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Abstract. Streamflow forecasts provide vital information to
aid emergency response preparedness and disaster risk reduc-
tion. Medium-range forecasts are created by forcing a hydro-
logical model with output from numerical weather prediction
systems. Uncertainties are unavoidably introduced through-
out the system and can reduce the skill of the streamflow
forecasts. Post-processing is a method used to quantify and
reduce the overall uncertainties in order to improve the use-
fulness of the forecasts. The post-processing method that is
used within the operational European Flood Awareness Sys-
tem is based on the model conditional processor and the en-
semble model output statistics method. Using 2 years of re-
forecasts with daily timesteps, this method is evaluated for
522 stations across Europe. Post-processing was found to in-
crease the skill of the forecasts at the majority of stations in
terms of both the accuracy of the forecast median and the reli-
ability of the forecast probability distribution. This improve-
ment is seen at all lead times (up to 15 d) but is largest at
short lead times. The greatest improvement was seen in low-
lying, large catchments with long response times, whereas
for catchments at high elevation and with very short response
times the forecasts often failed to capture the magnitude of
peak flows. Additionally, the quality and length of the ob-
servational time series used in the offline calibration of the
method were found to be important. This evaluation of the

post-processing method, and specifically the new informa-
tion provided on characteristics that affect the performance
of the method, will aid end users in making more informed
decisions. It also highlights the potential issues that may be
encountered when developing new post-processing methods.

1 Introduction

Preparedness for floods is greatly improved through the use
of streamflow forecasts, resulting in less damage and fewer
fatalities (Field et al., 2012; Pappenberger et al., 2015a). The
European Flood Awareness System (EFAS), part of the Eu-
ropean Commission’s Copernicus Emergency Management
Service, supports local authorities by providing continental-
scale medium-range streamflow forecasts up to 15 d ahead
(Thielen et al., 2009; Smith et al., 2016). These stream-
flow forecasts are produced by driving a hydrological model
with an ensemble of meteorological forecasts from multi-
ple numerical weather prediction (NWP) systems including
two NWP ensembles and two deterministic NWP forecasts
(Smith et al., 2016). However, the streamflow forecasts are
subject to uncertainties that decrease their skill and limit their
usefulness for end users (Roundy et al., 2019; Thiboult et al.,
2017; Pappenberger and Beven, 2006). These uncertainties
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are introduced throughout the system and are often cate-
gorised as meteorological uncertainties (or input uncertain-
ties) which propagate to the streamflow forecasts from the
NWP systems and hydrological uncertainties which account
for all other sources of uncertainty, including those from the
initial hydrological conditions and errors in the hydrologi-
cal model (Krzysztofowicz, 1999). It should be noted that
throughout the paper “meteorological uncertainties” refers to
the uncertainty in the streamflow forecasts that is due to the
meteorological forcings and not the uncertainty in the mete-
orological forecasts themselves. These differ as the meteo-
rological variables are usually aggregated by the catchment
system (Pappenberger et al., 2011). According to Krzyszto-
fowicz (1999) and Todini (2008), a reliable forecast will in-
clude the total predictive uncertainty which is the probability
of a future event occurring conditioned on all the information
available when the forecast is produced.

Several approaches have been developed to reduce hydro-
logical forecast errors and account for the predictive uncer-
tainty. Improvements to the NWP systems used to force the
hydrological model have been shown to reduce the uncer-
tainty in the streamflow forecasts (Dance et al., 2019; Flack
et al., 2019; Haiden et al., 2021). Additionally, the use of
ensemble NWP systems to represent the uncertainty due to
the chaotic nature of the atmosphere is becoming increas-
ingly common, and the use of multiple NWP systems can
account for model parameter and structural errors in the me-
teorological forecasts (Wu et al., 2020; Cloke and Pappen-
berger, 2009). Regardless of whether deterministic or en-
semble NWP systems are used, pre-processing of the me-
teorological input can reduce biases and uncertainties often
present in the forecasts (Verkade et al., 2013; Crochemore
et al., 2016; Gneiting, 2014). Data assimilation schemes can
be used to improve accuracy in the initial hydrological con-
ditions (e.g. Liu et al., 2012; Mason et al., 2020), and calibra-
tion of the hydrological model can reduce model parameter
uncertainties (Kan et al., 2019). To represent the hydrologi-
cal uncertainties using an ensemble, similarly to the meteo-
rological uncertainties, would require the creation of an en-
semble of initial hydrological conditions and the use of sev-
eral sets of model parameters or potentially multiple hydro-
logical models (Georgakakos et al., 2004; Klein et al., 2020).
Operationally this is usually prohibited by computational and
temporal constraints, particularly if an ensemble of meteoro-
logical forcings is already included. An alternative, relatively
quick, and computationally inexpensive approach is to post-
process the streamflow forecasts.

Post-processing the streamflow forecast allows all uncer-
tainties to be accounted for. Over the past few decades sev-
eral techniques have been proposed. These techniques can
be split into two approaches: (1) methods accounting for
the meteorological and hydrological uncertainties separately
and (2) lumped approaches which calculate the total com-
bined uncertainty of the forecast. One of the first examples
of the former approach was the Bayesian forecasting system

which was applied to deterministic forecasts and consists of
the Hydrological Uncertainty Processor (HUP Krzysztofow-
icz, 1999; Krzysztofowicz and Kelly, 2000; Krzysztofowicz
and Herr, 2001; Krzysztofowicz and Maranzano, 2004) and
the Input Uncertainty Processor (IUP Krzysztofowicz, 1999).
The development of the Bayesian Ensemble Uncertainty Pro-
cessor (Reggiani et al., 2009), an extension of the HUP for
application in ensemble prediction systems, attempts to re-
move the need for the IUP by assuming the meteorological
ensemble fully represents the input uncertainty. However, as
streamflow forecasts are often under-spread, this assumption
is not always appropriate. The Model Conditional Processor
(MCP) first presented in Todini (2008) also uses a conditional
distribution-based approach by defining the joint distribution
between the model output and the observations using a multi-
variate Gaussian distribution. The MCP has the capacity to
determine the total combined uncertainty if the joint distri-
bution is defined between the observations and the forecasts
of the operational system. To define this joint distribution,
a large set of historic forecasts is required which is not al-
ways available as operational systems are upgraded regularly.
Therefore, often it is used to account for the hydrological un-
certainty only (as it is in this paper; see Sect. 3). However,
the method is attractive as it can be efficiently extended to
allow for multi-variate, multi-model, and ensemble forecasts
(Coccia, 2011; Coccia and Todini, 2011; Todini, 2013; To-
dini et al., 2015). The method discussed in this study is par-
tially motivated by the Multi-Temporal Model Conditional
Processor (MT-MCP Coccia, 2011), which extends the orig-
inal MCP method for application to multiple lead times si-
multaneously.

Many regression-based methods have been developed to
post-process streamflow forecasts because of their relatively
simple structure (e.g. quantile regression, Weerts et al., 2011,
indicator co-kriging, Brown and Seo, 2010, 2013, and the
General Linear Model Post-Processor, Zhao et al., 2011).
The ensemble model output statistics (EMOS, Gneiting et al.,
2005) method adjusts the mean and variance of an ensem-
ble forecast using linear functions of the ensemble mem-
bers and the ensemble spread, respectively (Gneiting et al.,
2005; Hemri et al., 2015a). This allows variations in ensem-
ble spread to be used when estimating the predictive uncer-
tainty. The strong autocorrelation in time observed in hy-
drological time series lends itself to the use of autoregres-
sive error models (e.g. Seo et al., 2006; Bogner and Kalas,
2008; Schaeybroeck and Vannitsem, 2011), although some
of these methods do not account for uncertainty and in-
stead try to correct errors in the trajectory of the forecast.
These methods should therefore be used alongside a sepa-
rate method which attempts to quantify the uncertainty. On
the other hand, kernel-based (or “dressing”) methods define
a kernel to represent the uncertainty which is superimposed
over the forecast or over every member for an ensemble fore-
cast (Pagano et al., 2013; Verkade et al., 2017; Boucher et al.,
2015; Shrestha et al., 2011). Depending on the approach used
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to define the kernel, this technique can account for the hy-
drological uncertainties or the total uncertainty but often re-
quires a bias-correction method to be applied to the forecast
beforehand (Pagano et al., 2013).

All the methods mentioned above, and many more that
have not been mentioned (see Li et al., 2017, for a more
comprehensive review), have been shown to be effective
at improving the skill of forecasts in one or a few catch-
ments. The Hydrological Ensemble Prediction Experiment
(HEPEX, Schaake et al., 2007), a post-processing intercom-
parison experiment, resulted in comparisons between the
different techniques (van Andel et al., 2013; Brown et al.,
2013), but still relatively few studies have evaluated the per-
formance of post-processing methods across many differ-
ent catchments. Some exceptions include studies compar-
ing the performance of post-processing techniques for lim-
ited numbers of basins in the USA (Brown and Seo, 2013,
9 basins; Ye et al., 2014, 12 basins; Alizadeh et al., 2020,
139 basins), and recently, Siqueira et al. (2021) evaluated two
post-processing methods at 488 stations across South Amer-
ica. Skøien et al. (2021) compared variations of the EMOS
method at the 678 stations across Europe and investigated
the forecast features that indicated when post-processing was
beneficial. However, as post-processing is incorporated into
more large-scale, multi-catchment flood forecasting systems,
such as the EFAS, there is a greater need to understand
which catchment characteristics as well as which forecast
features can affect the post-processing. In this paper, the op-
erational post-processing method of the EFAS is evaluated at
522 stations to investigate how the performance of the post-
processing method varies across the domain.

The EFAS domain covers hundreds of catchments across
several hydroclimatic regions with different catchment char-
acteristics. The raw forecasts (i.e. forecasts that have not un-
dergone post-processing) have varying levels of skill across
these catchments (Alfieri et al., 2014) and are regularly eval-
uated in order to identify possible areas of improvement and
to allow end users to understand the quality of the forecasts.
At the locations of river gauge stations, where near-real-
time and historic river discharge observations are available,
the raw forecasts are post-processed using a post-processing
method which is motivated by the MCP and EMOS tech-
niques. However, the post-processed forecasts do not cur-
rently undergo regular evaluation. This study aims to assess
the post-processing method used within the EFAS. Addition-
ally, new information is provided about the effect that char-
acteristics of the catchments and properties of the forecast-
ing system have on the performance of the post-processing
method. Specifically, the paper will address the following
questions.

– Does the post-processing method provide improved
forecasts?

– What affects the performance of the post-processing
method?

The remainder of the paper is set out as follows. In Sect. 2
we briefly describe the EFAS used to produce forecasts oper-
ationally. In Sect. 3 we introduce the post-processing method
being evaluated and explain in detail how the post-processed
forecasts are created. In Sect. 4, the evaluation strategy is de-
scribed. This includes an explanation of the criteria used to
select stations, details of the reforecasts used in this evalua-
tion, and a description of the evaluation metrics considered.
We separate the Results section (Sect. 5) into two main sub-
sections. In Sect. 5.1 we assess the effect of post-processing
on different features of the forecast, such as the forecast me-
dian and the timing of the peak. In Sect. 5.2 we investi-
gate how the benefits of post-processing vary due to different
catchment characteristics such as response time and eleva-
tion. Finally, in Sect. 6 we state our conclusion that post-
processing improves the skill of the streamflow forecasts for
most catchments and highlight the main factors affecting the
performance of the post-processing method.

2 EFAS

The focus of this paper is the evaluation of the post-
processing method used operationally to create the product
referred to as the “real-time hydrograph” (see Fig. 4). In
this section, we describe the production of the (raw) EFAS
medium-range ensemble forecasts that are inputs for the
post-processing method described in Sect. 3. The EFAS was
recently updated, and therefore reforecasts are used in this
study, allowing for a larger number of forecasts to be evalu-
ated. Reforecasts are forecasts for past dates created using a
forecasting system as close to the operational system as pos-
sible (Hamill et al., 2006; Harrigan et al., 2020). However,
there are differences between the reforecasts and the oper-
ational system due to limited computational resources and
data latency in the operational system. Therefore, we also
highlight the differences between the evaluated reforecasts
and the operational forecasts.

Version 4 of the EFAS (operational in October 2020) uses
the LISFLOOD hydrological model at an increased temporal
resolution of 6 h and a spatial resolution of 5 km (Mazzetti
et al., 2021b). LISFLOOD is a geographical information sys-
tem (GIS)-based spatially distributed gridded rainfall-runoff-
routing model specifically designed to replicate the hydro-
logical processes of large catchments (Van Der Knijff et al.,
2010; De Roo et al., 2000). At each timestep LISFLOOD cal-
culates the discharge as the average over the previous 6 h for
each grid box in the EFAS domain. For EFAS 4 the model
calibration of LISFLOOD was performed using a mixture of
daily and 6-hourly observations where available for the pe-
riod 1990–2017 (Mazzetti et al., 2021a; Mazzetti and Harri-
gan, 2020). The reforecasts used in this evaluation are created
using the same hydrological model.

Operationally, the medium-range ensemble forecasts are
generated twice daily at 00:00 and 12:00 UTC with a maxi-
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mum lead time of 15 d (Smith et al., 2016). The forecasts are
created by forcing LISFLOOD with the precipitation, tem-
perature, and potential evaporation outputs from four NWP
systems (Smith et al., 2016; EFAS, 2020): two determin-
istic forecasts and two ensemble forecasts. For further in-
formation about the NWP systems, see EFAS (2020). The
reforecasts used in this study are generated twice weekly
at 00:00 UTC on Mondays and Thursdays by forcing LIS-
FLOOD with reforecasts from the European Centre for
Medium-Range Weather Forecasts (ECMWF) ensemble sys-
tem, which have 11 ensemble members.

