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Abstract 
 

This thesis examines various drivers of commodity trade flows and it quantifies their 

predictability and impact on the prices of key industrial commodities. 

 

The first empirical chapter discusses how short-term change in the position and gradient of 

the crude oil market forward curve can contribute to the formation of speculative supply 

shock. The conditions for causality between the forward curve position, its slope steepness, 

and oil supply are examined. Evidence of causality and, therefore, of a speculative supply 

shock is detected, resulting in the development of a structural model of the global crude oil 

market that allows for a speculative supply shock as a result of a forward curve shift and 

steepness.  

 

The second empirical chapter investigates the dynamics between price and cross-border trade 

flows of the EU electricity market. First, I study the impact of the relative strength of 

economic activity and distance between two countries on their net cross-border electricity 

flow. The effect from changes of electricity flow between two markets on flows between 

another pair of markets is also examined. Lastly, I investigate the relationship between cross-

border electricity flows and electricity prices. Evidence of causality between flow and price, 

flow and flow and the gravity of the trade coefficient and flow, is also documented. 

VAR/VEC model framework is employed to identify and trace the shocks introduced to the 

system of inter-connected markets, a short-term electricity trading model is proposed. 

 

The third empirical chapter of the thesis examines the role of global foreign exchange 

markets in the formation of supply and demand shocks for key energy, metal, grain, and 

shipping commodity markets. Difference in the predictive power of the currencies of 

exporters and importers is investigated and an S&D model based exclusively on foreign 

exchange signals is proposed. The results provide evidence that currencies of importers have 

higher explanatory power than the currencies of exporters - a major departure from the 

established consensus in the literature. Additionally, the currency-based S&D model is found 

to possess a stronger predictive power over the price of commodity compared to the 

predictive power of each of its constituents, which improves the explanatory power of the 

proposed VEC model. 
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1. Motivation 
 

Commodity market price formation is a notoriously complex process that depends not only 

on the traditional forces of supply and demand, but also on exogenous factors, market 

structure, and product-specific characteristics (Valiante 2013). This thesis examines 

important drivers of commodity trade flow, such as the shape and steepness of the forward 

curve, the geographical distance between trading partners, the size and direction of cross-

border trade flow, and currency markets and attempts to quantify their predictability and 

impact on the prices of key industrial commodities. 

 

The first empirical chapter discusses how the crude oil forward curve is affected by the 

information processed by all market participants, since producers tend to use the forward 

curve position and shape to guide their future market behaviour (Sockin and Xiong 2013). 

Therefore, unlike medium- to long-term shifts in production in response to changes in 

geopolitical conditions, underlying structural demand, or technological developments, any 

short-term change in the position or gradient of the forward curve can contribute to potential 

speculative supply shocks, which can, in turn, have an effect on price formation. 

 

Other elements that prompt close examination of the link between the forward curve‘s shape 

and steepness and the reaction of supply are the high concentration of pricing power in the 

crude oil market, the transformation of global crude oil supply chains, the diminished role of 

inventory as a market balancing mechanism, the steady increase in the elasticity of supply 

over the last 10 years, and simply the improved agility of producers in their desire to 

maximize returns. Any combination of these factors suggests that producers are likely to 

respond to changes in the forward price environment not only by accumulating or liquidating 

inventory, but, more recently, also by adjusting their output and direct sales on the spot 

physical market. 

 

The second empirical chapter examines the price versus cross-border trade flow dynamics of 

the European electricity market, which exhibits significant differences from other commodity 

markets because of its inherent inability to accumulate inventory, as well as the nature of 

instantaneous transactions of electric current invalidating the balancing mechanism between 

supply and demand. 
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Furthermore, structural changes in the architecture of the electricity market imposed by the 

European Union (EU) Energy Markets Initiative encourages investigation of the impact on 

trade flows across Europe, as well as the positive feedback between cross-border trade flows 

and prices. The material lack of industrial-scale storage capacity in the electricity market, 

instantaneous transactions of electrical current, and Kirchhoff‘s first law indicate that changes 

in cross-border electricity flows have the potential to influence the domestic supply and 

demand balance for a particular market. The lack of electricity storage removes the balancing 

mechanism between supply and demand, which means that the supply needs to equal the 

demand at any point in time. The need for instantaneous balancing, propagated by increasing 

connectivity between more and more markets, raises questions about the reaction of multiple 

interconnected markets. Moreover, increases in cross-border transmission capacity and the 

intermittent nature of electricity production in certain regions of this closely connected 

system suggest the need for a detailed examination of how electricity flows can affect prices. 

The chapter also infers that the link between geographical distance and economic activity, 

first established by Tinbergen (1962), is responsible for supply shocks in the pan-European 

electricity market network. 

 

The third empirical chapter of the thesis examines the reasons behind supply and demand 

shocks in key energy, metal, grain, and shipping commodity markets, utilizing the foreign 

exchange rates of the major importers and exporters of these commodities. With the US 

dollar at the centre of global commodity trading in terms of commodity pricing and credit 

(Boz, Gopinath, and Plagborg-Møller  2017), the global currency market has the potential to 

accumulate unique information about producers‘ incentives to supply the market with a 

commodity and consumers‘ incentives to purchase the required amount of material on the 

international market. The size of the global currency market and its ability to efficiently 

gather and channel forward-looking information (Van Foreest and De Vries 2003) is a 

prerequisite for more efficient price discovery (Belke, Bordon, and Voltz 2013), which is also 

attracting attention as a potential tool for predicting future commodity markets price moves. 

 

Contrary to the dominant research theme in the literature, evidence of a structural shift in 

global commodity supply chains from supply-push to demand-pull systems (Christopher and 

Towill 2001, and Christopher 2011) suggests that an exclusive focus on the relation between 

the prices and currencies of exporters is too simplistic and that valuable information can also 
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be extracted from the currency values of the exporters, who dictate the direction and strength 

of the demand pull. 

2. Thesis structure, findings, implications, and contribution 
 

This thesis consists of three key parts. Part I introduces the topics, discusses the motivation 

behind the research of each topic, identifies the gaps in the literature, and reveals the results, 

implications, and contributions. Part II consists of three empirical chapters, each addressing a 

specific driver of commodity market price formation. Part III offers concluding thoughts. 

 

The research hypotheses examined in the empirical part are contained in three separate 

essays, Chapters 3 to 5, because market specifics do not allow for a direct comparison of the 

selected price drivers across different commodities in a single essay. For instance, 

prerequisites for examining the hypothetical impact of the forward curve shape and its 

steepness on supply are that the markets have an efficient mechanism of forward price 

discovery, an option for physical storage in terms of geographical location and speed of 

recharge/discharge, as well as the producers‘ technological ability to alter supply in the short 

term. Under such conditions, the crude oil market qualifies for testing the hypothesis in 

Chapter 3, but the electricity, freight, metal, and agricultural commodities discussed in 

Chapters 4 and 5 do not. These markets are hardly suitable examples due to the material lack 

of storage, liquidity restrictions on their physical markets, high cross-border trade frictions, 

and the insufficient geographical distribution of origination and storage. 

 

On the other hand, it is precisely these restrictions that, in Chapter 4, raise important research 

questions for the price formation within such constraints for markets such as electricity while 

excluding others, such as crude oil, metals, and agricultural commodities. Furthermore, the 

geographical distance between trading partners and its influence on price formation is a well-

researched subject for crude oil, agricultural, and metals (Tinbergen 1962, Bergstrand and 

Egger 2010), but not electricity. The above arguments explain the focus on European 

electricity markets in Chapter 4. 
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Lastly, crude oil is included in the hypothesis testing in Chapter 5, but electricity is not, 

because the electricity market trades in a single currency unit, eliminating variations in the 

exchange rate from the price and cross-border trade flow formation. 

 

The central hypothesis tests of the first empirical chapter is that commodity producers can 

deliberately alter the amount of output on the spot physical market by changing price 

structure, thus creating conditions for a short-term speculative supply shock. This means that 

the supply needs to increase simultaneously or briefly after the forward curve shifts into 

backwardation. The idea that supply is influenced by the shape of the forward curve also 

challenges the established theory of storage, and it therefore deserves further scrutiny. 

 

The results not only suggest a speculative supply shock, contradicting Baumeister and 

Peersman (2013), and Kilian and Murphy (2014), but also, uniquely for the literature, identify 

a link between forward curve‘s steepness and the short-term crude oil supply. The 

implications for the market of changes in the forward curve can be significant. Forward 

prices rising above the current spot price level can potentially alter the speed at which 

producers extract oil, which, in turn, can trigger a reaction throughout the entire supply chain, 

affecting numerous related physical and financial markets and activities. 

 

The second empirical chapter investigates the impact of the relative strength of the economic 

activity and distance between two countries on their net cross-border electricity flow. The 

effect from changes of electricity flow between two markets on the flow between another pair 

of markets and their market prices is also examined. The inherent need for instantaneous 

balance on the physical electricity market, as well as the increased connectivity between 

markets within the EU‘s Energy Union, raises important questions about the behaviour of the 

entire interconnected system.  

 

I theorize that the application of Tinbergen‘s gravity theory of trade to the integrated EU 

electricity market enables better modelling of the forces behind changes in flows and prices. 

The results suggest that, with the exception of the French market, the reaction of the price to 

flow in all the markets in the study has become less pronounced over time and that the Italian, 

Swiss, and French electricity prices are the most responsive to changes in electricity flow. 

Furthermore, the outcome from the proposed cross-border arbitrage model is unambiguous, 

since the algorithm, which is guided exclusively by changes in cross-border electricity flows, 
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delivers a Return on Investment (ROI) of 129.1% after adjustments for transaction costs for 

the sample period, or an annualized ROI of 26.3%. Further evidence is found that the ROI 

peaked in 2017 and started to contract since, in line with another finding of the study, that the 

reaction of price to flow has become less pronounced over time in numerous European 

electricity markets. Additionally, evidence of consistent interactions between Swiss/French 

and German/French cross-border electricity flows, and positive feedback between the 

Swiss/Italy and France/Italy flows, are documented. 

 

I hypothesize in the third empirical chapter that the currency market is a suitable predictor of 

commodity price movements across different time frames because of their potential to 

accumulate unique information about the producers‘ incentives to supply the market with a 

commodity and consumers‘ incentives to purchase the required amount of material on the 

international market. The ability of currency markets to gather and channel forward-looking 

information (Van Foreest and De Vries 2003) is also acknowledged. 

 

The results provide evidence that the currency market possesses predictive power over the 

price of commodities. Furthermore, the evidence suggests that the currencies of importers 

have higher explanatory power than the currencies of exporters, which is a major departure 

from the established consensus in the academic literature. Additionally, all commodity 

markets in the study are found to respond strongly to the proposed synthetic currency-based 

supply and demand model, which, in turn, significantly improves the explanatory power of 

the vector error correction model. 

 

The contribution of the first empirical chapter is threefold. First, it establishes a causal link 

and constructive interference between the forward curve position and the event of a 

speculative supply shock. Second and, to the best of my knowledge, uniquely in the literature, 

it demonstrates that the responsiveness of short-term supply rises with an increase of the 

steepness of the forward curve slope. Third, the chapter proposes a general equilibrium model 

for the global crude oil market that exhibits significantly stronger explanatory power for the 

price of crude oil than the model that does not contain the forward curve gradient. Such 

findings not only increase theoretical knowledge about the way short-term supply reacts to 

changes in spot and forward prices, but also offer an analytical tool for market practitioners in 

the face of a general equilibrium model with characteristics unique to the literature. 
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By focusing the research on how one cross-border electricity flow impacts other flows, the 

second empirical chapter broadens understanding of the forces that form the supply in 

interconnected markets. The price of electricity is found to influence, as well as lag, cross-

border electricity flow. This finding allows practitioners to exploit temporal mispricing more 

successfully and helps regulators address potential abuse of market positions (Gebhardt and 

Hoffler 2013). Furthermore, the successful application of the gravity theory of trade to the 

electricity market in Europe is unique in the academic and industry literature, and it paves the 

way for future research into how the macroeconomic data of one country are priced by the 

electricity market in another country within an energy union. Any mispricing identified by 

the proposed gravity model of electricity trade is likely to attract the attention of regulators 

and market participants alike. 

 

The third empirical chapter of this thesis contributes to the literature not only by identifying 

the direction of causality between currency markets and commodity prices, but also by 

documenting the important role of exporters‘ currencies in commodity market price 

formation. The increasing complexity and variety of trade flows (Krugman 1995) in the 

world of global commodity trading dictate the need for a sample of currency pairs that is 

likely to capture more information about the forces driving these flows, which is what this 

study offers. Moreover, combining currency pairs of exporters and importers of commodities 

and thus extracting information from their joint relationships is an idea that, as far as I am 

aware, has not been considered in the literature. This study also offers a different perspective 

from the use of higher-frequency data in comparison to the relatively low-frequency monthly 

(Prokopczuk, Tharann, and Simen 2021), quarterly (Zhang, Dufour, and Galbraith 2014), and 

annual (Gargano and Timmermann 2014) data in the current literature.  

 

Just as importantly and to the best of my knowledge, the literature lacks analysis on the 

difference in impacts currency markets can have on spot and forward commodity prices. To 

fill this gap, the study measures the differences in the reactions of spot and forward 

commodity prices to information contained in foreign exchange markets, which is an 

important empirical contribution. From practitioners‘ point of view, any divergence between 

spot and forward prices creates trading opportunities in the face of cash and carry arbitrage, 

as defined by Kawaller and Koch (1984) and Lien and Quirk (1984), amongst others. On the 

other hand, the interest of regulators is likely to be on the impact that spot prices can have on 

end-user prices and demand. 
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3. The role of the forward curve in the formation of a speculative 

supply shock on the crude oil market 

3.1. Introduction 
 

Prices along the forward curve are affected by the information processed by all market 

participants. It is plausible to assume that many of them use the forward curve to guide their 

future market behaviour (e.g. Sockin and Xiong, 2013). 

 

This chapter examines the role played by the shape and gradient of the crude oil market 

forward curve in the formation of a speculative short-term supply shock on the physical 

market.1 Established microeconomic theory identifies the key drivers of individual producers‘ 

decisions to affect the market supply when the price dynamics for a given product provide 

incentives to do so. Such behaviour is based on the notion that producers are rational 

economic agents and their main purpose is to maximize revenue. For example and according 

to Leland (1972), who distinguishes between risk-neutral and risk-averse firms, the output of 

a quantity-setting firm tends to decline as uncertainty in demand increases. Such demand 

uncertainty on the physical commodity market is exhibited through the relationship between 

spot and forward prices.2 This relation is in line with the conclusions of Litzenberger and 

Rabinowitz (1995) that expose the positive relationship between output on the oil market and 

backwardation. Their results suggest that producers are guided by the shape of the forward 

curve, make rational decisions to maximize revenue, and, therefore, adjust supply 

accordingly. Such action meets the definition of a speculative supply shock, as used by Kilian 

(2008a, 2008b). However, in spite of the numerous occasions of forward market shifting 

between contango and backwardation within the investigated period, Kilian does not find 

evidence of such shocks on the oil market. 

 

Unlike medium- to long-term shifts in production in response to deterioration in geopolitical 

conditions underlying structural demand or technological developments, any short-term (e.g. 

                                                                 
1
 In this paper, the gradient is defined as the quantity that defines the inclination, or slope, of a l ine or curve 

with respect to another l ine or curve. For a l ine defined as y = mx + b in the x –y plane with angle 𝛳, the slope 

m is the s lope intercept  of the line y, where m = Δy/Δx = tan𝛳.    
2
 For the purpose of this paper, the terms future price and forward price are used synonymously, denoting the 

price of a commodity in the period t + n.   
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intra-monthly) changes in supply can constitute a speculative supply shock.3 However, due to 

the difficulties associated with the implementation of short-term speculative supply shocks, 

the contemporary academic literature does not offer evidence of their existence. Such 

difficulties include the long investment horizon of the upstream crude oil extraction business 

and associated financial planning, the technological process of drilling and extracting oil, as 

well as the level of access to the forward market.4 Therefore, the question put forward by this 

study is twofold. 

First, the study examines the hypothesis that commodity producers deliberately alter the 

amount of output on the spot physical market due to changing price structure, thus creating 

conditions for a short-term speculative supply shock. This means that supply needs to 

increase simultaneously or briefly after the forward curve shifts into backwardation. The 

opposite will also be the case, that is, the supply is expected to drop with the curve moving 

into contango. The crude oil market is chosen under the assumption that it exhibits the 

necessary characteristics for the hypothesis investigation, namely, the size of the underlying 

physical and forward markets, storability, and the availability of reliable and comprehensive 

data.5 

Second, the study explores the impact on supply of varying the gradient of the forward curve. 

Slope steepness is an important source of information for market expectations. The steeper 

the slope, the stronger the perception of spot and future market value amongst the 

participants, which relates to the producers‘ intention to alter supply in the short term. To the 

best of my knowledge, there has not been a study that examines the link between short-term 

supply and the shape of the curve and its slope steepness. 

 

                                                                 
3
 Examples of medium-/long-term structural shocks include armed conflicts, reduced energy intensity, and 

fracking. Examples of short-term supply shocks include daily or weekly variations of production and/or 
inventory balance that affect the crude oil  suppl y chain.  
4
 Changes in upstream supply are difficult to achieve. First, the process of crude oil  extraction is a long -term 

business; the investment horizon is usually measured in years or decades. Such long-term investments require 

predictability of cash flow. This is the reason why, historically, the majority of the crude oil  production had 
been committed to long-term contracts. Such contracts allow for l imited flexibil ity in terms of output. Second, 
a factor in the output that cannot change rapidly is the technological process of dril ling, which is both a capital- 

and time-intensive operation. Third, easy access to the forward market could also be a reason for producers 
not to deliberately alter supply in the short term. In the event of prices higher than the spot market forward, a 
condition also known as contango, they will  have the option to sell  their production forward, thus locking in a 
favourable sell ing price for their product. Such sell ing along the forward curve, if aggressive enough, 

suppresses the price, and the curve returns to its ‘normal state’ of backwardation. 
5
 Market size is considered on liquidity/price discovery grounds. Storability is an important element for price 

discovery. Sufficiently long time series are needed to capture different seasonal and economic cycles. 



 

23| P a g e  
 

The idea that supply is influenced by the shape of the forward curve confronts the established 

framework of the theory of storage. One challenge to inventory theory is the increased ability 

and incentive of the producers to control a bigger share of the supply chain, combined with 

more frequent abrupt changes in supply at the origin. This is due to the fact that the theory of 

storage regards inventory as the main market balancing mechanism. Another challenge is 

successful establishment of the direction of the interaction between the forward curve and the 

oil supply reaction. Cause and effect are not trivial to establish in such a dynamic system. 

Forward curve changes on the back of many factors, not only supply. For example, increased 

influence of speculative money flow possesses the ability to distort the forward curve in the 

short-term, thus contributing to abrupt changes in the curve. Furthermore, commercials-

hedging, plus hedging from financial institutions managing risk, may also affect the curve 

shape in specific maturities.  

Therefore, positive feedback is likely to be present, since a shift in supply not only directly 

affects the forward pricing, but also indirectly, that is, through other price formation drivers, 

such as inventory, shipping, and refinery utilization. This is why evidence of bivariate 

causality is required before the study can advance to the next level. Furthermore, since 

changes in forward prices can occur as a result of other drivers, exogenous to supply, I 

hypothesize that the shift in the curve could cause a reaction by the producers to adjust the 

supply according to the new information priced by the curve. Such information is presented 

as four variables that are endogenous to price and exogenous to supply: the forward curve 

slope gradient, short-term (weekly) supply and demand, and the inventory change for the 

period.6 

In my view, it is important that the proposed model include supply, demand, and inventory 

changes, because, even if production does not bypass inventory, only a fraction of it is 

recorded as such. The rest is committed contractual oil flow, which is not static and fluctuates 

according to contract terms and market conditions. Both the volume purchased and price can 

vary, since floating, or index-linked, prices are common on the market.7 If the effort is 

focused only on inventory, most of the market information is lost. 

                                                                 
6
 Weekly refinery capacity util ization is used as a proxy for short-term demand, because it represents the 

forces of downstream demand pull. Refineries are forced to respond quickly to changes in downstream 
demand because of the limited storage capacity for refined products.  
7
 As of Q4 2017, the production of Organization of the Petroleum exporting Countries (OPEC) was 33,000 

barrels daily (i.e. 33 mbd), with commercial stocks of 2.8 bil l ion barrels and an annualized stock-to-output ratio 

of 22%. The global stock-to-output ratio was even lower. For example, the US ratio was about 3%. If the effort 
focuses only on inventory, most of the market information is lost.  Source: International Energy Agency (IEA), 
US Department of Energy (DOE), BP Research.   
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Clearly, this is no longer bivariate relationship, and different methodology is required to 

examine the cause and effect signals. Therefore, a short-term vector autoregressive (VAR) 

model for the global crude oil market is proposed. The VAR model is used to investigate the 

complex interaction between all five variables (price plus four variables endogenous to price) 

through the introduction of a one-off structural shock to each variable and measures the 

reaction in terms of the magnitude, time, and duration of the dependent variables. This is why 

this paper spends considerable attention to examining the VAR impulse responses. 

 

In building the argumentation to support or reject the hypothesis, I carry out three preliminary 

statistical diagnostic tests. The mechanical lead–lag relationship between the elasticity of 

supply (Es) and the price of oil is examined first. Furthermore, the conditions for bivariate 

causality between the forward curve and oil supply are investigated with the help of a lagged 

return (LR) test, followed by a Granger test and a test of cross-correlation on the forward 

curve slope. It is trivial to infer, based on the fundamental principles of economic theory that 

price reacts to changes in supply across all time frames. Transmission of the signal in the 

opposite direction, that is, price driving supply, represents a considerably more important 

event, particularly within the shorter, that is, intraday to intra-month time frames. Therefore, 

establishing the direction of causation is an important element in building the hypothesis of 

the study. Evidence of causality and, therefore, of a speculative supply shock is detected in all 

of the preliminary tests, resulting in the development of a structural model of the global crude 

oil market that, for the first time, allows for a speculative supply shock as a result of a 

forward curve shift.  

Another unique proposition of the model is the weekly frequency of the time series used in 

the study. The econometric model employed is a vector error correction (VEC) model 

(VECM) that captures the joint dynamics of a set of variables, namely, the BFOE8 physical 

spot price, the forward curve slope, the crude oil supply, inventories, and refinery capacity 

utilization. The sub-hypothesis of the study examines supply behaviour not only in relation to 

the binary shape of the curve, that is, contango or backwardation, but also according to its 

steepness. 

 

Another trivial assumption is that the average oil producer is a rational economic agent 

aiming at maximizing profit. However, there are two important points to be made. First, such 

                                                                 
8
 The term BFOE stands for Brent, Forties, Oseberg, and Ekofisk crude oil  blends that comprise the physical 

Brent price. 
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a reaction is justified fundamentally and by OPEC only if the spot price falls below the cost 

of extraction, because it is difficult to alter production too often.9 The forward curve moves 

from contango to backwardation multiple times within a long-term industrial cycle. This 

study is able to detect a speculative element in the formation of the supply shock, even if the 

spot price is well above the extraction cost. Second, the majority of previous studies do not 

find evidence of such a speculative supply shock. Their focus is on the influence of demand 

and macroeconomic drivers. 

