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Abstract

Sit-to-stand transitions are an important part of activities of daily living and play a key role in

functional mobility in humans. The sit-to-stand movement is often affected in older adults

due to frailty and in patients with motor impairments such as Parkinson’s disease leading to

falls. Studying kinematics of sit-to-stand transitions can provide insight in assessment, moni-

toring and developing rehabilitation strategies for the affected populations. We propose a

three-segment body model for estimating sit-to-stand kinematics using only two wearable

inertial sensors, placed on the shank and back. Reducing the number of sensors to two

instead of one per body segment facilitates monitoring and classifying movements over

extended periods, making it more comfortable to wear while reducing the power require-

ments of sensors. We applied this model on 10 younger healthy adults (YH), 12 older

healthy adults (OH) and 12 people with Parkinson’s disease (PwP). We have achieved this

by incorporating unique sit-to-stand classification technique using unsupervised learning in

the model based reconstruction of angular kinematics using extended Kalman filter. Our

proposed model showed that it was possible to successfully estimate thigh kinematics

despite not measuring the thigh motion with inertial sensor. We classified sit-to-stand transi-

tions, sitting and standing states with the accuracies of 98.67%, 94.20% and 91.41% for YH,

OH and PwP respectively. We have proposed a novel integrated approach of modelling and

classification for estimating the body kinematics during sit-to-stand motion and successfully

applied it on YH, OH and PwP groups.

Introduction

Kinematic modelling of human body motion gives an insight into specific movements which

can be used for studying human gait and posture, assessing the quality of movements, for
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monitoring and diagnostic purposes and developing rehabilitation strategies. The reviews by

Yang et al. (2010) [1] and Fong et al. (2010) [2] suggest that several studies have shown some

initial results for monitoring and rehabilitation of people with motor functional impairments

by examining different categories of motions including static postures such as sitting, standing,

lying down; cyclic dynamic activities such as walking, running, stairs climbing; as well as tran-

sitions such as sit-to-stand and stand-to-sit to move between static and dynamic activities. Out

of these motions, investigating the kinematics of sit-to-stand transitions is important because

of their significance in functional mobility [3]. The sit-to-stand transitions have been studied

widely in children [4], adults [5] and older adults [6, 7] for assessing their mobility in activities

of daily living [8]. The sit-to-stand transitions are an important part to activities of daily living

with an estimated frequency of 60 ± 22 for healthy adults [9]. Studying these transitions is also

beneficial for clinical monitoring of patients with motor disorders such as Parkinson’s disease

[10–12], predicting falls [13–15] and frailty [16, 17] in older adults. Hence, there is an increas-

ing research interest in investigating the biomechanics and kinematics of these postural transi-

tions. Sit-to-stand is a good representative transition that is easy to record in a controlled

environment and is also primarily a planar transition, hence in this study, we model sit-to-

stand kinematics and classify these transitions.

The kinematics of human motions can be estimated using inertial sensors, such as acceler-

ometers and gyroscopes that provide a reliable, cost effective and wearable alternative to

motion capture systems for detecting posture and movements [18–20]. Inertial sensors have

been used to identify sit-to-stand transitions [5, 21] and also to extract biomechanical informa-

tion [22]. Often, parameters such as transition duration, angular and linear velocities, trunk

tilt range, spectral edge frequencies and entropy values are used to evaluate functional perfor-

mance of sit-to-stand and stand-to-sit transitions [23].

The sit-to-stand transitions can be identified by using a single or multiple inertial sensors

positioned on various locations such as the waist, hip or lower back [5, 24, 25] and chest [26,

27]. Various classification schemes such as the wavelet methods [24, 28] and Support Vector

Machines (SVM) [12] have been used to identify sit-to-stand and stand-to-sit from the inertial

sensors.

Most of the previous studies focus on classification of the sit-to-stand transitions and very

few model their kinematics. A theoretical model of sit-to-stand has been proposed by Musić
et al. (2008) [22]. Assessing a movement by modelling its kinematics is important for diagnos-

ing and determining the severity of motor impairment, devising rehabilitation strategy, and

monitoring patient’s progress and outcomes of the intervention [29]. The activity classification

on the other hand, enables recognition of different movements [30] which is useful in develop-

ing assistive technologies. Combining the modelling and classification can help in pinpointing

the problem areas in the movement as well as assessing the change in the motion kinematics in

the affected population. However, to our knowledge, there are no methods where modelling of

kinematics and classification of sit-to-stand transitions are explored via inter-dependent algo-

rithms. The sit-to-stand kinematics are typically modelled by placing one sensor per segment

[22, 31–33]; additionally, multiple force sensors are also used [22]. In this study, we show that

the body kinematics can be modelled using only two wearable inertial sensors, instead of plac-

ing sensors on all the segments of the body or more traditional five sensor configuration with

sensors on two legs, two hands and waist [14]. To our knowledge, this has not been evaluated

on lower limb activities.

In our previous work, we presented a two-segment model to estimate kinematics of upper

limb with an inertial sensor on each segment [34]. In this study, we expand upon this two-seg-

ment upper limb model [34] to develop a three-segment model for estimating sit-to-stand

transition kinematics by including a classification based modelling approach using only two
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inertial sensors. Unlike our previous work, in this study, we not only integrate classification of

sit-to-stand transitions in the modelling process, but also use fewer number of sensors than

the body segments being modelled. Additionally, we also demonstrate the generalisability of

our novel integrated kinematics estimation approach using three different participant groups

with varied ages and motor abilities including young healthy adults, older healthy adults and

people with Parkinson’s disease.

The aims of this work are:

1. To design an integrated approach for monitoring and classification of sit-to-stand transi-

tions and validate this model by comparing the results with motion capture reference data.

2. To apply this method to estimate the three-segment sit-to-stand angular kinematics of

older healthy participants and people with Parkinson’s using only two inertial sensors. This

is appropriate for people with motor-related physiological conditions to better understand

their condition and the affected motion kinematics.

We have chosen these groups to represent the problems that people tend to develop later in

the life. We demonstrate this using a novel method of modelling human motion kinematics

using only two inertial sensors with triaxial accelerometer and triaxial gyroscope so as to

understand sit-to-stand movement in healthy individuals and individuals with motor impair-

ments. We apply this model to accurately estimate the angular kinematics and classify sit-to-

stand and stand-to-sit movements with three-segment body model consisting of the shank,

thigh and back. We have reduced the number of sensors to make the system more comfortable

to wear and facilitate measurements for longer duration, while reducing the energy require-

ments and sensor setup time.

