NRB’s SMC decreased under stronger SEIO 
and WIO amplitudes. The strong negative correlation between TWS and SEIO (ρ = − 0.95) and WIO (ρ = − 0.91) 
implies that increased SST over WIO and SEIO resulted in lower TWS in NRB (supplementary Fig. 14f). Appar-
ently, WIO and SEIO explain the variability of NRB’s SMC and TWS (see supplementary Fig. 14–15). Further-
more, from WTC and strong negative correlations between SPI, sc-PDSI and WIO, NRB’s hydroclimate is shown 
to be strongly influenced by WIO.

Responses of Nile flow variability to ENSO and IOD. To better understand hydrologic droughts of 
NRB, we also investigated the Nile flow variability and the teleconnection of ENSO and the dipole mode to Nile 
flow over 1912–2012. Observed annual flow records for 1912–2012 from the Blue Nile station at Khartoum 
(Fig. 9a) show a statistically significant change point in 1964, with a decreasing trend of about 13.7  m3/s/decade 
after 1964. Between 1965 and 1987, the Blue Nile flow decreased so much that the mean annual flow after 1965 
was below the long-term mean annual flow by 716  m3/s (supplementary Table 5). The annual flow of the Dongola 
station also showed a significant decline during 1900–1982 (Fig. 9b), while the annual flow of the Aswan station 
in 1900–1987 exhibited high temporal variability, e.g., the August-November wet season over 1900–1950 shows 
high flow records, a statistically significant change point in 1965, and a statistically significant negative trend of 
114.1  m3/s/decade after 1965 (Fig. 9c). The 30-, 50- and 100-yearr moving average of NRB’ annual runoff fur-
ther indicate lower runoff after 1970s (Fig. 9a). Figure 10a also shows that surface runoff persistently decreases 
over time as shown by the moving averages. The 30-year moving average of NRB’ annual runoff shows a clear 
fluctuation, which is attributed to the interannual to decadal oscillation of the NRB’ climate. For instance, the 
significant increasing trend between 1930 and 1970s indicates higher precipitation, and weaker ENSO, IOD and 
WIO, as proven by their amplitudes and trends. After the 1970s, we clearly see the shift in the trend from upward 
to downward. This downward trend in surface runoff accelerated after the 1980s, this interesting finding illus-
trate the increased influence of IOD, ENSO, and WIO in the NRB’s surface runoff after the 1980s. This pattern is 
further proven by the longer time scales (i.e., 50- and 100-year moving average) and reflects drought conditions 
in the NRB at inter-decadal to multi-decadal timescale.

Figure 10b–c shows a significant negative correlation between the Nile flow and IOD (s.d.) (ρ = − 0.71 for the 
Blue Nile, and − 0.57 for the Nile at Dongala station), compared to a less significant negative/positive correlation 
between El Niño (s.d.) and the Nile flow at the Blue Nile (ρ = − 0.31) and Dongala stations (ρ = 0.25), respec-
tively. Therefore, IOD exerts a stronger influence on the Nile flow than El Niño at inter-annual to inter-decadal 
time scales. The peak correlation between IOD and the Nile flow occurred a year earlier than that between El 
Niño and the Blue Nile flow, which agrees with WTC between IOD and El Niño. The increasing intensity in El 
Niño (s.d.) after 1978 (represented by the change point (yellow color) in Fig. 10b) shows that El Niño occurred 
more frequently with positive IODs than La Niña events with negative IODs. Our results show a strong negative 
correlation between the Nile flow (Blue Nile flow) and the SST of WIO and SEIO (Fig. 10d–e), e.g., between the 
Nile flow (Blue Nile flow) and WIO, ρ = − 0.72 (− 0.92); and SEIO, ρ = − 0.58 (− 0.88). This demonstrates that the 
Nile flow is strongly linked to SST of WIO and SEIO (see arrows in Fig. 10d), or to SST of WIO and SEIO, and 
El Niño at inter-annual to multi-decadal time scales. Contrary to past  findings11,20,22,37, our results show that IOD 
and WIO are better predictors of the Nile flow than El Niño. For instance, Siam and  Eltahir37 provided empirical 
evidence of the relationship between interannual variability of Nile flow and ENSO without accounting to the 
influence of IOD in their study. The number of studies that associate the hydroclimate variability of the NRB to 
IOD and ENSO are very limited and if found these studies focus mainly on the upper part of the NRB. Lastly, 
given the inter-annual variability of the Nile flow is also projected to increase significantly from the 20th to the 
twenty-first  century37, it could lead to even more severe droughts in NRB in future.

Atmospheric circulation patterns. To better understand changes to the atmospheric circulation over 
NRB, we analyzed the responses of stream function fields, GPH, and zonal/meridional winds to climate warm-
ing and ENSO (Fig. 11a–h). Associated with El Niño (La Niña) events, the 750-mb stream function show posi-
tive (negative) stream function anomalies, which correspond to high (low) GPH anomalies. The anomalous, 
anticyclonic stream function pattern is associated with ENSO warming, that propagates from the northwest 
towards southern and eastern parts of NRB during El Niño events (Fig.  11a), controlling the circulation of 
air mass, heat, and moisture in the NRB. During La Niña events (Fig. 11b), north-eastern anticyclone wave 
originates over the Arabian Peninsula and travelling west over the Red Sea and part of the Indian ocean towards 
Egypt, Libya, and part of Sudan, with negative stream function anomalies only over the BNB, Tanzania, and 
Uganda. Changes in stream function patterns are attributed to more El Niño and fewer La Niña events occurring 
after 1970s. Figure 11c–h shows the composite 300-mb GPH and zonal and meridional wind anomaly patterns 
associated with El Niño and La Niña events, respectively.