 

The results obtained from this study‘s preliminary diagnostic tests and the proposed VECM 

appear to support the main hypothesis. The results of testing the sub-hypothesis that short-

term supply (S) impacts not only the sign of the slope of the forward curve (X), but also its 

gradient (gradX), confirms the key assumption of the study. 

The initial argumentation behind the proposed hypothesis is based on observations of rising 

Es from 2007 to 2017. An LR test on the relationship between Es and the oil price reveals 

that the Es reaction is strongest four weeks after the price of oil changes. Furthermore, all 

three preliminary diagnostic tests imply a causal relationship between the two variables, with 

X, or gradX, leading S. 

 

The proposed VECM for the global crude oil market examines the interactions between all 

five variables through the introduction of a one-off structural shock to each variable. The 

reaction in terms of magnitude, time, and duration of the dependent variables are measured 

by five sets of impulse response diagrams, which indicate that a positive shock to gradX 

results in a subsequent decline in S about three to four weeks after the shock is introduced. 

That said, a shock to the supply does not seem to deliver the same outcome for gradX. This 

finding is in line with evidence from the preliminary lead–lag relationship tests, which 

exhibited the same result. More importantly, such behaviour signals causality in the 

relationship between the two variables, with the forward curve leading the reaction of the 

supply by about four weeks. 

 

The sub-hypothesis examines the reaction of supply to various gradients of the forward curve 

slope. The four-week lead time observation is consistent with previous data. More 

importantly, calculation of the gradient of each forcing (test in which the slope is forced to 

                                                                 
9
 The reasons are FXelained in some detail  in the Introduction. Price drops below the extraction cost are rare 

and usually associated with the bottom of the industrial cycle.   
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increase by 0.1) reveals that it steepens with the curve. Therefore, it is plausible to conclude 

that the supply reaction becomes stronger as the gradient of the curve increases. The direction 

of the response to shocks and the coefficient strength from the impulse response functions 

(IRFs) of the VEC test are also considered. 

 

The results of this study suggest the existence of a speculative supply shock. Baumeister and 

Peersman (2013) and Kilian and Murphy (2014) however, do not find any evidence of such a 

shock, which is a major contradiction. The discrepancy in the results can be explained by the 

different frequencies and lengths of the time series used in both studies.10 A speculative 

supply shock, if it arises, is more likely to be registered on a shorter time frame, which 

precisely is the focus of this paper. This is because a change in the forward pricing on the 

market requires the swift and short-lived reaction of supply adjustment by the market 

participants who are able to engage in such activity. Kilian and Murphy (2014) consider the 

existence of a speculative supply shock only in the context of producers leaving oil below 

ground or an inventory build-up by traders as part of an effort to speculate in anticipation of a 

forthcoming price increase. Furthermore, the authors do not discuss the actions of 

producers/traders who are able to control the supply chain to such an extent as to influence 

supply on short notice. Finally, the authors state that a negative flow supply shock has little to 

no impact on the real oil price. 

This paper contributes to the literature in five ways. First, to the best of my knowledge, there 

has been no study on the interaction between the position of the forward curve (contango vs. 

backwardation) and direct short-term supply. The academic literature, with the important 

exception of Litzenberger and Rabinowitz (1995), appears to agree that such an interaction 

arises between the forward curve and inventory, and not between the direct supply and 

forward curve. It is important for market practitioners, academics, and policy makers to be 

able to identify the reasons for and measure the impact from a deliberate attempt to alter the 

supply of crude oil in the short term. The implications from changes in the forward curve in 

the short term on the entire commodity supply chain can be significant. Forward prices (Pf) 

rising above the current spot price (Ps) level can potentially change the speed at which 

producers extract the commodity, in this case crude oil, from the ground. This triggers a 

reaction throughout the entire production and the supply chain that the affects numerous 

                                                                 
10

 The dataset used in this study is based on weekly data points, whereas the other researchers use monthly 
data. Furthermore, the period investigated in this study is from January 2007 to Ja nuary 2017, as opposed to 
2003 to 2008 in the case of Kil l ian and Murphy (2014). 
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related physical and financial markets and activities. For example, hedging and borrowing 

become costlier when uncertainty increases. Storage costs rise as companies scramble to 

secure supply and increase inventory. Shipping, as one of the best examples of derived 

demand in the academic literature, is directly affected when the supply of oil in the physical 

market fluctuates. Due to the central role of crude oil and its derivatives in the manufacturing 

process, a higher unit cost could not only put producers in a difficult financial situation, but 

also cause inflationary pressure in the broader economy. Kilian (2008a) finds evidence that 

the Consumer Price Index peaks three to four quarters after a supply shock. 

Second, an important contribution is the inclusion of the forward curve gradient in the 

research process. I quantify not only the binary position of the curve (contango vs. 

backwardation), but also its slope steepness, and I study the sensitivity of direct supply to it. I 

believe that this is the first such approach described in the academic and professional 

commodity market research literature. Evidence that the slope steepness is linked to the 

intensity of oil supply on the market adds to understanding the drivers behind the mechanism 

of short-term oil price formation. This relationship appears to be neither static nor stable. 

Two of the tests, namely, the lagged and cross-correlation tests, display a pattern of long 

periods of positive causality followed by periods of weak or non-existent causality. 

Third, this is the first study examining short-term, that is, daily or weekly, supply shocks, as 

opposed to longer-term (monthly, quarterly, or annual) ones. Therefore, a weekly dataset is 

utilized that, to the best of my knowledge, is unique. All studies focusing on crude oil supply 

shocks use monthly or quarterly data. Higher-frequency data are significantly noisier, but, 

when handled properly from a statistical perspective, the weekly dataset yields valuable 

information on the changes in short-term direct supply on the physical oil market. Higher-

frequency data points allow for the construction of models that capture shorter-term price 

fluctuations. The market practitioners are the direct beneficiaries of the improved visibility 

and new trading opportunities. 

Fourth, through the development and introduction of a global short-term crude oil market 

VECM, I examine and document the dynamic interaction between supply, demand, 

inventory, spot prices, forward prices, and the slope of the forward curve. To achieve this in 

the particular time frame, higher-frequency (weekly) data are used compared to all other 

models, which use monthly or quarterly data points. The selection of the variables and data 
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frequency makes the model proposed in this paper a unique specification in the academic 

literature. 

 

Fifth, following the derivation of the VECM, identifying assumptions, and taking into 

account the first through third contributions listed above, I propose a form of short-term 

general equilibrium model for the global crude oil market that, to the best of my knowledge, 

has not been previously documented in the literature. The proposed model, of the form 

𝑃 = 𝑔𝑟𝑎𝑑𝑋 (𝑆 /𝐷 +  𝑑  ), exhibits significantly stronger explanatory power for the price of 

crude oil compared to the model without the forward curve gradient.11 

 

The remainder of this paper is organized as follows: Section 3.2 discusses the literature and 

attempts to identify some of the gaps and weaknesses. Section 3.3 describes the data samples, 

sources, and time frame selection criteria. Section 3.4 presents the methodological framework 

of the hypothesis and defines the hypothesis. Section 3.5 describes the results. Section 3.6 

discusses the robustness of the proposed VECM of the global crude oil market. Section 3.7 

concludes the paper. 

3.2. Literature review 
 

The main hypothesis of the study, discussed in the previous section, stipulates that change in 

the forward curve for crude oil influences the decisions of many producers and traders to not 

only accumulate or liquidate inventory, but, more recently, also extract oil from the ground 

and export it. This part of the study reviews the relevance of academic publications to the 

hypotheses of the study and highlights the flaws or gaps in these works. 

The academic literature covers in detail the relationship between the forward curve and 

inventory. For example, the founding papers of Kaldor (1939), Working (1948), Telser 

(1958), Brennan (1958), and Johnson (1960) and more recent work by Pindyck (2001, 2004) 

and Routledge, Seppi, and Spatt (2002) have all revealed a great deal about the characteristics 

of the forward curve and the interactions between physical and forward markets. These 

papers all regard inventory fluctuations as the main expression of volatility. This is based on 

                                                                 
11

 In this equation, p is the price of oil, S is the supply, D is the demand, gradX is the gradient of the forward 
curve, and dI is the change in inventory levels  
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the premise that readily available stocks allow the holder of inventory to respond quickly to 

changes in supply and demand and thus avoid disruptions in the manufacturing process. 

Kaldor (1939), Working (1948, 1949), and Telser (1958) stipulate that, during normal 

conditions (i.e. the market in equilibrium), the carry cost defines the relationship between 

spot and forward prices. However, in times of scarcity, the forward curve shifts into 

backwardation, and the yield on inventory should substitute for the cost of carry in the 

relationship. These authors have also established the link between volatility, inventory, 

production, consumption, and the price of commodities. Kaldor (1939), in particular, has 

suggested that the spot pricing of a commodity with a perfectly elastic storage supply is a 

function only of speculation. The author goes further to state that speculation has no impact 

on the spot price of commodities with no storage ability. Working (1949), on the other hand, 

suggests that, as inventory rises, volatility declines and the price increases. Therefore, as the 

price rises, volatility must decline. 

More recently, Deaton and Laroque (1992), Ng and Pirrong (1994), Pindyck (2001), Geman 

and Ohana (2009), and Gorton, Hayashi, Rouwenhorst (2013) have contributed to 

understanding the dynamics between spot and forward pricing, the shape of the forward 

curve, volatility, and inventory changes. They have established that the implied return of the 

inventory, also known as the convenience yield, is a measure of the future scarcity of the 

commodity and, therefore, links the inventory level to the future spot price. All these studies 

consider volatility to be an inverse function of inventory, if the inventory level is below its 

long-term mean. If the inventory is above its long-term mean, the relationship becomes 

positive. Therefore, volatility is believed to impact the market variables through inventory 

changes. Pindyck (2001) goes further, stating that price volatility is positively correlated with 

the volatility of consumption and production. This result, in turn, puts upward pressure on the 

price of the commodity itself. The convenience yield should then also rise, which leads to 

further accumulation of inventory and continuous upward price pressure. 

This result is not what has been observed on the global crude oil market in the last seven 

years. The market conditions observed are displayed in Figures A2 to A4 of the Appendix. 

Demand continued to rise at a steady rate of about +2% per year, but the volatility of price 

declined (see Figure A2 of the Appendix). Furthermore, contrary to the theoretical framework 

described above, the price of oil peaked in 2008 and has only declined since. Initially, the 

decline was gradual, but the momentum accelerated mid-2014 onwards. This led to a drop in 
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the convenience yield, which was also supposed to increase with the price. A higher 

convenience yield theoretically leads to stronger incentives to accumulate inventory. In 

practice, as the convenience yield declined, inventories increased (in nominal terms, not as a 

share of production). This result is displayed in Figure A4 in the Appendix. Therefore, the 

diminished role of inventory as a market balancing mechanism represents a weakness in the 

methodology that appears to be overly reliant on the theory of storage. Furthermore, this 

reduced influence of inventory has the potential to amplify the impact that any short-term 

change in upstream supply could have on the overall price discovery and volatility. 

Numerous studies, beginning with a founding paper on the topic by Keynes (1930), followed 

by more recent works by Kolb (1992) and Litzenberger and Rabinowitz (1995), assume that 

backwardation is the normal condition for forward commodity markets. The term normal was 

even introduced by Keynes in his book A Treatise on Money. In essence, theory suggests that, 

first, the future price at time t (𝑃  ) is less than the expected future price ( 𝑃  ) and second, 

𝑃   should increase to match  𝑃   at the time of explanation. This idea, also known as 

convergence, is based on the premises that, to exclude a risk-free trading opportunity in a 

risk-neutral economy, futures price needs to equal the spot price upon maturity of the 

contract. Backwardation, in turn, is linked by the theory of storage to low levels of inventory. 

For example, Symeonidis, Prokopczuk, Brooks, and Lazar (2012) study the prices of 21 

commodities from 1997 to 2011 and analyse their volatilities as predicted by the theory of 

storage. Their findings confirm that the relationship between the shape of the forward curve 

and the level of inventory is indeed as predicted by theory; that is, backwardation implies low 

inventory levels. The opposite condition, contango and high inventory, also holds. 

The academic literature is in agreement that an important price formation interaction occurs 

between the forward curve and inventory. However, the interaction between the forward 

curve and direct supply – the key hypothesis of this study – is discussed significantly less 

frequently in academic publications. One particular study, by Litzenberger and Rabinowitz 

(1995), addresses the link between backwardation and oil supply. One of their findings, 

namely, that production occurs only if the forward curve is in backwardation, is tested in this 

paper. Although the results largely confirm their statement to the extent that production is 

adjusted when the forward curve position shifts, no evidence is found that production and, 

therefore, short-term direct supply to the market stop during periods of contango. 

Furthermore, their statement contradicts Hotelling‘s (1931) theory and data from recent 
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surges in the US supply that occurred during prolonged periods of contango. Hotelling‘s 

theory states that the net price (price minus the extraction cost per unit) of an exhaustible 

resource will rise over time at the rate of interest. This result implies that the oil curve should 

not be in a form of weak backwardation, unless extraction costs increase more slowly than 

the interest rate. Strong backwardation is therefore possible only if extraction costs decline 

consistently over time. Evidence suggests that extraction costs did indeed decline over time, 

which can explain to some extent why production continued to increase, regardless of the 

state of the curve, that is, weak/strong backwardation or contango. 

Interaction between the forward curve and production levels, and hence supply, is discussed 

by Lutz Kilian. In a paper discussing the impact from supply shocks on price, Kilian (2008a) 

focuses on exogenous (due to wars, civil unrest, and regional political instability) shocks to 

supply. More recently, Alquist and Kilian and (2010) have studied the response of production 

and price to changes in speculative and flow demand. Their findings suggest not only that 

change in speculative demand is a function of the forward supply and demand, but also that 

positive demand change results in increases in inventory holdings. In a later, key paper on the 

role of inventory and crude oil market speculation, Kilian and Murphy (2014) propose a 

model that allows for shocks of speculative demand for oil. They also account for the impact 

of such shocks on flow demand and flow supply. Their model allows for a speculative supply 

shock in terms of producers leaving oil below the ground, which, as they suggest, is a less 

common view. The authors express the speculative element of the real price of oil through 

changes in inventories, in line with earlier literature on the subject, discussed previously, 

which establishes the link between inventory and the price of the commodity. 

Yet again, Kilian and Murphy (2014) do not find any evidence of a speculative supply shock 

for the period of their study, from 1973 to 2009. Since they dismiss the existence of a 

speculative supply shock, their focus appears to be on the interaction between changes in 

demand, both flow and speculative, with production and price. The authors conclude that the 

sharp price increase from 2003 to 2008 was due to a positive change in demand. This result is 

in line with the findings of Prokopczuk, Brooks, and Wu (2015), who argue that it was most 

likely that the fundamentals, such as changing expected demand for commodities or 

temporary supply shocks, that caused the significant price rises and falls between 1967 and 

2011. Prokopczuk, Brooks, and Wu (2015) do not discuss in detail the origins of these 

temporary supply shocks. It is precisely these shocks on the crude oil market and one of their 

possible causes that I investigate with this paper. 
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Another paper, by Hamilton (2009), states the result that speculation can move the price on 

the physical market, even if there is no change in inventory. The author also suggests that 

certain oil producers, namely, members of the OPEC cartel, could hold back production and 

effectively use their oil below ground as inventory (Hamilton 2009). 

Following the line of thought for the interaction between future prices and demand, Sockin 

and Xiong (2013) suggest that the impact of future prices on the demand flow is more 

important than the impact on speculative demand, as expressed by the inventory. More 

specifically, the authors build on the premise that, in the presence of information friction and 

assumed production complementarity, an increase in forward prices indicates strong 

underlying flow demand, which, in turn, has the potential to induce even stronger demand. 

The authors also caution against putting too much emphasis on the role of inventory as a 

metric for speculative demand. 

Relevant to my hypothesis, Baumeister and Peersman (2013) examine the reasons for the 

systematic increase in the volatility of price at the time of a decrease in the volatility of the 

supply of crude oil. Their key argument is that the short-term price elasticity of both supply 

and demand has decreased since the mid-late 1980s. One reason for the apparent lack of 

confirmation of the reality of speculative supply in the crude oil market, in spite of the 

apparent conflict with the Es (which has been rising for the last eight to 10 years) could be 

the time frame selection of the studies and possibly the frequency of the data observations. 

All the works discussed above investigate market behaviour in the previous two to three 

decades and use monthly data points for supply. Speculative supply shocks, if they exist, are 

more likely to be evident in shorter time frames. Speculative buying, or speculative demand, 

is described in the literature as entities buying crude oil not for current consumption but in 

anticipation of a price increase (Kilian and Murphy 2014). The arbitrage opportunity window 

is therefore short-lived, since speculative purchases increase inventory holdings, which, as a 

market balancing mechanism, causes the price to correct, and close the window. 

Furthermore, differences in the results so far can be explained by the different methodologies. 

Kilian and Murphy use a structural VAR model to explain the interaction between different 

variables affecting price formation on the crude oil market. They use a dry bulk freight 

market index as a proxy for global economic activity, inventory, demand, and supply. Their 

aim is to propose a model that accounts for all possible variables affecting price formation on 

the crude oil physical market. In contrast, I employ three different tests, each of which 
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examines from a different angle the lead–lag relationship between two variables, namely, the 

short-term supply of crude oil and the position and gradient of the forward curve. 

Another reason for the different results could be that the academic studies I identify are built 

around the concept of product push. In brief, product push is a supply chain behaviour based 

on the forecast producer demand for the commodity. Product pull, on the other hand, is based 

on the actual consumer demand. In the last 10 to 15 years, globalization, combined with 

improved infrastructure in key exporting and importing regions and pressure on suppliers and 

traders to optimize and reduce the cost of delivering goods to the end user, has resulted in 

supply chains stretched for raw materials. According to Christopher (2011), one of the 

biggest challenges for producers today is the need to respond to ever-increasing levels of 

volatility in demand. The concept of product push (products manufactured in anticipation of 

demand) versus demand pull (demand driving product towards the market) is also discussed 

in detail in the above-mentioned papers. 

The concept of product pull has been prevalent in recent years, as discussed by Christopher 

and Towill 2001. This is not a static condition, and there are, of course, times when producers 

return to the old product-push system. This can be observed particularly during periods of 

price/market share wars or prices holding above their long-term averages. One example is 

OPEC‘s decision to continue increasing production in its attempt to drive shale oil producers 

out of the market when the global crude oil market was already oversupplied (2014–2015). 

Another example is the cartel‘s decision to reduce supply to stabilize the price in November 

2016. Both occasions can be described as product-push interventions.  

More importantly, commodity supply chains appear to switch from one mode to the other 

under a pricing pressure. According to Simchi-Levi (2011), supply chains evolve with market 

cycles. The author argues that, as the price of oil increases, supply chains shift from just-in-

time delivery to systems with better use of transportation capacity through economies of 

scale. This shift, in turn, leads to the accumulation of greater inventory along the supply chain 

as both safety stocks and transported lot sizes increase. The author concludes that the greater 

importance of economies of scale in trading the commodity leads to a higher value of 

aggregating demand, which, in turn, increases the importance of managing the supply based 

on long-term forecasts. This scenario represents a push-based strategy. The opposite will also 

be the case, since a low oil price is likely to reset the supply chain into product-pull systems, 

implying agility in the response to a challenging price environment. 
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As a result of the progress of globalization in recent years, the shipping industry is now more 

closely linked to the global commodity supply chain than ever (Ekawan, Duchêne, and Goetz 

2006). Any market that trades based on cost, insurance, and freight (CIF) indicates that 

shipping is already closely integrated within the supply chain. However, similar to other 

approaches linking forward prices to changes in inventory, shipping market research has been 

predominantly focused on the shipping market‘s reaction, both physical and financial 

(Stopford  2008, Beenstock and Vergottis 1989, Kavussanos and Visvikis 2011). A gap in the 

literature therefore becomes obvious that relates specifically to the lack of understanding of 

how producers adjust output and sales from the origin based on signals from the forward 

curve, regardless of changes in inventory at the origin or the seaborne shipping market. 

In addition, such findings would open the road to studying in greater detail new 

developments in global commodity trading, namely, changing patterns in price formation and 

volatility, as well as positive feedback between ―Free on Board‖ (FOB) and ―Cost, insurance, 

Freight‖ (CIF) pricing points. 

3.3. Hypothesis development 
 

Academic research is focused mainly on the key role of inventory in the market pricing 

mechanism and largely ignores the possibility of deliberate changes by producers in short-

term supply due to changes in price. For example, the implied return of inventory, that is, the 

convenience yield, is a common measure of the future scarcity of a commodity that links the 

inventory level to the future spot price. A carry trade is another example of how inventory is 

seen to play a key role in the balancing mechanism between supply and demand.12 

Such overreliance on the theory of storage to explain the price has a weakness, since evidence 

of a diminished role of inventory as a market balancing factor has been found in recent 

years.13 It is plausible that, as the share of stored oil from the total volume consumed globally 

declines, a larger change in inventory is required to have the same impact on price. Since the 

academic literature regards inventory as the key market balancing mechanism and the main 

expression of price uncertainty—see the work of Kaldor (1939) and Working (1948, 1949), 

or, more recently, Deaton and Laroque (1992), Ng and Pirrong (1994), Pindyck (2001), and 

                                                                 
12

 A carry trade for commodities is defined by the following relationship between the return and carry: 𝑅  = 

  /Q*𝑃 ) –   , where    is the cost of storage, Q is the quantity stored, 𝑃  is the spot price, and   , is the 
opportunity costs (risk-free return).   
13

 See Figure A1 in the Appendix. 
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Gorton, Hayashi, Rouwenhorst (2013), amongst others—this is a development that can 

directly affect the price formation of crude oil. Furthermore, the reduced importance of 

inventory has the potential to amplify the impact that any short-term change of upstream 

supply could have on the process of price discovery and volatility. In addition, I consider 

overreliance on inventory to be a weakness in the market equilibrium framework, because of 

the low stock-to-output ratio of both OPEC and key non-OPEC oil producers discussed 

earlier. Such numbers suggest that overreliance on inventory fluctuations leaves a significant 

portion of trade flows unexamined. 

 

Anecdotal evidence14 suggests that sudden changes in the forward pricing structure of crude 

oil lead to subsequent changes in production, inventory, and exports and, therefore, shipping 

patterns. Attempts of crude oil producers to expand supply during times of high spot prices 

and reduce it when forward prices are higher can be considered to be logical, market-based 

behaviour. Such variations in supply should theoretically optimize the producer‘s revenue, 

since the aim is to sell as much volume as possible at the highest available price. 