Methods

Parametric modelling and estimation of angular kinematics

The sit-to-stand transition angular kinematics for the three segments: the shank, thigh and

back were modelled using the measurements from two inertial sensors placed on the shank

and back. This was achieved in two stages: 1) modelling the relationship between the limb

kinematics and sensor measurements; 2) parameter estimation using the model. The parame-

ter estimation was done in further two stages. First, the shank and back kinematics were esti-

mated directly from the inertial measurements. Second, as there was no sensor on the thigh,

the corresponding kinematics were reconstructed using the previous outcome. A combined

classification based approach was used to estimate the thigh kinematics.

Estimation of the angular kinematics for the shank and the back. Kinematic model for
the shank and the back. We estimated the kinematics during sit-to-stand using a 2-dimensional

three segment model of a body in the sagittal plane. We have chosen a 2-dimensional model

because the sit-to-stand motion occurs mainly in the sagittal plane and hence contains the

maximum information about the motion. Most of the studies in the literature investing the

kinematics of the three body segments also assumed that the movement was restricted to the

sagittal plane [2]. This 2-dimensional model is sufficient for our purposes to study the kine-

matics of sit-to-stand transitions and classify them in the all the three participant groups. The

third dimension might not provide additional information about sit-to-stand especially in the

less dynamic older healthy and people with Parkinson’s groups. This is discussed further in the

Discussion section. The first, second and third segment represent the shank (S), thigh (T) and

back (B) respectively as shown in the Fig 1. Two inertial sensors with a triaxial accelerometer

and a triaxial gyroscope each were placed on the shank and back. The inertial sensors were
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placed at a distance LS from the ankle on the shank and at a distance LB from the hip on the

back. Angular kinematics including position θi, velocity ωi and acceleration αi, i 2 {S, T, B}

for each of the three segments were to be determined. The θi, ωi and αi are functions of time

where θS, θT 2 [0, π/2) and θB 2 [−π/2, π/2).

For estimation of the shank and back angular kinematics, the translation of the ankle and

hip joints is neglected and the same model is applied to both the segments. Such approxima-

tion is straightforward for the ankle as the foot is on the ground during sit-to-stand transitions

and the shank pivots around the ankle; it is also reasonable for the hip and necessary for the

kinematic estimation from only one sensor. Vectors are written in bold; the superscript of the

vector refers to the coordinate frame in which it is written, for e.g. 0g; if omitted, the vector is

written in the reference frame {0}; matrices are written in capital letters. Rotation matrices

from frame j to frame k are written as jRk.
The sensor is located at 1di ¼ ½0; Li; 0� 2 R

3
; i 2 fS;Bg in the local frame, and 0di = 0R1

1di

in the reference frame. The linear acceleration ai 2 R
3; i 2 fS;Bg of the sensor, written in the

reference frame is given by Eq (1) [35], where ωi 2 R
3

is the angular velocity and _ω i 2 R
3

is

the angular acceleration.

0ai ¼ 0 _ωi �
0di þ 0ωi � ð

0ωi �
0diÞ ð1Þ

Fig 1. Leg and trunk three-segment 2-dimensional model in the sagittal plane. θS is the angle for the shank, θT is the

angle for the thigh and θB is the angle for the back. Green squares on the shank and back segment represent the inertial

sensors. LS and LB denote the distance of the sensor placement on the shank from the ankle and the back from the hip

respectively.

https://doi.org/10.1371/journal.pone.0264126.g001
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Hence, the linear accelerations measured by accelerometer on the shank and back are mod-

elled by Eq (2)

1ai ¼ 1R0ð
0ai þ 0gÞ ð2Þ

where, 1R0 ¼

cosðysÞ sinðysÞ 0

� sinðysÞ cosðysÞ 0

0 0 1

2

6
4

3

7
5 is the rotation transformation between the frame 0

(world) and frame 1 (sensor) and gravity component in the reference frame 0g ¼

0

g

0

2

6
4

3

7
5 point-

ing upwards. Thus, for the shank and the back, we get (3) [34].

1ai ¼
g sinðyiÞ � Li ai

g cosðyiÞ � Li oi
2

 !

; ai 2 R
3
; i 2 fS;Bg ð3Þ

In order to estimate the angle of the back relative to the reference frame, one can apply the

shank model if the acceleration of the hip is neglected.

Extended Kalman filter to estimate the angular kinematics. Expanding on our previous work

[34] for estimating upper limb kinematics, we use extended Kalman filter (EKF) for obtaining

the angle θi, the angular velocity ωi and the angular acceleration αi, i 2 {S, B} for the shank and

back independently. The state vector for the EKF is given by xt = [θi, ωi, αi]
T, where xt is a func-

tion of time. The transition matrix F that describes a link between a new state sample from the

previous one is given by Eq (4) [36].

F ¼
1 DT

DT2

2

0 1 DT
0 0 1

2

6
6
6
4

3

7
7
7
5

ð4Þ

where, ΔT is sampling period (in this case 0.02 s). The process model for a single link for EKF

is given by Eq (5).

xt ¼ Fxt� 1 þ vt� 1 ð5Þ

where, vt � N ð0;QÞ is the process noise, which is a centred Gaussian noise of a covariance

matrix Q, where we have chosen

Q ¼
ðDT2Þ

2
0 0

0 ð0:1DTÞ2 0

0 0 ð0:04Þ
2

2

6
4

3

7
5:

We want to estimate θi, ωi and αi from the measurements observed from one accelerometer

and one gyroscope. Using the relationship between the linear acceleration ax on x-axis, ay on

y-axis obtained from the accelerometer measurements and the angular kinematics given in Eq

(3); and the angular velocity measurement obtained directly from the z-axis of the gyroscope
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gyrz, we can establish the relation given in Eq (6) for each time point t.

ax;i

ay;i

gyrz;i

0

B
B
B
@

1

C
C
C
A

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
zt

¼

g sinðyiÞ � L ai

g cosðyiÞ � Loi
2

o

0

B
B
B
@

1

C
C
C
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
HðxtÞ

ð6Þ

where, i 2 {S, B}.