The hydrological initial conditions for the streamflow
forecasts are determined by forcing LISFLOOD with me-
teorological observations to create a simulation henceforth
referred to as the water balance simulation. The water bal-
ance simulation would provide the starting point of the fore-
cast in terms of water storage within the catchment and dis-
charge in the river. However, there is an operational time de-
lay in receiving the meteorological observations. Therefore,
the deterministic meteorological forecasts are used to drive
the LISFLOOD model for the time period between the last
available meteorological observation and the initial timestep
of the forecast in a process called the “fill-up”. For the refore-
casts, all necessary meteorological observations are avail-
able, so there is no need for the fill-up process.

3 Post-processing method

This section describes the post-processing method evaluated.
Post-processing is performed at stations for which near-real-
time and historic river discharge observations are available.
The method is motivated by the MT-MCP (Coccia, 2011) and
EMOS (Gneiting et al., 2005), which are used to quantify the
hydrological and meteorological uncertainties, respectively.
The Kalman filter is then used to combine these uncertainties.
Since these methods assume Gaussianity, the normal quan-
tile transform (NQT) is used to transform the discharge val-
ues from physical space to standard Normal space. As with
many post-processing methods, an offline calibration is re-
quired to define a so-called station model. In Sect. 3.1 some
notation is introduced. Details on the post-processing method
are given in Sects. 3.2 to 3.4. Figure 1 outlines the structure
of the method. A discussion of the input data is postponed
until Sect. 4.2.

3.1 Notation

In this section notation and definitions used throughout the
paper are introduced. The aim of post-processing is to correct
the errors and account for the uncertainty that may be present
in a forecast. As described in Sect. 2, the EFAS produces
ensemble streamflow forecasts for the whole of Europe on a
5 km grid with 6-hourly timesteps. However, post-processing
is performed at daily timesteps and only at stations for which

near-real-time and historic river discharge observations are
available. Therefore, the discharge values corresponding to
the grid boxes representing the locations of the stations are
extracted and temporally aggregated to daily timesteps. This
creates a separate streamflow forecast for each station, and it
is these single station forecasts that are henceforth referred to
as the raw forecasts. The post-processing method evaluated
in this paper is applied separately at each station, creating a
corresponding post-processed forecast for each raw forecast.

The input data shown in Fig. 1a are the input data required
for the post-processing of a single raw forecast (i.e. for one
station). As shown, the input data can be separated into three
time periods. These time periods are henceforth referred to
(from left to right in Fig. 1a) as the historic period, the re-
cent period, and the forecast period. The length of the his-
toric period, denoted p, varies between stations depending
on the length of the historic observational record available.
However, a minimum of 2 years of observations since 1991
is required for the offline calibration. For a forecast produced
at time t , the recent period has q timesteps and extends from
time t − q + 1 to time t . The forecast period extends from
time t + 1 to time t + T for a forecast with a maximum lead
time of T timesteps. The length of the recent period and the
forecast period combined is L= q+T . For convenience, we
introduce a timestep notation of the form t i : tj to represent
all timesteps between time t i and time tj , i.e. ti : tj means
ti, ti + 1, ti + 2, . . .tj − 1, tj .

The raw ensemble forecast that is post-processed is the
only data available in the forecast period. This forecast is
produced at time t and hasM ensemble members and a max-
imum lead time of T timesteps. The full ensemble forecast is
represented by a matrix, denoted x̃t (t + 1 : t + T ) ∈ RT×M ,
where each column corresponds to an ensemble member and
contains a vector of discharge values for each timestep in the
forecast period. Throughout the paper, the tilde notation indi-
cates that the discharge values are in physical space, whereas
discharge values without the tilde are in the standard Nor-
mal space (see Sect. 3.2). The subscript t indicates the fore-
cast production time, and the range of timesteps for which
discharge values are available is shown using the timestep
notation. The raw ensemble forecasts from the recent period
are denoted using similar notation such that, for example, the
forecast produced at t − q + 1 is denoted x̃t−q+1(t − q + 2 :
t−q+1+T ) ∈ RT×M . All forecasts are from the same fore-
casting system, and so all have M ensemble members and
maximum lead times of T timesteps.

The time series of observations for a single station is de-
noted by the vector ỹ, where each element represents a daily
discharge observation. The observations in the historic period
are used in the offline calibration (see Fig. 1b and Sect. 3.3)
and are denoted ỹ(1 : p) ∈ Rp, where the timestep notation
is used to show the range of timesteps for which observa-
tions are available. This vector is the same for all forecasts for
this station as the station model is not updated between fore-
casts. The observations in the recent period (the q timesteps
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Figure 1. Flow chart describing the post-processing method at a station. (a) Input data are separated by time period (historic period: fuchsia,
recent period: cyan, forecast period: peach) and by data type (observations: yellow, water balance simulations: green, raw ensemble forecasts:
pink). The top time series is a magnification of the bottom time series for the period t−q+1 to t+T . The historic period has length p. For a
forecast produced at time t , the recent period starts at time t−q+1 and the forecast period ends at time t+T . (b) Offline calibration steps. (c)
Online correction steps. NQT is the normal quantile transform. Blue and red arrows and boxes show the data and methods used to account for
the hydrological uncertainty and the meteorological uncertainty, respectively. Data and methods used to account for both the hydrological and
meteorological uncertainties are shown in purple. Dashed arrows show data stored in the station model such as the cumulative distribution
functions of the water balance simulation and observations, denoted Fs̃ and Fỹ , respectively, and the joint distribution between the water
balance simulation and observations, denoted N2L(µψ ,6ψψ ). Section numbers given in parentheses contain more details.

up to the production time of the forecast) are used in the on-
line correction (see Fig. 1c and Sect. 3.4) and are denoted
ỹ(t−q+1 : t) ∈ Rq . Since ỹ(t−q+1 : t) is a function of t ,
the observations in this vector are different for each forecast
production time.

Similarly, the time series of the water balance simulation,
denoted by the vector s̃, is used in both the offline cali-
bration and the online correction. Each element of the vec-
tor represents a daily water balance simulation value calcu-
lated by forcing LISFLOOD with meteorological observa-
tions (see Sect. 2). The water balance simulation values from
the historic period, s̃(1 : p), are selected to correspond to the
timesteps of the p observations from the same period. The
water balance simulation values from the recent period are
denoted s̃(t−q+1 : t) and are dependent on the forecast pro-
duction time, t .

3.2 NQT

The methods used in this post-processing method utilise the
properties of the Gaussian distribution, but discharge val-
ues usually have highly skewed non-Gaussian distributions
(Hemri, 2018). Therefore, the NQT is used to transform the

discharge data to the standard Normal distribution, which has
a mean of 0 and a variance of 1, denoted N(0,1). The NQT
is applied separately to all input data (observed, simulated,
and forecast) for a given station; therefore, it is defined here
for any scalar discharge value η̃.

The NQT defines a one-to-one map between the quan-
tiles of the cumulative distribution function (CDF) of the dis-
charge distribution in physical space, Fη̃(η̃), and the CDF
of the standard Normal distribution, Q(η). The scalar func-
tion Fη̃ is dependent on whether η̃ represents a modelled
discharge value (simulated or forecast) or an observed dis-
charge value. The calculation of the discharge distributions
and their subsequent CDFs are described in Sect. 3.3.1. The
NQT transforms each scalar discharge value such that

η =Q−1 (Fη̃ (η̃)) . (1)

After the forecast values have been adjusted by the post-
processing method, the inverse NQT,

η̃ = F−1
η̃
(Q(η)) , (2)

is applied to transform the discharge values from the standard
Normal space back to the physical space (see Fig. 1c).

https://doi.org/10.5194/hess-26-2939-2022 Hydrol. Earth Syst. Sci., 26, 2939–2968, 2022
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3.3 Offline calibration

The offline calibration (see Fig. 1b) has two main aims: to de-
termine the distributions of the observed, ỹ, and simulated,
s̃, discharge values at a station and to define the joint dis-
tribution between the transformed observations, y, and the
transformed water balance simulation, s. These distributions
are then stored in the station model for use in the online
post-processing step (shown by dashed lines in Fig. 1). The
input data required for the offline calibration are a historic
record of observations for the station, denoted by the vec-
tor ỹ(1 : p) ∈ Rp, and, for the same period, a historic time
series of the water balance simulation for the grid box rep-
resenting the location of the station, denoted by the vector
s̃(1 : p) ∈ Rp. The length of these vectors, p, is equal to the
number of data points in the historic records and varies be-
tween stations. A minimum of 2 years of historical data is
required to guarantee that p>>L (see Sect. 3.1).

3.3.1 Discharge distribution approximation

The NQT requires the CDF of the observed and simulated
discharge values in physical space, denoted Fỹ and Fs̃ , re-
spectively, to be defined. This section describes the approach
used to estimate these functions. First, the discharge density
distributions are estimated using the observations, ỹ(1 : p) ∈
Rp, and the water balance simulation values, s̃(1 : p) ∈ Rp,
from the historic period. These historic time series are often
only a few years long and therefore may not represent the
full discharge distribution due to the relative rarity of larger
discharge values. To avoid the issues that short time series
commonly cause in the inverse NQT (discussed in Bogner
et al., 2012) rather than using the empirical distribution as
was done in the original MCP method (Todini, 2008), an ap-
proximation of the discharge distribution is determined us-
ing a method similar to that presented in MacDonald et al.
(2011). The approximation method applies kernel density es-
timation (KDE) to the bulk of the distribution (Węglarczyk,
2018) and fits a generalised type-II Pareto distribution (GPD)
to the upper tail (Kleiber and Kotz, 2003) to create a compos-
ite distribution (see Fig. 2). The GPD is an extreme value dis-
tribution that is fully defined by three parameters: the loca-
tion parameter a, the scale parameter b, and the shape param-
eter c. Within this composite distribution the location param-
eter also serves as the breakpoint which separates the kernel
density and the GPD and is shown in Fig. 2. The parameters
of the GPD are determined using the concentrated likelihood
method (see steps 4–6 below). The concentrated likelihood
method allows the maximum likelihood estimates of multiple
parameters to be determined by first expressing one parame-
ter in terms of the others (Takeshi, 1985). The time series of
discharge values, η̃(1 : p) ∈ Rp, is used here to describe the
distribution approximation which is implemented as follows.

1. All values in the time series, η̃, are sorted into descend-
ing order, with η̃1 denoting the largest value in the time
series, η̃2 denoting the second-largest value, and so on.

2. A Gaussian kernel is centred at each data point such that

Ki(x)=
1

ση̃
√

2π
e
−(x−η̃i )

2/2σ 2
η̃ , (3)

where Ki is the kernel centred at η̃i , and ση̃ is Silver-
man’s “rule of thumb” bandwidth (Silverman, 1984).
The bandwidth is calculated using the built-in R func-
tion bw.nrd0 (R Core Team, 2019; Venables and Ripley,
2002) and all values in the time series, η̃.

3. The kernel density is estimated using a leave-one-out
approach such that the density at η̃j is

P(η̃j )=
1

p− 1

∑
i 6=j

Ki(η̃j ). (4)

This makes sure that the density is not over-fitted to any
individual data point.

4. To guarantee data points in the tail, the largest 10 values
are always assumed to be in the upper tail of the distri-
bution (within the GPD), and the next 990 values (i.e.
η̃11 to η̃1000) are each tried as the location parameter, a,
of the GPD. If there are fewer than 1000 data points (i.e.
p < 1000), then all data points are tried as the location
parameter.

5. For each test value of a:

i. The scale parameter, b, is determined analytically
by the constraints that the density distribution must
be equal at the breakpoint for both the GPD and the
KDE distribution, and the integral of the full den-
sity distribution function with respect to discharge
must be equal to 1.

ii. The shape parameter, c, is determined numerically
by finding the maximum likelihood estimate, given
the values of a and b, within the limits of−1≤ c ≥
b
η̃1

(de Zea Bermudez and Kotz, 2010). The upper
limit guarantees the upper bound of the distribution
is greater than the maximum value in the time se-
ries, η̃1, and the lower limit constrains the number
of values considered to reduce the computational
time required.

For stations with p > 1000, this produces 990 sets of
parameters.

6. The full distribution is the combination of the KDE and
GPD weighted by their contribution to the total density,
Fη̃(a) and 1−Fη̃(a), respectively (MacDonald et al.,
2011). The likelihood function for the full distribution
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is used to determine the maximum likelihood estimate
of the location parameter, a, given the values of b and c
that were calculated in step 5 for each possible value of
a. This results in the most likely set of parameters (aML,
bML, cML) to define the GPD fitted to the upper tail of
the distribution.

The six steps outlined above are applied separately to both
the simulated time series, s̃(1 : p), and the observed time se-
ries, ỹ(1 : p). Figure 2 illustrates the approximation method
for the simulated discharge distribution for a single station.

Once the variables that define the discharge density dis-
tribution, namely ση̃, aML, bML, and cML, have been de-
termined, the CDF can be calculated analytically for both
the observed and simulated discharge distributions. All input
data (for both the online and offline parts of the method) must
be transformed to the standard Normal space using the NQT.
However, it is too computationally expensive to calculate the
analytical CDF for each data point. To increase the computa-
tional efficiency of the NQT, the KDE parts of the CDFs are
approximated as piecewise linear functions. Each data point
in the historic time series is considered a knot (a boundary
point between pieces of the piecewise function). The CDF
values at the mid-points between knots are approximated us-
ing linear interpolation. If the approximated and analytical
CDFs differ by more than 1× 10−5, then the mid-points are
added as additional knots. The process is repeated until the
approximated CDF is accurate to within 1× 10−5. Ensuring
that the CDF for any discharge value can be determined using
linear interpolation makes the application of the NQT more
efficient.