Furthermore, a high market share controlled by relatively few producers makes the crude oil 

market prone to attempts to profit from changes in output.15 

Another reason to attempt to adjust the supply based on a changed price environment can be 

the interaction between the price of the commodity and the supply chain itself. Global crude 

oil supply chains vary in type from product push, where the supply is based on that forecast 

by producer demand, to product pull, where the supply is based on actual consumer demand. 

However, according to Simchi-Levi (2011), supply chains are not static but evolve under 

crude oil price pressure. The author argues that, as the price of oil increases, supply chains 

shift from just-in-time delivery to systems with better use of transportation capacity through 

economies of scale and higher safety stock levels, and hence an increase in inventory. 

Simchi-Levi concludes that a stronger accent on economies of scale in trading leads to greater 

value in aggregate demand, which, in turn, increases the importance of managing the supply 

based on long-term forecasts. This represents a push-based strategy. The opposite will also be 

                                                                 
14

 The idea that some oil producers might be able and will ing to adjust output in the short term in reaction to 

changes in the forward curve came through my work as head of research for an energy trading firm in London. 
I observed such efforts on numerous occasions. Using lead–lag tests, I attempted to quantify the frequency of 
the changes and the effect on the overall  supply chain for crude oil, which were all  pointing towards deliberate 
attempts to adjust supply in the short term.     
15

 According to the DOE, as of January 2017, the market share of the OPEC cartel was 34% of the total global oil  
output. The concentration of market share was also high amongst non-OPEC members, where, according to BP 
Plc, Russia and the United States hold a  combined market share of 25% of the total global crude oil  output. 
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true, since a low oil price is likely to reset the supply chain to product-pull systems, implying 

agility in response to a challenging price environment. 

Last but not least, there is evidence that the Es – the traditional metric for the responsiveness 

of supply to changes in price – has been rising steadily since 2008–2009. The Es for crude oil 

is believed to be low in the short to medium term, due to difficulties in adjusting production 

levels at short notice. Numerous studies have been published over the years confirming this. 

For example, in a CEPS–ECMI Task Force paper, Valiante (2013) discusses the influence of 

the financial markets on the price formation of the physical markets16. The author argues that 

the Es on the oil market is usually low due to long authorization procedures, seismic 

exploration, and building the required infrastructure for oil extraction. Valiante concludes 

that, in the short-term, the Es and the elasticity of demand (Ed) are very rigid and that the 

crude oil market is supply-side inelastic. In addition, Cavallo, Caldara, and Iacoviello (2019) 

argue that the short-term Es for crude oil is around 0.1, that is, very low. A similar view is 

expressed by Krichene (2002) who proposes a global model for the crude oil and natural gas 

markets. Data from the last 10 years suggest that the trend is changing. The Es and Ed for 

crude oil based on IEA supply data and BFOE spot prices reveal that the short-term Es does 

not decline within the observed period (January 2007 to February 2017; see Figure A11 and 

Tables A1a&Ab in the Appendix). Instead, the Es increases steadily from 0.03 in 2007 to as 

high as 0.23 in 2017, which represents a significant departure from the long-term mean. 

 

Bearing in mind the above arguments – namely, the high concentration of pricing power on 

the crude oil market, the transformation of global crude oil supply chains between product 

pull and product push under price pressure, the diminished role of inventory as a market 

balancing mechanism, the steady increase in Es over the last 10 years, and simply the 

improved agility of producers and their desire to maximize returns – I hypothesize that some 

producers are likely to respond to changes in the forward price environment not only by 

accumulating or liquidating inventory but, more recently, also by adjusting in the short term 

their output and sales on the spot physical market. Such a reaction is described in the 

academic literature by Kilian and Murphy (2014) and Baumeister and Peersman (2013) as a 

speculative supply shock, but these authors do not find any evidence of such shock, which is 

a major contradiction with the main hypothesis of this study. 

 

                                                                 
16

 CEPS stands for Center for European Policy Studies. ECMI stands for European Capital Markets Institute.  
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In a study relevant to the hypothesis developed in this paper, Litzenberger and Rabinowitz 

(1995) argue that crude oil is produced only if the discounted futures price is lower than the 

spot price, a condition also known as backwardation. Their statement contradicts Hotelling‘s 

(1931) theory and data from the recent surges in the US supply that occurred during periods 

of contango. This paper demonstrates that the volume of supply is influenced by the switch in 

direction of the forward curve. Furthermore, the paper reveals that the strength of the forward 

curve slope, as measured by the slope gradient, matters for the crude oil made available to the 

market. However, there is no evidence to support the claim of Litzenberger and Rabinowitz 

(1995) that the supply of oil increases only if the backwardation is strong enough. It is 

plausible to assume that production will occur regardless of the forward curve condition 

(backwardation vs. contango) and that it will depend on the economics of extraction, that is, 

whether the spot price is above the break-even price of extraction.  

 

Furthermore, a series of papers by Kilian in 2008, 2010, and 2014 investigates the impact 

from supply shocks on price. The author focuses on exogenous (due to wars, civil unrest, 

regional political instability) shocks to supply, as opposed to deliberate – also known as 

speculative – supply shocks. More recent work by Alquist and Kilian (2010) studies the 

response of production and price to changes in speculative and flow demand. One of the 

findings establishes a link between changes positive demand and increases in inventory. 

Furthermore, in a key paper on the role of inventory and crude oil market speculation, Kilian 

and Murphy (2014) propose a model that allows for shocks of speculative demand for oil. 

Their model allows for a speculative supply shock in the form of producers leaving oil below 

ground. The authors express the speculative element of the real price for oil through changes 

in inventory, which is in line with the literature. 

 

None of the papers discussed above offers evidence of a speculative supply shock, which 

contradicts the main hypothesis of this study. A speculative short-term supply shock in 

response to a shift in the forward curve represents a major challenge to the physical and 

financial sectors of the oil industry.17 The physical market is likely to become more volatile 

                                                                 
17

 The paper focuses on the crude oil  market because it is the largest commodity ma rket in the world, in terms 
of both physical metric tonnes moved and financial derivatives traded on/off exchanges (see Resources & 
Energy Quarterly, March 2017, Department of Industry, Science, Energy and Resources, Office of the Chief 

Economist, Australian Government). Crude oil  plays a vital role in the manufacturing process and the price 
formation of myriad finished goods. The share of crude oil  and oil  products in terms of the US dollar value of 
the global gross domestic product has remained stable at around 7% for the last 10 years. This share is by far 
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as crude oil availability changes more rapidly and at short notice along the supply chain. The 

supply chain includes both inventory and shipping markets, which are well placed to detect 

such stress, in a first-order reaction. It is reasonable to assume that, as a result of the stress on 

the physical market, the financial market will also attempt to price in the new underlying 

conditions. This, in turn, creates not only trading opportunities, but also a positive feedback 

loop involving the crude oil forward curve. 

3.4. Data, sources, and time frame selection criteria 
 

This study aims to examine the link between the direct supply of crude oil on the physical 

spot market (S), the shape (X), and gradient of the forward curve (gradX). I hypothesize that a 

lead–lag relationship between the short-term direct supply and forward prices, as defined by 

the market forward curve, can be detected and quantified. The detection of a lead signal for X 

over S would imply producers‘ deliberate attempt to adjust the supply, that is, the 

introduction of a speculative supply shock to the market. 

3.4.1. Data sample 

The study is performed using just over 10 years of data, with 2,719 physical crude oil market 

orders to sell specified amounts of barrels of oil, also known as tenders, converted into 517 

weekly data points. Tender on any physical commodity market is defined as an invitation to 

submit an offer for the purchase of a certain volume of the commodity. It involves a physical 

transaction, usually carried out under the terms of the International Chamber of Commerce 

(Incoterms), where the producer offers to sell a certain volume of crude oil to a buyer. The 

tender normally specifies the volume, origin, and date of the transaction, the date of loading, 

and the price. Therefore, the oil supply time series used in this study comprise tenders 

submitted to the physical markets by crude oil producers. For the purpose of the study, I 

define supply as the number of barrels in the daily crude oil tenders of 147 crude oil 

producers over 10 years, from 1 January 2007 to 28 February 2017. The sample of 147 

different producers represents 82% of all sellers (180) of crude oil who appeared on the 

physical spot market in the last 10 years. 

                                                                                                                                                                                                          
the largest amongst all  other commodities. Oil is also unique in terms of its applications in the real economy. 
No other commodity has more diverse applications. It is used to produce numerous types of fuels for the 
transportation sector, as a fuel to produce electricity, and as a key ingredient of plastic materials.  
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It is important to clarify that the data sample I work with is not the entire supply of crude oil 

available on the physical market. As noted in the Annual Statistical Review of World Energy 

of BP Research (2016), cross-border oil exports (seaborne plus pipeline) in 2015 amounted to 

61.22 mbd, or 67% of the total production of 91.67 mbd. However, cross-border exports do 

not necessarily mean that all this volume is traded on the spot market. The majority of the 

crude oil transacted on the physical spot market is committed volume, under some form of 

contract. Such oil will be produced and exported, regardless of market conditions. My 

hypothesis, however, is built around the reaction of the marginal volume in the market when 

conditions incentivize it to do so. 

According to the same BP annual report, the total annual trade movement in 2010 was 

54.37 mbd. The sample I work with for this particular year is about 1.44 mbd, which 

represents 2.65% of total oil shipments. Such a sample could appear small, but it compares 

well with the share of the spot physical trade flow published by Fattouh (2011) includes 

information about the key crude oil benchmark production volume, the spot traded volume 

per benchmark, total oil exported, and my sample. 

Table 1: Production and spot-traded volume of major crude oil benchmark baskets  

This table compares the volume of crude oil production, the volume traded on the spot market, and the sample 
of major crude oil benchmark baskets used in the study. Source: Fattouh (2011), BP Research (2016). 
 

Unit: ×1,000 bpd ASCI
18

 WTI BFOE Dubai 

Total 

(benchmarks) 

Total 

(global) 

Spot-traded volume (2010) 579 939 1,149 332 2,999 2,999 

Sample of this study           1,436 

Sample as the share spot traded            47.88% 

3.4.2. Data sources 

A number of data sources have been used in the hypothesis development process, including 

third-party data and data proprietary to Marex Spectron Research. For example, the Es and 

Ed were calculated with IEA data for the global crude oil demand and supply. The price time 

series comprise the spot (Ps) Brent price and weekly averages of the end-of-day closing 

prices of the Brent forward curve. The source for the Ps is Bloomberg (code EUCRBRDT 

Index). The source for the forward prices is ICE.19 The spot market crude oil supply data 

comprise 2,719 physical crude oil market tenders by 147 oil producers. The dataset is a mix 

between tender data compiled by Bloomberg (function OTEN) and forward crude oil loading 

                                                                 
18

 ASCI stands for Argus Sour Crude Index, WTI is West Texas Intermediate 
19

 ICE stands for Intercontinental Exchange 
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schedules data proprietary to Marex Spectron Research. The crude oil inventory data are from 

Satellite  Automated Identification System (AIS) and the US Department of Energy, and the 

units are in barrels. The source of the refinery capacity utilization data is the DOE, as the 

percentage of operating capacity from the total installed. 

3.4.3. Time frame selection criteria 

The duration of the period investigated in the paper (week 2 in 2007 to week 8 in 2017) 

ensures that different periods in the long-term investment cycle of the crude oil market are 

taken into account. For example, the crude oil market was well balanced from 2010 to the 

first half of 2014 and has been strongly out of balance (oversupplied) since mid-2014. See 

Figure A5 in the Appendix for a direct illustration of the historical supply and demand 

balance conditions. This finding is important, because market participants, including 

producers, change production and trading patterns according to the market cycle. The 

literature review section already mentioned that OPEC occasionally attempts to control the 

global prices of crude oil by adjusting output. This normally happens when the price drops 

below the break-even oil price required for OPEC‘s budgets (the so called fiscal budget oil 

prices published by the International Monetary Fund for each oil producer). The selected time 

frame also includes the problematic 2008–2009 period of abnormally high price volatility and 

contraction of production and trade due to trade finance issues, rather than a structural shift in 

demand. 

Last but not least, the nature of speculative activity was taken into account when choosing the 

weekly frequency of the data sample. It is argued in the literature review section that 

speculation is likely to be a short-term/short-lived activity. Therefore, evidence is likely to be 

found with higher-frequency data points, not with the monthly – let alone quarterly or annual 

– data points used in the academic literature. 

3.5. Methodological framework 
 

The forward curve is the term structure of the forward market. It displays at a glance the 

value of each contract as it changes in time. Valuable information can be derived from the 

shape of the curve (X), that is, contango versus vs. backwardation, and, regardless of the 

slope steepness (gradX), in relation to the production and exports of crude oil (S). Since the 

slope is defined as the inclination of a line with respect to another line, for a Cartesian plane 
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curve specified as y(x), the slope is gradX = (dY)/(dX), where dX and dY are the changes in 

the two coordinates, x and y, respectively. The slope intercept form of a line in the Cartesian 

plane is given by y = mx + b, where b is the y-intercept and m is the slope. The reaction of 

producers linked to X or gradX would imply that they adjust the exported volume S according 

to the forward price they are likely to receive for their product. Such a relationship between 

the forward curve and export flows, if confirmed by rigorous statistical testing, would imply a 

speculative supply shock, which forms the main hypothesis developed further in this chapter. 

Temporal precedence, covariance, and a lack of plausible explanation for the relationship 

between X and S, as discussed at the end of the literature review, are all conditions necessary 

for causality. 

In constructing my argumentation in support (or rejection) of the study‘s hypothesis, I carry 

out three preliminary statistical tests. Each test aims to establish a possible lead–lag 

relationship (causality) between the oil production/supply and change in the forward curve. 

The hypothesis is further tested by the proposed econometric model in the form of a 

structural VAR model that studies the joint dynamics of a set of variables. The variables used 

in the models are as follows: 

 

1. The BFOE physical spot price (Ps), representing the temporal equilibrium between 

supply and demand; 

2. The forward curve slope, or gradient (𝑔𝑟𝑎𝑑𝑋 , which is the variable tested by the 

study‘s hypothesis; 

3. The weekly crude oil supply (S), which represents the short-term physical market 

supply of oil; 

4. The weekly change in inventories (dI), regarded here as an important market 

balancing mechanism and therefore expression of the price; and 

5. The weekly refinery capacity utilization, used as an expression of oil demand (D).20 

While it is known that the price is a function of the balance between the weekly supply (S) 

and the weekly demand (D) and the inventory (dI) is the balancing mechanism between the 

two, I test how inclusion of the form (contango/backwardation) and the slope of the forward 

curve interact, first, with the supply and, then, with the remainder of the variables in the 

dynamic system. This is done with the help of the forward curve gradient, or gradX. 

                                                                 
20

 The weekly refinery capacity util ization is used as a proxy for short-term demand, because it represents the 
forces of downstream demand pull. Refineries are forced to respond quickly to changes in downstream 
demand because of the limited storage capacity for refined products. 
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The vast majority of academic papers involving the crude oil forward curve apply the 

exchange-traded forward curve; that is, Ps is not included in the forward curve formation. I 

consider this to be a weakness in the approach, because the difference between the spot 

physical price and the first forward contract can sometimes be significant. This means that, if 

Ps is not taken into account, the forward curve slope steepness will be different. In the case of 

this particular study, the inclusion of the spot Brent price is even more important, because the 

focus of the investigation is on the relationship between physical oil flows and the forward 

curve, and not between financial flows and the curve. 

Furthermore, the forward curve price formation mechanism is a function of the spot, forward, 

and future crude oil prices. The methodology of the calculation of the price of crude oil 

(Brent) requires clarification, because, as mentioned above, the spot (dated) and forward 

Brent prices include layers of physical, forward, and future prices. The contract that links the 

futures Brent and the forward Brent is the exchange of futures for physical. Price reporting 

agencies rely on the exchange of futures for physical to derive the forward Brent price 

(Fattouh 2011). 

The Brent futures prices and exchange for physical prices (𝑃   ) for a particular month allow 

the identification of the forward Brent price for that month, as follows: 

 

𝑃   = 𝑃  +  𝑃                                                                                                                     (1) 

 

Where: 𝑃    is the forward Brent at time t, 𝑃   is the futures price at time t, and  𝑃    is the 

exchange for physical at time t.21 

 

Once the forward Brent price is calculated, the dated Brent price can be calculated. The dated 

Brent price is important to the overall process of price discovery, because it is considered to 

be the spot price for the commodity. It is therefore required, in order to reflect as closely as 

possible the conditions on the physical market. In this study, the dated (Ps) Brent price is 

important because it is inseparable from the forward curve. The price of the forward dated 

Brent (Pf) is calculated with the help of another layer, the over-the-counter market of 

contracts for differences, as follows: 

 

                                                                 
21

 The standard unit of time t is one month.  
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 𝑃  (   =   𝐷 +  𝑃                                                                                                            (2) 

 

Where: 𝑃  (    is the forward dated Brent price,   𝐷  is the contract for difference at time t, 

and 𝑃     is the forward Brent price in period t+2. 

 

With the spot oil price information now available, I compile the remainder of the forward 

curve time series based on daily observations of the ICE Brent crude oil contract. The dataset 

consists of daily values for the entire curve for the period from January 2007 February 2017. 

Since the trade data consist of weekly data points, I convert the daily forward curve time 

series into weekly average values. I work with averaged values, as opposed to a value in a 

random day of the week, to avoid distortions in the data from potential strong intraweek 

movements of the curve. Averaging into weekly data points also mitigates the impact on the 

signal of potential distortion from convergence to physical and contract expiration. 

 

The hypothesis development process consists of four stages: data transformation, testing the 

mechanical causality properties between gradX and S, development, and testing and 

interpretation of the VAR model of the global short-term crude oil physical market and 

robustness checks. 

3.5.1. First hypothesis development stage: Data transformation 

Transformation is often necessary to stabilize the variance of the time series. This study is 

based on weekly data points, which will be inherently noisier, compared to lower-frequency 

(monthly or quarterly) data. Noise is particularly problematic for the S time series. The use of 

log-transformed data for S is justified by the results of the probability density function (PDF), 

also known as kernel density estimator, as explained by Rosenblatt (1956) and shown below: 

 

𝑓 (𝑥 =
 

  
∑ 𝐾 

   (
    

 
                                                                                          (3) 

 

The PDF is calculated on the original time series of the weekly crude oil supply and it is 

displayed in Figure A6 in the Appendix. The shape of the curve is exponential, a sign of the 

time series being skewed towards a small number of high-value observations. The PDF 

calculated on the log-transformed time series produces a completely different shape, where a 

normal distribution/Gaussian curve can be fitted. 
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Furthermore, I consider only a six-week lead–lag period for the required technological 

reaction to potentially adjust the production and related upstream supply chain. I call this 

time span the impact period. Another manipulation of the data involves the removal of the 

first week from each year. This is done to protect the consistency of the time series. The first 

week is inconsistent in terms of the number of days. It is also notoriously volatile when it 

comes to the reporting and registration of trade data. 

3.5.2. Second hypothesis development stage: Testing for bivariate causality between the 

oil price P and the oil supply S 

The next stage of the hypothesis build-up consists of three different tests, namely, a test for 

Es LRs, a test for forward curve LRs, and the signal processing Sliding Dot (Scalar) Product 

(SDP, or SSP) test. All tests involve bivariate descriptive statistical analysis. Their aim is to 

examine from different angles the lead–lag relationship between two variables and 

substantiate the research claim of causal relationship between the direction and steepness of 

the forward curve and the speculative supply of crude oil. The reason these tests are proposed 

in the paper is because long sampling periods can potentially conceal causality. This is 

logical, because causality is not a static process. Therefore, and to detect and isolate any 

potential causal period within the entire period of the study, I propose tests that are able to 

measure the evolution of causal relationship between two variables. 

 

Establishing cause and effect between two events/variables (forward curve and direct supply) 

is not an easy task. True causality is a debated concept in the academic literature. According 

to Bryman (2012), three criteria, if met, potentially signal causality. First, there needs to be 

temporal precedence. This is why I consider using LR tests as a preliminary procedure in 

building the hypothesis. The second condition is of the cause X (gradX) and effect, or S. 

Initial tests reveal such covariation with a negative sign; that is, when the forward curve slope 

is positive (contango) and it steepens, the supply of oil declines. The opposite will also be 

true. Third, there should not be a plausible alternative explanation for the relationship 

between the two variables. There is sound economic logic behind the decision of each 

individual producer to change the supply of crude oil on the spot market if the market itself 

incentivizes the producers to do so. Oil producers are economic entities whose main purpose 

is to maximize revenue. According to established microeconomic theory, a competitive and 

rational profit-maximizing firm will have an output where the marginal revenue equals the 

marginal cost. It is also established that such a firm will have a flat marginal revenue curve 
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equal to the market price. This implies that the output of a competitive firm will have a 

marginal cost equal to the market price. Therefore, acting otherwise would contradict this 

basic microeconomic relationship. According to Leland (1972), the introduction of 

uncertainty in the short term does not affect the decision of a price-setting risk-neutral firm 

with a constant marginal cost. 

It is possible for some entities to act against their own interests, but this is likely to be 

temporary development, rather than a consistent effort. In other words, I am not able to 

propose any other plausible explanation for what appears to be truly free market behaviour, 

where producers are incentivized to alter the supply if forward market conditions dictate that 

this is in their best interests. 

3.5.2.1. Es LR test 

In building the argumentation of this study, I calculate and analyse the price Es and price Ed. 

These measures are based on the following well-established (e.g. Samuelson and Nordhaus 

2001) relationships: 
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Where: 𝑄  is the quantity supplied, 𝑄  is the quantity demanded, and 𝑃   is the spot price of 

oil at time t. 

 

The LR test carried out for    and the oil supply (S) is performed by shifting the two time 

series by one period at a time: 
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                                                                                            (6) 

 

Where: for  = 1,… ,    𝑡 = 1, … , 𝑇, T is the length of the time series;     is the Es return for 

period t lagged by n; the change in oil supply between two periods 𝑑𝑆 = 𝑆 − 𝑆   ; and 𝑃  is 

the price of crude oil at time t.  
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The results of this initial test raise an important question about the sensitivity of the crude oil 

supply to its price, and more detailed research is required to determine the role of the price of 

crude oil in the reaction of supply. 

3.5.2.2. Test of the forward curve versus supply LRs  

This second test (Test 2) aims to establish a link between the forward curve position, 

contango or backwardation, and crude oil availability on the physical market. The economic 

logic behind the decision of each individual producer dictates that the supply should rise if 

the forward curve indicates that future prices will fall (forward curve in a state of 

backwardation), and decline if the curve is in contango (price indicated as being higher in the 

future than today). This test is carried out in four steps, as described below.  

First, the binary conditions +1 and -1 are used to define the prevailing state of the forward 

curve for each particular week. These preset conditions are as follows: 

 

If 𝑃 < 𝑃 1,… ,  , then + 1 (contango  

If 𝑃 > 𝑃 1,… ,  , then − 1 (backwardation  

where Ps is the spot price and Pf1, …, 6 are the prices for six term contracts 

 

This approach allows me to quantify and standardize 18,900 data points (5 days × 7 contracts 

along the curve × 540 weeks). It also provides the opportunity to introduce conditional 

formatting later in the study. The result is a continuous time series that indicates the position 

of the forward curve for each week. 