The measurements obtained from the inertial sensors are noisy and hence the measurement

model for the EKF is given by Eq (7).

zt ¼ HðxtÞ þ wt ð7Þ

where, wt � N ð0;RÞ and R ¼

g
10

� �2

0 0

0
g
10

� �2

0

0 0 ð0:005Þ
2

2

6
6
6
6
6
4

3

7
7
7
7
7
5

is the covariance matrix of

Gaussian measurement noise resulting from the accelerometer and gyroscope. The exact val-

ues of Q and R were fine tuned manually offline, which is a common approach of determining

these parameters of Kalman filters [37].

The process model given in (5) is used in the prediction step for the EKF and the measure-

ment model given in (7) is used in the updating step of the EKF.

This EKF model is used independently for obtaining shank kinematics θS, ωS and αS and

back kinematics θB, ωB and αB using the measurements from inertial sensors placed on the

shank and the back respectively.

Estimation of the angular kinematics for the thigh. The thigh movement is not mea-

sured using an inertial sensor and hence, its angular kinematics could not be estimated

directly. We used a classification-based approach by using the kinematics from the shank and

back to identify four classes: sitting, standing, sit-to-stand and stand-to-sit. The thigh angular

kinematics were estimated for each of the classes separately because we observed from the ref-

erence data that, the kinematics for each class could be modelled by a different function. A

two-tiered classification scheme was used. The first classifier distinguished between a station-

ary state (sitting and standing) and transition state (sit-to-stand and stand-to-sit). The second

classifier classified sit-to-stand and stand-to-sit movements; and based on that, a probabilistic

approach was used to determine sitting or standing state. The analysis pipeline of the estima-

tion of the kinematics of the shank, back and thigh is given in Fig 2.

Classification 1- automatic segmentation and identification of stationary and transition
states. The first classifier segmented and identified the data with multiple sit-to-stand move-

ments into individual stationary and transition states automatically from the shank and

back angular kinematics. A one dimensional feature vector was created by first, multiplying

together the angular kinematics θi and ωi, i 2 {S, B} for the shank and back; second, taking

absolute value of the feature vector; and third, smoothing it with a moving average filter

yt ¼ 1=n
Pn� 1

i¼0
xtþi with n = 5 to eliminate trivial peaks and avoid spurious misclassification.

This feature vector had values close to zero during the stationary states and higher values dur-

ing transition state. Multiplying θi and ωi together to obtain this feature vector made the values

in the stationary state even smaller and enhanced the difference between stationary and transi-

tion states. A threshold for classification was determined automatically from the right edge of
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first bin in the histogram of the peaks from feature vector. Bin width for the histogram was

obtained using Scott’s rule [38]. Histogram was computed using the MATLAB (The Math-

Works, Inc., Natick, Massachusetts, US) function histogram(). The first bin of the histogram

captured feature values of stationary states which were close to zero, hence the right edge of

the first bin computed using Scott’s rule gave the threshold value. A threshold-based binary

linear classification was performed to identify stationary state for feature values below the

threshold and transition state for feature values above the threshold. Spurious misclassifica-

tions were identified and corrected automatically by finding one or two samples that had a dif-

ferent class from their neighbouring samples. Based on the classification results, a series of sit-

to-stand movements was segmented into stationary and transition states. Fig 3 shows the two-

tier classification scheme.

Classification 2—classifying sit-to-stand, stand-to-sit, sitting and standing states using unsu-
pervised learning. Once the stationary and transition state segments were identified, the second

classification was done on the transition segments to classify sit-to-stand and stand-to-sit

states. We employed unsupervised learning using k-means clustering [39] to automatically

classify sit-to-stand and stand-to-sit states. Four-dimensional features were used for k-means

clustering. The four features obtained for each transition segment were as follows: the slope

of the linear regression of the segment ωS (such that it captures the amount of increase or

decrease in ωS in the selected transition segment which differs between sit-to-stand and stand-

to-sit), the slope of the linear regression of the segment ωB, the difference between the start

Fig 2. Processing steps for estimation of shank, back and thigh kinematics. (A) Shank kinematics estimation

process using the model and EKF. (B) Back kinematics estimation process using the model and EKF. (C) Thigh

kinematics estimation process by integrating the results of (A) and (B) and two-tiered classification scheme to segment

and identify sit-to-stand (SiSt), stand-to-sit (StSi), sitting and standing states.

https://doi.org/10.1371/journal.pone.0264126.g002
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and end points of the segment θS and the difference between the start and end points of the

segment θB. After classification, the labels were assigned to the two clusters post-hoc based of

their values. The classification was performed on individual participant independently with

limited number of trials. The advantage of using unsupervised learning was that only single

trial from an individual participant with as few as two sit-to-stand transitions could be used to

classify both the states correctly. The sit-to-stand and stand-to-sit states in two participants

with Parkinson’s who managed to perform only two sit-to-stand transitions were also classi-

fied correctly using unsupervised learning. As opposed to this, supervised learning requires

several examples of sit-to-stand transitions to train the classifier.

Based on whether the previous transition segment was sit-to-stand or stand-to-sit, the sta-

tionary state segment was classified into sitting or standing state as follows:

• If the previous transition segment was sit-to-stand, then the probability of standing state in

the current stationary segment was set to 1 and hence, the segment was classified as standing

state.

• If the previous transition segment was stand-to-sit, then the probability of the sitting state in

the current stationary segment was set to 1 and hence, the segment was classified as sitting

state.

We based the probability of identifying stationary states on the class of the previous transi-

tion state because the angular velocity and angular acceleration both are zero during sitting

and standing and the angle of shank and back varies according to individual’s posture. Fig 2C

shows the classification scheme used for estimating the thigh kinematics.

Fig 3. Classification scheme for sit, stand, sit-to-stand and stand-to-sit. State diagram representing the classification

scheme for sit, stand, sit-to-stand and stand-to-sit. The vertical dashed line represents the threshold for the Classifier 1

to classify the stationary state and the transition state. The horizontal dashed line represents the classification boundary

for Classifier 2 to classify the transition state into sit-to-stand and stand-to-sit.

https://doi.org/10.1371/journal.pone.0264126.g003
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Estimation of the thigh angular kinematics. Based on the classification of each segment, we

used a model similar to a single neuron of an artificial neural network with appropriate activa-

tion function to estimate the thigh kinematics for each state (see Fig 4). We assumed that when

a person is standing, the thigh angle, θT is 0˚ and when a person is sitting on a chair, θT is 90˚.