3.3.2 Joint distribution estimation

This section describes the calculation of the joint distribu-
tion used in the online hydrological uncertainty estimation
(see Sect. 3.4.1). First, the discharge distributions defined in
Sect. 3.3.1 are used within the NQT to transform the his-
toric observations and water balance simulation to the stan-
dard Normal space (see Fig. 1b). This allows the joint dis-
tribution to be calculated as a multi-variate Gaussian distri-
bution. The joint distribution is defined between the obser-
vations and water balance simulation values at L timesteps,
which, as noted in Sect. 3.1, is equal to the length of the re-
cent period (q timesteps) and forecast period (T timesteps)
combined. The L timesteps are defined relative to a timestep
k such that the joint distribution is a 2L-dimensional distribu-
tion that describes the relationship between the observations,
y(k−q+1 : k+T ), and the water balance simulation values,
s(k− q+ 1 : k+ T ). To ease notation, we introduce the vec-
tor φ(ti : tj ), here defined generally for arbitrary timesteps,
which includes the observed and simulated discharge values
for all timesteps between timestep ti and timestep tj , such
that

φ(ti : tj )=

(
y(ti : tj )

s(ti : tj )

)
. (5)

Following on from Eq. 5, we define the vector ψ ∈ R2L:

ψ(k− q + 1 : k+ T )=
(
φ(k− q + 1 : k)
φ(k+ 1 : k+ T )

)

=


y(k− q + 1 : k)
s(k− q + 1 : k)
y(k+ 1 : k+ T )
s(k+ 1 : k+ T )

 ∈ R2L. (6)

The splitting of the observed and simulated variables into
two distinct time periods is discussed below. The joint distri-
bution can now be defined in terms of ψ(k− q + 1 : k+ T ).

The joint distribution is denoted N2L(µψ (k− q + 1 : k+
T ),6ψψ (k−q+1 : k+T ,k−q+1 : k+T )), where the sub-
script 2L indicates its dimensions and the subscript ψ in-
dicates that the distribution is for both the observed and
simulated variables. The distribution is fully defined by its
mean, µψ (k− q + 1 : k+ T ) ∈ R2L, and covariance matrix,
6ψψ (k−q+1 : k+T ,k−q+1 : k+T ) ∈ R2L×2L. Since both
the observed and simulated historic time series have been
transformed into the standard Normal space, the mean dis-
charge value is 0 for both distributions, and therefore the
mean vector is defined as µψ (k−q+1 : k+T )= 0. The co-
variance matrix of the joint distribution is calculated as

6ψψ (k− q + 1 : k+ T ,k− q + 1 : k+ T )

=
1

p−L

p−T∑
k=q

ψ(k− q + 1 : k+ T )

×ψ(k− q + 1 : k+ T )T ∈ R2L×2L, (7)

where ψ(k− q + 1 : k+ T ) is defined as in Eq. 6 for each
timestep, k, in the historic period. Since many stations have
short time series, the impact of the seasonal cycle on the joint
distribution is not considered. Additionally, any spurious cor-
relations resulting from these short time series are not cur-
rently treated.

To ensure that the covariance matrix, 6ψψ (k−q+1 : k+
T ,k−q+1 : k+T ), is positive definite, the minimum eigen-
value method is used (Tabeart et al., 2020). The covariance
matrix is decomposed into the eigenvalues and eigenvec-
tors. A minimum eigenvalue threshold is set to 1× 10−7λ1,
where λ1 is the largest eigenvalue. All eigenvalues below this
threshold are set to the threshold. The matrix is then recon-
structed and scaled to match the variance of the original co-
variance matrix.

As mentioned, the joint distribution is used in the estima-
tion of the hydrological uncertainty in the online part of the
post-processing method (see Sect. 3.4.1). If the joint distribu-
tion is defined such that k is equal to the production time of a
forecast, then timesteps k−q+1 to k correspond to the recent
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Figure 2. Schematic of the distribution approximation method. All data points are shown by the short solid lines. The largest 10 data points
are red (always in the upper tail), the next 990 largest data points are blue (tried as the location parameter), and the remaining data points are
black. Gaussian kernels (grey dashed lines) are used to calculate the kernel density (purple line). For clarity, only the kernels centred at every
500th data point are plotted. The upper tail is fitted with a generalised type-II Pareto distribution (orange line). The breakpoint (dot-dashed
black line) defines the separation between the two distributions. The integral of the density distribution function with respect to discharge
(the sum of the purple- and orange-shaded areas) equals 1.

period and timesteps k+1 to k+T correspond to the forecast
period. Therefore, the joint distribution can be used to condi-
tion the unknown observations and water balance simulation
values in the forecast period on the known observations and
water balance simulation values from the recent period. Here,
we introduce notation that is used to split the joint distribu-
tion into the variables corresponding to each of these two pe-
riods. First, the mean vector is split by timestep (as in Eq. 6)
such that

µψ (k− q + 1 : k+ T )=
(
µφ(k− q + 1 : k)
µφ(k+ 1 : k+ T )

)
, (8)

where µφ(k− q+ 1 : k) represents the mean of the variables
in the recent period for a forecast produced at time k and
µφ(k+ 1 : k+T ) represents the mean of the variables in the
forecast period. The subscript φ indicates that the distribution
is for the observed and simulated variables for a single time
period, following the structure shown in Eq. 5, rather than
for both time periods as indicated by the subscript ψ . The
covariance matrix can be expressed as
6ψψ (k− q + 1 : k+ T ,k− q + 1 : k+ T )=(

6φφ(k− q + 1 : k,k− q + 1 : k) 6φφ(k− q + 1 : k,k+ 1 : k+ T )
6φφ(k+ 1 : k+ T ,k− q + 1 : k) 6φφ(k+ 1 : k+ T ,k+ 1 : k+ T )

)
, (9)

where 6φφ(k− q + 1 : k,k− q + 1 : k) and 6φφ(k+ 1 : k+
T ,k+ 1 : k+ T ) are the covariance matrices for variables in
the recent and forecast periods, respectively, and 6φφ(k−
q+1 : k,k+1 : k+T ) and 6φφ(k+1 : k+T ,k−q+1 : k)
represent the cross-covariance matrices of variables in both
time periods.

These sub-matrices can be further decomposed into the
components referring to the observed and simulated variables
such that, for example,

6φφ(k+ 1 : k+ T ,k+ 1 : k+ T )=(
6yy (k+ 1 : k+ T ,k+ 1 : k+ T ) 6ys (k+ 1 : k+ T ,k+ 1 : k+ T )
6sy (k+ 1 : k+ T ,k+ 1 : k+ T ) 6ss (k+ 1 : k+ T ,k+ 1 : k+ T )

)
, (10)

where the subscripts y and s indicate that the distribution
refers to the observed and simulated variables, respectively
(in contrast to the subscript φ, which indicates that both ob-
served and simulated variables are included). The mean vec-
tor can also be split in this way such that

µφ(k+ 1 : k+ T )=
(
µy(k+ 1 : k+ T )
µs(k+ 1 : k+ T )

)
. (11)

3.4 Online correction

This section describes the online correction part of the post-
processing method (see Fig. 1c). The online correction quan-
tifies and combines the hydrological and meteorological un-
certainties for a specific forecast to produce the final proba-
bilistic forecast. This forecast is produced at time t and has
a maximum lead time of T days, x̃t(t + 1 : t + T ) ∈ RM×T
(see Sect. 3.1 for a description of the notation). As shown in
Fig. 1, as well as the current forecast produced at time t , the
online correction requires the following input data from the
recent period:

– observations for the station, ỹ(t − q + 1 : t) ∈ Rq ,
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– the water balance simulation for the grid box containing
the station’s location, s̃(t − q + 1 : t) ∈ Rq , and

– a set of ensemble streamflow forecasts (from the same
system as the forecast x̃t) for the grid box containing the
station’s location, {x̃t−q+1, x̃t−q+2, . . ., x̃t−1}.

Previous work used tuning experiments to determine that a
recent period of length 40 d (i.e. q = 40) was most appro-
priate (Paul Smith, personal communication, 2020). All the
input data are transformed to the standard Normal space us-
ing the NQT (see Eq. 1) and the CDFs determined in the
offline calibration (see Sect. 3.3) and stored in the station
model, Fỹ and Fs̃ . The observations are transformed using
Fỹ , and the water balance simulation and forecasts are trans-
formed using Fs̃ . The following sections provide more detail
on the methods used to account for the uncertainties and are
performed within the standard Normal space. For simplic-
ity, it is assumed that all data are available and that there are
no data latency issues such that the most recent observation
available is ỹ(t) for the timestep when the forecast is pro-
duced. In practice, some observations from the recent period
may not be available, and additionally the operational system
does have a data latency of approximately 1 d.

3.4.1 Hydrological uncertainties

The hydrological uncertainty is quantified using a MCP
method which uses the discharge values from the recent pe-
riod and the joint distribution, N2L(µψ ,6ψψ ), defined in
the offline calibration (see Sect. 3.3.2). The joint distribu-
tion defines the relationship between the observations and
water balance simulation across L= q + T timesteps. The
hydrological uncertainty is estimated by conditioning the un-
known observations and water balance simulation values in
the forecast period on the known observed and simulated dis-
charge values from the recent period using the joint distribu-
tion. First, the station observations and water balance sim-
ulations from the recent period are combined into a single
vector, (φ(t − q + 1 : t), as defined in Eq. 5.

In Sect. 3.3.2, theL timesteps of the joint distribution were
defined relative to a timestep k. Here, k is set equal to the pro-
duction time of the forecast, t , such that the timesteps from
t−q+1 to t correspond to the recent period and the timesteps
from t + 1 to t + T correspond to the forecast period. Thus,
the mean vector of the joint distribution can be expressed, as
discussed in Sect. 3.3.2, as

µψ (t − q + 1 : t + T )=
(
µφ(t − q + 1 : t)
µφ(t + 1 : t + T )

)
, (12)

where µφ(t − q + 1 : t) represents the mean of the variables
(both observations and water balance simulation) in the re-
cent period, for which we have known values, φ(t−q+1 : t),
and µφ(t + 1 : t + T ) represents the mean of the variables in
the forecast period, which we are required to predict.

The sub-matrices of the covariance matrix of the joint dis-
tribution that were defined in Eq. 10 are also positioned rela-
tive to timestep t , such that

6ψψ (t − q + 1 : t + T , t − q + 1 : t + T )=(
6φφ(t − q + 1 : t, t − q + 1 : t) 6φφ(t − q + 1 : t, t + 1 : t + T )
6φφ(t + 1 : t + T , t − q + 1 : t) 6φφ(t + 1 : t + T , t + 1 : t + T )

)
. (13)

By positioning the joint distribution in this way, µφ(t+1 :
t + T ) ∈ R2T and the sub-matrix 6φφ(t + 1 : t + T , t + 1 :
t + T ) ∈ R2T×2T create a climatological forecast for the ob-
servations and water balance simulation in the standard Nor-
mal space. It is this climatological forecast that is conditioned
on the discharge values from the recent period.

The conditional distribution of the unknown discharge val-
ues in the forecast period conditioned on the known dis-
charge values in the recent period, denoted N2T (µ̂φ(t + 1 :
t + T ), 6̂φφ(t + 1 : t + T , t + 1 : t + T )), is calculated using
the properties of a multi-variate Gaussian joint distribution
(Dey and Rao, 2006) such that

µ̂φ(t + 1 : t + T )= µφ(t + 1 : t + T )

+6φφ(t + 1 : t + T , t − q + 1 : t)

×6φφ(t − q + 1 : t, t − q + 1 : t)−1

×
(
φ(t − q + 1 : t)−µφ(t − q + 1 : t)

)
(14)

and

6̂φφ(t + 1 : t + T , t + 1 : t + T )

=6φφ(t + 1 : t + T , t + 1 : t + T )
−6φφ(t + 1 : t + T , t − q + 1 : t)

×6−1
φφ(t − q + 1 : t, t − q + 1 : t)

×6φφ(t − q + 1 : t, t + 1 : t + T ), (15)

where the hat notation indicates that it is conditioned on the
discharge values from the recent period.

The resulting predicted distribution, N2T (µ̂φ(t + 1 : t +
T ),6̂φφ(t+1 : t+T , t+1 : t+T )), is referred to as the hydro-
logical uncertainty distribution and can be partitioned into
two T -dimensional forecasts, one for the water balance sim-
ulation and one for the unknown observations in the forecast
period, such that[
y(t + 1 : t + T )
s(t + 1 : t + T )

]
∼N2T

([
µ̂y (t + 1 : t + T )
µ̂s (t + 1 : t + T )

]
,[

6̂yy (t + 1 : t + T , t + 1 : t + T ) 6̂ys (t + 1 : t + T , t + 1 : t + T )
6̂sy (t + 1 : t + T , t + 1 : t + T ) 6̂ss (t + 1 : t + T , t + 1 : t + T )

])
. (16)

The subscripts y and s indicate that the distribution refers to
the observed and simulated variables, respectively.