Second, using the oil supply data, I calculate the week-on-week difference in the crude oil 

supply on the physical market: 

  
 𝑆 = 𝑆 − 𝑆                                                                                                                          (7) 

 

Where: S is the oil supply, t = (1,..., 513), and Δ𝑆  is the week-on-week difference in the oil 

supply. 

 

Third, I introduce a conditional function that allows a comparison of the change in supply (Δ) 

and the change of the forward curve. The function covers six periods forward that is, six 

weeks, shifting the periods at each step. The pre-set rule searches for periods when the 
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forward curve in week x is in contango and the availability of crude oil that particular week 

declines. 

 

For i = (1,…, 6), then 

 

𝑋𝑡(  =  {

    

   
> 0 → 𝑍𝑡 = 1

    

   
< 0 → 𝑍𝑡 = 0

                                                                                               (8) 

 

Where: X represents either contango, or backwardation,  𝑆  is the change in supply, and Z is 

a binary test variable. 
 

The data are simultaneously tested for the opposite conditions, where the market is in 

backwardation and the shipments increase. If any of the two conditions are met, the formula 

returns the value of one. If the two variables move in different directions, the formula returns 

the value of zero. This step is vital for the final outcome, since it reveals coincidental moves 

between the two variables.  

 

Fourth, the statistic of the derived outcomes is calculated. The aim of this step is to detect 

how many positive and negative matches between the change in the forward curve and the 

change in production are obtained in total, as follows: 

 

𝑃𝑓𝑡 =  
 

 
∑ 𝑃𝑓  

                                                                                                                       (9) 

 

The success rate represents the share of positive matches, which should confirm the validity 

of the argument. The logical threshold here is 50%, since any result equal to, or lower than 

50% indicates a random occurrence. In other words, a threshold is necessary to differentiate 

between chance and a deliberate reaction. 

3.5.3. Sliding Dot Product (SDP) test   

The SDP test (Test 3) employs elements from the methodology of the test described in 3.5.2.2 

(Test 2). I again reinvestigate the interaction between the binary positions of the forward 

curve (contango vs. backwardation) with oil production, but I also include a condition for the 

steepness of the slope of the forward curve. 
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To the best of my knowledge, there are no academic papers discussing the steepness of the 

slope of the forward curve in the context of a deliberate short-term change of production. 

Measuring the steepness of the forward curve and translating it into a possible short-term 

supply reaction is an important part of this study. I expect the slope steepness to potentially 

disclose valuable information about the urgency at which producers adjust the supply on the 

spot physical market. The key assumption here is that the steeper the slope of the curve, the 

stronger the incentive of producers to react.  

At the start, I expand on the dataset created for Test 2 and I calculate the slope of the curve 

with ranges 𝑃     , 𝑃     , …,𝑃     , where 𝑃    is the Brent spot, 𝑃      is the Brent first-

month future contract, and so on, until 𝑃   , the Brent sixth-month future contract. 

The methodology used in Test 2 cannot be applied directly in this case, since binary 

outcomes are required from both variables, namely, the forward curve X and the oil supply S. 

The weekly change in supply remains a binary outcome, since it either increases or decreases, 

but the slope steepness cannot be simplified in the same way as the position of the forward 

curve. This statement is based on the fact that the position of the forward curve is in either 

contango or backwardation. The steepness of the slope, on the other hand, has infinite 

positions, since it can go from infinitely positive, through the special case of neutrality (zero), 

to infinitely negative slope. 

Test 3, instead, involves a bivariate descriptive statistical analysis of the evolution of the 

cross-correlation between X, or gradX, and S. By measuring the cross-correlation in different 

time frames, I attempt to quantify the lead–lag effect between gradX and S. 

The SDP test is implemented using readily available time series for gradX and S from the 

previous tests, followed by calculation of the cross-correlation for the six lead and lagged 

periods, where each period represents one weekly observation. 

Define P[x, y] as the Pearson correlation of two time series x and y, where x is gradX and y is 

S. The cross-correlation times series consists of three different functions, CCp, as the positive 

correlation coefficient; CCc, as the coincidental correlation coefficient, and CCn, the negative 

correlation coefficient. Therefore, 

 

   ( ,  = 𝑃[𝑥(    , (  ]                                                                                                       (10) 
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   ( ,  = 𝑃[𝑥(  , (    ]                                                                                                     (11b) 

 

Where:  = 1,… ,  =is the time step by which the time series are shifted, with 𝑡 =

(1,… ,  13  as the length of the time series. 

 

The final correlation coefficient, on which the conclusions of the analysis are based, is the 

smoothed average of the first dimension t of the entire time series, namely, 

 

   =  [   ( ,  ,    (  ,    ( ,  ]                                                                                        (12a) 

 

which can be also written as 

 

   = [∑    (  , ∑   𝑐(𝑡 , ∑    (  ]    
      

      
                                                             (12b) 

 

Where: T = 513. 

 

The advantages of the SDP test approach can be summarized as follows. First, it allows for 

precise (up to the time unit chosen for the study; in this case, the minimum time unit is one 

week) identification of the lead–lag periods between the gradX and S variables. This is 

important for building trading strategies, since this approach accounts for better timing of the 

entry and exit of a position. 

Second, SDP test data can be plotted in a coordinate system, for better visualization of the 

gradX–S relationship. The ideal outcome would be to record observations of lead periods 

clustered in the bottom left corner of the scatter plot chart. In the case of a line chart, this 

would involve lines starting from the bottom left corner, with negative values, trending 

upwards towards zero and then into positive territory. This result would suggest that gradX 

and S are negatively cross-correlated (forward curve with a positive slope, and lower exports) 

and gradX leads S by the number of periods observed (where each single period is one week). 

The advantage of such visualization is in the ability to quickly measure not only the lead–lag 

periods between the two variables along the x-axis, but also the strength of their lead–lag 

signal on the y-axis. 

Third, there are periods in the data sample when the gradX lead property is clearly detected 

and displayed. However, there are also periods involving a lag in the gradX reaction. This 
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result does not clash with the main hypothesis of the study, which allows for changes in lead–

lag regimes. It is important to establish the existence of any long-term pattern in the gradX–S 

relationship. For example, higher conviction trades can be established when X exhibits clear 

leading properties. 

To establish the timing of these switches, in step 6, I calculate the weekly average of the lead 

and lag observations. The result is a single weekly average number that is negative if X leads 

S (preferred state, according to the main hypothesis) and positive if X lags behind S. Since I 

am interested only in the lead characteristics of X, I calculate only the average of the lead 

periods. The next stage of the test is focused only on the periods when X leads S. I separate 

the periods of negative from positive observations and I plot the negative observations (those 

showing that X leads S by a number of weeks). This is done to isolate the exact timing of the 

lead reaction. The outcome for the last six months of the sample (16 September to 17 

February) is displayed for the SDP test in Figure A7 in the Appendix. The exact number of 

lead periods is indicated on the x-axis. The value of the SDP test is indicated on the y-axis. 

Further information can be extracted through isolating the extreme results of the SDP test. I 

expect this approach to provide data on the strength of the test for each of the 513 observed 

periods. 

The final step in the test aims to consolidate the results derived from all 513 weeks of cross-

correlation returns. The outcome discussed in the previous step and displayed in Figure 6 is 

based on a relatively small sample of the entire dataset. More precisely, it represents 5% of 

the entire period. Therefore, if I want to plot the evolution of the cross-correlation for the 

entire period, I need to apply some generalization/averaging. The result is displayed in Fig. 8. 

3.5.4. Third stage of hypothesis development: Introduction of the VAR model for the 

global crude oil market. 

Establishing bivariate causality between the forward curve gradient X and the short-term oil 

supply S is an important element of the hypothesis, but the price formation is too complex to 

be successfully captured by such a simple relationship. More variables are necessary to 

explain the process; otherwise, important forces risk being omitted in the interaction between 

other variables related to X and S, hence the need to develop an econometric model for the 

global crude oil market that will test the relationship between five variables to represent the 

short-term supply and demand conditions on the market as described in Section 3.4 on the 

data. The proposed models use weekly fundamental data for the specified variables. To my 
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knowledge, there is no study that discusses a crude oil econometric market model with such 

variables or time series frequency. 

To avoid potentially spurious regression results, the time series of all five variables are tested 

for stationarity with the augmented Dickey–Fuller (ADF) and Kwiatkowski–Phillips–

Schmidt–Shin (KPSS) unit root tests. The initial results on levels reveal a lack of stationarity, 

which represents a potential flaw in the output of the VAR model. Non-stationarity is 

removed with the help of differencing, and the order of integration is obtained. 

Stationarity is necessary, but it is not the only preliminary condition required by the VAR 

model. The results from VAR models are likely to be skewed if the time series exhibits 

cyclicality, both seasonal and non-seasonal. I test for cyclicality using a Fourier transform 

(FT). An FT (Lyon 2010) converts a signal from the time domain to the frequency domain. 

This is accomplished by the decomposition of any periodic function f(x) into a sum of 

sinusoidal (sine and cosine) functions, which, in turn, is represented as a complex exponential 

function of frequency. The noise is thus separated, and periodicity is uncovered. The FT of a 

function g(t) is a generalization of the complex Fourier series defined by a forward FT22: 

 

 {𝑔(𝑡 } = 𝐺(𝑓 =  ∫ 𝑔(𝑡 𝑒       

  
dt                                                                                 (13) 

 

Where: F is a forward FT, g(t) is the function, and G(f) is the spectrum (power) of the 

frequency f. 

The original function g(t) can be obtained from G(f) via an inverse FT: 

 

    {𝐺(𝑓 } = 𝐺(𝑓 =  ∫ 𝐺(𝑓 𝑒      

  
dt = g(t)                                                                  (14) 

 

The process of obtaining an inverse FT is useful in reconstructing the original time series. I 

employ a forward FT to detect and isolate cycles of any possible length. In the event a strong 

and persistent enough cycle is detected, it will need to be isolated and removed, and the 

original signal reconstructed. The key advantage of the FT methodology in studying cycles of 

commodity markets is that numerous cycles can be simultaneously detected. As suggested 

earlier, time is transformed into frequency, which allows a detailed analysis of the cycle. 

                                                                 
22

 Electrical Engineering Department, Fourier Series and Transforms E1.10 (2015-5585), FXierial College, 
London 
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Such an analysis involves the timing of the cycle‘s appearance, duration, and strength. The 

aim of the FT cyclicality test is to establish the length and strength of a cycle. 

 

The bivariate Granger causality test, also known as the G-test, is applied as well, using 

differenced data. True causality is a debated concept in academia, and the G-test claims to 

find only predictive causality (Granger 1969). This is done with the help of T- and F-tests on 

lagged data points of X/gradX and the S variable, thus obtaining statistically significant 

information about the future values of S: 

 

  =   +       +  +       +    𝑥   +  +    𝑥   +                                            (15a) 

𝑥 =   +   𝑥   +  +   𝑥   +        +  +        +                                           (15b) 

 

Where: for lag period i = 1,…, 6, the variables 𝑥  and    are studied at time t,    is the 

intercept,    and   are the residual errors, and t = (1,… , 13  is the length of the time series. 

When the specific variables of the test are substituted in equations (12a) and (12b), the result 

is: 

 

𝑆𝑡 =  0 + ∑   
   
   𝑆𝑡− + ∑    

   
   𝑔𝑟𝑎𝑑𝑋𝑡−  +   𝑡                                                                 (16a) 

𝑔𝑟𝑎𝑑𝑋𝑡 =  0 + ∑   
   
   𝑔𝑟𝑎𝑑𝑋𝑡− + ∑    

   
   𝑆𝑡−  +   𝑡                                                         (16b) 

 

According to Sørensen (2005), Granger causality tests appear to be most successful in two-

dimensional systems, or for a bivariate causal relationship. The author also suggests that 

caution should be applied when selecting the length of the sampling period. For example, a 

long sampling period tends to hide causality. This is logical, since causality is not likely to be 

a static process. This is precisely why the three preliminary tests discussed in Sections 3.2.1 

to 3.2.3 are included in the study. 

 

Since the set of variables each has unit root, ordinary regression analysis is not appropriate, 

because there could be one or more equilibrium (cointegrated) relationships, that is, they can 

have a common stochastic trend. Therefore, the time series are further tested for cointegration 

with the Johansen cointegration procedure. Unlike the Engle–Granger (1987) test, the 

Johansen test allows for testing the hypotheses of an equilibrium relationship between sets of 

variables. 
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The VAR models, first introduced in 1980 by Sims (1980), advanced the concept of 

modelling all endogenous variables in a system together, rather than one equation at a time. 

There are clear advantages to the VAR methodology over structural equation models when 

studying the dynamics of the relationships between numerous variables. For example, there is 

no need for extreme model constraints or any need to separate endogenous from exogenous 

variables, since all variables are considered endogenous. Furthermore, VARs are considered 

more flexible than univariate autoregressive models, because the values of the variables are 

allowed to depend on their own lag or white noise. This allows them to capture more aspects 

of the data. However, there appear to be doubts about the ability of VAR models to 

differentiate between correlation and causality (e.g. Lütkepohl 2005). These models also use 

little theoretical information for the underlying relationships in the data. Another downside of 

the methodology is that it can be hard to interpret in certain cases.  

 

Regardless, the VAR model is useful in identifying and tracing shocks introduced to a 

system. This is done with the help of impulse response analysis and plots, by imposing 

restrictions on the model matrices. Kilian and Murphy (2014) introduce such a VAR model 

based on changes in oil production, the freight market (as a measure of global economic 

activity), the price of oil, and oil inventory, working with monthly data points for all the 

variables. In contrast, I use a weekly frequency time series that imposes restrictions on the 

nature of the dependent variables that can be used. For example, my proxy for the short-term 

demand for crude oil is the weekly refinery capacity utilization. Additionally, I work with the 

spot physical price of Brent crude oil (discussed in Section 3.1), and not with the US import 

price, which is used by Kilian and Murphy. My metric for short-term supply has already been 

discussed in Section 3.1. 

 

The generic VAR model can be written as follows: 

  = 𝑏     +  + 𝑏     +                                                                                             (17) 

However, for Johansen‘s method to be used, the model requires the following VEC form: 

   =      +        +        … +         (                                                         (18) 

Where: the long-run coefficient matrix  = (∑    
   ) −   , and   = (∑    

   ) −   ,  =

1, … , − 1. 
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Cointegration is established by the rank of the matrix Π via the number of its characteristic 

roots/eigenvalues. The two tests are        and     . According to the literature (Brooks 

2019), differencing all the variables of the model to force them into stationarity is the correct 

approach for univariate models. However, if there are important relationships between the 

variables in the long run, such forced stationarity is seen as a weakness in the methodology.  

This study employs five variables; therefore, the elements of the matrix can be written as 

follows: 

 

 = [
 11   1 

   
  1     

]                                                                                                          (19) 

 

Following the literature (e.g. Brooks 2015), if a cointegration relationship is established, that 

would imply a stationary linear combination of some of the variables. A VECM, and not a 

standard VAR model for first differences, is the most suitable approach for non-stationary 

and cointegrated time series, since it allows for both long- and short-run relationships to be 

captured. 

In this study, the cointegration relationship, described by three cointegrating equations, is 

detected by the Johansen test. Therefore, since the matrix Π is defined as the product of the 

matrices 𝞪 and β`, the matrix has the following form: 

 

Π = 𝞪β`                                                                                                                                  (20) 

 

or, in the case of this study with five variables, 

 

 = [
 11   31

   
 1   3 

][
 11   1 

   
 31   3 

] 

 

Once the number of cointegration relationships between all five variables (P, gradX, S, D, dI) 

in the system is established, the VECM takes the following form: 

 

  𝑃 = 𝑏  𝑔𝑟𝑎𝑑𝑋 + 𝑏  𝑆 + 𝑏  𝐷 + 𝑏  𝑑  + 𝑏 (𝑃   −   𝑔𝑟𝑎𝑑𝑋   −   𝑆   −

   𝐷   −   𝑑     +                                                                                                          (21) 
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The residuals of the model need to be tested for stationarity, because they will be non-

stationary if the variables are not cointegrated. This is accomplished with the help of ADF 

and KPSS tests with the null hypothesis of a unit root in the cointegrating regression 

residuals, or null hypothesis   :     (1   

According to Lütkepohl (2005), the optimal lag order of the model is estimated with the help 

of the Akaike information criterion (AIC), the Schwarz/Bayesian information criterion (BIC), 

the Hannan–Quinn information criterion (HQIC), as well as the final prediction error (FPE). 

The definitions of these criteria are as follows: 

 

   (  =  og𝑑𝑒𝑡 (∑  (   +
 

 
  𝐾 

 

                                                                       (22a) 

 𝑄  (  =  og 𝑑𝑒𝑡 (∑  (   +
        

 
  𝐾 

 

                                                         (22b) 

   (  =  og 𝑑𝑒𝑡 (∑  (   +
    

 
  𝐾 

 

                                                                  (22c) 

 𝑃 (  = (
   ∗

   ∗
)det ∑  (   

 
                                                                                       (22d) 

 

Where: ∑  (   
 

 is the total number of parameters in each equation of the model, K is the 

number of the model‘s dimensions/degrees of freedom, and n is the lag order of the 

endogenous variables. 

 

The most important difference between the criteria is the severity with which they penalize an 

increase in the model‘s order. The motivation behind strong penalties for high model orders 

is to reduce over-fitting, which has an impact on the model‘s forecasting ability. I employ a 

VAR model for reasons different from forecasting: it investigates the interaction between 

selected endogenous variables. More specifically, the aim is to investigate the causal 

relationship between the forward curve gradient and the supply of crude oil. This means that I 

prefer an information criterion that does not impose too strong of a penalty on the model 

order. According to Lütkepohl (2005), the HQIC penalizes a high model order more than the 

AIC, but less than the BIC. I work with the HQIC when selecting the optimal number of lags 

of the VAR model, also based on the size of the data sample. The consensus in the literature 
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(e.g. Lütkepohl 2005) is that the AIC/FPE outperforms the HQIC for small samples, but the 

HQIC is better for bigger samples. A sign that the variables in the model are jointly 

meaningful is when the information criterion is different from zero. 

The model developed in this paper also includes the gradient of the forward curve. It was 

already mentioned that valuable information can be derived in relation to the production and 

export of crude oil, not only from the overall position of the curve, such as contango versus 

backwardation, but also from the slope‘s steepness. By including the forward curve slope as a 

dependent variable in the econometric model, I aim to study not only the interaction between 

the different variables, but also potential causality between the slope and the short-term 

supply of crude oil. In the absence of an exogenous variable, which is the case proposed in 

this paper, the variance–covariance matrix contains the relevant information about the 

coincidental correlations between each of the variables. 

Let P = f(gradX, S, D, dI) and let gradX be a positive number when the curve is in contango 

and a negative one during periods of backwardation. The academic literature is in agreement 

on the role of inventory as a market balancing mechanism between S and D, which is why dI 

is assigned a neutral (positive) sign. 

 

Therefore, the proposed relationship between the variables can be expressed in the following 

generic form: 

 

P = gradX(S/D + dI)                                                                                                             (23) 

 

This relationship represents a general short-term equilibrium model of the crude oil market. It 

is tested against economic theory by substituting the signs of the forward curve gradient in 

the equation. The following identifying assumptions are derived.  

 

In the event of a backwardated market (-),  

 

P = (gradX)*(S)/(-gradX)*(D) + (-gradX)*(dI)                                                                   (24) 

 

The 1st identifying assumption with forward price negative development implied by the term 

structure of the market is described with the following sequence in the signs of gradX in 

model (24): (+), (-), (-) 
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In the event of a market in contango (+), 

 

P = (-gradX)*(S)/(gradX)*(D) + (gradX)*(dI)                                                                      (25) 

 

The 2nd identifying assumption with forward price positive development implied by the term 

structure of the market is described with the following sequence in the signs of gradX in 

model (25): (-), (+), (+) 

 

To check further if the above assumptions hold, the signs of equations (24) and (25) are used 

to restrict the beta coefficient of the VECM. In other words, should the proposed relationship 

of equation (23) hold, the cointegration coefficients of D, S, and dI must be one, -1, and -1, 

respectively. Based on this assumption, I restrict B(1,1) = 1, B(1,2) = -1, and B(1,3) = -1 in 

the VECM. 

 

As part of the structural analysis of the model, causality tests are performed for both Granger 

and instantaneous causality. These tests do not always reveal the true extent of the 

interactions between the variables in the model. Conclusions on possible causal relationships 

can be drawn from studying the responses of one variable to an impulse/stock introduced to 

another variable in a multivariable system. This ‗shock view‘ is derived by removing 

elements from the structural model that are expected at t - 1. The VAR models focus only on 

modelling the unexpected changes in yt, which is a major difference with traditional 

modelling practice, where dynamic simultaneous equations models do not differentiate 

between expected and unexpected changes in yt. 

The outcomes from the shock are displayed in the form of IRF diagrams. To isolate such an 

effect, suppose that all the variables in the system assume their mean value before time t = 0, 

yt = μ, t < 0, and one of the variables increases by one unit in period t = 0. If no further 

shocks are introduced, the impact from this single shock on the first variable in period t = 0 

can be traced, namely, 

 

yt = [

   

 
   

] = [

   

 
   

] = [
1
 
0

]                                                                                                         (26) 
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Therefore, y1 = [

   

 
   

] =     , where Φ represents the effect of the shocks to the variables in 

the system after i periods. This process is repeated for all the variables in the model. If the 

variables have different scales, it is common practice to apply the innovation of one standard 

deviation as a shock, rather than a one-unit shock. In this case, the matter is irrelevant, 

because all the variables are standardized (z-scored) prior to their inclusion in the model. 

 

It is plausible to assume IRF outcome sensitivity to the ordering assumptions. Monte Carlo 

simulation is applied to the variables of the proposed short-term VECM of the global crude 

oil market. The aim is to detect changes in the relationship between the model‘s variables, 

since their positions within the model equation randomly change. This process is also known 

as orthogonalization. Similar results will provide confidence that the conclusions drawn 

based on the IRFs are not sensitive to assumptions about contemporaneous causality. As part 

of the Monte Carlo simulation, I first randomly generate combinations with the variables in 

the model. If n is the number of variables selected and r is the total number of variables in the 

model, then 

 

(
 
𝑟 

) =  
  

  (     
                                                                                                                       (27) 

 

I run the VECM IRF test on each sample and record the direction and strength of the reaction, 

as well as the reaction time of the short-term speculative crude oil supply. 