We confirmed this by observing the distribution of the thigh angles while sitting and standing

from the reference data collected from the young healthy participants as detailed in the next

section. The angular velocity ωT and angular acceleration αT were zero during the stationary

states.

To estimate stand-to-sit transition angle θT, we used an adaptable differentiable function

with parameters that could be optimised to model the thigh motion kinematics. This function

can be generalised and represented as an artificial neural network consisting of a single layer

with a single neuron with sigmoid activation function in Eq (8) for regression (see Fig 4). This

approach is generalisable and can enable more complex transitions to be modelled but is suffi-

cient for the experiments we describe in this study. In practice, to estimate thigh angular kine-

matics in this study, we performed regression analysis with sigmoid model described in Eq (8).

Our approach can be generalised and represented in the form of a single neuron depicted by

the model in Fig 4. The model parameters w and b determined the speed of transition and the

centre of the sigmoid curve, the midpoint of the transition segment respectively. Input to the

model t is the time window of transition segment. The value of w indicating the speed of tran-

sition was estimated, in the range of 0 and 1, by minimising the root mean squared error

between the estimated angle and the ground truth reference angle of the thigh using least

squares. The optimum estimated value of w was found to be 0.135. Additional model parame-

ter x is the classification result from classifier 2 where x = 0 for stand-to-sit and x = 1 for sit-to-

stand transition. We chose activation function in Eq (8) to obtain a smooth transition of the

angle for sit-to-stand by assuming that the angles for sit-to-stand and stand-to-sit are symmet-

rical for the thigh, which was also confirmed by observing the angular velocities in the ground

truth reference data which were indistinguishable.

yT ¼ FSiStðt; xÞ ¼
exð� wðt� bÞÞ

1þ e� wðt� bÞ
ð8Þ

For stand-to-sit transition, the thigh angle is modelled by Eq (9) with x = 0 in Eq (8).

yT ¼ FSiStðt; 0Þ ¼
1

1þ e� wðt� bÞ
ð9Þ

Fig 4. Model to estimate thigh angle. A model based on an artificial neuron with a sigmoid activation function to

estimate stand-to-sit thigh angle where, t is the input time segment of stand-to-sit transition, weight w determines the

speed of transition, bias b determines the centre of transition, x is classifier 2 output where x = 0 for stand-to-sit and

x = 1 for sit-to-stand transition, gain G scales the output of activation function between 0˚ and 90˚ and the thigh angle

θT is the output.

https://doi.org/10.1371/journal.pone.0264126.g004
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For sit-to-stand transition, the thigh angle is modelled by Eq (10) with x = 1 in Eq (8).

yT ¼ FSiStðt; 1Þ ¼ 1 �
1

1þ e� wðt� bÞ
ð10Þ

Sigmoid function in Eq (8) is differentiable and thus oT ¼
dyT
dt and aT ¼

d2yT
dt for sit-to-stand

and stand-to-sit are valid. This model analogous to a single layer with a single neuron was

sufficient to estimate thigh angle (results are shown in the next section), however, it can be

extended to a more complex artificial neural network with any bounded continuous differen-

tiable activation function to perform regression to estimate the thigh angle.

Ethics statement

This study was conducted in two stages with three participant groups. Ethical approval for the

first stage of the study with younger healthy adults was obtained from the ethics committee of

the University of Reading, UK. The ethical approval for the second stage of the study with

older healthy participants and people with Parkinson’s was obtained from the ethics commit-

tee of the University of Southampton, UK. Participants were provided with an information

sheet detailing the purpose of the study, procedure of the experiment and nature of the data

collected. Participants in all the three groups gave their informed written consent prior to their

participation in the study. The individual seen in the figure in this manuscript has given writ-

ten informed consent (as outlined in PLOS consent form) to publish the figure.

Study design

Participants. Participants from the three groups were recruited to take part in this study

which was done in two stages. In the first stage, 10 younger healthy adults (YH) (37.4 ± 9.9

years (mean ± SD), 4 female) participated in the study conducted at the University of Reading.

All participants were over the age of 18 and in good physical health without musculoskeletal or

neurological conditions.

In the second stage, 12 older healthy adults (OH) (74 ± 9.1 years, 11 female) and 12 people

with Parkinson’s disease (PwP) (74.3 ± 7.4 years, 6 female) participated in the study conducted

at the University of Southampton. Out of the 12 PwP participants, eight participants had a

score of 3 on the Hoehn and Yahr (H&Y) scale, one participant had H&Y score of 2.5, one par-

ticipant had H&Y score of 2 and two participants had H&Y score of 1.5. All the participants

in these two groups were over the age of 60, were able to walk independently unaided, and

reported themselves to be able to perform transfers, walking and activities in standing three

times over a period of approximately one hour. People with Parkinson’s disease had a diagno-

sis made by a specialist at least 12 months prior to the study. The data from 4 OH and 10 PwP

participants was collected in their home and the data from rest of the participants was collected

in the laboratory.

Equipment. Wearable sensors. Wearable sensors, custom designed at the University of

Reading, were used to collect the movement data in this study. Each wearable sensor consisted

of a triaxial accelerometer and a triaxial gyroscope. The data were stored to the internal SD

card. The sensors sampled at nominal rate of 50 Hz and ±4 g provided an actual sampling rate

of 49.985 ± 0.016 Hz. The bandwidth at nominal sampling rate was 21 Hz with a noise density

of 0.14mg=
ffiffiffiffiffiffi
Hz
p

. All sensor data were resampled using video recording as an external time

base. Further details of the sensors can be found in [34]. The wearable sensors were attached

to the shank and the back as shown in Fig 5. The individual seen in Fig 5 has given written

informed consent (as outlined in PLOS consent form) to publish this figure.
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Motion capture. To provide the ground truth data for validating the results of the paramet-

ric estimation models, we collected motion capture data using the Codamotion 3D Motion

Analysis System (Codamotion, Rothley, UK) for the young healthy (YH) participant group.

The Codamotion active markers were used to track the motions of the body during data collec-

tion. The ODIN (Codamotion, Rothley, UK) software was then used to extract the body seg-

ment angular displacement, velocity and acceleration. The Codamotion sensors were placed

on the leg and back as shown in Fig 5. The motion capture data was not collected for OH and

PwP groups because the data recording was done at home for several participants since these

groups had difficulty travelling. Rigorously validated model for kinematics estimation using

motion capture data from YH was applied to OH and PwP groups.