3.4.2 Meteorological uncertainty

This section describes the part of the online correction that
estimates the meteorological uncertainty in the forecast of
interest. As stated at the beginning of Sect. 3.4, the forecast
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of interest and the input data from the recent period are trans-
formed into standard Normal space. The full transformed
forecast, denoted by the forecast matrix xt (t + 1 : t + T ) ∈
RT×M , where each column represents an ensemble member
(see Sect. 3.1), has ensemble mean xt (t + 1 : t + T ) ∈ RT .
The ith component of xt (t+1 : t+T ) represents the ensem-
ble mean discharge at the ith lead time and is calculated as

xt (t + 1 : t + T )[i] =
1
M

M∑
m=1

xt (t + 1 : t + T )[i,m]. (17)

The auto-covariance matrix of the forecast, 0t (t + 1 : t +
T , t + 1 : t + T ) ∈ RT×T , is calculated such that the element
corresponding to the ith row and j th column is given by

0t (t + 1 : t + T , t + 1 : t + T )[i,j ]

=
1

M − 1

M∑
m=1

(xt (t + 1 : t + T )[i,m]

− xt (t + 1 : t + T )[i])(xt (t + 1 : t + T )[j,m]

− xt (t + 1 : t + T )[j ])T . (18)

The uncertainty that propagates through from the meteo-
rological forcings is partially captured by the spread of the
ensemble streamflow forecast. However, these forecasts are
often under-spread, particularly at shorter lead times. The
EMOS method (Gneiting et al., 2005) is used here to correct
the spread only. Biases from the hydrological model are ig-
nored in this section as the same hydrological model is used
to create the water balance simulation and the forecasts. It is
assumed that there is no bias in the meteorological forcings
relative to the meteorological observations that are used to
produce the water balance simulation (see Sect. 2) and that
each ensemble member is equally likely. These assumptions
allow the value of the water balance simulation at any time k
to be expressed as

s(k)= xl(k)+ ε, (19)

where xi(k) is the ensemble mean for the timestep k of a
forecast produced at time l (where l+1<= k <= l+T ) and
ε is an unbiased Gaussian error. The value of the ensemble
mean at timestep k, xl(k), is therefore a random variable from
the distribution N(s(k),σ 2

ε ).
The variance of ε, σ 2

ε , should equal the expected value of
the spread of the forecast, E[0t ]. However, this is not always
satisfied. To correct the spread, a set of forecasts from the re-
cent period is used to estimate two spread correction parame-
ters. The corrected covariance matrix, 0ct (t+1 : t+T , t+1 :
t+T ) ∈ RT×T , is then calculated, using these spread correc-
tion parameters, such that

0ct (t + 1 : t + T , t + 1 : t + T )

= ζ (δI+0t (t + 1 : t + T , t + 1 : t + T )), (20)

where I is the identity matrix, and ζ and δ are the scalar
spread correction parameters to be determined.

The ensemble mean at each lead time and the auto-
covariance matrices are calculated for each of the forecasts
from the recent period after they have been transformed to the
standard Normal space (not including the forecast produced
at time t that is being corrected). Using the concentrated like-
lihood method (Takeshi, 1985), the spread correction param-
eters are defined as the maximum likelihood estimates, ζML
and δML, for the likelihood function

L(ζ,δ|{xt−q+1, . . .,xt−1})

=

t−1∏
k=t−q+1

1
√

2πζ(δI+0k)

× exp
(
−

1
2ζ(δI+0k)

(xk − s)
2
)
, (21)

where we have used a shorthand notation for clarity, such that
xk = xk(k+1 : k+T ), 0k = 0k(k+1 : k+T ,k+1 : k+T ),
and s = s(k+ 1 : k+ T ), as defined above.

The current forecast, xt(t + 1 : t + T ), is spread corrected
to account for the meteorological uncertainty by applying the
parameters, ζML and δML, as described in Eq. 20. This re-
sultant distribution is referred to as the meteorological un-
certainty distribution and provides a prediction of the water
balance simulation in the forecast period, such that

s(t + 1 : t + T )∼N(xt (t + 1 : t + T ),

0ct (t + 1 : t + T , t + 1 : t + T )). (22)

3.4.3 Combining uncertainties

The update step equations of the Kalman filter (Kalman,
1960) are used to combine the hydrological and meteorolog-
ical uncertainties to produce the final probabilistic forecast.
The hydrological uncertainty distribution, defined in Eq. 16
and denoted N2T (µ̂φ(t+1 : t+T ),6̂φφ(t+1 : t+T , t+1 :
t+T )), is a predicted distribution for the water balance sim-
ulation and the observations during the forecast period. The
meteorological uncertainty distribution, defined in Eq. 22
and denotedN(xt (t+1 : t+T ),0ct t+1 : t+T , t+1 : t+T )),
is a predicted distribution for the water balance simulation in
the forecast period. The predictions of the distribution of the
water balance are compared within the Kalman filter. In order
to extract the water balance simulation part of the hydrolog-
ical uncertainty distribution, we define the matrix “observa-
tion operator” H such that

µ̂s(t + 1 : t + T )=Hµ̂ψ (t + 1 : t + T )

=H
(
µ̂y(t + 1 : t + T )
µ̂s(t + 1 : t + T )

)
∈ RT , (23)

where the subscripts y and s denote the observed and water
balance simulation variables, respectively.
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The update step of the Kalman filter is applied to produce
a probabilistic forecast in the standard Normal space contain-
ing information about both the meteorological and hydrolog-
ical uncertainties. The distribution of this forecast is denoted
N2T (µ̂

a
ψ (t+1 : t+T ), 6̂aψψ (t+1 : t+T , t+1 : t+T )), where

the superscript a signifies that the Kalman filter has been ap-
plied. The mean, µ̂aψ (t + 1 : t + T )), is calculated as

µ̂aψ (t + 1 : t + T )= µ̂ψ (t + 1 : t + T )

+K(xt(t + 1 : t + T )
−Hµ̂ψ (t + 1 : t + T )), (24)

where K is the Kalman gain matrix, defined as

K= 6̂ψψ (t + 1 : t + T , t + 1 : t + T )

×HT(H6̂ψψ (t + 1 : t + T , t + 1 : t + T )

×HT
+0ct (t + 1 : t + T , t + 1 : t + T ))−1, (25)

and H is the matrix observation operator defined above. The
auto-covariance matrix is calculated as

6̂
a

ψψ (t + 1 : t + T , t + 1 : t + T )

= (I−KH)6̂ψψ (t + 1 : t + T , t + 1 : t + T ), (26)

where I is the identity matrix and all other symbols are as
before. The distribution produced by combining these two
sources of uncertainty, N2T (µ̂

a
ψ (t + 1 : t + T ), 6̂aψψ (t + 1 :

t + T , t + 1 : t + T )), is for both the unknown observations
and the water balance simulation variables in the forecast pe-
riod. This distribution is partitioned into two T -dimensional
forecasts, which are in the standard Normal space such that
[
y(t + 1 : t + T )
s(t + 1 : t + T )

]
∼N2T

([
µ̂ay (t + 1 : t + T )
µ̂as (t + 1 : t + T )

]
,[

6̂
a

yy (t + 1 : t + T , t + 1 : t + T ) 6̂
a

ys (t + 1 : t + T , t + 1 : t + T )
6̂
a

sy (t + 1 : t + T , t + 1 : t + T ) 6̂
a

ss (t + 1 : t + T , t + 1 : t + T )

])
, (27)

where the subscripts y and s denote the observed and water
balance simulation variables, respectively.

The T -dimensional distribution corresponding to the pre-
dicted distribution of the unknown observations in the fore-
cast period, NT (µ̂ay(t + 1 : t + T ), 6̂ayy(t + 1 : t + T , t + 1 :
t + T )), is transformed back into physical space using the
inverse NQT, defined in Eq. 2, and the CDF of the observed
discharge distribution, Fỹ . This forecast is then used to pro-
duce the real-time hydrograph (see Fig. 4 for an example of
this forecast product).

4 Evaluation strategy

4.1 Station selection

To maintain similarity to the operational system, the station
models used in this evaluation are those calibrated for use in

Figure 3. Map showing the locations of the 522 stations evaluated.
The marker colour shows the continuous ranked probability score
(see Sect. 4.3.4) for the raw forecast at a lead time of 6 d on a log
scale. Perfect score: CRPS= 0. Stations used as examples in Sect. 5
are labelled and highlighted by the red circles.

the operational post-processing. To avoid an unfair evalua-
tion, station models must have been calibrated using observa-
tions from before the evaluation period. An evaluation period
of approximately 2 years (from 1 January 2017 to 14 Jan-
uary 2019) was chosen to balance the length of the evaluation
period with the number of stations evaluated. Of the 1200 sta-
tions post-processed operationally, 610 stations have calibra-
tion time series with no overlap with the evaluation period.
Additionally, stations were required to have at least 95 % of
the daily observations for the evaluation period, reducing the
number of stations to 525. A further three stations were re-
moved after a final quality control inspection (see Sect. 4.2.2
for details of the observations and the quality control sys-
tem used). The locations of the 522 stations are shown in
Fig. 3. The marker colour shows the CRPS of the raw en-
semble forecast for a lead time of 6 d. The spatial patterns
of these CRPS values are discussed in Sect. 5.1.4. Although
all 522 stations are evaluated, specific stations (labelled in
Fig. 3) are used to illustrate key results (see Sect. 5.2).

4.2 Data

4.2.1 Reforecasts

The reforecasts used in this study are a subset of the EFAS
4.0 reforecast dataset (Barnard et al., 2020). This dataset con-
tains twice-weekly reforecasts for dates that correspond to
each Monday and Thursday in 2019. For example, 3 Jan-
uary 2019 is a Thursday, so the dataset contains reforecasts
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for 3 January for every year from 1999 to 2018. The cho-
sen evaluation period (see Sect. 4.1) includes 208 reforecasts.
The raw forecasts were used as input for the post-processing
method. Using twice-weekly rather than daily reforecasts re-
duces the temporal correlations between forecasts and there-
fore limits the dependence of the results on the autocorrela-
tion of the river discharge (Pappenberger et al., 2011). How-
ever, this means any single event cannot be included in the
evaluation for all lead times. For example, an event that oc-
curs on a Saturday will not be included within the evaluation
of the forecasts at a lead time of 1 d, which can only be a
Tuesday or a Friday. Where necessary, the evaluation met-
rics were combined over several lead times (see Sects. 4.3.2
and 4.3.3). Additionally, fewer reforecasts were available to
estimate the EMOS parameters in the meteorological un-
certainty estimation (see Sect. 3.4.2). Whereas operationally
daily forecasts for each day of the recent period are available,
here only two reforecasts are available for each week of the
recent period. This reduces the number of forecasts used to
estimate the EMOS parameters from 40 to 11. We did not
extend the recent period to maintain consistency with the op-
erational system and to avoid introducing errors due to any
seasonal variation in the EMOS parameters.

The reforecasts and the operational forecasts (see
Sect. 2) have a 6-hourly timestep. However, currently, post-
processing is performed at daily timesteps. Therefore, the
reforecasts were aggregated to daily timesteps with a max-
imum lead time of T = 15 d.

4.2.2 Observations

All discharge observations were provided by local and na-
tional authorities and collected by the Hydrological Data
Collection Centre of the Copernicus Emergency Manage-
ment Service and are the observations used operationally.
The operational quality control process was applied to
remove incorrect observations before they were used in
this study (Arroyo and Montoya-Manzano, 2019; McMillan
et al., 2012). Additionally, simple visual checks were per-
formed to account for any computational errors introduced
after the operational quality checks. Average daily discharge
observations were used in three parts of the study. For each
station, a historic time series was used in the calibration of
the station model (see Sect. 3.3). The length of the historic
time series, denoted p in Sect. 3.1, varies in length between
stations. However, a minimum of 2 years of observational
data between 1 January 1990 and 1 January 2017 is required.
It should be noted that there is an overlap between the ob-
servations used for the calibration of the station models and
the observations used for the calibration of the LISFLOOD
hydrological model. For each reforecast, records of near-
real-time observations from the q = 40 d prior to the forecast
time were used as the observations in the recent period (see
Sect. 3.4.1). Observations from the evaluation period were
used as the truth values in the evaluation (see Sect. 4.3).

4.2.3 Water balance simulation

The EFAS 4.0 simulation (Mazzetti et al., 2020) was used
as the water balance simulation for dates between 1 Jan-
uary 1990 and 14 January 2019. As described in Sect. 2, the
water balance simulation is created by driving LISFLOOD
with gridded meteorological observations. This dataset pro-
vides simulations for the whole of the EFAS domain. The
values for the grid boxes representing the locations of the sta-
tions were extracted, creating a simulated time series for each
station. These time series were aggregated from 6-hourly
timesteps to daily timesteps (00:00 to 00:00 UTC) and were
used in three ways in this study. The water balance values
for dates corresponding to the available observations in the
historic period were used to calibrate the station model (see
Sect. 3.3). For dates within the recent period for each re-
forecast, the water balance values were used in the post-
processing (see Sect. 3.4.1). Finally, the water balance values
corresponding to the 15 d lead time of each reforecast were
used to estimate the average meteorological error of each sta-
tion (see Sect. 5.2.1).

4.3 Evaluation metrics

The evaluation of the post-processing method is performed
by comparing the skill of the raw forecasts with the corre-
sponding post-processed forecasts. Since the aim of the post-
processing is to create a more accurate representation of the
observation probability distribution, all metrics use observa-
tions as the “truth” values. As mentioned in Sect. 2, the out-
put from the post-processing method evaluated here is ex-
pressed operationally in the real-time hydrograph product, an
example of which is shown in Fig. 4. Therefore, the evalua-
tion will consider four main features of forecast hydrographs.

4.3.1 Forecast median

In the real-time hydrograph the darkest shade of blue indi-
cates the forecast median, making it the easiest and most ob-
vious single-valued summary of the full probabilistic fore-
cast for end users. The ensemble median of the raw forecasts
is used in this evaluation because operationally the ensemble
forecasts are often represented by box plots where the me-
dian at each timestep is shown.