Similarly, the composite map of GPH anomalies at 300-mb during El Niño events is characterized by spatially 
persistent, positive anomalies, and shows an intensive anticyclonic flow, which is advective dry air, from the north 
(Arabian Peninsula) westward towards the NRB. In particular, the Ethiopian highlands, the Sudd region in South 
Sudan, Eritrea, Uganda, and the Aswan high dam of Egypt showed the highest positive GPH anomalies during 
El Niño events (Fig. 11c). In contrast, GPH anomalies during La Niña events show mainly negative anomalies 
except in the Arabian Peninsula, (Fig. 11d). Figure 11c,d implying that El Niño induced positive GPH anomalies 
are more consistent spatially than the negative anomalies during La Niña events. This can be attributed to the 
thermal inertia associated with El Niño events, i.e., El Niño induced positive GPH anomalies are more persistent 
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and are intensified by warming. This finding indicates a warmer lower troposphere, resulting in higher surface 
temperature and drier weather (lower dew points) in NRB.
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Figure 9.  Observed annual flows: (a) Blue Nile flow, (b) Dongola station flow, and Aswan station flow (c). In 
Fig. 9a, the annual flow of the Blue Nile River decreased from 1645 CBM/s over 1912–1964 to 1478 CBM/s over 
1964–2012, with a decreasing trend of about 13.7 CBM/decade after 1964, due to higher AET losses, warmer 
WIO and IOD, and more intensive El Niño events.
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Differences in U-wind (meridional winds) patterns between (Fig. 11e–h) show an enhanced, positive zonal 
U-wind and meridional winds flow anomaly during El Niño events. Figure 11a–d also shows the shift in zonal 
winds (westward) and meridional winds (southward) associated with stronger El Niño events, which have con-
tributed to the increased aridity of NRB after 1970s and resulted in a reorganization of the atmospheric circu-
lation over NRB. Changes in regional atmospheric circulations based on stream function, GPH and U-wind 
anomalies associated with El Niño events further demonstrates that more persistent and stronger El Niño has 
resulted in drier NRB. For instance, the zonal U- wind patterns in Fig. 11e, flow from the northwest toward NRB 
as anomalous anticyclone waves, moving drier air continuously into the NRB and tend to be very strong over the 
Ethiopia’s lowland, Uganda, Burundi, the Sudd region in South Sudan, the Roseries, Eritrea, and Congo. Beside 
the observed change in zonal wind pattern, meridional wind anomalies associated with El Niño events shifted 
south (Fig. 11g). This observed changes in wind patterns associated with stronger El Niño events (Fig. 11e,g) 
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Figure 10.  Teleconnections between NRB’s flow variability, ENSO and IOD. (a) 30-, 50- and 100-year moving 
average of annual runoff over the Nile River basin (a). Responses of NRB flow variability to El Niño events, IOD 
amplitude and the IOD two pole amplitudes i.e., western pole amplitude (WIO) and eastern pole amplitude 
(SEIO) based on the detrended cross correlation between NRB flow at Blue Nile and Dongala stations and El 
Niño 3.4, IOD amplitudes (b,c), SEIO, and WIO amplitudes (d,e), respectively. The NRB flow are computed over 
30-year running periods from 1913 to 2012 for the Blue Nile station, and from 1913 to 1984 for Dongala station. 
El Niño 3.4, IOD, SEIO, WIO amplitudes are computed as the s.d. of the El Niño 3.4, IOD, SEIO, WIO over 
30-year windows from 1913 to 2017, using the ERSST data sets.
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have contributed to the abrupt changes in the NRB’s hydroclimate as shown by DCCA, WTC, and the spatial 
correlation between El Niño and NRB’s hydroclimate.

Response of NRB’s hydroclimate and drought to future projection of ENSO and IOD.. The 
multi-model ensemble (MME) of IOD, ENSO, and WIO computed from the simulations of 34 global climate 
models (GCMs) of  CMIP56 over 1900–2100 was computed over 30-year periods. IOD, ENSO, and WIO esti-
mated from the GCM that best agrees with the observed IOD, ENSO, and WIO were only used in this study. 
The selected GCMs simulate the frequency of El Niño, La Niña, IOD, WIO events for the twentieth century with 
some differences but are generally in reasonable agreement with observations (Figs. 12 and 13). The correlation 
between MME of WIO and IOD obtained from GCMs’ projections and WIO and IOD estimated from ERSST 
data range between ρ = 0.61 and ρ = 0.88. Figure 12a–d shows projected increasing trends of 0.01–0.02 °C/decade 
in IOD over 2019–2100, which could double the increasing trend in IOD observed between 1993 and 2018. As 
future positive IOD events are projected by GCMs to be more extreme because of global warming, NRB could 
suffer from more severe droughts which could occur more frequently in the future. The results also show that 
the variability (s.d.) of WIO has increased since the 1970s in both the observed dataset and the MME of 34 
GCMs’ simulations for the historical run, which means that WIO has become warmer in recent decades, and it 