Experimental protocol. Prior to wearable sensors’ data collection, the distance in meters

of the inertial sensor on the shank from the ankle (LS) and the distance of the inertial sensor

on the back from the hip (LB) were recorded for input into the modelling algorithm for each

participant.

The wearable inertial sensors were attached to the right shank and to the middle of the

lower back using elastic straps. The active Codamotion markers were placed on the shank

and back close to the inertial sensors for YH. The clusters of Codamotion markers were also

attached to the thigh where there was no inertial sensor.

The YH participants were then asked to perform three sets of five sit-to-stand and stand-to-

sit transitions, with rest in between the sets as required. The OH and PwP participants were

asked to perform a single set of three sit-to-stand and stand-to-sit transitions. All the inertial

sensor data for YH, OH and PwP, and the Codamotion data for YH is included in the S1–S7

Files.

Data processing. Data obtained from the inertial sensors on the shank and the back were

synchronised using ELAN software [40] by tapping the sensors together at the beginning of

Fig 5. Full inertial wearable sensors and Codamotion marker setup. (A) Shank and thigh inertial sensors and

Codamotion markers positions (B) Back inertial sensor and Codamotion marker positions. The long hollow arrows

show the position of the inertial sensors placed on the shank and back. The solid short arrows show the position of

Codamotion markers on the leg and the back.

https://doi.org/10.1371/journal.pone.0264126.g005
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the trial and at the end of the trial. The Codamotion data in the YH participants was synchro-

nised with the inertial sensors by moving the right foot backwards and forwards at the begin-

ning and at the end of the experiment. After aligning the data, the Codamotion data was

subsampled to 50 Hz to match the sampling rate to the inertial sensors. Also, the Codamotion

data was calibrated such that the angles of the shank, thigh and back were close to 0˚ in the

standing position.

The measurements from the x-axis and the y-axis of the accelerometer and the z-axis of

the gyroscope on the shank and the back (Fig 1) were used as measurement input to the EKF

model detailed in the previous section to obtain the shank and back angular kinematics θi, ωi
and αi, i 2 {S, B}.

Using the angular kinematics of the shank and back, the classification was performed to

obtain segments of data belonging to the standing, sitting, sit-to-stand and stand-to-sit states.

For estimating thigh kinematics θT, ωT and αT, function in Eq (8) was used as detailed in the

previous section to model thigh angular kinematics. Since there was no sensor on the thigh,

the estimation of the kinematics was completely dependent on the estimated kinematics from

the shank and the back. The estimated body kinematics were compared against reference

Codamotion data in the YH participants and the model was applied to the OH and PwP partic-

ipants. All the analysis was completed using MATLAB.

Results

Estimated angular kinematics in younger healthy adults (YH)

Comparison of the estimated angular kinematics with the reference data in younger

healthy adults (YH). We can observe from Fig 6 that the models for the shank, thigh and

back estimated the angular kinematics accurately as compared to the reference data recorded

with the Codamotion system. There is some difference in the back angles as seen in Fig 6B

because the Codamotion sensor shifted in the seated position when the participant’s back

touched the back of the chair. We can observed from Fig 6C that, the thigh kinematics were

estimated accurately using the proposed integrated approach of modelling and classification

despite the lack of inertial sensor on this location.

Even though the estimated kinematics of the shank and back matched the kinematics

obtained from the reference Codamotion data in most cases, we observed some offset between

the two in some participants as shown in Fig 6D and 6E. For estimation of the thigh angle, it

was assumed that the angle is 0˚ while standing and 90˚ while sitting. However, the sitting

angle depends on the posture of individual’s sitting position. In Fig 6F, the individual sat in a

slightly different posture with the feet tucked under the chair, making the thigh angle less than

90˚ during sitting.

Thus, the visual inspection of the plots of angular kinematics for all the trials of all the YH

participants showed that the estimated kinematics matched the reference kinematics obtained

from the Codamotion sensor. The next section details the quantitative results of the compari-

son of the estimated and reference kinematics.

Normalised root mean squared error between estimated and reference angular kine-

matics. The normalised root mean squared error (NRMSE) was calculated between the

estimated angular kinematics using the model shown in Fig 2 and the reference angular kine-

matics obtained from motion capture for evaluating the quality of the models used for estima-

tion. The average NRMSEs over the three runs for all the YH participants are shown in

Table 1. We observed that the NRMSEs are very low with the average of 10% for angular veloc-

ity and angular acceleration. The NRMSEs for angular displacement are higher due to the off-

set between the inertial sensors and Codamotion markers on the shank. Thus, these NRMSE
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results confirm that our proposed model estimates the angular kinematics of the three seg-

ments of the body correctly.

Bland-Altman analysis. The Bland-Altman plots [41] for comparing the reference

angular kinematics obtained from Codamotion and the angular kinematics estimated by

our proposed method in all the YH participants are shown in Fig 7. The Bland-Altman plots

show that there is an agreement between the reference kinematics and estimated kinematics

as the mean difference between the two is zero which is represented by the solid horizontal

line and the majority of the points are located between ±2 standard deviations represented

by the dotted horizontal lines. There is a small discrepancy between the reference and

estimated shank since their mean difference is slightly larger than zero. The individual par-

ticipants have Bland-Altman plots similar to each other and to the the Fig 7 of all the partici-

pants together.

Fig 6. Comparison of estimated kinematics with Codamotion reference kinematics in young healthy participants.

An example of good angular kinematics estimation (left column) is shown for (A) Shank, (B) Back and (C) Thigh. The

segmentation of sit-to-stand, stand-to-sit, sit and stand (no label on the top) is also shown with different background

colours and labels at the top. An example of discrepancies between estimated kinematics and reference kinematics

from Codamotion data (right column) is shown for (D) Shank, (E) Back and (F) Thigh.

https://doi.org/10.1371/journal.pone.0264126.g006

PLOS ONE Modelling and classifying sit-to-stand kinematics using inertial sensors

PLOS ONE | https://doi.org/10.1371/journal.pone.0264126 October 18, 2022 13 / 25

https://doi.org/10.1371/journal.pone.0264126.g006
https://doi.org/10.1371/journal.pone.0264126


Thus using NRMSE and Bland-Altman analysis, we validated the wearable inertial sensors

against the reference data from young individuals, and our proposed angular kinematics esti-

mation model was found to be stable in this context.