The skill of the forecast median is evaluated using the
modified Kling–Gupta efficiency score (KGE’, Kling et al.,
2012; Gupta et al., 2009). The forecast median is determined
for the post-processed forecasts by extracting the 50th per-
centile of the probability distribution at each lead time. For
the raw forecasts the ensemble members are sorted by dis-
charge value, and the middle (i.e. sixth) member is chosen.
This is done separately for each lead time, so the overall
trajectory may not follow any single member. The forecast
median is denoted X to distinguish it from the full forecast,
xt(t + 1 : t + T ). The KGE’ is calculated as
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Figure 4. Example of the real-time hydrograph product for the station in Brehy, Slovakia, on 31 January 2017. (a) Probability distribution of
the post-processed forecast. The darkest shade of blue indicates the forecast median (50th percentile), with each consecutive shade indicating
a percentile difference such that the extent of the total predictive uncertainty is shown by the shaded region. Solid grey lines indicate the upper
(99th percentile) and lower (1st percentile) bounds of the forecast probability distribution. The red line shows the mean annual maximum
(MHQ) threshold, and the dashed grey line shows the mean flow (MQ) threshold. Black circles represent observations positioned at the centre
of the timestep over which they are calculated. (b) Bar chart showing the probability of the discharge exceeding the MHQ threshold at each
lead time. (c) Bar chart showing the probability of the discharge exceeding the MQ threshold at each lead time.

KGE′ = 1−
√
(r − 1)2+ (β − 1)2+ (γ − 1)2, (28)

with

β =
X

y
(29)

and

γ =
σX/X

σy/y
, (30)

where r is Pearson’s correlation coefficient, X and y are the
mean values of the forecast median and the observations, re-
spectively, and σx and σy are their standard deviations. The
correlation, r , measures the linear relationship between the
forecast median and the observations, indicating the ability
of the forecasts to describe the temporal fluctuations in the
observations. The bias ratio, β, indicates whether the forecast
consistently under-predicts or over-predicts the observations.
The variability ratio, γ , measures how well the forecast can
capture the variability of the discharge magnitude. The KGE’
is calculated separately for each lead time. The KGE’ ranges
from −∞ to 1, r ranges from − 1 to 1, and both β and γ
range from −∞ to ∞. A perfect score for the KGE’ and
each of the components is 1.

4.3.2 Peak discharge

The timing of the peak discharge is an important variable of
flood forecasts. The peak-time error (PTE) is used to eval-
uate the effect of post-processing on the timing of the peak
within the forecast. The PTE requires a single-valued fore-
cast trajectory. For the reasons stated in Sect. 4.3.1, the PTE
is calculated using the forecast median, X. Peaks are defined
as the maximum forecast value and the PTE is calculated for
forecasts where this peak exceeds the 90th percentile dis-
charge threshold of the station. This threshold is calculated
using the full observational record for the station. The PTE
is calculated as

PTE= tXn − t
y
n , (31)

where tXn is the timestep of the maximum of the forecast me-
dian for the nth forecast and tyn is the timestep of the maxi-
mum observed value in the same forecast period. A perfect
score is PTE= 0. A negative PTE value indicates that the
peak is forecast too early and a positive PTE value indicates
that the peak is forecast too late. As the maximum lead time
is 15 d, the maximum value of the PTE is 14 d and the mini-
mum value is − 14 d.
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4.3.3 Threshold exceedance

Two discharge thresholds are shown in the real-time hydro-
graph: the mean discharge (MQ) and the mean annual max-
imum discharge (MHQ). Both thresholds are determined us-
ing the observations from the historic period. For the post-
processed forecasts, the probability of exceedance of the MQ
threshold, PoE(MQ), is calculated such that

PoE(MQ)= 1−Fx̃(MQ), (32)

where Fx̃(MQ) is the value of the forecast CDF at the MQ
threshold. The CDF is assumed to be linear between any
two percentiles. The same method is applied for the MHQ
threshold. For the ensemble forecast, each ensemble member
above the threshold contributes one-eleventh to the probabil-
ity of the threshold being exceeded. The probability of the
threshold being exceeded is calculated separately for each
lead time.

The relative operating characteristic (ROC) score and
ROC diagram (Mason and Graham, 1999) are used to eval-
uate the potential usefulness of the forecasts with respect to
these two thresholds. The ROC diagram shows the probabil-
ity of detection vs. the false alarm rate for alert trigger thresh-
olds from 0.05 to 0.95 in increments of 0.1. The ROC score
is the area below this curve with a ROC score of less than
0.5, indicating a forecast with less skill than a climatological
forecast. As discharge values of above the MHQ threshold
are rare, all stations are combined and lead times are com-
bined into three groups; 1–5, 6–10, and 11–15 d. Since the
reforecasts are only produced on Monday and Thursdays, an
event that occurs on a Saturday can only be forecasted at lead
times of 2, 5, 9, and 12 d. Using 5 d groupings of lead times
guarantees that each group is evaluated against each event
at least once but allows the usefulness of the forecasts to be
compared at different lead times. A perfect forecasting sys-
tem would have a ROC score of 1.

Reliability diagrams are used to evaluate the reliability of
the forecast in predicting the exceedance of the two thresh-
olds. Reliability diagrams show the observed frequency vs.
the forecast probability for bins of width 0.1 from 0.05 to
0.95. A perfectly reliable forecast would follow the one-to-
one diagonal on a reliability diagram. The same combination
of stations and lead times is used as with the ROC diagrams.

4.3.4 Full probability distribution

A commonly used metric to evaluate the overall performance
of a probabilistic or ensemble forecast is the continuous
ranked probability score (CRPS, Hersbach, 2000). The CRPS
measures the difference between the CDF of the forecast and
that of the observation and is defined as

CRPS(Fx̃,y)=

∞∫
−∞

(Fx̃ (η̃)− θ (η̃− y))
2dη̃, (33)

where Fx̃ represents the CDF of the forecast and θ(η̃− y)
is the step function (Abramowitz and Stegun, 1972), defined
such that

θ(η̃)=

{
0 η̃ < 0,
1 η̃ ≥ 0, (34)

and represents the CDF of the observation, y. The post-
processed forecasts are defined via their percentiles; there-
fore, by assuming the CDF is linear between percentiles, the
CRPS can be calculated directly. The empirical CDF of the
raw forecasts, defined via point statistics, is used and the
CRPS is calculated using a computationally efficient form
(Jordan et al., 2019, Eq. 3). It should be noted that the error
in the calculation of the CRPS for the raw ensemble forecasts
is likely to be large compared with that of the post-processed
forecasts because of the limited number of ensemble mem-
bers (Zamo and Naveau, 2018). However, as this evaluation
is of the post-processing method, no corrections to account
for the ensemble size are made (e.g. Ferro et al., 2008) since
the impact of the post-processing would be difficult to differ-
entiate from that of the CRPS correction. The CRPS ranges
from a perfect score of 0 to∞.

4.3.5 Comparison

For some of the metrics described in Sects. 4.3.1–4.3.4, the
impact of post-processing is shown using the respective skill
score, SS, with the raw forecast as the benchmark,

SS=
Spp− Sraw

Sperf− Sraw
, (35)

where Spp and Sraw are the scores for the post-processed
forecast and the raw forecast, respectively, and Sperf is the
value of the score for a perfect forecast. The skill score gives
the fraction of the gain in skill required for the raw forecast
to become a perfect forecast that is provided by the post-
processing. A value SS< 0 means the forecast has been de-
graded by the post-processing, a value of SS> 0 indicates
that the forecast has been improved by the post-processing,
and a value of SS= 1 means that the post-processed forecast
is perfect. Henceforth, the skill score for a metric is denoted
by adding “SS” to the metric name.

5 Results and discussion

5.1 Performance of the post-processing method

This section focuses on the overall impact of post-processing
at all 522 of the evaluated stations across the EFAS domain
and aims to address the research question “Does the post-
processing method provide improved forecasts?”

5.1.1 Forecast median

The modified Kling–Gupta efficiency skill score (KGESS) is
used to evaluate the impact of post-processing on the fore-
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cast median (see Sect. 4.3.1). Figure 5a shows the KGESS
for all stations at every other lead time such that each box
plot (also known as letter-value plots, Hofmann et al., 2017)
contains 522 values, 1 for each station. For each lead time
the central black line shows the median KGESS value. The
inner box (the widest box) represents the interquartile range
and contains 50 % of the data points. Each subsequent layer
of boxes splits the remaining data points in half such that the
second layer of boxes is bounded by the 12.5th and 87.5th
percentiles and contains 25 % of the data points. The out-
liers represent a total of 2 % of the most extreme data points.
Figure 5b–d show the three components of the KGE’ (b: cor-
relation, c: bias ratio, d: variability ratio) for lead times of 3,
6, 10, and 15 d for all stations for both the raw forecasts (or-
ange) and the post-processed forecasts (purple). The chosen
lead times are representative of the results.

Figure 5a shows that most stations have positive KGESS
values at all lead times, indicating that post-processing in-
creases the skill of the forecast median. However, the mag-
nitude of this improvement decreases at longer lead times,
with most of the reduction occurring in the first 7 d. The pro-
portion of stations for which post-processing degrades the
forecast median increases with lead time. However, the low-
est KGESS values become less extreme (i.e. not as negative).
This increase in the KGESS of the most degraded stations is
due to a decrease at longer lead times in the skill of the raw
forecast (used as the benchmark for the skill score) rather
than an increase in the skill of the post-processed forecasts.
This shows that the effect of naïve skill on the results should
be considered; however, as the aim is to evaluate the impact
of post-processing, it is appropriate to use the raw forecasts
as the benchmark (Pappenberger et al., 2015b).

Figure 5b shows that post-processing improves the corre-
lation between the forecast median and the observations for
most stations, particularly at short lead times. The impact of
post-processing on the correlation component of the KGE’
varies greatly between stations. Notably, the flashiness of the
catchment and whether or not the river is regulated can af-
fect the performance of the post-processing (see Sect. 5.2.2).
Additionally, the quality and length of the calibration time
series also have an effect (see Sect. 5.2.3).

Figure 5c shows the bias ratio, β, which indicates whether
on average the forecasts over-estimate or under-estimate the
discharge at a station. In the hydrological uncertainty estima-
tion part of the online correction (see Sect. 3.4.1) the mean
of the hydrological uncertainty distribution is calculated in
Eq. 14 as the mean flow of the observed time series from
the historic period (term 1) plus an amount dependent on the
discharge values in the recent period (term 2). Therefore, as-
suming the mean flow does not change between the calibra-
tion (historic) and evaluation periods, any consistent biases
in the hydrological model climatology should be corrected.

Figure 5c shows the variability ratio, γ , which indicates
whether the forecast median is able to capture the variability
of the flow. In general, the post-processing method does re-

duce the bias in the forecast median. For raw forecasts, the
β values range from approximately 10 (an over-estimation
by an order of magnitude) to 0.1 (an under-estimation of an
order of magnitude). For the post-processed forecasts the β
values are more tightly clustered around the perfect value of
β = 1. The largest improvements to the β values are for sta-
tions where the flow is under-estimated by the raw forecasts.
Some stations with raw β values of greater than 1 are over-
corrected such that the post-processed forecasts have β val-
ues of less than 1. This is supported by the similarity of the
median β values for the raw and post-processed forecasts de-
spite the decrease in the range of values. For stations where
the over-estimation by the raw forecast is relatively small, the
over-correction can result in the post-processed forecasts be-
ing more biased than the raw forecasts. The over-correction
is generally due to the under-estimation of high flows (see the
discussion on the third component of the KGE’, the variabil-
ity ratio), which results in an under-estimation of the average
flow and hence a β value of less than 1.

There is a small decrease in the β values at longer lead
times for both the raw and post-processed forecasts. This is
primarily caused by an increase in the under-estimation of
high flows at longer lead times as the skill of the forecast
decreases. However, for some stations the drift in β values
at longer lead times is also caused by nonstationarity of the
discharge distribution. A change in the discharge distribution
from that of the calibration period means the hydrological
uncertainty is calculated using an inaccurate climatological
mean (term 1 of Eq. 14). The impact of the discharge values
from the recent period (term 2 of Eq. 14) decreases with lead
time because the autocorrelation weakens. Therefore, any er-
rors in the climatological forecast are more pronounced at
longer lead times.

Figure 5d shows that the variability of the flow tends to
be under-estimated by the raw forecast (γ less than 1). The
under-estimation is because the magnitudes of the peaks rel-
ative to the mean flow are not predicted accurately, particu-
larly at longer lead times. This decrease in γ values at longer
lead times is also visible for the post-processed forecasts.
However, at all lead times most stations show an improve-
ment after post-processing (i.e. have a value of γ closer to 1).
Stations where the raw forecast over-estimates the variability
(γ above 1) are more likely to have the variability corrected
by post-processing, particularly at longer lead times.

The two factors impacting the ability of the post-processed
forecasts to capture the variability of the flow are 1) the level
of indication of the upcoming flow by the discharge values
in the recent period and 2) the spread of the raw forecast. In
the Kalman filter when the hydrological uncertainty distribu-
tion and the meteorological uncertainty distribution are com-
bined (see Sect. 3.4.3), the weighting of each distribution is
dependent on their relative spreads. The spread of the hydro-
logical uncertainty is impacted by the discharge values in the
recent period. Due to the skewness of discharge distributions,
the climatological forecasts tend to have a low probability of
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Figure 5. Comparison of the raw and post-processed forecast medians. (a) The Kling–Gupta efficiency skill score (KGESS) for the forecast
medians at all 522 stations for every other lead time. Red dashed line shows the perfect score of KGESS= 1. Black dashed lines show a
KGESS value of 0. KGESS> 0 indicates that the skill of the forecast median is improved by post-processing. KGESS< 0 indicates that the
skill of the forecast median is degraded by post-processing. The three components of the KGE’: (b) correlation component, r . Black dashed
line shows r = 0. (c) Bias ratio component, β. (d) Variability ratio component, γ . Red dashed lines show the perfect scores of 1 for all the
components. Both panels (c) and (d) have logarithmic y axes.

high flows. If the recent discharge values show no indication
of an upcoming high flow (i.e. no increase in discharge), the
low probability of high flows is reinforced. This decreases
the spread of the hydrological uncertainty distribution and
increases its weight within the Kalman filter.