Figure 11.  The effect of ENSO to the atmospheric circulation over NRB shown by the 750-mb stream function 
anomaly associated with El Nino (a) and La Nina (b) episodes (shaded contours, red/brown for positive and 
blue for negative anomalies), 300-mb geopotential height anomaly associated with El Nino (c) and La Nina 
(d) episodes, zonal and meridional wind anomaly patterns associated with El Nino (e,g) and La Nina (f,h) 
episodes, respectively. The signals between ENSO and GPH, stream functions, and meridional/zonal wind in 
the troposphere demonstrates the teleconnection between El Niño and the atmospheric circulation over of NRB. 
The warming over WIO and stronger El Niño, the southward shift of the lower atmospheric stream functions 
and meridional winds, and the westward shift of zonal winds have together contributed to worsening droughts 
observed in NRB in recent years. The maps were generated with NCAR Command Language (NCL) Version 
6.2.1 (http:// www. ncl. ucar. edu/).

http://www.ncl.ucar.edu/


17

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8049  | https://doi.org/10.1038/s41598-022-12008-8

www.nature.com/scientificreports/

is projected to be considerably warmer at a trend of 0.01–0.023 °C/decade between 2019 and 2100 (Fig. 13). The 
warmer WIO, the more intensive El Niño, and atmospheric circulation shift in recent years are expected to play 
a major role modulating the future climatic conditions of NRB, likely resulting in less precipitation, RH, SMC, 
and the Nile flow, as warming continues in NRB over the 21st Century. Under the projected increase in WIO, 
future drought conditions of NRB are expected to worsen.

To estimate the influence of the projected increase in IOD, WIO, and El Niño on the NRB’s hydroclimate 
and droughts, future projections of NRB’s hydroclimate and droughts were also analyzed (Figs. 14 and 15 and 
supplementary Fig. 16). Similar to the approach adopted in computing the MME of IOD, ENSO, and WIO, we 
have selected the most suitable GCMs that simulate the NRB’s hydroclimate. The selection process was limited 
to the GCMs that best agrees with the observed IOD, ENSO, and WIO. We have also used the GCMs that were 
identified in previous study by Siam and  Eltahir37. These GCMs were bias corrected to minimize the impact of 
discrepancies between simulations and observations. Based on the analysis of simulations of 34 GCMs of CMIP5 
, the warming of NRB is projected to be at 0.24 °C/decade (0.36 °C/decade) (Fig. 14 and supplementary 16a), 
annual precipitation is projected to decrease at about 16.5 mm/decade, RH is projected to decline at 0.87% /
decade (1.04% /decade), PET is projected to increase at 11.4 mm/decade (18.4 mm/decade), and monthly SMC 
is projected to decrease at 0.12 mm/decade (0.72 mm/decade), under Representative Concentration Pathways 
RCP 2.6 (RCP4.5) scenarios over 2020–2050, respectively. With high spatial variability in precipitation, the 
annual precipitation in Egypt and Sudan could decline by 15.5 mm/decade but for the White Nile region, it could 
increase by 28.9 mm/decade over 2020–2050 (supplementary Fig. 16b). Between 2050 and 2100, the warming 
trend will continue but projected at a lower rate, annual precipitation is projected to increase at 5 mm/decade, RH 
is projected to only decline at 0.23%/decade (0.34%/decade), monthly SMC is projected to decrease at 0.65 mm/
decade (2.5 mm/decade), and PET to increase by 10 mm/decade (14.8 mm/decade) under RCP 2.6 (RCP4.5), 
respectively. It seems that agricultural drought of NRB will get worse over the 21st Century. Climate models 
project more frequent and stronger El Niño events between 2020 and  210016,38, leading to worsening droughts 
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Figure 12.  Time variation of simulated IOD amplitude. (a) the multi-model ensemble (MME) of the IOD. 
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and more severe surface drying in NRB over the twenty-first century. Furthermore, large parts of Egypt and 
Sudan are projected to suffer mild to moderate hydrologic droughts over the 21st Century (Fig. 15), and coun-
tries such as Kenya, Tanzania, Rwanda, Burundi, Uganda, and Congo are projected to suffer incipient droughts.

Conclusions and implications
The results of this study have brought new insight on the hydroclimate variability of NRB, provide a clearer per-
spective on the driving mechanisms behind the hydroclimate variations and worsening droughts of NRB in recent 
decades, and have corrected some results reported in past studies. Low precipitation and climate warming have 
been attributed as key driving forces to droughts of  Africa1–5. Our analysis of hydroclimate data demonstrated 
climatic changes that contributed to recent increasing aridity of NRB: a decreasing trend in annual precipita-
tion at 16.2 mm/decade since 1970s, increasing trend in wind speed and zonal wind stress at 0.02 m/decade 
and 1.51  m2/s2/decade respectively since 1975, increasing trend in geopotential height (GPH) at 3.1 m/decade 
since 1976, warming trend at 0.19 °C/decade, decreasing trend in relative humidity (RH) since 1977, decreasing 
trend in soil moisture content (SMC) and groundwater storage (GWS) at 0.84 mm/decade and 1.44 mm/decade, 
respectively since 1979. This is evident in the decreasing trend in precipitation, RH, SMC, and TWS, and increas-
ing trend in wind speed, wind stresses, GPH, Ts, and AET. The increase in AET is also shown by other studies, 
that higher AET is related to higher wind speed and wind stresses, warming and lower  RH39,40. These observed 
changes are strongly linked to El Niño and IOD. Our results demonstrate that warming, El Niño and IOD have 
played a crucial role on NRB’s inter-decadal hydroclimate variability, but IOD has played a more important role 
in modulating NRB’s hydroclimate at higher timescales than El Niño.