Estimated angular kinematics in older healthy adults (OH) and people with

Parkinson’s (PwP)

We applied the integrated modelling and classification method on the OH and PwP partici-

pant groups to estimate their angular kinematics during sit-to-stand transitions. An example

of the estimated angular kinematics for OH and PwP is given in Fig 8A–8C and 8D–8F respec-

tively. The proposed method was able to reliably classify the sit-to-stand and stand-to-sit tran-

sitions in both OH and PwP groups and thus estimate their angular kinematics. We observed

that the angular kinematics in these two groups were not as smooth as those in the YH group.

The fluctuations were visually observed especially in the angular velocity and angular accelera-

tion Fig 8A, 8B, 8D and 8E which could be an indication of an overall instability during the sit-

to-stand movements or tremors in the PwP group. In many participants, this instability was

also observed in the stationary states. The PwP group showed more instability than the OH

group upon visual inspection as seen in Fig 8D and 8E. We observed that in many participants

from these two groups, there was a brief pause during the sit-to-stand and stand-to-sit transi-

tions which may indicate that the older adults perform these transitional movements more

statically by keeping their accelerations low and making their velocity zero half way through

the transition. This is an interesting finding giving an insight into the strategies used by differ-

ent groups for performing sit-to-stand transitions and will require further investigation.

Comparison of results in younger healthy adults (YH), older healthy adults

(OH) and people with Parkinson’s (PwP)

Classification accuracies. The two-tiered classification approach successfully segmented

and classified sit-to-stand motion in sitting, standing, sit-to-stand and stand-to-sit stages in

all the three participant groups with high accuracy. The best classification accuracies were

obtained in the YH group. The classification accuracies together for all the four states are

98.67%, 94.20% and 91.41% for YH, OH and PwP respectively. There were no false positives in

stationary and transition state classifications. The misclassifications occurred when the sitting

Table 1. Normalised root mean squared error (NRMSE) for shank, back and thigh for all the young healthy (YH) participants.

Shank NRMSE Thigh NRMSE Back NRMSE

Participant YH Angle Angular Velocity Angular Acc. Angle Angular Velocity Angular Acc. Angle Angular Velocity Angular Acc.

1 0.1401 0.0465 0.0617 0.0929 0.1018 0.1745 0.2553 0.0907 0.0932

2 0.1386 0.0615 0.0520 0.1373 0.0877 0.1012 0.1705 0.0549 0.0942

3 0.3683 0.0821 0.1366 0.0953 0.0914 0.1202 0.1197 0.0585 0.1385

4 0.3537 0.0585 0.1348 0.0718 0.0722 0.1239 0.1075 0.0542 0.1049

5 0.3464 0.1277 0.1597 0.1013 0.0745 0.0917 0.2090 0.0962 0.1750

6 0.2963 0.0848 0.0446 0.2457 0.1310 0.1409 0.1549 0.0760 0.0696

7 0.3163 0.0746 0.1113 0.1157 0.1304 0.1928 0.1348 0.0513 0.0902

8 0.2363 0.0439 0.0940 0.1156 0.0963 0.1272 0.1160 0.0624 0.1376

9 0.3191 0.0559 0.1229 0.1504 0.1299 0.1477 0.1476 0.0694 0.1501

10 0.4788 0.0830 0.0916 0.1906 0.1160 0.1245 0.2009 0.0621 0.0948

Average 0.2994 0.0718 0.1009 0.1317 0.1032 0.1345 0.1616 0.0676 0.1148

Std. Dev. 0.1004 0.0247 0.0390 0.0524 0.0226 0.0309 0.0476 0.0155 0.0333

https://doi.org/10.1371/journal.pone.0264126.t001
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and standing postures were identical and indistinguishable. This happened when participants

sat upright. In such cases, the sensor data was also identical for the sit-to-stand transitions.

Timings for sit-to-stand and stand-to-sit transitions. The average time taken for sit-to-

stand was 1.44 ± 0.36 s, 1.80 ± 0.54 s and 2.29 ± 1.44 s in YH, OH and PwP respectively. The

average time taken for stand-to-sit was 1.55 ± 0.33 s, 1.77 ± 0.65 s and 2.18 ± 0.84 s for YH,

OH and PwP respectively. The YH group took the least amount of time to perform transitions

and approximately equal amount of time for sit-to-stand and stand-to-sit. The OH group per-

formed the transitions slower than the YH group and took approximately same time for both

the transitions. The PwP group took more time to perform sit-to-stand transitions than the

rest of the two groups. The timings for the YH for different participants is consistent with a

small standard deviation as compared to the other groups. The variability in the timings to per-

form the transitions gradually increases from YH, OH to PwP group. This is shown in the

box plot in the Fig 9. Comparing the timings of three groups during sit-to-stand and stand-to-

sit independently using Mann-Whitney U test and Bonferroni correction for multiple compar-

isons between the three groups revealed that sit-to-stand timings of YH and PwP were signifi-

cantly different (p< 0.001) and OH and PwP were also significantly different (p< 0.05). Also,

during stand-to-sit, timings of YH and OH were significantly different (p< 0.001) and timings

of YH and OH were significantly different (p< 0.001).

Variability in the posture of sitting and standing. The box plots in Fig 10A and 10B

show the posture variability in the YH, OH and PwP groups during sitting and standing

Fig 7. Bland-Altman plots. The Bland-Altman plots showing comparison between the reference Codamotion angular

kinematics and estimated angular kinematics using the proposed integrated approach of modelling and classification

for the shank, thigh and back. The x-axis shows the mean of the two measures and the y-axis shows the difference

between the two measures. The solid horizontal represents the mean difference between the reference and estimated

kinematics and the dotted horizontal lines show the ±2 standard deviation boundaries. A Bland-Altman plot typically

looks for points to be within ±2 standard deviations of the mean difference, the title of each sub-figure has this as

percentage.

https://doi.org/10.1371/journal.pone.0264126.g007
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respectively. The variability in the average angles of the shank and the back differ in three

groups. Overall, the back angles show higher variability. The variability is higher in the OH

and PwP groups suggesting that the older adults have variable postures during sitting and

standing depending on their physical condition and due to change in their centre of gravity in

order to maintain their balance. The sitting position shows more postural variability (see Fig

10A) because of the differences in the sitting styles such as hunching, leaning back on the

chair, tucking their feet under the chair or sitting very upright. However, this variability is not

present in the YH group in the standing posture in contrast to OH and PwP groups during

standing. The Mann-Whitney U test with Bonferroni correction for multiple comparisons

showed that the shank and back angles during sitting and standing were significantly different

between YH and PwP (p< 0.01) and also between the other groups in some cases as shown in

Fig 10. This shows that the age and the physical condition affects the posture which can be

detected by the estimated angular kinematics.