The meteorological uncertainty distribution is the spread-
corrected raw forecast and includes the variability due to
the meteorological forcings. For floods with meteorological
drivers, if the magnitude of the peaks is under-predicted by
the raw forecasts, then the post-processed forecasts are also
likely to under-predict the magnitude of the peaks. Alterna-
tively, if the raw forecast is unconfident in the prediction of a
peak (e.g. only a couple of members predict a peak), then it
may not have a sufficient impact within the Kalman filter and
the post-processed forecast may not predict the peak regard-
less of the accuracy of the ensemble members that do predict
the peak. The impact of the spread correction is discussed
further in Sect. 5.2.1.

The ensemble mean is another commonly used single-
valued summary of an ensemble forecast (Gneiting, 2011).
Although the comparison presented here uses the ensemble
median, we also show the three components of the KGE’ for
the ensemble mean in Fig. S1 in the Supplement. The en-
semble means (see Fig. S1b in the Supplement) do not show
the general drift in β values with increasing lead time that
is discussed above for both the ensemble median and post-
processed forecasts. However, the range of β values is sim-

ilarly large for both the ensemble median and the ensemble
mean. In terms of the correlation coefficient and the variabil-
ity ratio, the ensemble mean performs similarly to or worse
than the ensemble median (see Fig. S1a, c in the Supplement,
respectively).

5.1.2 Timing of the peak discharge

To evaluate the impact of post-processing on the ability of the
forecast to predict the timing of the peak flow accurately, the
PTE (see Sect. 4.3.2) is used. The aim of this assessment is
to see how well the forecast is able to identify the time within
the forecast period with the highest flow and therefore great-
est hazard. A PTE of less than 0 indicates that the peak is
predicted too early, whereas a PTE of greater than 0 indicates
that the peak was predicted too late. Figure 6 shows the distri-
bution of the PTE values for both the post-processed and raw
forecasts for all forecasts where the maximum forecast value
exceeds the 90th percentile. The forecasts are split into three
categories dependent on the lead time at which the forecast
maximum occurs. Therefore, the distributions shown in each
panel are truncated at different values of the PTE. For exam-
ple, if the forecast maximum occurs at a lead time between 1
and 5 d, it can at most be predicted 5 d early.

Approximately 40 % of the forecast medians of the raw
forecasts have no error in the timing of the peak for peaks
that occur within lead times of 1 to 5 d. This drops to 37 %
for post-processed forecasts. Both sets of forecasts have ap-
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Figure 6. Histograms showing the probability distribution of peak-time errors for all forecasts where the maximum observation is above the
90th percentile for the station (26 807 forecasts) for raw forecasts (orange) and post-processed forecasts (purple). (a) Maximum observations
occur at lead times of 1 to 5 d. (b) Maximum observations occur at lead times of 6 to 10 d. (c) Maximum observations occur at lead times of
10 to 15 d.

proximately 60 % of forecasts with timing errors of 1 d or
less. However, the post-processed forecasts are more likely to
predict the peak too early. For maximum forecast values oc-
curring at lead times of 6 to 10 d, the post-processed forecasts
still tend to predict peaks earlier than the raw forecasts. How-
ever, for maximum forecast values occurring at lead times of
11 to 15 d, the post-processed forecasts are more likely to
predict the peaks several days too late. This suggests that
floods forecast at longer lead times by the post-processed
forecasts should be considered carefully.

Overall, the impact of post-processing is small but tends
towards the early prediction of the peak flow for short lead
times and late peak predictions for longer lead times. How-
ever, there are three main limitations with this analysis. The
first is that both sets of forecasts are probabilistic, and there-
fore the median may not provide an adequate summary of
the forecast. Secondly, the evaluation here is forecast based
rather than peak based in that the focus is the timing of the
highest discharge value in the forecast within the forecast pe-
riod and not the lead time at which a specific peak is pre-
dicted accurately. This was intentional, as the twice-weekly
production of the reforecasts means that a specific peak does
not occur at each lead time. Finally, the combination of fore-
casts at all the stations means the relationship between the
runoff-generating mechanisms and the PTE cannot be as-
sessed.

5.1.3 Threshold exceedance

The ROC diagrams for the MQ and MHQ thresholds (see
Sect. 4.3.3) are shown in Fig. 7. The diagrams show the prob-
ability of detection against the false alarm rate for varying de-
cision thresholds. The forecast period is split into three lead
time groups: 1–5, 6–10, and 11–15 d (see Sect. 4.3.3). The
ROC scores for the MQ and MHQ thresholds are given in Ta-
ble 1 for each lead time group for the raw and post-processed
forecasts along with the corresponding skill scores (ROCSS).
Both the raw and post-processed forecasts have ROC scores

Figure 7. Relative operating characteristic diagrams for (a) the
MQ threshold (118 888 observations above MQ) and (b) the MHQ
threshold (2783 observations above MHQ). All stations are com-
bined and groupings of lead times are used (see Sect. 4.3.3).

greater than 0.5, showing that they are more skilful than a
climatological forecast.

The spread of the raw forecasts is small at short lead times.
This is shown by the overlapping of the points in Fig. 7a
for lead times of 1–5 d (orange circles). The similarity of the
points indicates that the decision thresholds are usually trig-
gered simultaneously and therefore that the forecast distribu-
tion is narrow. The spread of the forecast increases with lead
time as the ensemble of meteorological forcings increases the
uncertainty in the forecasts. Although the skill of the forecast
median decreases with lead time (see Sect. 5.1.1), the intro-
duction of the meteorological uncertainty means the useful-
ness of the raw forecasts is similar for lead times of 1–5 and
6–10 d. This is shown by the similarity of the ROC scores for
these lead time groups for the raw forecast.

Post-processing also accounts for the hydrological uncer-
tainty, allowing for a more complete representation of the
total predictive uncertainty. In addition, as shown in Fig. 5c,
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Figure 8. Reliability diagrams for (a) the MQ and (b) the MHQ.
All stations are combined and groupings of lead times are used (see
Sect. 4.3.3).

post-processing bias corrects the forecast relatively well at
short lead times. The combination of spread and bias correc-
tion leads to an increase in the probability of detection for all
but the highest decision thresholds and a decrease in the false
alarm rate for almost all decision thresholds and lead times.
The added reliability gained from post-processing decreases
with lead time. The ROCSS for lead times of 1–5 d at the MQ
level is 0.8 but is only 0.45 for lead times of 11–15 d.

The ROC diagram for the MHQ threshold (Fig. 7b) shows
that the raw forecasts tend to cautiously predict high flows,
with the forecast much more likely to miss a flood than to
issue a false alarm, even for the lowest decision threshold.
There is less improvement from post-processing than for the
MQ threshold, with the ROCSS for the MHQ threshold only
reaching 0.48 for a 1–5 d lead time. For the MHQ thresh-
old, the post-processing increases the probability of detec-
tion and decreases the false alarm rate at short lead times.
At longer lead times the false alarm rate is still decreased by
post-processing, but the probability of detection is also de-
creased for the largest decision thresholds. This reluctance to
forecast larger probabilities also occurs with the MQ thresh-
old and is due to the interaction between the hydrological and
meteorological uncertainty in the Kalman filter discussed in
Sect. 5.1.1.

Figure 8 shows reliability diagrams for the MQ and MHQ
thresholds. For the MQ threshold (Fig. 8a), the raw forecasts
are over-confident, leading to under-estimation of low prob-
abilities and over-estimation of high probabilities. The post-
processed forecasts are more reliable but also tend to under-
estimate low probabilities. The raw forecasts increase in re-
liability with lead time, whereas the reliability of the post-
processed forecasts decreases. This is also true for the MHQ
threshold.

Both sets of forecasts are consistently below the diag-
onal in the MHQ reliability diagram (Fig. 8b), indicating
unconditional biases. However, the post-processed forecasts

have smaller biases consistent with the results discussed in
Sect. 5.1.1. In addition, the raw forecast shows relatively
poor resolution, with events occurring at approximately the
same frequency regardless of the forecast probability.

The distribution of forecasts (shown by marker size) is
more uniform for the post-processed forecasts, particularly
at shorter lead times. Since the ensemble reforecasts evalu-
ated have 11 members and the operational forecasts have 73
members, the distribution for operational raw forecasts is ex-
pected to be slightly more even as the additional members al-
low for greater gradation in the probability distribution. The
distribution of forecasts is skewed towards low probabilities
showing, similarly to the ROC diagrams (Fig. 7), that both
sets of forecasts tend to cautiously forecast flows exceeding
the MHQ threshold.

5.1.4 Overall skill

The continuous ranked probability skill score (CRPSS) is
used to evaluate the impact of post-processing on the over-
all skill of the probability distribution of the forecasts. Fig-
ure 9 shows the CRPSS for each station at lead times of 3, 6,
10, and 15 d. Stations that are degraded by post-processing
(CRPSS< 0) are circled in red. Stations that show a large
increase in skill after post-processing (CRPSS> 0.9) are cir-
cled in cyan.

As was seen with the KGESS for the forecast median,
there is a decrease in the improvement offered by post-
processing at longer lead times. This can be seen in Fig. 9
in the gradual change from dark purple to light purple/white
values for panels (a) to (d). It is also shown in the increase in
red circles and the decrease in cyan circles. Approximately
55 % of stations have a CRPSS of above 0.5 at a lead time
of 3 d, and this decreases to 10 % by a lead time of 15 d.
At a lead time of 3 d, 8 stations are degraded by the post-
processing and 13 stations have a CRPSS of greater than
0.9. By a lead time of 15 d these change to 24 degraded sta-
tions and only 2 stations with CRPSS values greater than
0.9. Many of the stations that are improved significantly have
large hydrological biases. For example, one of the most im-
proved stations at a lead time of 15 d is in Rheinweiler, Ger-
many (see Fig. 3), which has a large bias in the hydrological
model output due to limitations in the representation of the
drainage network in the model domain. The post-processing
method can account for these biases (see Sect. 5.1.1), result-
ing in CRPSS values greater than 0.9 at all lead times.

The lack of clustering of the stations with CRPSS values
above 0.9 suggests that the magnitudes of the largest cor-
rections are due to station-dependent characteristics. On the
other hand, the degraded stations at a lead time of 3 d appear
to cluster in three loose regions. In all three regions the degra-
dation is due to high short-duration peaks being captured bet-
ter by the raw forecasts than the post-processed forecasts. At
longer lead times the Spanish catchments are still degraded,
but the Scottish stations are not. As discussed in Sect. 5.1.1
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Table 1. Relative operating characteristic scores (ROCS) and corresponding skill scores (ROCSS) for the raw and post-processed (pp)
forecasts for lead times of 1–5, 6–10, and 10–15 d for the mean flow threshold (MQ) and the mean annual maximum threshold (MHQ).

Lead time MQ MHQ

ROCraw ROCpp ROCSS ROCraw ROCpp ROCSS

1–5 d 0.78 0.96 0.87 0.68 0.83 0.48
6–10 d 0.78 0.91 0.56 0.68 0.74 0.20
11–15 d 0.76 0.87 0.45 0.67 0.69 0.08

Figure 9. The continuous ranked probability skill score (CRPSS) for all 522 stations for lead times of 3, 6, 10, and 15 d. CRPSS values
below 0 indicate that the forecast probability distribution is on average less skilful after post-processing and values above 0 indicate added
skill after post-processing. Markers are outlined in red if the CRPSS is below 0 and in cyan if the CRPSS is above 0.9.

for the lowest KGESS values, this is due to a decrease in the
skill of the raw forecasts. The degraded stations at lead times
of 10 and 15 d cluster in Spain, around the Kjølen Mountains,
and in the Sava catchment. The poorly post-processed fore-
casts in the Sava catchment are downstream of a reservoir,
the impact of which is discussed in Sect. 5.2.2.

Comparing the CRPSS values in Fig. 9 with the raw CRPS
values shown in Fig. 3 shows similarities in the spatial pat-
tern of the raw forecast skill and the spatial pattern of the
magnitude of improvement due to post-processing. In gen-
eral, stations with low CRPS scores (high skill) for the raw
forecasts are improved most by post-processing. For exam-
ple, the western coast of the Scandinavian Peninsula has a
lower raw skill in general, and the level of improvement is
also lower than that of the eastern coast. However, there are
some anomalies to this pattern. For example, the station in
Cong Weir, Ireland, has a relatively low raw forecast skill
compared with surrounding catchments due to regulation of
the streamflow but has a high CRPSS value at all lead times.
Additionally, whilst stations on the Rhine River and the Oder
River have similar raw CRPS values, the Oder River is im-
proved more by post-processing. This suggests that post-
processing is more effective at dealing with certain types

of error and therefore that the benefit of post-processing is
catchment dependent. This is discussed in Sect. 5.2.

As mentioned, many of the stations with CRPSS values
below 0 at short lead times are degraded due to peak flows
being better predicted by the raw forecasts. Therefore, the
skill of the forecast at different flow levels is evaluated. Fig-
ure 10 shows the distribution of CRPSS values for all stations
evaluated over the four quartiles of discharge (Q1 lower quar-
tile to Q4 upper quartile), such that each box plot contains
522 CRPSS values, 1 for each station evaluated over approx-
imately 52 forecasts. Only lead times of 3, 6, 10, and 15 d are
shown, but these lead times are representative of the results
at similar lead times.