Beside the observed warming, El Niño -driven changes to wind patterns have also contributed to a drier NRB 
in recent years. A westward shift in zonal winds and southward shift in meridional winds, caused an enhancement 
in the blocking pattern, with strong anticyclonic waves of dry air that keeps moving dry air over the Roseires, 
lowlands of Ethiopia, the Sudd region in South Sudan, Eritrea, Congo, Uganda, and Burundi. This pattern 
controls the circulation of air mass, heat, and moisture fluxes in NRB, which explain the observed changes in 
NRB’s hydroclimate. In other words, changes in atmospheric circulations over NRB due to the southward shift 
of the lower atmospheric stream functions, GPH, El Niño-wind patterns has resulted in the observed changes 
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Figure 13.  Time variation of simulated WIO amplitude. (a) the multi-model ensemble (MME) of the WIO 
amplitude from 34 climate models computed over 30-year running periods from 1913 to 2100. The WIO from 
the MME was calculated as area weighted average of the Indian Ocean SST over the Arabian sea (50° E–70° E 
and 10° S–10° N) in each model simulations. The 30-year running WIO amplitudes from ERSST over the period 
1913–2017 are also shown (blue). Pearson correlation coefficients between the best models and observations 
(ERSST data), are displayed. The slope is the linear trend estimated at the 5% level based on the Mann–Kendall 
test. WIO estimated from the GCM that best agrees with the observed WIO were selected. The correlation 
between the MME of WIO obtained from GCMs and WIO estimated from ERSST data range between ρ = 0.61 
and ρ = 0.88 (a–d). In (a–d), the variability (s.d.) of WIO has increased since the 1970s in both the observed 
dataset and the MME of 34 GCMs’ simulations for the historical run, which means that the western Indian 
Ocean has become warmer, and projected to be much warmer, at a warming trend of 0.01–0.023 °C/decade 
between 2019 and 2100.
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Figure 14.  Future change of NRB’s annual precipitation (a) and surface temperature (c) in 2050, NRB’s annual 
precipitation and surface temperature in 2070 (b,d). In (c–d), warming trend over Sudan and Egypt will increase 
and the projected increase in mean temperature in this period is 6.82 °C between 2015 and 2050, while between 
2050 and 2070 warming trend will continue but at a lower rate than the previous period as the difference 
between mean temperature in 2050 and 2070 is 0.79 °C. The increases of mean temperature in Ethiopia and 
Eritrea between 2015–2050 and 2050–2070, is about 6.08 °C, and 0.56–0.58 °C, respectively. While in Kenya, 
Tanzania, Rwanda, Burundi, Uganda, and Congo increase in mean temperature is 5.5 °C between 2015–2050 
and 0.48 °C between 2050 and 2070. The maps were generated with ArcMap Version 10.1 (http:// www. esri. com/ 
en/ arcgis/ arcgis- for- deskt op/).

http://www.esri.com/en/arcgis/arcgis-for-desktop/
http://www.esri.com/en/arcgis/arcgis-for-desktop/


20

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8049  | https://doi.org/10.1038/s41598-022-12008-8

www.nature.com/scientificreports/

in NRB’s hydroclimate and intensified drought. This is also evident in the WTC and DCCA between AET and 
wind stresses, which shows that wind stresses have had a positive (negative) influence on NRB’s AET (RH), i.e. 
The increase in wind stresses lead to increase (decrease) in AET and surface temperature (RH). Andresen et al.41 
showed a similar effect of El Niño -driven changes to wind patterns in the United States, lower precipitation, 
and significant warming. Lastly, warming of WIO and stronger El Niño and IOD, have together contributed to 
worsening droughts observed in NRB in recent years, where its flow at upstream and downstream stations have 
decreased by 13.7  m3/s/decade (upstream) and by 114.1  m3/s/decade after 1964. Climate projections suggest 
that under the combined impact of warming and stronger WIO and El Niño episodes, future droughts of the 
NRB will worsen.