Fig 8. Estimated angular kinematics in older healthy adults (OH) and people with Parkinson’s (PwP). An example

of estimated angular kinematics in OH participants (left column) is shown for (A) Shank, (B) Back and (C) Thigh. The

segmentation of sit-to-stand, stand-to-sit, sit and stand (no label on the top) is also shown with different background

colours and labels at the top. An example of estimated angular kinematics in PwP participants (right column) is shown

for (D) Shank, (E) Back, and (F) Thigh.

https://doi.org/10.1371/journal.pone.0264126.g008
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Differences in sit-to-stand and stand-to-sit transitions in younger healthy adults (YH),

older healthy adults (OH) and people with Parkinson’s (PwP). The Fig 11A–11H show the

grand average sit-to-stand and stand-to-sit angular velocities and angles respectively for the

shank and the back. The velocities are highest in the YH and lowest in PwP for the shank and

the back during both sit-to-stand and stand-to-sit (see Fig 11A–11D). This suggests that the

OH and PwP perform statically stable transitions in order to maintain their balance. YH have

greater angel for the shank during sit-to-stand transitions than the other groups (see Fig 11E

and 11F). The shank angles are very small in the PwP group (Fig 11E–11H). Thus, angular

kinematics can inform us about the differences in sit-to-stand transitions in the three groups.

Discussion

Expanding on our previous work to estimate two-segment upper limb kinematics using one

inertial sensor on each limb segment [34], in this study, we have developed a three-segment

body model integrated with classifier to estimate the angular kinematics and classify sit-to-

stand motion using only two inertial sensors placed on the shank and back. This provides a

low-cost solution to model the sit-to-stand activities which are crucial for human mobility

and are often affected due to old age and motor impairment. This approach combines both

kinematic analysis and movement classification approaches, and thus could be employed for

monitoring the quality of movement as well as assessing general movement patterns and may

therefore be of value in clinical decision making. We have demonstrated that our approach of

combining the model and the classification for estimation of kinematics is robust and stable

Fig 9. Timings of sit-to-stand and stand-to-sit in younger healthy (YH) adults, older healthy (OH) adults and

people with Parkinsons (PwP). The time taken by participants to perform sit-to-stand and stand-to-sit from all the

three YH, OH and PwP groups. The black triangle shows the mean time. Statistically significant differences (Mann-

Whitney U test with Bonferroni correction for multiple tests) in the timings among the three groups for sit-to-stand

and stand-to-sit are shown by the stars indicting the p-values (one star indicates p< 0.5, two stars indicate p< 0.01

and three stars indicate p< 0.001).

https://doi.org/10.1371/journal.pone.0264126.g009
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from its successful application across all the three participant groups comprising of younger

healthy adults, older healthy adults and people with Parkinson’s. Our approach can be general-

ised across populations for modelling sit-to-stand kinematics.

We have chosen a simplified 2-dimensional model because the sit-to-stand transitions

occur predominantly in the sagittal plane [22]. The sagittal movement assumption is common

for estimating kinematics since finding 3-dimensional kinematics poses difficulty when using

body fixed inertial sensors [2, 42]. Further work is needed to include out of plane information,

however, adding an extra dimension might not give more information about sit-to-stand

motion, although may be helpful when considering combined sit to stand and turning move-

ments. The 3-dimensional model is likely to be of particular relevance when considering

movement dynamics in the younger healthy participants. However, we are developing this

model to study the OH and the PwP groups that are less dynamic and hence their sit-to-stand

transitions are restricted to the sagittal plane for which our 2-dimensional model is sufficient.

The EKF based model successfully estimated the kinematics of the shank and back which

was confirmed by comparing the outcome to the Codamotion reference data as shown in Fig

6A and 6B. The EKF models the measurement noise and the process noise to estimate accurate

results, unlike the approach of obtaining kinematics directly from accelerometer measure-

ments which needs explicit de-noising due to the noise and drifts in the sensors, and differenti-

ation and integration of their output. Our model is insensitive to the distances of sensors Li,
i 2 {S, B} from the ankle and hip (see Fig 1). This shows that the model is robust across people

with different anatomical measurements and the location of sensor placement on the body

segment.

In our model, we have ignored the translation and acceleration of the hip during sit-to-

stand transitions. This has introduced bias in the data. However, by comparing the results of

YH participants with the reference Codamotion data (Figs 6 and 7 and Table 1), we observe

that the bias is insignificant enough to allow this assumption. The bias will be higher when the

Fig 10. Variability in the posture during sitting and standing in the shank and back in younger healthy (YH)

adults, older healthy (OH) adults and people with Parkinson’s (PwP). (A) The average angles of the shank and back

in YH, OH and PwP participants during sitting. The black triangle shows the mean angle. (B) The average angles of the

shank and back in YH, OH and PwP participants during standing. Statistically significant differences (Mann-Whitney

U test with Bonferroni correction for multiple tests) in the angles of the shank and back among the three groups

during sitting and standing are shown by the stars indicting the p-values (one star indicates p< 0.5, two stars indicate

p< 0.01 and three stars indicate p< 0.001).

https://doi.org/10.1371/journal.pone.0264126.g010
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Fig 11. Grand average shank and back velocity and angles during sit-to-stand and stand-to-sit in younger healthy

(YH) adults, older healthy (OH) adults and people with Parkinson’s (PwP). (A) Grand average shank velocities in

the three participant groups during sit-to-stand. (B) Shank velocities during stand-to-sit. (C) Back velocities during sit-

to-stand. (D) Back velocities during stand-to-sit. (E) Shank angles during sit-to-stand. (F) Shank angles during stand-

to-sit. (G) Back angles during sit-to-stand. (H) Back angles during stand-to-sit.

https://doi.org/10.1371/journal.pone.0264126.g011
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accelerations are high, consequently since the OH and particularly PwP groups have lower

accelerations, the bias will also be low in these groups and can be disregarded.