The improvements for all four quartiles decrease with lead
time, as has been seen previously in Figs. 5 and 9. The im-
provement from post-processing is smaller for higher flows.
However, the majority of stations are still improved for these
high flows, with over 60 % of stations being improved for
discharge values in Q4 at a lead time of 15 d. The high flows
are often under-predicted by both sets of forecasts. As dis-
cussed in Sect. 5.1.1, the ability of the post-processed fore-
casts to capture the magnitude of peaks is often determined
by the relative spread of the hydrological and meteorological
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Figure 10. The CRPSS for all 522 stations calculated over the fore-
casts (approximately 52 forecasts) with flow values in the lowest
quartile (Q1) to the highest quartile (Q4). CRPSS values below 0
indicate the forecast probability distribution is on average less skil-
ful after post-processing and values above 0 indicate added skill
after post-processing. A log scale is used on the y axis.

uncertainty distributions. Although Q4 is the category with
the greatest number of degraded stations (CRPSS< 0), some
stations are degraded more (have a lower CRPSS value) for
discharge values in Q1. This is mainly due to the larger pro-
portional errors for lower flows.

5.2 What impacts the performance of the
post-processing method?

In the previous section the impact of post-processing was
shown to vary greatly between stations. The following sec-
tions investigate the factors that influence the effect of the
post-processing method. The CRPSS is used in this analysis
as it provides an assessment of the improvement or degrada-
tion to the overall skill of the probabilistic forecast.

To aid the discussion of the key results, some stations are
highlighted. See Fig. 3 for the locations of the stations. Fig-
ure 11 shows the observed time series (solid black line) for
half the evaluation period (1 October 2017 to 30 Septem-
ber 2018) for six example stations: (a) Daldowie, Scotland,
(b) Nytorp, Sweden, (c) Svarttjørnbekken, Norway, (d) Dau-
gavpils, Latvia, (e) Porttipahta, Finland, and (f) Montañana,
Spain. The forecast medians of the raw forecasts (orange)
and the post-processed forecasts (purple) are also plotted
for lead times of 3 d (circles), 6 d (crosses), and 15 d (trian-
gles). These stations are discussed throughout Sect. 5.2 and
were chosen as they allow some of the impacts of the post-
processing to be visualised. Table 2 summarises the key re-
sults that each of the example stations highlight, and all re-
sults are summarised in Sect. 6.

5.2.1 Type of uncertainty

This section looks at how meteorological and hydrological
uncertainties affect the performance of the post-processing
method. As mentioned in Sect. 1, the term “meteorologi-
cal uncertainties” is used to refer to the uncertainty in the
streamflow forecasts due to the error and uncertainty in the
meteorological forcings and not the error in the meteorolog-
ical forecasts themselves. The magnitude of meteorological
uncertainty is represented here by the CRPS of the raw en-
semble forecast at each lead time, respectively. To remove
the uncertainty due to the hydrological model, the water bal-
ance simulation is used as the “truth” value in the calculation
of the CRPS, replacing the value of the observation, y, in
Eq. 33. As both the forecast and the water balance simula-
tion are produced using the same hydrological model and the
water balance simulation provides the initial conditions for
the reforecasts, the only remaining uncertainty is from the
forcings. The errors of the meteorological observations used
to create the water balance simulation are considered neg-
ligible compared with those of the meteorological forecasts.
The magnitude of the hydrological uncertainty is represented
by the CRPS of the water balance simulation, with the obser-
vations used as the “truth” values at each lead time, respec-
tively. As both these values are deterministic, the CRPS is
equivalent to the absolute error between the two values. Both
metrics, for the meteorological and hydrological uncertain-
ties, are averaged over all 208 forecasts for each station. So
that the errors are comparable between catchments, they are
calculated in terms of specific discharge (mm d−1) instead of
discharge (m3 s−1).

Figure 12 shows density plots of the CRPSS values for all
stations vs. the hydrological errors (a–c) and meteorological
errors (d–f) for lead times of 6, 10, and 15 d. A lead time of
3 d is not shown here as the meteorological forcings have of-
ten not had a significant effect on the forecasts, resulting in
a small distribution of meteorological errors across stations.
However, the relationships discussed below are present at all
lead times. The 15 stations with the largest hydrological er-
rors at each lead time have been removed from the main anal-
ysis because these stations show a different pattern, as shown
in Fig. 12g and discussed below.

The purple lines in Fig. 12 show the least-squares regres-
sion line of best fit for the relationship between the CRPSS
vs. the hydrological and meteorological errors. In general, an
increase in either the hydrological or meteorological uncer-
tainties decreases the improvement due to post-processing.
However, this relationship is much stronger for the meteoro-
logical errors (r > 0.13 compared with r ≈ 0.01 for hydro-
logical errors), which suggests that hydrological errors are
better corrected by the post-processing method. The EMOS
method is used to correct the spread of the raw forecast to
account for the meteorological uncertainty (see Sect. 3.4.2),
but no bias correction is performed, as is sometimes done
(Skøien et al., 2021; Gneiting et al., 2005; Hemri et al.,
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Figure 11. Observation time series for 1 year of the evaluation period from October 2017 to October 2018 for six example stations. The
forecast medians of the raw and post-processed forecasts are shown for lead times of 3, 6, and 15 d. (a) Daldowie, Scotland. (b) Nytorp,
Sweden. (c) Svarttjørnbekken, Norway. (d) Daugavpils, Latvia. (e) Porttipahta, Finland. (f) Montañana, Spain.

Table 2. Key results and the section that provide more information for each of the six stations used as examples and for which time series
are shown in Fig. 11.

Panel Station Description of key results Section

(a) Daldowie, Scotland – Meteorological errors are not corrected as well as hydrological errors.
– Poor post-processing of peaks for flashy catchments

5.2.1, 5.2.2

(b) Nytorp, Sweden – Large biases due to limitations of the drainage network are corrected well. 5.2.1, 5.2.2

(c) Svarttjørnbekken, Norway – Post-processing is beneficial for stations where the hydrological model is uncalibrated. 5.2.2

(d) Daugavpils, Latvia – Slowly responding catchments benefit from post-processing the most.
– Post-processing can account for poor modelling of slow hydrological processes such
as snowmelt.

5.2.2

(e) Porttipahta, Finland – Regulated catchments benefit from post-processing. 5.2.2

(f) Montañana, Spain – The quality of the calibration time series is more important than the length of the time
series.

5.2.3
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Figure 12. Density plots showing the station CRPSS for lead times of 6 d (a, d), 10 d (b, e), and 15 d (c, f) against hydrological error (a–c)
and meteorological error (d–f). The largest 15 hydrological errors are excluded from panels (a) to (f). See Sect. 5.2.1 for an explanation of the
metrics used to represent the hydrological and meteorological errors. Purple lines show the line of best fit calculated using linear regression,
and the associated r2 are given within each panel. (g) The CRPSS against hydrological error including the 15 largest hydrological errors for
a lead time of 10 d. The orange line shows the line of best fit for the station with large hydrological errors.

2015b; Zhong et al., 2020, e.g.), whereas both bias and
spread correction are performed for the hydrological uncer-
tainties. In Sect. 5.1.4 it was noted that the raw forecasts for
the Rhine and Oder catchments have similar skill, but the
Oder was improved more by post-processing. It was found
(not shown) that this is because the errors in the raw forecast
of the Rhine were mainly meteorological but that those of the
Oder were mainly hydrological.

Although the r2 values are small, some trends are observed
in their variation with lead time. The relationship between
the meteorological errors and the CRPSS value is slightly
stronger at shorter lead times. This is partly because the
EMOS spread correction parameters are lead time invariant.
The spread of the raw forecast tends to be small at short lead
times, because all ensemble members have the same initial
conditions but increase as the differing meteorological forc-
ings propagate through the catchment system. Skøien et al.
(2021) found that the value of the variance inflation factor
(ζ in Eq. 20 of this paper) decreases with increasing lead
time, even becoming less than 1 (a reduction in spread) for
lead times greater than 8 d (see the top left panel of Fig. 8
in Skøien et al., 2021). This alters the structure of the fore-
cast spread, increasing the uncertainty at shorter lead times
and decreasing the uncertainty at longer lead times. How-
ever, here the spread at all lead times is multiplied by a con-
stant value such that the spread retains its original structure.
Therefore, at shorter lead times the meteorological forcings
are more influential within the Kalman filter than at longer
lead times. On the one hand, if the raw forecast is skilled at
short lead times, then this greater influence is beneficial and
may, for example, allow the post-processed forecast to pre-
dict an upcoming peak. On the other hand, any large errors

contained in the raw forecasts propagate through to the post-
processed forecasts. For example, the largest peak in the time
series for the station in Daldowie, Scotland (see Fig. 11a), is
not predicted by the raw forecast; therefore, no information
about the upcoming, precipitation-driven peak is provided
to the post-processed forecast. Using a lead-time-dependent
EMOS method may allow for better use of the information
provided by meteorological forcings.

Alternatively, the hydrological uncertainty distribution
may have a greater weight within the Kalman filter. Some
peaks at the Daldowie station in winter 2017/2018 are fore-
cast accurately by the raw forecast median (grey boxes in
Fig. 11a) but are not forecast by the post-processed forecast.
This suggests that the hydrological uncertainty distribution is
most impactful in the Kalman filter. The observations in the
recent period often do not indicate an upcoming flood, re-
sulting in a hydrological uncertainty distribution which con-
fidently, but incorrectly, predicts a low flow. The confidence
of the hydrological uncertainty distribution results in the in-
formation of the upcoming flow provided by the meteoro-
logical uncertainty distribution being ignored. This ignoring
of the meteorological information is also the reason for the
poorly post-processed forecasts for some stations in Spain
(see Fig. 9), which have very low hydrological variability
except for rare large peaks. Since extreme precipitation can
be an important runoff generating mechanism in this region
(Berghuijs et al., 2019), post-processed forecasts for these
catchments should be used cautiously, particularly when the
raw forecasts predict a flood.

For the hydrological errors the r2 values decrease for lead
times of 1 d to approximately 6 d (not shown), and for lead
times longer than 6 d, the r2 values remain at approximately
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0.01. This suggests that forecast-dependent errors due to the
initial conditions and the interaction of the meteorological
forcings in the hydrological model are corrected at shorter
lead times, but at longer lead times the correction is mainly
to be consistent with hydrological model errors.

The 15 stations with the largest hydrological uncertain-
ties show a small increase in average CRPSS with increas-
ing hydrological uncertainties. This trend is visualised by
the orange line in Fig. 12g, but the limited number of data
points makes the calculation irresolute. The relationship is
only shown here for a lead time of 10 d but is present at
all longer lead times. Most of the hydrological uncertainty
in these cases is caused by large consistent biases rather
than forecast-dependent errors. For example, the station in
Nytorp, Sweden, has a large bias in the raw forecasts (see
Fig. 11b). As discussed in Sect. 5.1.1, the post-processing
method is able to correct for consistent biases, resulting in
post-processed forecasts that much more closely follow the
observations as shown in Fig. 11b and higher CRPSS values
when the bias of the raw forecasts is larger.

5.2.2 Catchment characteristics

The catchments within the EFAS domain vary greatly in
terms of size, location, and flow regime. This section dis-
cusses catchment characteristics that impact the performance
of the post-processing method, namely upstream area, re-
sponse time, elevation, and regulation. In Fig. 13, box-and-
whisker plots are used to show the distribution of the CRPSS
values for all stations at every other timestep, with the
whiskers extending to the 5th and 95th percentiles. The sta-
tions are split into categories depending on (a) the size of
the upstream area, (b) the time of concentration, and (c) the
elevation. Values for these characteristics are extracted from
static LISFLOOD maps used operationally.

Figure 13a shows that, in general, large catchments (larger
than 5000 km2) are improved more by post-processing than
medium (between 1000 and 5000 km2) and small (less than
1000 km2) catchments, particularly at short lead times. The
relationship between medium and small catchments is less
consistent. At short lead times the median CRPSS value
for small catchments is higher than for medium catchments,
but for longer lead times the converse is true. However, it
was found that by removing stations with an upstream area
smaller than 500 km2 (henceforth referred to as very small
catchments) from the analysis, the remaining small stations
(with upstream areas between 500 and 1000 km2) are in gen-
eral improved less by post-processing than medium catch-
ments at all lead times. This results in a single trend, that in
general post-processing improves forecasts more for larger
catchments. A partial reason for this is that smaller catch-
ments are impacted more by spatiotemporal errors in the me-
teorological forcings than larger catchments (Pappenberger
et al., 2011) and, as discussed in Sect. 5.2.1, meteorological
errors are difficult to correct.

Figure 13. The CRPSS for all 522 stations at every other lead time
with stations categorised by their catchment characteristics. (a) Up-
stream area. Small catchments: less than 1000 km2 (165 stations).
Medium catchments: between 1000 and 5000 km2 (204 stations).
Large catchments: larger than 5000 km2 (153 stations). (b) Time
of concentration. Fast-response catchments: less than 24 h (253 sta-
tions). Medium-response catchments: between 24 and 48 h (144 sta-
tions). Slow-response catchments: more than 48 h (126 stations).
(c) Elevation. Low-elevation catchments: less than 150 m (178 sta-
tions). Medium-elevation catchments: between 150 and 400 m (168
stations). High-elevation catchments: more than 400 m (177 sta-
tions).