Methods
Observational datasets. Historical monthly temperature, relative humidity, and specific humidity data 
for 1900–2017 were taken from the 20th Century Reanalysis V2 Dataset, the 20th Century Reanalysis V2 data 
provided by NOAA/OAR/ESRL (https:// www. esrl. noaa. gov/ psd/). Temperature anomaly data for 1910–2017 
was taken from the HadCRUT4 global temperature dataset developed by the Climatic Research Unit of Univer-
sity of East Anglia (CRU.Ts4.03)42 in conjunction with the Hadley Centre (UK Met Office). Historical observed 
monthly precipitation data for 1948–2017 was taken from the University of Delaware precipitation dataset 
(Udel.43) developed from a large number of climate stations of the Global Historical Climate Network, We have 
also analyzed precipitation data from the following datasets (1) the 20th Century Reanalysis V3 Dataset pro-
vided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA (20CRv3), (2) the University of East Anglia’s 
Climate Research Unit (CRU.TS4.03) https:// cruda ta. uea. ac. uk/ cru/ data/ hrg/ cru_ ts_4. 04/, (3) the 0.25° Grid-
ded data of Global Precipitation Climatology Center (GPCC v2.2), (iv) GPCC Full Data Monthly Product Ver-
sion 2018 extended with GPCC Monitoring Monthly Product version 6 (GPCC v.6) (https:// opend ata. dwd. de/ 
clima te_ envir onment/ GPCC/ html/ downl oad_ gate. html), (v) JRA-55 reanalysis dataset, and (vi) NCEP/NCAR 
Reanalysis dataset. Monthly Geopotential height, zonal and meridional wind stresses, and wind speed from 
1948 to 2017 were drawn from the National Centers for Environmental Prediction– National Center for Atmos-
pheric Research (NCEP–NCAR) reanalysis 1 (NCEP-R1) and the 40-yearr European Center for Medium-Range 

Figure 15.  Future projection of drought severity ‘PDSI’ 2050,2070. According to sc-PDSI projection, large parts 
of Egypt and Sudan could suffer mild to moderate hydrologic droughts over the 21st Century, and countries 
such as Kenya, Tanzania, Rwanda, Burundi, Uganda, and Congo are projected to suffer incipient droughts. 
Major areas of Egypt and Sudan is projected to have mild to moderate drought, this can be explained by the 
very high increase in projected Ts. Between 2050 and 2070 as the increase in mean temperature is lower than 
the previous period and precipitation increase is also lower, the entire region is covered by incipient drought 
(mainly Egypt and Sudan-except the White Nile region) and slightly wet to moderately wet in Kenya, Tanzania, 
Rwanda, Burundi, Uganda, and Congo and Ethiopia. This reflects the effect of warming rate in future drought 
condition. The maps were generated with ArcMap Version 10.1 (http:// www. esri. com/ en/ arcgis/ arcgis- for- deskt 
op/).

https://www.esrl.noaa.gov/psd/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04/
https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html
https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html
http://www.esri.com/en/arcgis/arcgis-for-desktop/
http://www.esri.com/en/arcgis/arcgis-for-desktop/
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Weather Forecasts (ECMWF) Re-Analysis (ERA-40). Digital elevation model (DEM) of 30 m resolution was 
obtained from the Global Elevation Model (GDEM) version 2 databases (http:// aster. usgs. gov). The Nile River 
hydroclimate from these datasets were calculated as the average of all grid boxes within the basin boundary from 
each dataset.

Monthly precipitation and temperature data in gridded form (0.5° × 0.5°) from 1948 to 2017 was obtained 
from the Global monthly precipitation and temperature data of the Princeton global  forcings44. These data-
sets are of the observational-reanalysis hybrid type developed from a combination of datasets, which include 
the NCEP–NCAR reanalysis  dataset45, the TRMM dataset, the CRU TS2.0, the GPCP, and the NASA Langley 
Research Center SRB  products44. These are credible datasets are widely used in climatology studies due to their 
robustness for variability  analyses46–48. Total atmospheric water vapor content was extracted from the MODIS 
atmosphere profiles product (MOD07), and emissivity data were derived from averaging MODIS-bands 31 and 
32, while the land cover map taken from the global land cover of Africa archive of 2008 and was updated using 
available Landsat images (http:// www. afric over. org/ index. htm). Land cover map was derived from the global land 
cover of Africa archive of the year 2008 and was updated using available Landsat images. (http:// www. afric over. 
org/ index. htm), long term observed monthly Nile River flow data were collected from three stations, the monthly 
flows at Dongola station-Sudan, Aswan dam station (1900–1984), and the Blue Nile station in Khartoum from 
1900 to 1984 were extracted from the Global River Discharge Database (RivDIS v1.1), in addition we obtained 
the monthly flows at the Blue Nile station from recorded measurements between 1984 and 2012.

Area-averaged of TWS were computed from water balance model based on GLADS-CLSM025 TWS between 
1948and 2017 and the Gravity Recovery and Climate Experiment (GRACE) between 2003 and 2017. NRB’s 
soil moisture data were computed as an area average of ERA-Interim, CLM v.4, FLDAS, WaterGAP model, and 
GLDAS soil moisture datasets. Long-term runoff observation for the Nile River basin was extracted from the 
GRUN- Runoff observation-based global gridded runoff  dataset49 from 1902 to 2014. This dataset was newly 
developed for climatological, hydrological, and environmental studies and are close to near natural runoff con-
ditions and represent the excess of water available to ecosystems. Warm spell duration, the annual number 
of days contributing to events where 6 or more consecutive days experience a daily maximum temperature 
TX > 90th percentile was extracted from the HadEX2 observational data set. CMIP5 RCP2.6, RCP4.5, and RCP8.5 
experiments over the period 1900–2100 from 34 global climate models (GCMs) of CMIP5. The models included 
ACCESS1-0, ACCESS1-3, CCSM4, CNRM-CM5, CSIRO-MK3-6-0, FGOALS-g2, GFDL-CM3, GFDL-ESM2G, 
GFDL-ESM2M, GISS-E2-R, HadGEM2-CC, HadGEM2-ES, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-
LR, MIROC5, MIROC-ESM, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, NorESM1-M and NorESM1-ME.