The model was validated on the YH participants and then applied on the OH and PwP par-

ticipants. We were not able to do 3-dimensional motion capture with the Codamotion system

in OH and PwP groups, primarily because the data was collected from people’s homes. This

was seen as appropriate since the participant groups had difficulty travelling. We aimed to col-

lect the data with minimal disruption and given the problems of setting up the Codamotion

system in the home environment, we intentionally omitted this stream of data. However, the

validation of wearable sensors using motion capture data collected from YH group gave a

strong indication that our kinematics estimation method using the proposed model works as

seen from the small NRMSE (Table 1) and Bland-Altman plots (Fig 7) and hence further vali-

dation for the OH and PwP groups was not required.

We minimised the number of sensors required to estimate the kinematics of three-segment

model. We chose to place sensors on shank and back because only this combination can

model three-segment kinematics by estimating thigh kinematics. If two consecutive segments

were chosen, the third could not be detected. It was also easier to place sensors on the shank

and the back than thigh, because of larger muscle movements in thigh during sit-to-stand and

discomfort during sitting with a sensor on thigh. We have dealt with a difficult problem of esti-

mating thigh kinematics effectively without placing an inertial sensor on this location. Estimat-

ing thigh kinematics from this missing data is challenging because it is an ill-posed problem

and the thigh angle has infinitely many solutions in the range between 0˚ and 90˚ for sit-to-

stand activity. To deal with this, we have incorporated a classification based approach where

we identify the current state (sit, stand, sit-to-stand or stand-to-sit) and apply different models

to the individual state. Thus, we uniquely combine two challenges: classification of different

stages in sit-to-stand movement and obtaining angular kinematics for the three-segment body

model.

Even though the estimated thigh kinematics are accurate with small average error of 13%

for the angle, angular velocity and angular acceleration of the shank, thigh and back in com-

parison to the reference motion capture data in YH Table 1), we have based it on the observa-

tional assumptions that when the person is seated on the chair, the angle of the thigh is 90˚

and when the person is standing, the thigh angle is 0˚. This highly depends on the posture of

an individual while sitting or standing which is observed in Fig 6F where the sitting angle for

thigh is slightly less than 90˚. Since, sitting and standing postures differ from person to person,

this approach might not yield accurate results in the cases for postural defects, specifically in

the OH and PwP groups. We have modelled the transitions between 0˚ and 90˚ for sit-to-

stand and stand-to-sit by using a single neural network node with a sigmoid activation func-

tion in Eq (8) with an input from the sit-to-stand transition classifier. This sigmoid function

was chosen because it is continuous and differentiable, leading to smooth transitions between

sitting and standing states. The assumption of symmetrical sit-to-stand and stand-to-sit transi-

tions allowed us to estimate the parameter w only once. This assumption of symmetry might

not be true for OH and PwP. This model can be generalised and extended with a more com-

plex artificial neural network for regression with any other suitable continuously differentiable

activation functions.

We have achieved high sit-to-stand classification accuracies of 98.67%, 94.20% and 91.41%

for YH, OH and PwP respectively using a two-tiered classification with k-means clustering.

This unsupervised learning approach allowed us to classify movements with high accuracy on

individual participants with a large inter-participant variability using as few as two repetitions

of movements. This could be useful in clinical settings where collecting large amount of move-

ment data and training machine learning models is not feasible due to time limitations.
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The OH and PwP groups showed higher variability in the average time taken to perform

sit-to-stand transitions (Fig 9) and also in the angles of the shank and especially back while sit-

ting and standing (Fig 10). These variabilities can be attributed to the differences in the mobil-

ity levels in the OH group and the varying effect of Parkinson’s disease on mobility in the PwP

group which may also affect their posture. The YH group has a consistent posture during

standing while the OH and PwP groups show larger variability in their average back angle (Fig

10B) because of the instability during standing. The PwP group showed very low accelerations

and low velocities (see Fig 11) leading to performing statically stable movements by pausing in

the middle of sit-to-stand and stand-to-sit transitions. Thus, the angular kinematics of the

three-segment body model in the sagittal plane provide insights into differences in sit-to-stand

transitions in different groups varying in age and functional mobility.

The ability to stand up from sitting indicates balance control and functional lower limb

strength. The inability to stand up from sitting and display of unsteadiness when completing

the task suggests the person is more likely to have restricted mobility and could be at risk of

falling. Hence it is important to be able to assess sit-to-stand performance as it can allow the

identification of persons at risk. Our proposed method allows detailed assessment of sit-to-

stand motion by modelling all the three segments of the body involved in this motion whilst

minimising the number of sensors needed for sit-to-stand tests. Our proposed method can

hence be used as a tool alongside other methodologies for assessment of sit-to-stand transi-

tions. Our novel combined approach facilitates comprehensive study of sit-to-stand move-

ment in varying demographics of people which not only models movements providing their

continuous kinematics, but also segments and classifies individual movements and computes

time taken for individual transfers. Our proposed method is not restricted to sit-to-stand

movement and can also be extended to have broader applications in sports science to study a

range of different motions. Finally, our proposed method will allow long term (multi-day to

multi-week) movement studies to be conducted since these sensors are unobtrusive and easy

to wear.

Conclusion

In this paper, we have proposed a novel integrated approach for estimating the body kinemat-

ics during sit-to-stand transition motions using only two wearable inertial sensors with a triax-

ial accelerometer and a triaxial gyroscope each. This provides an inexpensive and portable way

of estimating human motion as opposed to expensive optic motion sensor systems requiring a

complex setup or placing a sensor on each segment of the body. The two wearable sensors are

comfortable for prolonged use and require low power to operate.

A robust three-segment body kinematic model is formed based on limb kinematic model

and parameter estimation using EKF. We have tested this model on the three groups of young

healthy adults, older healthy adults and people with Parkinson’s disease. We have solved two

challenges of modelling and classification of sit-to-stand and stand-to-sit movements by incor-

porating classifier in the estimation of the body kinematics. Our model not only estimates the

kinematics on the shank and the the back accurately, but also the kinematics for thigh which is

an ill-posed problem as there is no inertial sensor on this location. Thus, our model effectively

deals with the missing data, and at the same time, segments and classifies the sit-to-stand and

stand-to-sit, standing and sitting states robustly using unsupervised learning with an accuracy

of 98.67%, 94.20% and 91.41% for YH, OH and PwP respectively. The estimated kinematics

are similar to the ground truth kinematics obtained from the commercial Codamotion system

as compared in YH participants.
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