 

The model performance analysis is completed with forecast error variance (FEV) 

decomposition (FEVD). This process breaks down the FEV for a specific time horizon and 

measures the proportions of the forecast errors in each variable while accounting for the other 

variables. In essence, FEVD quantifies the importance of each shock in explaining the 

variation in the other variables.. If   , (𝑡  is the FEV of variable I due to shock j at horizon t, 

then: 

 

  , (𝑡  = ∑   ,   (    

   
                                                                                                       (28) 

 

When divided by the total FEV, denoted as   (𝑡 , the result for the fraction of the FEVD is: 
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  , (𝑡 =  
  , (  

  , (  
                                                                                                                      (29) 

 

3.5.5. Sub-hypothesis: The reaction of supply to the steepness of the forward curve 

slope (gradX)  

As an extension of the main hypothesis, I investigate the reaction of short-term supply to the 

steepness of the forward curve slope. As already mentioned, I am not aware of any study that 

discusses the impact of the steepness of the forward curve‘s slope on short-term supply. 

A steeper slope, positive or negative, implies greater difference between the spot and forward 

prices along the curve. I force the slope to become steeper by steps of 0.1 with the help of a 

conditional function that adds 0.1 if the slope is positive and subtracts 0.1 if the slope is 

negative. The test that best reveals the evolution of the relationship between short-term 

supply and the forward curve slope over time appears to be the SDP test, discussed in 

section 3.5.3. This is because the test in section 3.5.2.2. does not take into account slope 

steepness, only the position of the curve in a binary mode, that is, contango or backwardated. 

The Granger causality test (section 3.5.4.) is also inappropriate in this particular case, because 

it measures the static causality for the entire time series; that is, the test does not reveal the 

evolution of causality with time. The results are displayed in Figures A9 and A10 in the 

Appendix. The implications are discussed in the results in Section 3.6, next. 

3.6. Results 
 

I find the results obtained with the help of the four preliminary tests described in the 

methodology in Section 3.5 support the main hypothesis. Elements of the proposed general 

equilibrium and VECMs relevant to the causal relationship investigated between the forward 

curve slope and the short-term crude oil supply also confirm the hypothesis. Last but not 

least, the test of the sub-hypothesis reveals a link between the steepness of the forward curve 

and the short-term crude oil supply. 

3.6.1. Preliminary tests results 

Quarterly values from the Es test since 1996 returns an average value of 0.18 for the Es, 

which indicates an environment with a low price Es. The same calculation for the Ed returns 

a higher value of 0.32. This is displayed in Figure 7. 
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Figure 7: Crude oil market Es and Ed 

The chart compares the Es with the Ed in the global crude oil market. A threshold of one is used in economic 

theory to separate elastic from inelastic supply or demand market conditions (e.g. Case and Fair 1999). Source: 

IEA, Bloomberg. 

 

 

The short-term price Es does not decline within the observed period from January 2007 to 

December 2016. The Es value increases steadily from 0.03 in 2007 to as high as 0.23 in 2017. 

Such a change represents a significant departure from the time series mean, further supported 

by the low values for the skewness and kurtosis of the dataset. 

Therefore, neither the Es nor Ed stays too long above the threshold of one that is used in 

economic theory to separate elastic from inelastic supply or demand market conditions (Case 

and Fair 1999). There is only one year since 1996 when the Ed and the Es meet the definition 

of being elastic, as in 2003. It appears that the Ed is greater than one on five occasions, while 

the Es is observed to be greater than one on only two occasions (see Figure 7). 

An LR test carried out for the Es and the crude oil supply reveals that the average Es for the 

last 20 years was highest one month after the price of crude oil changed (see Table 2, value in 

bold). 

Table 2: LR test of the Es versus the oil supply  

This table shows the lagged correlation coefficient in terms of the number of months between Es and the actual 

crude oil supply. Source: IEA, Bloomberg. 

 

Es coefficient Coincidental 1-month lag 2-month lag 3-month lag 4-month lag 5-month lag 

Average 0.13 0.14 0.12 0.11 0.12 0.11 

 

This results of this test are important, because, as shown late, the tests carried out with 

weekly supply data point towards very similar reaction times between two and four weeks. 

The results from the LR test between the forward curve position and the short-term crude oil 

supply, displayed in Figure 8, show periods of positive lagged correlation occurrences. 
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Figure 8: LR test of the oil curve versus the crude oil supply 

This chart displays the evolution of the results from the LR test on the relationship between the forward curve 

and the short-term crude oil supply, where coincidental and 1M to 5M indicate the lagged periods in terms of 

the number of months. Source: IEA, Bloomberg. 

 

 

These periods are when the crude oil supply is likely to respond to a shift in the forward 

curve. It is evident from the data that the intensity of these reactions has increased (trending 

upwards with time). This result is documented by overlaying all he lagged periods of the Es 

reaction to price in Figure 8, where the thick red line represents the annual values of the one-

month lag, as discussed above. In addition, Figure 9 shows a histogram of the frequency for 

periods of lead occurrences. 

 

Figure 9: Lead frequency of occurrences  

This chart illustrates the moments in time when the shape of the forward curve (contango vs. backwardation) 

and the change in weekly crude oil supply on the physical market reacted in the same direction and at the same 

time. The x-axis of the chart indicates time in years and the number of weeks within a year. The y -axis indicates 

each entry in the histogram, with one denoting a positive occurrence and zero denoting the lack of occurrence. 

Source: IEA, Bloomberg. 

 

The histogram in Figure 9 displays the positive occurrences in the relationship between the 

shape of the forward curve (contango vs. backwardation) and changes in the weekly crude oil 

supply on the physical market. The initial result measured by the frequency of lead 

occurrences, points towards an increased tendency to change the supply as the shape of the 

forward curve changes. It is evident from Figure 9 that the occasions when producers 

increase the supply of crude oil when the forward curve moves into backwardation tends to 
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cluster in time. The same is valid for the opposite reaction, namely, that the curve moving 

into contango tends to reduce supply. Such reactions are economically justified, since 

producers attempt to maximize their revenue. Another output from this test, namely, the 

annual averages for each of the periods for the last 10 years, is displayed in Figure 10. 

 

Figure 10: Dispersion of results  

The chart demonstrates the dispersion and cyclicality of the results of the LR test on an annual basis. The 

coefficient on the y-axis represents the ratio between all the observations in the sample and the number of events 

when the shape of the forward curve and the change in the weekly crude oil supply on the physical market react 

in the same direction and at the same time. Source: IEA, Bloomberg. 

 

 

The degree of dispersion of the results between the different periods is low, but more 

important is that the periods of the relationship investigated between the forward curve and 

the supply of oil have a convincingly high ratio of +65% that persists for many months, 

sometimes for entire years. Periods of no reactions to changes in the curve can also be 

pronounced. For example, there is no evidence to suggest that the availability of crude oil 

was influenced by the position of the curve from 2011 to 2014. There appears to be 

cyclicality in the result that is not seasonal. Analysing the existence of such cyclicality is not 

the aim of this paper, but the topic deserves further investigation. The findings from the test 

are in line with the trend of the Es for the same period (10 years), but further investigation 

into the validity of the argument behind the speculative supply shock is needed. 

The outcome of the SDP test, displayed in Figure 11, where the exact number of lead periods 

is indicated on the x-axis and the value of the rolling cross-correlation (RCC) is found on the 

y-axis, confirms that the gradient of the forward curve (gradX) does have a predictive value 

for supply (S), that is, gradX leads S by a number of periods. This result is suggested by the 

shape of the RCC for each period. 
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Figure 11: SDP test results  

This chart shows the results from the cross -correlation between the oil supply S and the gradient of the forward 

curve gradX. Each line represents one sample period, while the lead–lag period is indicated on the x-axis, from -

6 (gradX leading the oil supply) to +6 (gradX lagging behind the oil supply). The correlation coefficient is 

displayed on the y-axis; Source: IEA, Bloomberg. 

 

 

A logical extension of this test is to consolidate the RCC for the entire sample. This is done to 

better visualize the evolution of the RCC relationship for all lead periods. The results 

displayed in Figure 12 are equally encouraging, since they confirm a cross-correlation with 

the longest average leading period of gradX over S of four weeks. 

Figure 12: Average SDP test results  

This chart shows the average cross -correlations between the oil supply S and the forward curve gradient gradX 

from January 2007 to February 2017 on the y-axis. The lead–lag period is indicated on the x-axis, from -6 

(gradX leading the oil supply) to +6 (gradX lagging behind the oil supply) Source: IEA, Bloomberg  

 

 

The results show that, since January 2007, on average, the oil supply reacts to changes in the 

forward curve and the steepness of its slope four weeks in advance. There are also periods 

when gradX loses its predictive power. There are long periods when it lags substantially. 

These are all periods with positive values, as displayed in Figure 13a. 
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Figure 13a: Evolution of SDP test results over time 

The chart displays the evolution of the average cross -correlation values with a six-week lag . The x-axis shows 

the time span in years and weeks. The y-axis shows the correlation coefficient. Source: IEA, Bloomberg. 

 

 

The long-term trend, described by a second-order polynomial function, shows the predictive 

value of gradX diminishing in the first half of the observed period (2007–2011), followed by 

a steady increase in predictive power (2011–2017). Results from the Fisher test assign a p-

value significantly lower than 0.05, rejecting the null hypothesis. Skewness is positive, at 

0.60, with a kurtosis of 1.34. Further analysis of the solely negative RCC returns suggests 

that the long-term mean of the time series is negative, as shown in Figure 13b. 

Figure 13b: Average negative cross-correlation values  

This diagram demonstrates the average negative cross -correlation values between S and gradX for all lead 

periods (Xt, …, Xt-20). The coefficient is displayed on the y-axis. The x-axis shows the time span in years and 

weeks. Source: IEA, Bloomberg. 

 

The results of the Fisher test reject the null hypothesis, with a value of 0.000329. Skewness is 

negative, at -0.1541, and kurtosis is 1.5585. In this case, I again use only periods of negative 

RCC values. 

3.6.2. Results from the VECM 

This paper employs the VAR methodology to investigate the reactions of the model variables 

to a one-off structural shock introduced to the system. The stationarity of the time series used 

in the model is determined by ADF and KPSS tests, and the results are displayed in Table 3. 
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Table 3: ADF and KPSS test results  

This table displays the results of ADF and KPSS tests with levels and first differences, with a null hypothesis of 

non-stationarity for the ADF test and a null hypothes is of stationarity for the KPSS test, where [x] denotes the 

5% critical value and (x) denotes the t-statistic. The test variables are as follows: P is the oil price, gradX is the 

gradient of the forward oil curve, dI is the change in inventory, and D is the oil demand. 

 

Test result / Variable P gradX S dI D 

Critical value [-2.87] [-2.87] [-2.87] [-2.87] [-2.87] 

at level (-0.99) (-2.90) (-7.19) (-1.56) (-4.17) 

at 1
st

 difference -14.03 -15.7 -16.5 -20.1 -14.4 

 

The ADF test with levels fails to reject the null hypothesis (  ) for P and dI, since their t-

statistics appear to be above the critical level, within a 5% confidence interval. The test is 

repeated for first differences, and the null hypothesis is comfortably rejected, with t-statistics 

for all the variables under the 5% critical value. Therefore, the order of integration is one, or 

I(1). The KPSS tests for all the variables fail to reject the null hypothesis with first 

differences; therefore, the time series are stationary with order of integration one, or I(1). 

Seasonality is tested with a FT. The aim of the FT cyclicality test is to establish the length 

and strength of a cycle. The explained frequency component (EFC) is then compared to the 

‗ideal EFC‘ (IEFC) of an ideal sinusoidal function. A threshold of 33% from the ideal cycle 

is applied, which is the test‘s the null hypothesis. If a cycle with a stronger EFC than 33% is 

detected, the time series are seasonally adjusted. 

The results displayed in Table A4 and in Figures A14a to A14e in the Appendix suggest that 

a weak seasonality cycle is detected only in the inventory data (the real EFC, or REFC, 

denotes the maximum inventory). However, the test fails to reject the null hypothesis. 

Therefore, no attempt is made to remove seasonality from the time series. 

 

 

Table 4: FT cyclicality test results  

This table displays the results of the FT test with   : REFC < 33%, where P is the oil price, gradX is the 

gradient of the forward oil curve, dI is the change in inventory, D is the oil demand, * denotes the IEFC, and ** 

denote the REFC. 

  P gradX S dI D 

IEFC* 4.54% 3.80% 2.06% 7.26% 6.14% 

Cycles in number 

weeks 
43 23 13 51 26 

REFC** 13.76% 11.53% 6.24% 21.99% 18.60% 

 

The lag order selection criteria for the VAR model are based on the premise of minimizing 

their value. Both the BIC and HQIC return the lowest lag order of one, or VAR(1). 
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Table 5: VAR lag order selection criteria 

This table shows the results of the VAR lag order selection criteria process, with the following endogenous 

variables: P is the oil price, gradX is the gradient of the forward oil curve, dI is the change in inventory, and D 

is the oil demand. The sample comprises 348 observations. Furthermore, * denotes the lag order selected for  the 

criterion and LR is the sequential modified LR test statistic (at the 5% level). 

 

 Lag LogLag LR FPE AIC BIC HQIC  

0  196.8760 NA   2.28e-07 -1.10 -1.05 -1.08 

1  2042.668  3627.936  6.52e-12 -11.57  -11.23497*  -11.43485* 

2  2086.687  85.25387   5.84e-12*  -11.67636* -11.07 -11.43 

3  2102.474  30.12234  6.16e-12 -11.62 -10.74 -11.27 

4  2132.285  56.02591  6.00e-12 -11.65 -10.49 -11.19 

5  2142.892  19.62807  6.52e-12 -11.57 -10.13 -11.00 

6  2152.412  17.34468  7.13e-12 -11.48 -9.76 -10.80 

7  2171.796  34.75651  7.38e-12 -11.45 -9.45 -10.65 

8  2186.480  25.90841  7.84e-12 -11.39 -9.12 -10.48 

9  2213.187   46.35259*  7.78e-12 -11.40 -8.85 -10.38 

10  2230.818  30.09572  8.14e-12 -11.36 -8.53 -10.23 
 

As discussed in the methodology in Section 3.5, since the set of variables all have a unit root 

I(1), ordinary regression analysis is not appropriate for the estimation, because there could be 

one or more equilibrium (cointegrated) relationships. Following the lag selection procedure 

discussed above, a Johansen cointegration test is performed (see Table 6). 

Table 6: Johansen cointegration test results  

This table shows the results from a Johansen unrestricted cointegration rank test on the non -stationary daily time 

series of P, gradX, S, D, and dI. The size sample consists of 355 data points after adjustments, spanning from 

15.03.2010 to 20.02.2017. A linear deterministic trend is assumed, with one to two lag intervals for first 

differences. The notation Prob.** corresponds to a statistical significance level of 5%. Trace test statistics at the 

0.05 level indicate three cointegration equations as indicated by ―*‖. 

 

Hypothesized 

no. of cointegration 

Equations Eigenvalue 

Trade 

statistic 

Critical value = 

0.05 Prob.** 

None*  0.283041  179.3759  69.81889  0.0000 

At most 1*  0.075478  61.25428  47.85613  0.0017 

At most 2*  0.059341  33.39461  29.79707  0.0185 

At most 3  0.031901  11.67778  15.49471  0.1731 

At most 4  0.000474  0.168322  3.841466  0.6816 

 

The trace statistic is lower for the three test levels, suggesting three cointegration equations 

within a 5% confidence interval. The maximum eigenvalue of the unrestricted cointegration 

rank test rejects the null hypothesis of no cointegration at the third test level, indicating three 

cointegrating equations Additionally the normalized cointegration coefficient estimates 
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represent the long-term relationships between the variables in the system. Short-term 

relationships are displayed as the adjustment coefficients. 

 

Table 7 displays the complete VECM results, including standard deviations, p-values, and t-

values of the lagged endogenous and deterministic terms. As discussed in the methodology in 

Section 3.5.4. and following equation (23), the signs of equations (24) and (25) are used to 

restrict the beta coefficient of the VECM. In other words, should the proposed relationship of 

equation (24) hold, the cointegrating coefficients of D, S, and dI need to be one, -1, and -1, 

respectively. Based on this assumption, the VECM is restricted to B(1,1) = 1, B(1,2) = -1, 

and B(1,3) = -1. Should equation (25) hold, the coefficients of D, S, and dI will be -1, one, 

and one, respectively, and the VECM will be restricted to B(1,1) = -1, B(1,2) = 1, and B(1,3) 

= 1. 

 

Table 7: Complete VECM results  

This table displays the results from the VECM for five endogenous variables (P, gradX, S, D, dI). The 

cointegration restrictions of the model are as follows: B(1,1) = 1, B(1,2) = 1, B(1,3) = 1, B(1,4) = -1, and B(1,5) 

= 1, with chi-squared = 15.41114 and probability 0.000450.The results represent the summary statistics for the 

VECM system as a whole. These statistics include the determinant of the residual covariance, the log -likelihood, 

the associated information criteria (AIC, BIC), and the number of coefficients. The sample  size is 355, after 

adjustment. 

 

VECM summary statistics  P gradX S D dI 

R-squared  0.095715  0.174136  0.473106  0.118404  0.058147 

Adj. R-squared  0.061241  0.142651  0.453019  0.084795  0.022241 

Sum sq. resids  0.409893  26.94849  416.7401  0.005113  1.204896 

S.E. equation  0.034670  0.281119  1.105492  0.003872  0.059443 

F-statistic  2.776433  5.530829  23.55302  3.522955  1.619407 

Log likelihood  696.8826 -46.09436 -532.1844  1475.065  505.4929 

Akaike AIC -3.847226  0.338560  3.077095 -8.231354 -2.768974 

Schwarz SC -3.694523  0.491263  3.229799 -8.078651 -2.616271 

Mean dependent -0.000944 -0.00064  0.001088  0.000135  0.001744 

S.D. dependent  0.035783  0.303607  1.494753  0.004048  0.060115 

 

The results, given the standard errors and t-statistics, provide evidence of a relationship 

between the variables of the model. The standard OLS regression summary statistic of the 

model for each equation is also displayed. The R-squared and adjusted R-squared coefficients 

reveal that the variable with the strongest explanatory power in the model is the supply, 

followed by the gradient of the forward curve and demand. The number of determinant 

residual covariance statistics suggests that the model is stable. 
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Causality within the model is tested with Wald tests of Granger causality/block exogeneity. 

The results from Table 8 display a strong lead–lag relationship between one particular pair of 

variables in the model. More specifically, causality appears to be running from gradX to 

supply, significant at the 5% level. The results provide further evidence supporting the 

hypothesis of the study. 

 

Table 8: VEC Granger causality/block exogeneity Wald tests  
This table displays the results of the VEC Granger causality/block exogeneity Wald tests (at the 5% level of 

significance), in five panels. The table displays the results from the causal testing with price as the dependent 

variable and gradX, the supply, the demand, and inventory as the excluded variables.  

Dependent variable Excluded variable Chi-sq df Prob. 

Price 

gradX  0.015863 1  0.8998 

Supply  0.016574 1  0.8976 

Demand  0.015276 1  0.9016 

Inventory  0.056382 1  0.8123 

All  0.102762 4  0.9987 

gradX 

Price  1.634212 1  0.2011 

Supply  0.263001 1  0.6081 

Demand  0.099872 1  0.7520 

Inventory  0.011909 1  0.9131 

All  1.999199 4  0.7359 

Supply 

Price  1.839296 1  0.1750 

gradX  4.448680 1  0.0349 

Demand  0.223264 1  0.6366 

Inventory  3.621967 1  0.0570 

All  8.086330 4  0.0885 

Demand 

Price  0.675502 1  0.4111 

gradX  0.035147 1  0.8513 

Supply  0.540565 1  0.4622 

Inventory  0.640715 1  0.4235 

All  1.963500 4  0.7425 

Inventory 

Price  4.059281 1  0.0439 

gradX  0.527115 1  0.4678 

Supply  0.166412 1  0.6833 

Demand  0.746432 1  0.3876 

All  5.122077 4  0.2750 
 

To study the spillover between the variables in the model, the IRFs are calculated. The 

graphical interpretation of the results is shown in Figure 14. There are 20 IRF outcomes, 

because there are as many shocks as there are variables (five variables × the shocks on each 

of the remaining four variables). The values on the x-axis represent the number of weeks. The 

values on the y-axis represent changes in the dependent variable due to a structural shock 

introduced to the independent variable. When it comes to the model‘s validation, one of the 

first signs of model robustness is the shape of the impulse response curves. Most impulse 
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responses tend to die down after the introduction of the initial shock, which is a sign of a 

model‘s stability. 

Shocks to each of the variables in the model tend to inspire strong reactions from them. The 

remainder of the outcomes appear to be in line with economic theory. For example, a positive 

shock to gradX tends to decrease P. The opposite is also true, since a shock to P appears to 

reduce gradX. This is also true for a shock applied to S that reduces the value of gradX. In 

turn, if the shock is applied to gradX, S initially rises in periods 1 and 2, before declining in 

periods 3 and 4, after the event. This particular result is inconclusive and further investigation 

on the causal relationship between gradX and S is warranted. 

 

The forward curve tends to flatten as demand increases. This is logical, since growing 

demand pushes up nearby/prompt prices and flattens the curve. The opposite reaction is also 

investigated, with the shock applied to gradX and recording the response of D. In this case, 

an increase in the slope‘s steepness signals an increase in demand, which is explained by the 

incentive created by lower prompt prices. However, the coefficient of the outcome is 

significantly weaker when compared to the D–gradX pair, which suggests a potential 

direction for causality. 

 

Higher inventories suppress the forward curve slope. A sufficiently steep contango 

incentivizes inventory accumulation, but, as the stocks are replenished, the prompt price is 

likely to come under pressure, which flattens the curve. Other meaningful reactions recorded 

by the model and displayed in Figure 14 include the reduction of the supply with rising 

demand and inventory, as well as a reduction in demand due to higher prices. 

The last chart within Figure 14 group of charts displays diverse set of reactions, all of which 

follow the logic of market fundamentals. Let us begin with the reaction of inventory to a 

positive price shock. Stocks tend to increase with an increase in price, because a higher price 

for a commodity triggers a restocking effort. Inventory also rises with the curve moving into 

contango, which is explained by the cash and carry arbitrage condition (the steeper the 

contango, the stronger the incentive to accumulate stocks). The effect reverses later. A 

positive shock to the supply appears to help build up inventory. Finally, as demand rises, 

inventory declines. This result is likely due to the drawdown on stocks following the demand 

shock. 

Variance decomposition reveals that most of the variations in returns are explained by each of 

the variables‘ own shocks. The asymmetry of the explained variability in the returns of the 
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price and the slope of the forward curve can be explained by the fact that spot is inseparable 

from the forward curve formation. Another observation is that even if more than 95% of the 

variability of the supply is explained by the supply itself, the second most influential factor is 

the gradient of the curve, which is evidence, albeit weak, in support of the hypothesis of this 

study. 