Statistical analysis, trends, and change point of NRB’s hydroclimate. We first did a detailed 
analysis of monthly precipitation, surface temperature, geopotential height, relative humidity, specific humidity, 
potential and actual evapotranspiration, wind speed, zonal and meridional wind stresses data of the NRB, Nile 
flow, surface runoff, SMC, and TWS data. These data were first checked to ensure quality control and homog-
enization, downscaled to the NRB, then the non-parametric statistic of Pettitt’s  test50 and the modified-Mann–
Kendall51 codes were written in R-software and employed to detect abrupt changes and trends in these variables. 
Pettitt’s test is defined as:

where,

KT is the detected change-point of the series if it is statistically significant. The p-value of KT is approximated 
by:

The non-parametric Mann–Kendall test statistic is calculated according to:

Trend is estimated for a time series xi , i = 1, 2…n−1 and xj , j = i + 1, i + 2…n. Each xi is a reference and com-
pared with remaining data points xj(see 5):

The variance statistic is estimated as:

(1)KT = max|Ut ,T|

(2)Ut ,T =

n−1
∑

i=1

n
∑

j=t+1

sgn
(

xj − xi
)

(3)p ≈ 2e
−6K2

T
/

T3 + T2

(4)S =

n−1
∑

i=1

n
∑

j=i+1

sgn
(

xj − xi
)

(5)Sgn
�

xj − xi
�

=







+1 if
�

xj − xi
�

> 0
0 if

�

xj − xi
�

= 0
−1 if

�

xj − xi
�

< 0

(6)Var(S) =
n(n− 1)(2n+ 5)−

∑p
j=1 tj

(

tj − 1
)(

2tj + 5
)

18

http://aster.usgs.gov
http://www.africover.org/index.htm
http://www.africover.org/index.htm
http://www.africover.org/index.htm


22

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8049  | https://doi.org/10.1038/s41598-022-12008-8

www.nature.com/scientificreports/

where p is the number of groups in which each group consists of data points of equal values, and  tj is the num-
ber of data points in the jth tied group. The statistic S is approximately normal distributed by the following 
Z-transformation:

The slope (Tj) is computed according to  Sen52 as follow:

To ensure accurate detection of change point in the NRB’s hydroclimate, we have written R-codes for seven 
other change points detection methods (Bayesian change point detection (BCP), non-parametric multiple 
change-point analysis (MCP), lepage sequential and batch change detection method (CPM), optimal multiple 
change point algorithms (PELT), structure change features method (SCFM), bayesian information criterion 
(BIC), and segmentation by Dynamic Programming (DP)) and applied them to the NRB’s hydroclimate. Unlike 
Pettitt’s test, BCP method given in Wang and  Emerson53 provides a tool for evaluating the strength of abrupt 
changes “posterior probability” at each point of the time series, where points with the highest posterior prob-
ability are considered true change points. In another word, the detection rate of BCP depends more on the 
magnitude of change than other methods. Similarly, BIC method provides a strongly consistent selection of the 
optimal number of change points in a  timeseries54. BIC is derived from an asymptotic expression of the Bayes 
factor, therefore, has been applied straightforwardly in change-point models. In the MCP method given in Mat-
teson and  James55, the estimation of the most likely locations of change point within the timeseries is based on 
a hierarchical clustering using the energy statistics. CPM is an approach to sequential change detection, which 
allows standard statistical hypothesis tests to be deployed sequentially to detect single and multiple change 
 points56. PELT given in Killick et al.57 estimates multiple change points using penalization. The main drawback 
of this method is that it requires a user specified penalty term. In addition to the above methods, we have also 
applied the SCFM method to detect the change point in the NRB’s hydroclimate. The main difference between 
above methods and SCFM is that SCFM provides confidence intervals of change points like Pettitt’s test. Lastly, 
the DP method described in  Muggeo58 was used to further confirm the locations of the estimated change points.

Surface energy balance algorithm. The FAO-56 Penman–Monteith  method59 was used to model refer-
ence evapotranspiration on a grid-by-grid basis. Then, surface energy balance data were used to estimate actual 
evapotranspiration of NRB for 1912–2018, and from which their variability and anomalies were analyzed. To 
estimate AET, first the net solar radiation (Rn), NDVI, albedo, roughness length, and soil heat flux (G) were cal-
culated in ArcGIS 10.1. ESRI’s ArcGIS. Then the surface energy balance algorithm was employed to model AET 
based on the approach given in Bastiaanssen et al60.