There are two reasons why very small catchments must
be removed to clearly identify the trend between upstream
area and CRPSS. Firstly, most stations with upstream areas
(provided by local authorities) smaller than 500 km2 were
not included in the calibration of LISFLOOD for EFAS 4
(Mazzetti et al., 2021b). The uncalibrated model has vary-
ing skill between catchments, with some very small catch-
ments having large hydrological errors. As discussed in
Sect. 5.2.1, hydrological errors are well corrected by post-
processing, therefore resulting in larger CRPSS values for
some very small uncalibrated catchments than for larger cal-
ibrated catchments. Secondly, the minimum area increment
of the LISFLOOD static map used to categorise the stations
is the area of one grid box, 25 km2. Therefore, the upstream
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areas are multiples of 25 km2 and thus may not represent the
real size of the catchment, which could lead to large hydro-
logical biases. For example, the station in Svarttjørnbekken,
Norway, has a catchment area provided by local authorities
of 3.4 km2 and was therefore not included in the calibration.
Additionally, in LISFLOOD its upstream area is rounded to
25 km2 (over 7 times the size of the catchment). Figure 11c
shows that these issues result in an over-estimation of the
variability of the flow and a consistent bias in the raw fore-
cast even at low flows. Both issues are corrected by post-
processing.

In Fig. 13b the time of concentration is used to repre-
sent the catchment response time. Stations are split into fast-
response catchments (response times of less than less than
24 h), moderate-response catchments (between 24 and 48 h),
and slow-response catchments (more than 48 h). At short lead
times, slowly responding catchments outperform medium-
and fast-response catchments. Since large catchments tend to
have slower responses, this suggests response time is partly
responsible for the greater improvement experienced by large
catchments. Slower responses result in stronger autocorre-
lations; therefore, the recent observation are more informa-
tive about the state of the river during the forecast period.
This is shown by comparing the time series of the Dau-
gavpils station (Fig. 11d), which has a time of concentra-
tion of approximately 195 h, with that of the Daldowie sta-
tion (Fig. 11a), which has a time of concentration of 27 h.
The Daugavpils station has a slow response with peaks last-
ing 2 months (longer than the length of the recent period),
whereas the Daldowie station responds more quickly, with
peaks only lasting a week at most (shorter than the length
of the forecast period). As such, the post-processing method
can correct forecasts much better for the Daugavpils station.
It should be noted that most stations still benefit from being
post-processed even at lead times longer than their time of
concentration. This is useful as operationally there is a delay
in the availability of the meteorological observations used to
create the water balance simulation, whereas here it is as-
sumed that all observations up to the production time of the
reforecast are available. Therefore, these results suggest that,
although the CRPSS may be smaller, there is still an opera-
tional benefit to post-processing.

In Fig. 13c catchments are categorised by the height of the
station above sea level: low-elevation catchments (less than
150 m), medium-elevation catchments (between 150 and
400 m), and high-elevation catchments (more than 400 m). At
all lead times catchments at higher elevations are improved
less than lower-lying catchments. This is partly due to moun-
tainous catchments tending to have faster response times.
Additionally, precipitation forecasts in mountainous regions
can be biased due to insufficient resolutions to represent the
orography in the NWP systems (Lavers et al., 2021; Haiden
et al., 2014, 2021). Alfieri et al. (2014) found that, when com-
pared with the water balance simulation (i.e. equivalent to
the metric for the meteorological error used here), the raw

Figure 14. Violin plot of the CPRSS values for the 480 unregulated
stations (green distribution) and the 42 regulated catchments (black
lines) at lead times of 3, 6, 10, and 15 d.

ensemble forecasts are negatively biased in mountainous re-
gions due to an under-estimation of the precipitation. The
effect of station elevation on the performance of the post-
processing method explains the cluster of degraded stations
around the Kjølen Mountains (see Fig. 9).

The regulation of rivers via reservoirs and lakes is diffi-
cult to model. Raw forecasts for many regulated catchments
were found to have a negative correlation with the observa-
tions. In this study, a station is considered to be regulated if it
is within three grid boxes downstream of a reservoir or lake
in the LISFLOOD domain or if data providers have reported
that the station is on a regulated stretch of the river. Figure 14
shows the CRPSS values of the 42 regulated stations (black
lines) and the distribution of the CRPSS values of the unreg-
ulated stations (green distribution) for lead times of 3, 6, 10,
and 15 d. The distribution for the unregulated stations is es-
timated using kernel density estimation, with the dashed line
showing the median value and the dotted lines showing the
interquartile range. The mean CRPSS values are indicated by
crosses of the respective colours.

At all lead times, the CRPSS values of most regulated sta-
tions are above the median of the unregulated stations. Ad-
ditionally, the mean CRPSS value of the regulated stations
is at least 0.1 higher than that of the unregulated stations for
all lead times longer than 1 d. The improvement due to post-
processing at regulated stations is dependent on whether the
reservoir is in the same state during the recent and forecast
periods and hence whether the discharge values from the re-
cent period provide useful information about the state of the
reservoir. At longer lead times it becomes more likely that
the reservoir will have a changed state and therefore that the
information provided by the recent discharge values is not
useful. However, if the reservoir is in the same state, then the
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magnitude of the improvement from post-processing can be
large. For example, the Porttipahta station in Finland is lo-
cated at the Porttipahta reservoir, and its time series is shown
in Fig. 11e. In May 2018 the discharge is 0 m3 s−1 for ap-
proximately a month. The raw forecast does not capture this
decrease in discharge, but the post-processed forecast me-
dian is very accurate even at longer lead times. However, at
the start and end of this zero-flow period, the post-processed
forecasts do not perform as well for a lead time of 15 d (pur-
ple triangles) because the reservoir has changed state since
the forecast production time. It is thought that small but regu-
lar regulation is partly responsible for the cluster of degraded
stations on the Sava River shown for a lead time of 10 d in
Fig. 9c. Three of the degraded stations in this cluster are reg-
ulated and are the three regulated stations with the lowest
CRPSS values at all lead times shown in Fig. 14.

It is interesting to consider whether other hydrological pro-
cesses that are difficult to model can be accounted for by
post-processing. For example, the peak in the winter and
spring in the Daugavpils catchment (see Fig. 11d) is largely
dominated by snowmelt and ice melt (Škute et al., 2008),
which are difficult processes to model (Alfieri et al., 2014).
Figure 11d shows that the raw forecasts do not predict the
magnitude of the peak in late January, but the post-processed
forecasts, which are conditioned on recent observations that
indicate the increase in discharge due to snowmelt, do ac-
curately predict the peak. Similar results were seen in other
catchments with snow-dominated regimes. Although the
identification of dominating runoff-generating mechanisms
for all catchments and seasons is beyond the scope of this
study, the results presented in this section suggest that post-
processing can correct for errors introduced by the imperfect
modelling of slow hydrological processes.

5.2.3 Calibration time series

The length of the time series used to calibrate the station
model varies between stations. The maximum length is dic-
tated by the water balance simulation, which is available
from 1 January 1990. However, many stations have shorter
time series due to the availability of observations. Figure 15
shows the CRPSS values for each lead time, with stations
split by the length of their calibration time series into un-
equally sized categories (see caption): very short time series
(up to 15 years), short time series (between 15 and 20 years),
medium time series (between 20 and 25 years), and long time
series (over 25 years). These categories were chosen to in-
vestigate the impact of the length of the calibration time se-
ries whilst keeping the number of stations in each category
as large as possible. These initial comments ignore the very
short time series (green) which are discussed in more detail
below.

At short lead times long time series in general lead to
more improvement by post-processing than shorter time se-
ries. Longer time series allow the joint distribution between

Figure 15. The CRPSS for all 522 stations at every other lead time
with stations categorised by the length of their calibration time se-
ries. Very short time series: less than 15 years (63 stations). Short
time series: 15 to 20 years (93 stations). Medium time series: 20 to
25 years (119 stations). Long time series: over 25 years (247).

the observations and the water balance simulation to be more
rigorously defined, allowing a more accurate conditioning
of the forecast on the discharge values from the recent pe-
riod. For lead times greater than 7 d the CRPSS distributions
for all categories are similar. As discussed in Sect. 5.2.1,
post-processing corrects forecast-specific errors at short lead
times, but at longer lead times it is mainly consistent errors
in the climatology that are corrected. The similarity of the
CRPSS distributions suggests that short time series are suffi-
cient to capture these consistent errors. This is also shown by
the relatively good performance of stations with very short
time series. Although a full sensitivity analysis is beyond
the scope of this study, these results suggest that very short
time series can be used, if necessary, to correct for consis-
tent biases, although longer time series are preferable. How-
ever, care should be taken when forecasting high flows since
a short time series will not allow for a robust calculation of
the upper tail of the discharge distribution (see Sect. 3.3.1),
which will likely cause errors in the forecast probability dis-
tribution (Bogner et al., 2012).

In general, shorter time series tend to be more recent and
so benefit from improved river gauging technology and also
because non-stationarity between the calibration and eval-
uation periods is less likely to be an issue. The station in
Montañana (shown in Fig. 11f) is an example of a station
where a period of poor-quality observations in the calibra-
tion time series impacts the calibration, resulting in a large
jump in the CDF of the observed discharge distribution as
highlighted by a red circle in Fig. 16b. This CDF is used
in the NQT, and the large jump results in non-smooth fore-
cast probability distributions. Additionally, these errors were
found to impact the estimation of the joint distribution, which
resulted in a decrease in the correlation coefficient after post-
processing. Removing the erroneous observations improved
the discharge estimations, suggesting that the priority should
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Figure 16. Observations (blue) and water balance simulation
(black) time series used in the calibration of the station model for
the station in Montañana. (a) Section of the calibration time se-
ries with errors in the observations. (b) The cumulative distribu-
tion function (CDF) of the observed discharge distribution calcu-
lated during the calibration. Red circle indicates a jump in the CDF
due to the section of the time series shown in panel (a).

be to use the best-quality data available even if the resultant
calibration time series is shorter.

6 Conclusions

Post-processing is a computationally efficient method of
quantifying uncertainty and correcting errors in stream-
flow forecasts. Uncertainties enter the system from multiple
sources, including the meteorological forcings from numeri-
cal weather prediction systems (here referred to as meteoro-
logical uncertainties) and the initial hydrological conditions
and hydrological model (here referred to as hydrological un-
certainties). The post-processing method used operationally
in the European Flood Awareness System (EFAS) uses a
method motivated by the ensemble model output statistics
(Gneiting et al., 2005) method to account for the meteoro-
logical uncertainty and the Multi-Temporal Model Condi-
tional Processor (Coccia, 2011) to account for the hydrolog-
ical uncertainty. The EFAS domain includes catchments of
varying characteristics for which the same post-processing
method is used. In this paper we used reforecasts to investi-
gate the added skill gained by post-processing and how these
improvements vary across the domain. This study aimed to
answer two research questions.

First, does the post-processing method provide improved
forecasts? Our results show that for the majority of stations
the post-processing improves the skill of the forecast, with
median continuous ranked probability skill scores (CRPSS)
of between 0.74 and 0.2 at all lead times. This improve-
ment is greatest at shorter lead times of up to 5 d, but post-
processing is still beneficial up to the maximum lead time of
15 d. The bias and spread correction provided by the post-
processing increased the reliability of the forecasts and in-
creased the number of correctly forecast flood events without
increasing the number of false alarms. However, the post-

processed forecasts also led to the flood peak often being
forecast too early by approximately a day. Although fore-
casts for flood events at most stations did benefit from post-
processing, the greatest improvements were to forecasts for
normal flow conditions.

Second, what affects the performance of the post-
processing method? Several factors were found to impact the
performance of the post-processing method at a station. The
post-processing method is more easily able to correct hydro-
logical errors than meteorological errors. This is mainly be-
cause no bias correction is performed for the meteorological
errors, whereas hydrological errors are bias corrected by con-
ditioning the forecast on the recent observations. Therefore,
stations where the errors were primarily due to hydrological
errors were improved more. As the hydrological errors tend
to be larger than the meteorological errors, this is beneficial;
however, more research is required to fully account for biases
due to the meteorological forcings as well.

The post-processing method was found to easily account
for consistent hydrological biases that were often due to lim-
itations in the model representation of the drainage network.
However, the correction of forecast-specific errors (due to
initial conditions and meteorological forcings) was largely
determined by the response time of the catchment. Therefore,
the greatest improvement was seen in catchments larger than
5000 km2 and catchments less than 100 m above sea level, as
these catchments tended to have longer response times. Addi-
tionally, post-processing was able to correct for errors due to
difficult-to-model hydrological processes, such as regulation
and snowmelt, when recent observations contained relevant
information about the discharge.

The use of long historic observational time series for the
offline calibration is beneficial, particularly for correcting
forecast-specific errors. However, time series shorter than
15 years were found to be sufficient for correcting consis-
tent errors in the model climatology even at a lead time of
15 d. The quality of the observations in the historic time se-
ries is important, and errors in the time series degraded the
performance of the post-processing method and limit the use-
fulness of the forecasts.

These results highlight the importance of post-processing
within the forecasting chain of large-scale flood forecasting
systems. They also provide a benchmark for end users of
the EFAS forecasts and show the situations when the post-
processed forecasts can provide more accurate information
than the raw forecasts. These results also highlight possi-
ble areas of improvement within the EFAS and the factors
that must be considered when designing and implementing a
post-processing method for large-scale forecasting systems.

Code and data availability. The raw reforecasts
(https://doi.org/10.24381/cds.c83f560f, Barnard
et al., 2020) and the water balance simulation
(https://doi.org/10.24381/cds.e3458969, Mazzetti et al., 2020)
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are available from the Copernicus Climate Data Store. The
post-processed forecasts and evaluation code are available
from the University of Reading Research Data Archive
(https://doi.org/10.17864/1947.333, Matthews and Barnard,
2022).
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