 

Figure 14: IRF diagrams – Responses to Cholesky one standard deviation of innovation 
The five panels below represent the outcomes of the introduction of a positive shock to the system of equations 

within the proposed VAR model. The x-axis indicates time, as the number of weeks, from the moment of the 

introduction of the shock at t = 0. The y-axis displays the coefficient strength, which measures the reaction of 

each variable to the introduced shock. The endogenous variables in the VAR system are as follows: P is the oil 

price, gradX is the gradient of the forward oil curve, dI is the change in inventory, and D is the oil demand. 
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Figure 15: Variance decomposition with Cholesky factors  

This figure shows the five VECM variance decomposition plots describing the evolution of the balance between 

each model variable, as expected in reaction to Cholesky factors. The x-axis indicates time as the number of 

weeks from the moment of the introduction of the shock at t = 0. The y -axis displays the coefficient strength, 

which measures the reaction of each variable to the introduced shock. The endogenous variables in the VAR 

system are as follows: P is the oil price, gradX is the gradient of the forward oil curve, dI is the change in 

inventory, and D is the oil demand. 
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By determining the VECM identifying assumptions, I construct and propose a general short-

term equilibrium model for the global crude oil market as defined in equation (23). To the 

best of my knowledge, models of this form are not discussed in the literature. The model 

exhibits significantly stronger explanatory power for the price of crude oil (R-squared = 

0.7315, correlation coefficient = -0.79) compared to the form without the forward curve 

gradient (R-squared = 0.1022, correlation coefficient = -0.28). This is evident from the scatter 

plots in Figure 16. The trend of the relationship is described by a second-order polynomial 

function with the regression equation displayed in the figure. 

 

Figure 16: Scatter plot with results  

This scatter plot describes the relationship between the proposed short-term equilibrium model values, on the x-

axis, and the price of crude oil, on the y-axis. The gradient of the forward curve, gradX, is one of the 

independent variables of the model, with the results in red. The blue values represent the results without gradX. 

 

3.6.3. Results of the SDP tests on the sub-hypothesis 

The sub-hypothesis of the study investigates the reaction of short-term supply to the 

steepness of the forward curve slope. The steepness is understood to be a direct measure of 

the difference between spot and forward prices along the time curve. Therefore, by artificially 

pushing the curve into different modes of steepness, I test the supply‘s response over time. I 

do so by forcing the slope to become steeper by steps of 0.1, with the help of a conditional 

function that adds 0.1 if the slope is positive and subtracts 0.1 if the slope is negative. The 

results from the test in Table 9 reveal the correlation coefficients of the actual and forced 

slopes of the Brent crude oil market forward curve versus the short-term supply. More 

negative coefficients occurring in negative periods suggest that the forward curve leads the 

supply. This argument is also illustrated in Figures 17 and 18. 
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Table 9: SDP test results, forcing the curve slope  

The table demonstrates actual versus forced SDP test values between the oil supply S and the gradient of the 

forward curve gradX. Each row represents the test results after forcing the slope to become steeper by adding 

0.1 if the slope is positive and subtracting 0.1 if the slope is negative. The lead–lag period runs from t - 6 (gradX 

leading the oil supply) to t + 6 (gradX lagging behind the oil supply). The numbers in the slope column 

represent the slope steepness coefficient for each position, that is, from actual to forced, by increments of 0.5. 

Source: IEA, Bloomberg ICE, Marex Spectron Research. 

 

 

Leading Coincidental Lagging 

 
Position -6 -4 -2 0 2 4 6 Slope 

Actual -0.0220 -0.0726 -0.0424 -0.0016 -0.0081 -0.0158 0.0218 0.0100 

Forced by 0.1 -0.0203 -0.0699 -0.0374 -0.0008 -0.0054 -0.0103 0.0261 0.0104 

Forced by 0.2 -0.0195 -0.0679 -0.0337 0.0001 -0.0033 -0.0060 0.0291 0.0107 

Forced by 0.3 -0.0192 -0.0664 -0.0309 0.0011 -0.0018 -0.0025 0.0314 0.0110 

Forced by 0.4 -0.0191 -0.0652 -0.0287 0.0019 -0.0005 0.0003 0.0332 0.0113 

Forced by 0.5 -0.0191 -0.0642 -0.0270 0.0027 0.0005 0.0026 0.0345 0.0115 

Figure 17: Actual versus forced SDP test results 

This chart demonstrates the actual versus forced SDP test values between the oil supply S and the gradient of the 

forward curve gradX. Each line represents the test result after forcing the slope into further steepness  by adding 

0.1 if the slope is positive and subtracting 0.1 if the slope is negative. The lead–lag period is displayed on the x-

axis and it runs from t - 6 (gradX leading the oil supply) to t + 6 (gradX lagging behind the oil supply). The test 

result coefficient is on the y-axis. Source: IEA, Bloomberg ICE, Marex Spectron Research. 

 

The lowest 10-year average score of the SDP test coefficient is achieved in period t - 4, with 

a reading of -0.0726. This means that, on average, change in the slope of the forward curve 

leads to a change in the short-term supply of four weeks. This observation was already 

discussed in Section 3.2.3, as well as in Section 3.6, on the results. The new information 

obtained here is from the comparison between the actual market data (denoted as actual in 

Table 9), used for all previous causality studies, and the different positions of the forced 

curve. The actual record appears to possess the highest negative SDP test score. This means 
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that the gradient coefficient of the actual forward curve slope data (with no forcing) possesses 

the strongest mechanical lead properties over the short-term supply. However, once the 

slopes of the results are calculated, the outcome changes. The numbers in the slope column in 

Table 9 represent the slope steepness coefficient for each position, that is, from actual to 

forced, by increments of 0.5. It is evident that the curve steepens with the steepness of the 

slope of the forward curve. This means that the responsiveness of supply increases as the 

curve steepens, which, in turn, confirms the sub-hypothesis that the reaction of the short-term 

supply intensifies with the steepness of the forward curve. 

3.7. Conclusions 
 

The first test (for the Es) reveals that a change in the oil price leads to a change in the Es, and 

the most common reaction time is four weeks, which suggests that further investigation into 

the subject is worthwhile. The increase in the Es detected is the first, albeit weak evidence in 

support of the hypothesis of a speculative supply shock after 2008–2009. After all, the Es is 

nothing more than a ratio of the proportionate change in the quantity of supply to the 

proportionate change of price. Evidence collected from the second (LR) test implies that there 

is indeed a link between the forward curve position, contango or backwardation, and crude oil 

availability on the physical market. The direction of the relationship investigated involves a 

backwardated forward curve causing a positive speculative supply shock. Test results also 

reveal that the intensity of the response of the short-term supply to change in the steepness of 

the forward curve slope has risen consistently in recent years. Oil producers are more likely 

to engage in speculative supply-side operations, leading to speculative supply shocks. The 

events appear to cluster in time, which suggests cyclicality in the relationship investigated 

between the forward curve and the spot oil supply. 

It is worth mentioning also, that the reaction of producers‘ supply to change in the steepness 

of the forward curve within such a short time frame (weekly) would be a necessary but not 

the only condition for a speculative supply shock on the crude oil market. Bivariate statistical 

analysis performed on the forward curve gradient and the short-term supply with the help of 

an SDP test also offers evidence of predictive properties; that is, the analysis confirms a 

causal condition where S = f(gradX). The events where gradX is influencing S are found to 

tend to cluster in time. When such events arise, they persist for long periods (months and 

even years) and are followed by periods of a weak or no relationship. The sub-hypothesis 
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developed investigates the reaction of the short-term supply to the steepness of the forward 

curve slope by artificially pushing the curve into different modes of steepness. The results 

confirm that the responsiveness of the short-term supply rises with increases in the steepness 

of the forward curve slope. 

The proposed general equilibrium and VECMs for the global crude oil market play an 

important role in the argumentation of the hypothesis. The result from the VEC Granger 

causality test rejects the null hypothesis at the 5% confidence level, with a p-value of 0.0349, 

and confirms the existence of predictive causality between the slope of the Brent oil curve 

and the short-term oil supply. The reverse test hypothesis, that is, S causing gradX, fails to 

reject the null hypothesis, which defines the direction of the causal relationship in each pair 

of variables. 

Further conclusions can be drawn from the VECM IRF results. The evidence collected from 

the IRF outcomes suggests that the short-term supply is reduced as a positive shock is 

introduced to the slope of the forward curve. This result is in line with evidence from earlier 

tests. More importantly, such behaviour signals causality in the relationship whereby the 

forward curve leads the supply reaction by about two weeks. The same reaction is detected in 

the opposite direction, that is, a shock introduced to the supply decreases the steepness of the 

slope of the curve. This feedback relationship is studied as a robustness test in Section 3.6 

and reveals positive feedback, also known as constructive interference, between gradX and S. 

The proposed short-term general equilibrium model for the global crude oil market provides 

further evidence in support of the hypothesis. The model has strong explanatory power for 

price, as measured by the fit of the second-order polynomial function (R squared = 0.7315) 

and the time series correlation coefficient (-0.79). A robustness check is performed by 

removing the forward curve slope from the model equation. The result is markedly weaker; 

that is, the fit/explanatory power of the model deteriorates on both occasions (R-squared = 

0.1022 and the correlation coefficient = -0.28 providing further support for the hypothesis of 

this paper. 

3.7.1. Implications 

The impacts from the findings of this study are relevant to crude oil market practitioners and 

can be categorized according to the nature of their business, namely, involving the physical or 

derivative market. The effect on the physical market is related to the short-term alteration of 

crude oil availability and the subsequent supply shock. Any short-term stress along the 
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industrial supply chains due to a short-term speculative supply shock is likely to affect price 

formation, in terms of both price value and price volatility. This can have a direct impact on 

the real economy. On one hand, overstretching supply chains of raw materials can lead to 

disruptions in the production process downstream, which affects the financial performance of 

the companies involved. The logical reaction is to accumulate excessive amounts of 

inventory, which also negatively affects the results of the firm, because working capital is 

locked up in idle inventory. On the other hand, given that global oil inventories have stayed 

above the long-term average for the last five years and, as stated by Deaton and Laroque 

(1992), Pindyck (2001), Geman and Ohana (2009), and Gorton et al. (2013), price volatility 

and inventory have a positive relationship in times of above-average long-term inventory 

levels. Such higher price volatility increases the uncertainty of the cost of production. 

Therefore, there can be two economic impacts, at the micro and the macro levels. 

 

At the microeconomic level, companies are forced to increase their hedging ratio, which 

comes at a cost and leads to higher costs of production and higher unit costs. At the 

macroeconomic level, inflationary pressure could emerge, since producers typically attempt 

to pass on higher costs to the end user/consumer. In other words, due to the very high level of 

oil and oil product usage in the economy of any developed country, higher unit costs could 

not only put producers in a difficult financial situation, but also create inflationary pressure in 

the broader economy (Gisser and Goodwin, 1986). The derivative markets also react to short-

term supply changes, creating trading opportunities for the entities and individuals involved 

in crude oil derivatives market operations. Therefore, my findings offer additional insight into 

how to improve further the short-term trading analytics and risk management for crude oil. 

The implications, from an academic perspective, could also be significant. The hypothesis 

proposed in this paper increases understanding of the way the short-term supply reacts to 

changes in the spot and forward prices. This is because the use of a dataset of weekly 

observations for the supply is unique in the literature. Furthermore, to my knowledge, no 

study has been carried out on the relationship between the weekly spot physical oil supply 

and the position of the forward curve. Equally important, no study appears to have been 

conducted on the relationship between the weekly oil supply and the steepness of the slope of 

the forward curve. 

Last but not least, the proposed short-term general equilibrium and VECMs for the global 

crude oil market aim to test the relationships between five variables representing the short-

term supply and demand conditions on the crude oil physical spot market. To the best of my 
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knowledge, no study discusses a crude oil econometric market model with such variables or 

time series frequency. 

The findings are also likely to attract the attention of key policy makers. For example, a 

European Energy Union initiative is a priority project for the European Commission. The role 

of Directorate General for Competition is to ensure that the energy markets function properly 

and deliver reliable energy supplies at reasonable prices for businesses and consumers. 

Evidence of deliberately introduced price volatility, as well as of higher energy prices for the 

end user, is likely to attract the attention of regulators. Another concern of policy makers is 

likely to be inflationary pressure, as noted in the discussion above. 

3.7.2 Areas for further research 

Throughout this paper, I have identified the following areas as suitable for further research.  

First, any change in short-term crude oil availability on the Ps physical market due to a shift 

in the forward curve is likely to affect not only the short-term supply and demand balance on 

the oil market, but also the demand for shipping capacity. An opportunity for further research 

involves the acquisition of deeper understanding of the origins of the short-term demand 

shocks for crude oil tanker freight. Shipping is derived demand, and, therefore, changes in the 

crude oil supply directly affect the freight market. Unlike dry bulk shipping, crude oil has no 

substitutes as a shipping capacity demand driver. Therefore, any change in short-term crude 

oil availability on the spot physical market is likely to affect freight rates.  

 

Second, a transformation of the dynamics of FOB–CIF price formation on the back of 

deliberate short-term supply changes on the physical market, combined with traders‘ 

increased ability to purchase oil at different points along the supply chain, can potentially 

create a positive feedback loop of volatility between FOB and CIF pricing points. 

 

Third, one of the preliminary tests of causality identifies multi-year cyclicality in the lead–lag 

relationship between the forward curve and the reaction of supply. Periods of strong regime 

reaction have a convincingly high ratio of +65% that persists for many months and 

sometimes entire years. Periods of no reaction to changes in the curve can also be 

pronounced. For example, this particular test offers no evidence to suggest that crude oil 

availability was influenced by the position of the curve from 2011 to 2014. Analysing the 

existence of such cyclicality is not the aim of this paper, but the topic deserves further 

investigation. 
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Fourth, the results from the proposed models reveal that, after the introduction of a positive 

structural shock on the crude oil‘s short-term supply, demand, and inventory, no meaningful 

reaction of the spot price of crude oil is recorded within the observed period. This finding 

clearly contradicts economic theory, cannot be easily explained, and therefore demands 

further and more detailed investigation. 

Fifth, it is not immediately obvious why stocks should fall steadily after the initial increase 

when the curve slope steepens. A contango market should theoretically create an incentive for 

steady inventory accumulation, as dictated by cash and carry arbitrage. Therefore, the 

reaction of inventory to a steepening forward curve also deserves further investigation.  
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Appendix of Chapter 3 

Figure A1: Crude oil inventory share of total production 

This chart displays the global crude oil inventory share of total global production on the y -axis, and the time line 

on the x-axis. The long-term trend is described by second-order polynomial regression trend line. Source: DOE. 

 

 

Figure A2: Global crude oil demand versus Brent price volatility 

This chart demonstrates the logarithm of the term (seven years) trend in global oil demand and physical crude 

oil market volatility. The trend line for the relevant variable is a linear regression line. Source: DOE. 

 

 

 

Figure A3: Brent price versus volatility 

This chart presents the relationship between the (Brent) crude oil price and volatility. The long-term trend is 

described by the second-order polynomial regression trend line. Source: DOE. 
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Figure A4: Organisation for Economic Co-operation and Development (OECD) oil inventory versus the 

Brent convenience yield 

The chart presents the relationship between the OECD crude oil inventory and the Brent market convenience 

yield. The long-term trend is described by the second-order polynomial regression trend line. Source: OECD, 

DOE, Bloomberg. 

 

Figure A5: Global crude oil supply and demand balance  

This chart presents the relationship between the global crude oil market‘s supply and demand balance (bar chart, 

dashed line is the 3-month simple moving average) and the Brent spot price (line). The Source: IEA, 

Bloomberg, Marex Spectron Research. 

 

Figure A6: PDF function of the supply 

This chart presents the PDF of the crude oil supply time series. The blue line represents the PDF of the original 

time series. The red line represents the PDF on the log-transformed series. The dashed red line is the five-period 

moving average on the log-transformed series. Source: DOE. 
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Figures A14a-14Ae: FT cyclicality 

The following charts display the results from the FT cyclicality test for all five model variables, namely, the oil 

price, gradX, inventory, supply, and demand. The value on the x-axis on each chart represents the time 

component of the Fourier function in number of weeks . The value on the y-axis is the unit of the variable tested. 
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4. Optimal cross-border electricity trading in the context of the 

gravity model of international trade and the flow–price 

relationship 

 

4.1. Introduction 

 

In this paper, I first examine the impact of the relative strength of economic activity and 

distance between two countries on their net cross-border electricity flow. The effect from 

changes of electricity flow between two markets on flows between another pair of markets is 

also examined. Lastly, I investigate the relationship between cross-border electricity flows 

and electricity prices. 

 

The electricity market is different from any other commodity market, since the technological 

inability to accumulate inventory and the instantaneous nature of the transactions of electrical 

current remove the balancing mechanism between supply and demand. The resulting need for 

instantaneous balance and increased connectivity between markets that is part of the 

European Union (EU) Energy Union Initiative pose important questions about the behaviour 

of the entire interconnected system.23 

 

Microeconomic theory postulates that the demand for electricity from rational end users 

increases up to the point where the marginal benefit for the consumer is equal to the price of 

the units of electricity consumed (e.g. Kirschen 2003). This makes the end user demand 

response susceptible to prevailing economic conditions. One theoretical framework that could 

provide a direct link between commodity demand, supply as measured by cross-border flow, 

and the relative economic activity between different markets is the gravity model of 

international trade, following Tinbergen (1962). Tinbergen, who identifies a similarity 

between Newton‘s law of gravitation and bilateral trade flows between countries, has 

proposed that trade between any two markets can be expressed as a function of their 

economic size and the distance between the two countries. I conjecture that the application of 

Tinbergen‘s gravity theory of trade to the integrated EU electricity market enables better 

modelling of the forces behind changes in flows and prices. 

                                                                 
23

 European Commission (EC) MEMO/15/4486, ‘Connecting power markets to deliver security of supply, 
market integration and the large-scale uptake of renewables’.  
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Following the hypothetical link between the gravity theory of trade and cross-border 

electricity trade, I also examine the influence of one cross-border flow on another. Improved 

connectivity between markets in recent years makes it credible to hypothesize that trade flow 

between two neighbouring countries can be affected by trade flow between another pair. 

Furthermore, it is plausible to assume that, once the supply of electricity in any given market 

is altered by the forces discussed, the price will respond. Therefore, I aim to identify such 

electricity flow changes and quantify their impact on the electricity price. Consequently, the 

importance of cross-border trade flow in the overall price formation mechanism for the 

electricity market in Europe is articulated by investigating the links between economic 

activity and trade flow, trade flow and other flows, and trade flow and electricity prices. 

It is important to address the absence of the use of the gravity theory of trade proposed by 

Tinbergen (1962) in the literature as an analytical tool capable of explaining certain 

electricity market price and volume movements. This paper not only offers confirmation of 

the explanatory power of the gravity theory over changes in trade flow direction and size, but 

also ascertains evidence that the theory can be successfully employed for predicting 

electricity flows and prices. 

 

The lack of research on the flow-on-flow impact on the electricity market is also identified. 

Poor connectivity between various national grids in the past and, therefore, a lack of 

significant cross-border electricity flows can be one explanation for this gap. However, the 

EU market coupling regulation has significantly changed the flow across borders.24 The 

strand of research on international trade (e.g. Krugman 1979) helps one identify the potential 

link between different trade flows, but further research is warranted, specifically into the 

topic of the short-term flow-on-flow impact on electricity markets. 

 

Furthermore, the available academic research documents the relationship between price and 

volume but offers no evidence in favour of a causal relationship that runs from the market 

volume to the market price (e.g. Granger and Mortgenstern 1963, Jennings, Starks, and 

Fellingham 1981). The sequential arrival and noise trader models of Copeland (1976) and 

DeLong, Shleifer, Summers, and Waldmann (1990), respectively, attest to a bidirectional 

causal link, but they stop short of identifying and confirming directional causality from 

volume to price. Their work has been exclusively focused on equity markets, not 

                                                                 
24

 See the European Council for an Energy Efficient Economy (ECEEE), https://www.eceee.org/policy-
areas/energy-union/. 
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commodities, which is an important distinction from the hypotheses tested in this paper. To 

the best of my knowledge, in terms of commodity markets, evidence of causality from 

volume in the direction of price is practically non-existent. Kiesel and Kustermann (2016) 

conclude that it is the price differential between two electricity markets that dictates the 

cross-border electricity flow. In contrast, the findings of this study point towards a persistent 

causal link in the direction from volume (flow) to price. Once causality is identified and 

quantified, it is also proposed as a powerful addition to any trading strategy. 

 

The methodological framework employed in this paper that is used to identify cross-border 

trading opportunities is also worth documenting. As far as I can ascertain, the academic 

literature omits any methodology that records a cross-border arbitrage trading strategy for 

electricity markets based on trade flow signals. Differently, this study utilizes the findings 

from a rigorous causality testing process, proposes a trading model that uses the cross-border 

electricity flow/volume as the prime input to generate the entry signal into a long/short 

position on the forward electricity market, and documents the results. 

Gebhardt and Hoffler (2013), who investigate the relationship between spot and 

interconnector capacity prices, claim that well-informed traders do not engage in cross-border 

trading. The authors even postulate that an incumbent could buy interconnector capacity only 

to block international competitors. While their findings do not contradict the results of this 

paper, the evidence gathered here suggests that well-informed, rational market participants 

can and should engage in cross-border electricity trading. 

 

Differences from the available literature in the methodology employed to investigate the 

hypotheses are also reported. Key published works on the topic of the price–volume 

relationship on the financial markets address the research problem of employing traditional 

bivariate Granger causality and correlation techniques following Granger and Mortgenstern 

(1963), Grossman and Stiglitz (1980), and Hiemstra and Jones (1994). In contrast, this paper 

uses customized coincidental response (CR) and sliding scalar product (SSP) tests, as well as 

a multivariate vector autoregressive (VAR)/vector error correction (VEC) model (VECM) 

framework. The assertion here is that these techniques are superior to the one traditionally 

used to study the price–volume relationship on the electricity market. 

 

The EC market coupling regulation aims at integrating European wholesale electricity 

markets into a single liberalized electricity market. The initiative is part of the EC‘s Energy 
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Union project (see the ECEEE policy guidelines, as well as Meeus et al. 2005). One of the 

pillars of this project is the motion to remove barriers to physical electricity trading and 

coordinated grid operations through the construction of new interconnecting facilities, known 

as bidirectional transmission lines, connecting the grids of two adjacent countries. This policy 

effectively pools together all member state markets for the same-day delivery of electricity, 

and it is designed to facilitate and prompt cross-border flows between member states. The 

goal is for stronger cross-border trading flows to increase competition on the marketplace and 

to lower price volatility and transmission costs.25 It is, therefore, in the interest of the stability 

of the entire system to study the factors affecting these flows. One such potential factor 

affecting the behaviour of the cross-border flow of electricity between any two countries, 

adjacent or non-adjacent but still connected by the grid of a third country in the middle, is the 

relative size of their economic activity. According to the original gravity model for 

international trade proposed by Tinbergen (1962), and the work of Bergstrand and Egger 

(2010) and Brakman and Bergeijk 2010, who argue that the gravity theory of trade can be 

applied universally to any good, I conjecture that application of the first null hypothesis   
  to 

the European electricity market allows better understanding of the forces behind electricity 

price formation and to model and predict trade flow changes using macroeconomic input. 