Drought detection methods. The frequency, intensity, change point and trend of the meteorological, 
agricultural, and hydrological droughts of NRB under the effect of climate change were investigated based on the 
SPI, NDVI, SPEI, sc-PDSI, and runoff anomaly index, estimated, respectively. SPI computation was made based 
on the method proposed by McKee et al.61 and Edwards and  McKee62. This computation was made to drive SPI 
at different scale at 1, 3, 6, 12 and 48-month. The SPEI at 1, 3, 6, 12 and 48-month timescales over 1940–2018 was 
computed for the NRB from five precipitation datasets (Udel., GPCC, 20CRv3, CRU.TS4.03, and GPCC V2018) 
as the monthly difference between precipitation (Pr) and PET. For example, for the month i, SPEIi = Pri − PETi , 
where Pri is the monthly precipitation obtained from GPCC, 20CRv3, CRU.TS4.03, JR-55, NCEP/NCAR-R1, 
and GPCC V2018 and PETi is the monthly PET based on FAO-56 Penman–Monteith  method59. This index have 
a crucial advantage over other drought indices that consider the effect of PET on drought severity due to its abil-
ity to identify different drought types and the impacts of global warming. NDVI data for the year 2002–2017 was 
extracted from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center 
"eMODIS" products. The theory behind the popularity of NDVI in agricultural drought studies comes from its 
dependency on the near infrared reflectance (NIR) from vegetation cover and the visible-red reflectance (RED). 
Where NDVI = (NIR−RED)/(NIR + RED), these two reflectance components measure the density of chlorophyll 
contained in vegetative cover. NDVI change detection model was developed in ArcGIS model builder to capture 
the change in NDVI through time and identify areas with agricultural droughts. The sc-PDSI was obtained from 
Climate Analysis Section of the National Center for Atmospheric Research in a gridded format and was used as 
a reference for actual sc-PDSI calculation. The computation of the sc-PDSI was made using the sc-PDSI package 
in R-software and is based on the approach adapted in Wells et al.63. Runoff anomaly index was calculated from 
the long-term runoff observation for the Nile River basin between 1902 and 2014.

Wavelet analysis and wavelet coherence. We have written R-code for the Morlet wavelet analysis and 
used it to investigate the temporal variability, periodicities, and the cyclic behavior of NRB’s hydroclimate. To 
evaluate the possible impacts of El Niño and IOD on the hydroclimate of the NRB, wavelet coherence was also 
used to estimate the spatio-temporal correlation field between these hydroclimate variables and El Niño and 
IOD. The wavelet power spectra of each time series were calculated as follow:

(7)Z =











S−1
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0 if S = 0
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(Var(S))0.5
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where t is the time series, �s is the Morlet mother wavelet at the scale s. The Morlet mother wavelet can be 
defined as follow:

where, η is time, ωs is frequency, and ι (imaginary number) which is the square root of minus one.
We have also analyzed the phase difference between NRB’s hydroclimate (drought indices and flow), El Niño 

and IOD using the methodology of Torrence and  Compo64. The phase difference provides information about 
the possible delay in the relationship between NRB’s hydroclimate (drought indices and flow) and El Niño and 
IOD. The WTC coefficient is given as:

where x is the hydroclimate variable (drought indices or flow) been analyzed and y is El Niño or IOD. t is the 
dimensionless time-shift parameter, Wxy(s, t) is the cross wavelet transform of the two-time series, Wx and Wy are 
the sums of ranks of observations in x and y, respectively, and S is a smoothing operator, which was calculated 
based on the approach of Torrence and  Compo64.

Composite analysis and spatial correlation. To investigate the hydroclimate variability and the spatio-
temporal changes in the NRB’s hydroclimate, composite maps of precipitation, Ts, GPH, RH, specific humidity, 
scalar wind, meridional and zonal wind, soil moisture, surface runoff, and PET data were derived by the differ-
ence between data of 1985–2017 and data of 1948–1984. These composite maps were computed as the ratio of 
the mean seasonal precipitation, Ts, GPH, RH, specific humidity, scalar wind, meridional and zonal wind, soil 
moisture, surface runoff, and PET for March–May (MAM), June–August (JJA), September–November (SON) 
and December–February (DJF) seasons of 1948–2017 in anomalous (El Niño) years relative to the correspond-
ing long term mean fields, respectively. To demonstrate the effects of El Niño on the NRB’s climate, we have only 
considered years with strong El Niño activity (1958, 1982, 1983, 1987, 1992 and 1997, 2005) in the composite 
analysis. Composite analysis of the NRB’s hydroclimate data between 1948 and 2017 and sc-PDSI, monthly 
temperature, temperature anomaly, monthly precipitation and precipitation anomaly were also analyzed for each 
riparian country of NRB, to relate climate warming to trend and change points in hydrologic droughts of these 
countries.

To analyze the relative influence of IOD and ENSO, we have further estimated the spatial correlation between 
NRB’s hydroclimate and El Niño and IOD to better explain in greater details the teleconnection of ENSO and 
IOD to each riparian country of NRB using the independent composite method adopted in Saji and  Yamagata28. 
This method was used because we have found a strong coupling between IOD and ENSO, and there is a need 
to study in detail the separate influence of IOD and ENSO in the NRB’s hydroclimate. First, we have removed 
the co-occurring IOD, and ENSO events from the composite to remove IOD(ENSO) influence on the NRB’s 
hydroclimate, then years with independent IOD (ENSO) influence were used to compute independent composite 
maps of the NRB’s hydroclimate. Once the coupling between IOD and ENSO events was removed, we used the 
spatial correlation locate areas with pure IOD or ENSO influence.

Detrended cross correlation analysis. For non-stationary data, detrended cross correlation analysis 
(DCCA) ensures that the results obtained are not affected by trend. Therefore, DCCA was used to investigate the 
role of ENSO and IOD on the NRB’s hydroclimate, flow variability, and droughts over inter-decadal and longer 
timescales. For instance, DCCA between IOD and El Niño amplitudes and NRB’s precipitation, Ts, GPH, RH, 
specific humidity, PET, AET, wind speed, zonal and meridional wind stresses, drought indices, Nile flow, surface 
runoff, SMC, and TWS were used to estimate the teleconnection of ENSO and IOD on NRB’s hydroclimate data 
divided over 20-year running periods from 1920 to 2017. The DCCA coefficients of hydroclimate variable x(i) 
and El Niño or IOD y(i) were calculated as follow:

First, the hydroclimate variables, El Niño, and IOD were divided into equal length segments (Nn) . Then, using 
regression models, we have defined the local trend in each segment X̌n,s(k) and Y̌n,s(k) , where s = 1, . . . ,Nn . The 
time series data XkandYk are detrended by subtracting the local trends X̌n,s(k) and Y̌n,s(k) from original time-
series in each segment. Next, we calculated the detrended covariance and variance function in each segment 
as follow:

Then, the detrended variance of the two-time series, fDF, is calculated as follow:
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This calculation is repeated for all segment, if the series are power-law cross-correlated, then VDCCA ∼ n2τ . 
The τ exponent is the long-range power-law cross correlation between two-time series, and is calculated through 
linear regression of log [VDCCA(n)] and log n. Finally, the DCCA cross correlation coefficient (ρ) was calculated 
according to:

The value of ρ ranges from − 1 to 1, a value of ρ = 0  means there is no cross-correlation between the two-
time series being analyzed. We have also studied the relationship between NRB’s hydroclimate, flow, droughts 
and between ENSO and IOD based on 20-year overlapping to assess stability, this method offers an opportunity 
to test the stationarity of the relationships over  time65. Supplementary Table 6 and 7 show the cross-correlation 
coefficients with error for each hydroclimate variable and El Niño, IOD, SEIO, and WIO.

Detection and attribution methods. The observed ENSO and Indian Ocean dipole (IOD) amplitude, 
and zonal and meridional winds stresses over the NRB were derived and analyzed. ENSO and IOD amplitude 
were estimated as the standard deviation (SD) of the Niño3.4 and IOD index over 20-, 30-, 40- and 50-year win-
dows from 1950 to 2017 using the ERSST data sets. Zonal and meridional wind stresses amplitude  (10−1 N  m−2) 
were calculated as the SD of zonal and meridional winds stresses over 20-, 30-, 40- and 50-year windows from 
1950 to 2017, using NCEP/NCAR data sets of 1950–2017. Then, composite analysis, DCCA and WTC were 
used to investigate the role of ENSO and IOD on the NRB’s hydroclimate variability and drought severity over 
inter-decadal and longer timescales. Furthermore, to investigate changes in regional atmospheric circulation we 
analyzed the responses of stream function fields, GPH, and zonal / meridional winds to climate warming and 
ENSO. For the March–April–May (MAM), June–July–August (JJA), September–October– November (SON) 
and December–January–February (DJF) seasons of 1950–2017, stream function fields, GPH, and zonal/meridi-
onal winds composites were computed as the ratio of mean seasonal stream function fields, GPH, and zonal/
meridional winds in anomalous (El Niño) years relative to the long term mean seasonal stream function fields, 
GPH, and zonal/meridional winds. To emphasize the effect of El Niño on seasonal stream function fields, GPH, 
and zonal/meridional winds, years with strong El Niño activity (1958, 1982, 1983, 1987, 1992 and 1997, 2005) 
were only considered in the composite analysis.

To better understand hydrologic droughts of NRB, we also investigated the Nile River flow variability and the 
teleconnection of ENSO and the dipole mode to Nile flow over 1912–2012. The NRB flow are computed over 
30-year running periods from 1913 to 2010 for the Blue Nile station, and from 1913 to 1984 for Dongala station. 
El Niño 3.4, IOD, SEIO, WIO amplitudes are computed as the SD of the El Niño 3.4, IOD, SEIO, WIO indexes 
over 30-year windows from 1913 to 2017, using the ERSST data sets. We have also analyzed the projected WIO 
and IOD using climate projections of 34 global climate models (GCMs) of CMIP5. Future projection of WIO 
and IOD were analyzed based on climate projections of 34 global climate models (GCMs) of CMIP5. First, WIO 
was estimated as areally weighted SST simulated by each GCM over the region (50° E–70° E and 10° S–10° N) as 
described in Saji et al.36. Then, the multi-model ensemble (MME) of the WIO computed from the simulations of 
34 GCMs was computed over 30-year periods from 1913 to 2100. WIO estimated from the GCM that best agrees 
with the observed WIO was selected. Furthermore, projections of IOD between 2019 and 2100 were computed as 
the difference between Western (50° E–70° E and 10 °S–10° N) and Eastern (90° E–110° E and 10° S–0° N) SST 
of the Indian ocean simulated by the 34 GCMS. Lastly, based on RCP scenarios of 34 GCMs of  CMIP56, future 
changes to the annual precipitation, temperature, PET, SMC, relative humidity, sc-PDSI, El Niño 3.4 index, and 
IOD of NRB until 2100, and their impact to hydrological droughts of NRB were projected.

Data availability
The observational data, flow data and remote sensing data that support the findings of this study are available 
from the corresponding author upon reasonable request.

Code availability
R-codes for abrupt changes, wavelet analysis, and attributions can be obtained from the first author upon request.
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