 

Anecdotal evidence suggests that the change to the market architecture imposed by the EU 

Energy Market Initiative is already having an impact on the way electricity flows across 

Europe.26 The material lack of storage on an industrial scale on the electricity market, the 

instantaneous transaction of electrical current, and Kirchhoff‘s first law indicate that changes 

in cross-border electricity flows have the potential to influence the domestic supply and 

demand balance for a particular market.27 The lack of industrial-scale storage for electricity 

removes the balancing mechanism between supply and demand, which means that supply 

needs to equate demand at any time. Such need for instantaneous balancing, propagated by 

increasing connectivity between more and more markets, raises questions about the reactions 

of multiple interconnected markets. Hypothetically, as market connectivity continues to 

improve, one electricity trade flow will have an even stronger impact on the electricity flow 

of another market that is one or even two borders away in the interconnected system. It is 

therefore credible to hypothesize under the second null hypothesis   
  that trade flow between 

                                                                 
25

 See the ECEEE, https://www.eceee.org/policy-areas/energy-union/. 
26

 EC Quarterly Report on EU Electricity Markets, DG Energy, Vol. 11, Q1 2018.   
27

 See https://isaacphysics.org/concepts/cp_kirchhoffs_laws. 
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a pair of neighbouring countries can be affected by trade flow between another pair. In this 

context, I examine the cases of countries with a common border, as well as those without. 

One particular strand in the academic literature addresses international trade and it represents 

the theory of market connectivity and trade flow interaction. For example, the work of 

Krugman (1979) is related to this hypothesis, since it demonstrates not only clear welfare 

gains from cross-border trade, with zero assumed transport costs, but also economies of scale 

increasing cross-border trade. Krugman‘s ideas can be considered pivotal for the continuous 

European electricity market coupling process and the development of the hypotheses 

described in this paper. 

 

Research on how one cross-border flow impacts other flows broadens understanding of the 

forces that form the supply in interconnected markets. It also allows practitioners to exploit 

temporary mispricing more successfully, and regulators to address situations of possible 

abuse of market position (e.g. Gebhardt and Hoffler 2013). It is also plausible to assume that 

changes in electricity flow patterns across borders can lead to distortions in the price 

formation on the affected electricity market, with subsequent temporary mispricing. This 

study addresses such situations by selecting pairs of countries with and without a common 

border, which allows for the testing of the impact between both direct neighbours, that is, 

cross-border, and other countries, that is, beyond neighbouring countries. The aim is to 

investigate the influence that direct and indirect cross-border electricity trade flows can have 

on the price formation for each of the markets in the study.28  

 

The third null hypothesis   
  stipulates that change in the electricity price is a function of the 

change in cross-border trade flow. Price distortions from changes in trade flows are 

identified, and an optimal trading strategy is proposed for market participants with access to 

all the financial electricity markets included in the study. Theoretically, such price distortions 

should not exist under the assumption of free market forces and the flow-based market 

coupling mechanism.29 The flow-based market coupling mechanism represents the cross-

                                                                 
28

 Direct electricity flow is defined as cross -border flow between two countries that share a common border 

with the tested market. For example, market A is tested against flow between countries A and B or A and C. 
Indirect flow is defined as flow between two countries with no common border with the tested market. For 
example, market A is tested against flow between countries C a nd D or D and E.    
29

 The term arbitrage in this case and throughout the paper is used to describe buying and/or sell ing of the 

same asset (electricity) triggered by simultaneous changes in volume in connected markets. This should not be 
confused with the strict definition of arbitrage, which involves taking advantage of price differences by buying 
or sell ing the same asset in a different market.  
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border capacity allocation of Central and Western European day-ahead electricity markets, 

which have superseded the available transfer capacity methodology (Van den Bergh, Boury, 

Delarue 2016, Tennet 2015).30 On one hand, early evidence from the equity markets provided 

by Copeland (1976) and Jennings, Starks, and Fellingham (1981) suggests a bidirectional 

positive causal link between price and trading volumes. DeLong, Shleifer, Summers, and 

Waldmann (1990) even find that short-term trading activity on the equity markets can cause 

changes in price direction. On the other hand, in a study directly relevant to the EU electricity 

markets, Kiesel and Kustermann (2016) conclude that cross-border electricity flow is dictated 

by the price differential between two markets. 

 

This study utilizes daily pricing of day-ahead forward contracts and daily net cross-border 

trade flow data to examine the impact on price of changes in cross-border trade volume 

between Germany, France, the United Kingdom (UK), Spain, Italy, and Switzerland. Such a 

frequency of the time series and the selection of the countries in the sample represent 

important differences from the work of Cartea, Flora, Slavov, and Vargiolu (2019), who use 

not only intraday data, but also a different selection of countries. 

 

There are 1,237 daily data points in the time series for both prices and trade flow from 

February 2015 to June 2018. The countries included in the study represent the electricity 

markets responsible for 64% of the overall European electricity physical market volume and 

constitute the most liquid spot and forward electricity markets in Europe.31 The same sample 

with daily trade flow data is employed in the analysis of the impact that one particular cross-

border flow has on another flow under   
 . Hypothesis   

  is examined using 41 monthly data 

points for the average monthly electricity price and the distances between 10 pairs of 

countries with and without a common border, namely, Germany–Switzerland, Switzerland–

Italy, Switzerland–France, Germany–France, France–UK, France–Spain, France–Italy, 

Germany–UK, Germany–Spain and Germany–Italy. Purchasing managers‘ index (PMI) data 

are utilized as a proxy for gross national product (GNP)/gross domestic product (GDP) data, 

which are published less frequently. 

 

                                                                 
30

 See https://www.tennet.eu. 
31

 According to Eurostat September 2018 data release, and the London Energy Brokers’ Association monthly 
transaction reports. 
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The proposed hypotheses are first tested with the help of the customized CR and SSP tests. 

Further evidence of a causal link between flow and price, flow and flow, and the gravity of 

the trade coefficient and flow is obtained from Granger causality and Wald tests. The VECM 

framework is also employed to identify and trace the shocks introduced to a system. More 

specifically, these are accomplished with the help of impulse responses and variance 

decomposition analysis by imposing restrictions on the model matrices. Drawing on the 

findings from the test of   
 , a short-term electricity trading model for the day-ahead market 

is proposed. 

 

The results from examining the first hypothesis   
  suggest that, with the exception of the 

French market, the reaction of price to flow in all the markets in the study has become less 

pronounced over time. Regardless, the results also confirm that the Italian, Swiss, and French 

electricity prices are the most responsive to electricity flow changes. Furthermore, the 

outcome from the cross-border arbitrage model advanced by this study is unambiguous. The 

proposed trading algorithm, which is guided exclusively by changes in cross-border 

electricity flows, has a 71.8% success rate. This amounts to an accumulated return on 

investment (ROI) of 129.1% when adjusted for transaction costs, or an annualized return of 

26.3%. Studying the evolution of the ROI reveals another finding, namely, that the ROI 

peaked in 2017 and has contracted since. This result is in line with an earlier finding, that the 

reaction of price to flow has become less pronounced in a number of European electricity 

markets. It is plausible to assume that such result will attract the attention of market 

participants active in the physical and financial electricity markets. In addition, regulators are 

likely to take note from the findings regarding the diminishing sensitivity of prices to changes 

in the trade flows discussed. 

 

Analysis of cross-border flow versus another cross-border flow performed under   
  reveals 

evidence of a consistent interaction between the Switzerland–France and Germany–France 

cross-border electricity flows. There is also evidence of positive feedback between the 

Switzerland–Italy and France–Italy flows. Similar to one of the outcomes recorded under   
 , 

the number of occurrences in which flow impacts another flow is also showing signs of a 

decline. One reason for this trend could be that suggested by Fuss, Mahringer, and 

Prokopczuk (2017), who estimate that, under the ongoing process of market coupling, cross-

border flows into economically inefficient directions can be avoided. 
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While the strongest impact on flow from another flow is documented for a number of 

adjacent countries, such as Germany–France and France–Switzerland or France–Italy and 

Switzerland–Italy, there is evidence of an impact between two flows with no common border. 

The flow between France and Spain appears to be the most likely to be affected by other 

flows, such as the Switzerland–Italy and Germany–Switzerland flows. Overall, the French 

power market is found to have the strongest cross-border impact on other markets, which 

provides insight into the price formation mechanism affecting the European power market at 

its core. 

 

Analysis of the impact of the gravity of trade on electricity prices under the third hypothesis 

(  
 ) reveals the reaction in 18 gravity–electricity flow pairs, only six of which have no 

common border, which represents 5.7% of the total of 105 pairs tested for   
 . Such results 

make it plausible to reject the hypothesis of non-applicability,   
 ; that is, the trade gravity 

equation also applies to the electricity market. In other words, distance does matter when it 

comes to cross-border electricity trading. This conclusion is reached independently of any 

consideration, based on the cost of transportation of electricity in the face of transmission 

losses. Apart from the academic value of testing for the first time the gravity theory of 

international trade on the European electricity market,   
  paves the way for future research 

into the topic of how the macroeconomic data of one country is priced by the electricity 

market in another country within the environment of an energy union. Any mispricing is 

likely to attract the attention of regulators and market participants alike. 

 

This paper‘s first contribution is to identify and quantify causal processes between cross-

border electricity trade flow and electricity prices that lead to price lagging behind the flow. 

Contrary to the established literature, which considers trade flow to be the dependent variable 

(e.g. Kiesel and Kustermann 2016), this paper finds that changes in cross-border electricity 

flow anticipate changes in prices. The collected evidence corroborates the finding that the 

Italian, Swiss, and French markets are the three most responsive countries in the sample to 

cross-border trade flow markets. 

 

Still under the first hypothesis, the second contribution is the attestation of the strong 

incentive for participation in cross-border trading in the European power market. This 

finding, which contradicts the claims of Gebhardt and Hoffler (2013), is documented with the 
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help of the results from the introduced trading model, whose algorithm is based on the 

identification of causal relationships between electricity flow and price, where flow leads the 

price. Since the tradable instrument is the electricity price, not the flow, the algorithm 

searches for a causal signal only when the volume leads the price. The evidence collected in 

this study shows an annualized return of 129.10% for the sample period,32 with a Sharpe ratio 

of 2.15 for the risk-adjusted return. 

 

As the EU power market continues its process of integration, this paper‘s third contribution is 

revealed, namely, that the proposed methodology under   
  can be extended to examine the 

reaction of one cross-border electricity trade flow to changes in another trade flow, also 

called the flow-on-flow reaction. This contribution represents the second hypothesis,   
 . The 

importance of quantifying the flow-on-flow reaction is encapsulated in the process of 

European electricity market integration. The lack of price convergence between adjacent 

markets included in this study, as displayed in Figure A1 in the Appendix, allows one to infer 

that this integration is far from over. This makes the results from the econometric flow-on-

flow tests and models developed under   
  very topical. First, the results expand 

understanding of the electricity flow within the entire system. Second, it allows one to 

forecast electricity flows between two countries based on flows between two other countries 

that sometimes do not even share a common border. The outcomes and sensitivities identified 

are likely to attract the interest of regulators involved in Europe‘s energy market design, 

academics, grid operators, and market participants who are interested in profiting from the 

temporary distortions identified under   
 . 

 

The fourth contribution of this paper is the analysis of the influence of economic activity and 

geographical distance between two electricity markets, applying Tinbergen‘s (1962) gravity 

model to international trade. To the best of my knowledge, this study represents the first 

attempt in both the academic and practical literature to explain electricity flow formation and 

direction with the help of the trade gravity equation. Successful application of the gravity 

model of international trade to the electricity market in Europe also confirms the claim of 

Bergstrand and Egger (2010), that the model is applicable to any commodity market. 

 

                                                                 
32

 The return is net of transaction costs and annualized based on 252 trading days per year.  



 

91| P a g e  
 

The remainder of this paper is organized as follows: Section 2 discusses the available 

literature and attempts to identify gaps and weaknesses in the academic work. Section 3 

explains the data, samples, sources, and time frame selection criteria. Section 4 describes the 

methodological framework of the various hypotheses. Section 5 describes the results and 

Section 6 concludes the paper. 

 

4.2. Literature review 

 
The first hypothesis is based on the application of the gravity model to international trade. 

Following the seminal work of Tinbergen (1962), who draws an analogy with Newton‘s law 

of gravitation to explain statistically bilateral trade flows between large numbers of countries, 

the sub-hypothesis studies the impact the gravity of trade is likely to have on cross-border 

electricity flows. Tinbergen, who was also awarded the first Nobel Prize in Economics for his 

work on the topic, expressed the coefficient of gravity of trade between two countries as the 

relationship between their economic size, as measured by the GNP in US dollars, and the 

geographic distance between the two markets. In the original version of the model, trade 

flows are measured in terms of both imports and exports, and the distance between countries 

with a common border is assumed to be one. The original equation also takes into account 

trade frictions, such as the preferential treatment of one exporter over another on political 

grounds. 

 

Later work by Anderson (1979) contributes to the theoretical framework of the topic. Even 

though the gravity model has found wide use in also explaining the behaviour of foreign 

direct investment and migration flows, its core value applies in international trade. Cross-

border trade flows consist of a huge variety of goods, in both their finished and intermediate 

states. The gravity theory of trade is believed to apply universally to any such goods 

(Bergstrand and Egger, 2010, Brakman and Bergeijk 2010). Electricity is one of the most 

important commodities in an intermediary state, and I hypothesize that the laws of gravity of 

trade apply to this market as well. To the best of my knowledge, there is no academic or 

practitioner work on the behaviour of the pan-European electricity market and the gravity of 

trade flows. 
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One strand in the academic literature that draws a connection between all three hypotheses 

discussed in this paper is work on international trade. For example, Stern (1976) claims that 

price elasticity is necessary to estimate the response of imports and exports. Such an assertion 

explicitly defines the causal relationship between trade and price. Furthermore, Krugman 

(1979) has introduced a model that stipulates that trade between two countries is caused by 

economies of scale, as opposed to factor endowments or technology. The author demonstrates 

not only clear welfare gains from cross-border trade (assuming zero transport costs), but also 

that economies of scale increase cross-border trade. Krugman‘s ideas are fundamental for the 

success of the ongoing European electricity market coupling process, which is considered to 

increase economic efficiency (see also Weber, Graeber, and Semmig 2010). Last but not 

least, Bahmani and Oskooee (1986) studies the reaction of trade flows to changes in 

exchange rates and price levels as two determinants of trade flows. The author also FXilicitly 

defines the direction of causality as prices and exchange rates causing changes in trade flows.  

 

The interaction between trading volume (cross-border trade flow) and price is not a novel 

research subject. Academic research on the price–volume relationship can be traced back to 

Osborne (1962), who represents the stock price change as a diffusion process whose variance 

depends on the number of transactions. The author implies a positive correlation between 

volume and changes in prices. Another early attempt to describe the price–volume 

relationship is that of Granger and Mortgenstern (1963), who conduct the spectral analysis of 

weekly stock market data from 1939 to 1961 but find no evidence of a positive link between 

price and volume. In a subsequent study, Godfrey, Granger, and Morgenstern (1964) present 

evidence of a lack of correlation between prices and volume. Instead, they find that the daily 

volume is positively correlated with the difference between the daily high and daily low of 

the particular market. The authors consider this correlation to be the result of trading-specific 

factors, such as stop-loss orders and orders to buy above the market that increase the volume 

when the price deviates from its current mean. Both studies of Granger and Mortgenstern 

(1963), and Godfrey, Granger, and Morgenstern (1964), work with data on stock market 

aggregates and two to three common stocks. 

 

Later works by Epps and Epps (1976) on both stocks and bonds suggest that the market 

volume changes with intraday price variability. The authors find evidence that the 

distribution of the change in transaction price is a function of volume. The topic is further 

developed by Tauchen and Pitts (1983), who establish the form of the joint probability 
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distribution of the change in price and trading volume. These authors also establish that a 

strong increase in the trading volume/number of traders in the market can conceal most of the 

relationship between the squared price change and the trading volume. Evidence of a positive 

correlation between price and volume does not appear to be limited to the fixed income and 

equity markets. 

 

To the best of my knowledge, the first study focusing on a commodity market is that of Clark 

(1973), who finds a positive relation between the price change (squared) and the aggregate 

volume, using daily data from the cotton futures market. The topic of the price–volume 

relationship on the commodity markets gained further ground in the early-mid 1980s, with 

the paper of Grossman and Stiglitz (1980) suggesting that, given the market‘s growth in 

terms of number of participants and trading volumes, price has become a more accurate 

predictor, since it tends to average the forecasts of more participants. Rutledge (1979) finds 

strong correlations between daily volumes and daily price changes for 113 of 136 futures 

contracts analysed. 

 

Academic research on the price–volume relationship during this early period (1963–1988) is 

largely focused on establishing a contemporaneous relationship (e.g. Karpoff 1987; see also 

Table A1 in the Appendix). The papers by Rogalski (1978) and Smirlock and Starks (1985) 

form one of the first groups of studies to investigate a statistically significant causal 

relationship between absolute stock price changes and volume. Smirlock and Stark (1985), 

for instance, detect such a relationship at the firm level and find it to be stronger around 

earnings announcements. Jain and Joh (1988) confirm bivariate causality between intra-day 

equity prices and trading volume, using exclusively linear Granger causality tests. The 

literature is in agreement that evidence of a causal relation between price and volume is down 

to the so-called sequential information arrival model, introduced by Copeland (1976) and 

developed by Jennings, Starks, and Fellingham (1981). The hypothesis of this model is built 

on a positive causal link between the price and trading volume in both directions and on the 

asymmetry of information dissemination. New information flows into the market and is 

distributed to the market participants, one unit at a time. This implies a sequence of 

momentary equilibria that comprise numerous short-lived price–volume combinations before 

the final information equilibrium is reached. Given this step-like sequence of information 

flow, the lagged trading volume can have predictive power for price, and lagged price returns 
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can have predictive power for trading volumes. 

 

Other evidence in support of the price–volume causality is the influence of short-term trading 

on price formation. This relation is summarized by the so-called noise trader model of 

DeLong, Shleifer, Summers, and Waldmann (1990). Any positive causal relation, in this case, 

will be in agreement with the assumptions made by this model, that the trading strategies 

pursued by short-term traders, that is, noise traders, cause changes in price direction. This 

particular group of market participants tends to not base their decisions on fundamental data; 

so, they impose temporary pressure on the price of the asset, which leads to short-term 

mispricing. This pressure dissipates in the long run, which leads to mean reversion in pricing. 

Therefore, a causal relation from price to volume is consistent with such a positive feedback 

trading strategy (see also Hiemstra and Jones 1994). 

 

It is logical that the first academic research papers on the price–volume relationship, starting 

with Osborne (1962), as discussed above, all date back to the 1960s through 1980s (see also 

Table A15 in the Appendix for a summary of papers published in this period). Their focus is 

predominantly on the equity and fixed income markets, which can be explained by the fact 

that these are bigger and more mature markets, compared to commodities, which in turn 

implies longer and more consistent time series available for research. Commodities appear 

later in this strand of the literature: first in the mid to late 1970s and 1980s, and then more 

frequently in the 1990s, as the markets improved the quality of data. 

 

To the best of my knowledge and with the notable exception of Cartea, Flora, Slavov, and 

Vargiolu (2019), there also appears to be no research on the interaction between two or more 

electricity flows in the European power market. Supply plays an important role in electricity 

price formation, and the technological inability to store this commodity on an industrial scale 

makes moments of potential stress in such a finely balanced system between two and more 

markets particularly appealing for arbitrage. 

 

An important strand in the literature, however, discusses price formation in the European 

electricity market in the context of price convergence between two neighbouring markets and 

the impact of available interconnector capacity on the electricity price. For example, 

according to Kiesel and Kustermann (2016), it is the price differential between two markets 

that dictates the cross-border flow. Their findings also suggest that, due to the convexity in 
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the market supply curve, an inverse relationship exists between interconnector capacity and 

the average base and peak load prices between two adjacent markets. 

 

Contrary to Kiesel and Kustermann‘s (2016) findings, the results of this paper support the 

hypothesis that cross-border electricity flow can be a powerful stand-alone factor in the price 

formation mechanism of both adjacent markets and markets without a common border but 

part of the European electricity market. Another study, by Gebhardt and Hoffler (2013),  

investigates the relationship between spot and interconnector capacity prices and claims that 

well-informed traders do not engage in cross-border trading. The authors even postulate that 

incumbents could buy interconnector capacity only to block international competitors. Their 

findings do not necessarily contradict the results of this paper. It is plausible to assume that 

the strong arbitrage signal identified in this study is the result of market inefficiency, that is, 

insufficient numbers of market participants, and hence lower liquidity, in the cross-border 

electricity market. 

 

There is another potential gap in the literature: the gravity theory of trade is largely omitted 

from explaining certain price and volume movements in power markets. A further gap in the 

literature is identified through the methodologies employed by researchers to study the link 

between price and volume. Most studies address the issue by employing traditional bivariate 

Granger causality and correlation techniques. In contrast with this paper, I did not find any 

evidence for application in the literature of VAR/Impulse response models. Last but not least, 

the literature lacks a cross-border arbitrage model in the day-ahead power market based 

exclusively on trade flow signals. 

 

For the linear interdependencies of multivariate time series to be captured, this study utilizes 

a stochastic process model, also known as a VAR model, and the restricted form of a VECM. 

VAR models, first introduced in 1980 by Sims (1980), advanced the concept of modelling all 

the endogenous variables in a system together, and not one equation at a time. There are 

doubts about the ability of VAR models to differentiate between correlation and causality 

(e.g. Lütkepohl 2005). Additionally, VAR models use scant theoretical information for the 

underlying relationships in the data. However, the reasons for using a VAR system to study 

the relationships between electricity flow and price include its flexibility of VARs over 

univariate autoregressive (AR) models (since the variables are allowed to depend on their 
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own lag or white noise) the lack of ―incredible‖ restrictions in the model, and, very 

importantly, the treatment of all variables as endogenous. 

 

Another common test for studying the interdependence between variables is the Granger 

(1969) causality test. According to Sørensen (2005), Granger causality tests appear to be 

most successful in two-dimensional systems, or bivariate causal relationships, which is where 

this test is applied in this study. Sørensen also suggests caution in selecting the length of the 

sampling period, since a long one will tend to hide causality. A major weakness of this test is 

its static nature, that is, it relies on a strictly defined sampling period; however, causality is 

not a static condition, since its properties evolve over time. The test does not offer a solution 

to this problem, which is why I apply a SSP test. A SSP is a form of cross-correlation 

function (CCF) between two variables. The cross-correlation of multivariate time series 

involves more than one process. It is thus a function of the relative time between signals. Von 

Storch and Xu (1990) describe cross-correlation in a principal signal oscillation processing 

analysis. They provide a detailed account of the measure of similarity of two waveforms as a 

function of a time lag applied to one of them, also defined as a sliding dot (scalar) product or 

a sliding inner product. 

 

4.3. Data, sources, and time frame selection criteria 
 

This paper utilizes three groups of data. The first group is the daily pricing data of day-ahead 

contracts for Germany, France, the UK, Spain, Switzerland, and Italy. The countries in the 

study are chosen based on trade flow reliability and the availability of financial electricity 

market data, as well as intraregional connectivity and common supply and demand patterns. 

For example, the Nord Pool market is deliberately excluded because it is relatively 

geographically detached and the price is strongly influenced by the utilization rate of the 

installed hydroelectric power generation capacity. This is in contrast to the group of countries 

chosen for this study, whose electricity generation systems are dominated by nuclear power, 

fossil fuels, and wind/solar generation.  

 

The Austrian, Polish, and Czech electricity markets are also excluded, based on the following 

reasons. First, the trading model proposed in this paper relies on liquid financial electricity 

markets to execute entry/exit signals. The Polish and Czech markets do not satisfy the 
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minimum required liquidity threshold.33 Second, the German and Austrian power markets 

were effectively coupled between 2002 and 2018. This means that the markets were in price 

equilibrium, which, in turn, did not allow for arbitrage conditions to emerge, even if the 

recorded cross-border trade flows were significant. Third, due to excess renewable power 

generation capacity in the north, there is valid concern that electricity flow originating in 

Northern Germany will enter the Polish and/or Czech grid and exit in Southern Germany. 

Under the settings of my model, such flow has to be counted as a cross-border import/export. 

In reality, some of the electricity bypasses the congested grid of Central Germany. It is thus 

difficult, if not impossible, to quantify which flow is a genuine import and which one is 

simply bypassing the grid. Therefore, in the interest of accuracy, these markets are excluded. 

Fourth, following formal complaints by neighbouring grid operators, the European Agency 

for Cooperation of Energy Regulators (ACER) published an opinion in 2015. The opinion 

effectively agreed with the formal complaints filed in 2014 by Polish and Czech grid 

operators, who claimed that excessive renewable power generated in Northern Germany was 

forced to flow south, unlawfully disrupting the operations of the grids of neighbouring 

countries. ACER advised that the Germany–Austria interconnector flow should be subject to 

capacity allocations, which effectively laid the groundwork for splitting up these coupled 

markets, which took place in October 2018. 

 

All adjacent countries in the sample have interconnector facilities in place, but the study does 

not focus on the limitations imposed by the existing interconnector capacity. What changes 

on a daily or intraday basis is the incentive to export/import electricity, not the maximum 

interconnector capacity. This incentive can be 1) price driven, under the conditions of cross-

border price arbitrage; 2) economy driven, in the face of a demand shock, and 3) excess 

supply driven, since renewables displace fossil fuel power generation and traditional sources 

are not able to adjust immediately. Since any of these conditions will arise within the 

limitations of the existing (and static, in the short term) interconnector capacity, the 

hypotheses advanced by this paper are built on the assumption that market signals generated 

by price or electricity flows can be detected, regardless of the limitations imposed by cross-

border connectivity. 

 

                                                                 
33

 This threshold is based on internal Marex Spectron guidelines for speed and accuracy of execution in any 
given market. 
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The second group of data consists of the daily amounts of net cross-border electricity flow 

between Germany, Switzerland, Italy, France, Spain, and the UK. For the purpose of this 

paper, cross-border electricity flow is considered to be the trading volume of the cross-border 

market. The third group consists of PMI data from IHS Markit,34 which are used for the 

calculation of the gravity of trade coefficient. 

 

There are 1,237 daily data points in the time series for both prices and trade flow, 41 monthly 

data points for the PMI data, and 10 distances between countries with and without a common 

border. Following Tinbergen (1962) and De Benedictidis and Taglioni (2011), adjacent 

countries with a common border are assigned a dummy variable that equals one; these pairs 

of countries are Germany–Switzerland, Switzerland–Italy, Germany–France, France–UK, 

France–Spain, and France–Italy. Pairs with no common border are Germany–UK, Germany–

Spain, and Germany–Italy. 

 

The source of the day-ahead pricing data is the European Energy Exchange (EEX). The unit 

of the electricity contracts is the euro per megawatt–hour. The trade flow data are from the 

European Network of Transmission System Operators for Electricity (ENTSO), in units of 

megawatts (MW) per day. Both pricing and trade flow intraday data are provided by the 

EEX‘s European Power Exchange. 

 

Distances, in kilometres, between the country border interconnectors of all the countries in 

the study are measured as a straight line. The distances between countries without a common 

border are calculated using Google Maps. 

 

4.4. Methodological framework 
 

This paper investigates the reaction of electricity prices and flows to changes in the cross-

border flows between Germany, France, the UK, Spain, Italy, and Switzerland. These 

markets represent 64% from the total EU-28 electricity market.35 The applicability of the 

gravity theory of trade to the European electricity market is also examined. The 

methodological framework of this paper evolves in six stages, as follows. 

                                                                 
34

 IHS Markit is a global economic data provider firm.   
35

 Source: Eurostat, September 2018. The data release on the Eurostat website is monthly.   
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Stage 1 defines the three hypotheses of the study. Stage 2 explains the procedure of 

calculation of the gravity of trade coefficients. The first and preliminary evidence of the 

relationships between price and flow, flow and flow, and the gravity of trade and flow is 

gathered in Stage 3, with the help of the proposed CR test. Stage 4 examines the same 

relationships described above, namely G–F, F–P, and F–F, using SSP analysis. Stage 5 

employs econometric VAR analysis to study the reaction of price to changes (shocks) in the 

gravity of trade and cross-border electricity trade. VAR models and VECMs are widely used 

for identifying and tracing shocks introduced to a system, with the help of impulse response 

analysis, imposing restrictions on the model matrices. The interaction between trade flows 

across adjacent and non-adjacent borders is also investigated. Finally, Stage 6 proposes a 

short-term electricity trading model for the day-ahead market. The signal reflecting the 

trading decisions draws on the findings from the econometric tests and models discussed in 

the previous three stages. Short-term contracts (with a first rolling calendar month) are used 

to calculate the returns. Transaction costs per the market rate as of September 2018 are also 

taken into account.36 

4.4.1. Stage 1 

Under Stage 1, I specify the set of research questions tested against their respective null 

hypotheses, denoted as   . The first research question,   
 , calls into question the link 

between the gravity of trade (G) and the flow of electricity (F). Under this null hypothesis, it 

is assumed that the flow of electricity not only follows the economic activity in the pair of 

countries, but is also influenced by the distance between the two countries. The second 

research question,   
 , concerns the influence of one trade flow over the behaviour of another 

trade flow. The key third hypothesis ,   
 , involves the relationship between the electricity 

trade flow and market price for a neighbouring market with a common border and for 

markets within the EU internal energy market but without a common border. 

 

The three null hypotheses investigated in this paper can be summarized as follows. 

 

1.   
  : Trade flow (F) between two countries A and B is a function of the gravity of 

trade (G) between the two countries. 

                                                                 
36

 The transaction cost information is obtained from the Marex Spectron EU power trading desk.  
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2.   
  : Not only is the price (P) in countries A or B a function of the cross-border 

electricity flow between the countries, but also a causal link exists where flow 

causes changes in price.. 

3.   
 : Cross-border electricity trade flow (F) between countries A and B is a 

function of the trade flow between the countries B and C, D and E, or A and C. 

The cases of pairs of countries both with a common border (AB vs. BC) and 

without a common border (AB vs. DE or AB vs. AC) can thus examined. 

4.4.2. Stage 2 

Following the seminal work of Tinbergen (1962), the gravity of trade (G) between two 

countries A and B is expressed by the relationship between their economic size, measured by 

their GNP in US dollars, and the distance between the two markets. In the original version of 

the model, trade flows are measured in terms of both imports and exports, and the distance 

between countries with common border is assumed to be one. The original equation also 

takes into account trade frictions, such as the preferential treatment of one exporter over 

another on political grounds. A stochastic term e is also included, and the model adopts the 

following time series regression form: 

 

 n   =    + 𝑎   𝐺 𝑃 + 𝑎   𝐺 𝑃 + 𝑎 𝑑  + 𝑎 𝐷  + 𝑎 𝑃  + 𝑒                                  (1) 

 

Where: G is the gravity trade flow between countries A and B, C is a constant, the GNP is 

that of countries A and B, d is the geographical distance between countries A and B, D is a 

dummy variable with a value of one if the countries are adjacent, and P is a dummy variable 

for trade policy conditions between countries A and B. Trade policy conditions, in this case, 

imply preferential treatment through lower tariffs. There are no such barriers in intra-EU 

trade, which is why this dummy variable is zero. 

 

The interconnector capacity between each pair of adjacent countries is not taken into account. 

The capacity is considered to be static within the time frame (monthly) investigated. What 

changes within this time frame is the incentive to export/import, not the available 

interconnector capacity. This incentive can be 1) price driven, through cross-border price 

arbitrage; 2) economy driven in the face of a demand shock; or 3) excess supply driven (i.e., a 

supply shock) through renewables displacing other (fossil fuel) power generating capacity. 

Since traditional sources are not able to adjust immediately, the result is a supply shock. 
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Any of the three conditions will materialize within existing interconnector limitations. 

 

For the purpose of this study, G is calculated as follows: 

 

   =
     ∗     

(𝑇 ∗ 𝑑
2
 

                                                                                                                                 (2) 

 

Where:     is the gravity of trade from country A to B, 𝐺𝐷𝑃  is the GDP of country A, 𝐺𝐷𝑃  

is the GDP of country B, 𝑑  is the distance between the countries, and TL represents 

transmission losses. 

 

Due to the chosen data frequency periods, quarterly GDP data are substituted with monthly 

PMI numbers. Markit uses a standard methodology to calculate a specific country‘s PMI  

across the spectrum of countries it covers, which means that the data are comparable between 

countries. Another advantage is the leading property of the PMI. This result is due to 1) the 

methodology of the calculation that captures the forward sentiment amongst industry 

participants and 2) the publication schedule (the PMI is published on the last trading day of 

the month for the current month, as opposed to GDP or industrial production data, which are 

published for the previous month with a minimum of a two-week delay. 

 

The distance between two countries A and C without a common border is calculated as a 

straight line between the two interconnectors on their borders.37 Following Tinbergen (1962) 

and equation (1), the distance d is considered to be equal to one in the case of neighbouring 

countries A and B. 

 

Transmission losses, which reduce the incentive to transport electricity over large distances, 

are also taken into account. Therefore, it is plausible to assume that countries with a common 

border will have the technological advantage of trading electricity more cheaply, compared to 

countries without a common border. Transmission losses depend on many factors, including 

the landscape, the elevation above sea level, climatic conditions, and the length of the 

transmission line. 

                                                                 
37

 See ENTSO, https://www.entsoe.eu/data/map/. 
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4.4.3. Stage 3 

A test for a coincidental link between two cross-border flows is performed with the help of 

the CR test, where binary conditions denoted by one and zero are used to define the 

coincidental response of cross-border trade flow F between locations A and B and between B 

and C within the chosen time frame. First, I calculate the period variation of F: 

  
    =     −                                                                                                                  (3a) 

    =     −                                                                                                                               (3b) 

 

Where:     is the difference in cross-border trade flows between countries A and B between 

time t and time t - 1, and      is the difference in cross-border trade flows between countries 

B and C between time t and time t - 1. 

 

A pre-set rule searches for CRs and assigns a one if it finds any, and a zero otherwise. In 

other words, if either of the two conditions is met, the test returns a value of one. If the two 

variables move in different directions, the formula returns a value of zero. Therefore, for the 

length of time series i = (1,…, n),  

 

 𝑅𝑡(  =  {

    

    
> 0 → 𝑍𝑡 = 1

    

    
< 0 → 𝑍𝑡 = 0

                                                                                             (4) 

 

Where:   𝑅𝑡(   is the outcome from the CR test,     and     are as specified above, and Z is 
a binary test variable. 
 

The CR test outcomes are displayed with a histogram and the statistics of the time series are 

calculated as follows: 

 

 𝑅𝑇𝑡(  =  
 

 
∑  𝑅𝑇  

                                                                                                             (5) 

 

The test outcome is recorded as a one and zero, where the value of one indicates a positive 

slope of the linear regression line y = a*x + b as measured by the sign of the slope a. A 

positive slope of the regression line also indicates increasing numbers of occurrences, that is,  

where     at time t reacts to change in     at the same time t. In essence, in the case of the 

described flow-flow relationship, the test quantifies instances of coincidental reaction of the 

dependent variable on any change in the independent variable  



 

103| P a g e  
 

The same procedure is repeated for the flow–price relationship. Positive outcomes are 

recorded when flow increases and P increases (marked by +1), or when flow decreases and 

price decreases (marked by -1). Either of the two outcomes satisfies the hypothesis of the 

relevant research question. 

4.4.4. Research design procedure: Stage 4 

The proposed SSP test involves a bivariate descriptive statistical analysis of the evolution of 

the cross-correlation between each pair of cross-border flow and price or two flows under the 

null hypotheses specified above. The cross-correlation of multivariate time series involves 

more than one process. It is therefore a function of the relative time between the signals. Von 

Storch and Xu (1990) describe cross-correlation in a principal signal oscillation processing 

analysis. They provide a detailed account of the measure of similarity of two waveforms as a 

function of a time lag applied to one of them, also defined as the sliding dot (scalar) product 

or sliding inner product. 

 

I compute the cross-correlation time series 𝑃     ,…,   from two input time series 𝑌     ,…,   

and 𝑋   𝑥 ,…,𝑥  by computing Pearson‘s correlation coefficient  (𝑋, 𝑌  over a rolling 

window, as follows: 

 

 (𝑋, 𝑌 =
   ( ,  

    
                                                                                                                    (6) 

 

which is the usual Pearson coefficient, with 𝑐  (𝑋, 𝑌  as the covariance and  𝑋 and  𝑌 as 

the standard deviations of the variables X and Y, respectively. The definition of the Pearson 

correlation  (𝑋, 𝑌  requires further clarification, because the same SSP test is applied for 

three different hypotheses, each of which, in turn, requires different specifications of the 

variables X and Y, as follows. 

 

- Under   
 , X is the gravity of trade coefficient G and Y is F. 

- Under   
 , X is the cross-border flow F between any two countries with a common 

border and Y is F. 

- Under   
 , X is the cross-border electricity trade flow F between any two countries 

with a common border and Y is the price of electricity P of the tested market. 
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For every time step t and lead–lag k in the constructed time series 𝑃  , the correlation 

coefficient of a window of size n is computed. explicitly, to compute 𝑃  with a window of 

size n with the lead–lag step k = 0,  

 

𝑊   =  {𝑥 ,…,𝑥   }, for k = 0  (7) 

𝑉   =  {  ,…,     }, for k = 0 (8) 

𝑃   =   (𝑋 ,𝑌  )                                                                                                                         (9) 

 

Where: the lead–lag number of days k is between -10 and 10, and k = 0 indicates a 

coincidental correlation. A negative k value means that 𝑊   lags k days behind  𝑉 . 

 

The cross-correlation time series 𝑃  =    ,…,     is constructed by repeating this T - n time 

series for every   . Therefore, 

 

𝑃   =   (𝑊 ,𝑉  )                                                                                                                   (10a) 

𝑃   =   (𝑊 ,𝑉  )                                                                                                                    (10b) 

 

Using the outlined procedure, additional correlation time series are computed on the input 

pair, where the series 𝑉 
  is time lagged against the series 𝑊 . To define a lead–lag operator, 

 

  𝑋 = 𝑋                                                                                                                              (11) 

 

which is then applied as follows: 

 

𝑊 
  =    (𝑊  =  {𝑋   ,…,𝑋     }                                                                                    (12a) 

𝑉 
  =    (𝑉  =  {𝑌   ,…,𝑌     }                                                                                        (12b) 

where k > 0 denotes a lead and k < 0 denotes a lag. 

The new correlation time series on the input pair is then computed as 

 

  
  =  (𝑊 

 , 𝑉 
                                                                                                                     (13) 

 

In the final step, the series of all lags‘ CCF using the means of the cross-correlation time 

series means that   
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  =  

 

(  | |   
∑    

   | |  
                                                                                              (14) 

 

CCF(k): =      
  , … ,      

 , … ,      
                                                                                   (14a) 

 

The schematic of the proposed test can be found in Figure 1. 

Figure 1: Schematic of the SSP test 

This figure displays the elements of the proposed SSP test, where X and Y are the time series variables, t is the 

time step, T is the total length of the time series, k is the lead–lag step, 𝑊  and 𝑉  are the lagged series, 𝑃  is the 

cross-correlation time series of X and Y, n is the window size,   
  is the new correlation series on the input pair, 

and      
 is the cross-correlation series mean. 

 

 

 
 

When applying the analysis to a problem, the choices of window size and lags depend on the 

use case. For example, in tests using monthly data points, three lags will be considered (K = 

3), because I assume that the impact from a change in the gravity of trade coefficient on the 

electricity price or the cross-border trade flow (the two input time series in this scenario) will 

have dissipated within three months. For daily data, the choice is K = 10. The total lengths 

(T) of the time series considered are 1,270 for daily data and 42 for monthly data, 

respectively. 
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The CCF(k) is positive when the correlation between the two variables is positive. The 

opposite is also true. Only lead occurrences are recorded, and they are assigned a score of one 

if the lead correlation is positive and a score of -1 if the lead correlation is negative. At this 

stage of building the trading algorithm, the sign of the correlation is ignored, since the 

purpose is to understand the lead–lag relationship between the two variables. The correlation 

sign is determined at a later stage, when the trading algorithm is designed, since it has an 

impact on the overall decision to go long or short in the specific market. The outcomes from 

the SSP test of each F–P pair are recorded within 10 days before or after the CR. In other 

words, the test measures the lead–lag properties of the pair for 10 leading days and 10 

lagging days. 

 

The advantages of the SSP test approach can be summarized as follows. First, it allows for 

the precise (up to the time unit chosen for the study) identification of the lead–lag periods 

between the X and Y variables. This is important for the process of building trading 

strategies, since it accounts for the better timing of a position entry and exit. Second, SSP test 

data can be plotted in a coordinate system for better visualization of the x–y relationship. 

Since the sign of the correlation does not matter (I examine the correlation strength, not the 

direction), the ideal outcome would be to record observations of lead periods clustered in the 

top-right or bottom-right corners of the scatter plot chart. In the case of a line chart, this 

would consist of lines starting from the top-right or bottom-right corners. The advantage of 

such a visualization is in the ability to quickly measure not only the lead–lag periods between 

the two variables along the x-axis, but also the strength of their lead–lag signal on the y-axis. 

Third, there are periods in the data sample when the lead property of the independent variable 

is clearly detected and displayed. However, there are also periods when its reaction lags. This 

finding does not clash with the null hypothesis of the test, which allows for changes in lead–

lag regimes. It is important to be able to establish the existence of any long-term pattern in 

the X-Y relationship. For example, higher conviction trades can be established at times when 

X has clear lead properties. 

4.4.5. Research design procedure: Stage 5 

This stage involves a Granger causality test and a Johansen cointegration test, followed by a 

restricted VECM. Data are tested for a unit root with the augmented Dickey–Fuller (ADF) 

test, since bivariate and multivariate regression analysis in the form of VAR models requires 
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stationarity. Non-stationary and cointegrated time series are then employed under the VECM 

framework. 

 

True causality is a debated concept in academia, and the Granger (1969) test claims to find 

only predictive causality. This is done with the help of t-tests and f-tests on lagged data points 

of trade flow between countries A and B versus trade flow between countries B and C: 

 

  =   +       +  +       +    𝑥   +  +    𝑥   +                                           (14a) 

𝑥 =   +   𝑥   +  +   𝑥   +        +  +        +                                          (14b) 

 

where i is the lag period of the AR model, 𝑥  and    are the studied variables at time t,    is 

the intercept,    and    are the residual errors, and t = (1,… , 1270  is the length of the time 

series. 
When the specific variables of the test are substituted in equations (14a) and (14b), the result 

is 

 

 𝑎𝑏 =   + ∑   
2
 =1  𝑎𝑏   + ∑    

2
 =1  𝑏𝑐    +                                                            (15a) 

 𝑏𝑐 =   + ∑   
2
 =1  𝑏𝑐   + ∑    

2
 =1  𝑎𝑏    +                                                             (15b) 

 

According to Sørensen (2005), Granger causality tests appear to be most successful in 

detecting causal links in two-dimensional systems, or bivariate causal relationships. This is an 

important reason why this paper focuses on pairwise Granger causality tests. Sørensen also 

suggests caution in selecting the length of the sampling period. For example, a long sampling 

period tends to hide causality. This is logical, since causality is not likely to be a static 

process. This is precisely why I run the preliminary tests discussed in Sections 4.2.1. to 4.2.3. 

One of the advantages of a Granger (1969) test is that an endogenous variable can be treated 

as exogenous. 

 

The results in the face of p-values from the pairwise bivariate Granger test procedure are 

recorded, and if   : is rejected, the score is one, and zero otherwise. Since each of the set of 

variables has a unit root, ordinary regression analysis is not appropriate for the estimation,  

because there could be one or more equilibrium (cointegrated) relationships, that is, they can 

have a common stochastic trend. Therefore, the time series are further tested for cointegration 

under the Johansen cointegration procedure, which is based on an unrestricted VAR 
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approach. Unlike the Engle–Granger (1987) test, Johansen‘s test allows one to test the 

hypotheses for an equilibrium relationship between sets of variables. 

 

The generic VAR model can be written as follows: 

 

  =   +       +  +       +    𝑥   +  +    𝑥   +                                             (16) 

 

However, to use Johansen‘s method, the model requires the following VEC form: 

 

   =      +        +        … +         (    +                                                (17) 

 

Where: the long-run coefficient matrix is 

 

 = (∑    
   ) −       = (∑    

   ) −   ,  = 1, … ,  − 1                                                (18) 

 

Cointegration is established by the rank of matrix Π via the number of its characteristic 

roots/eigenvalues. The two tests are        and     . According to the literature (e.g. 

Granger and Joyeux 1980), differencing all the variables of the model to force them into 

stationarity is the correct approach for univariate models. However, if there are important 

relationships between the variables in the long run, such forced stationarity is seen as a 

weakness in the methodology. If a cointegration relationship is established, this would imply 

the existence of a stationary linear combination of some of the variables. A VECM, and not a 

standard VAR model, in first differences is the most suitable approach for non-stationary and 

cointegrated time series, since it allows for both long- and short-run relationships to be 

captured. 

 

In the F–P process, the Johansen test detects a cointegration relationship described by 12 

cointegrating equations (CEs). Therefore, since matrix Π is defined as the product of matrices 

𝞪 and β`, the matrix has the form 

 

Π = 𝞪β`                                                                                                                     (19) 

or, in the case of this study with seven variables, 
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 = [
 11   17

   
 71   77

][
 11   17

   
 71   77

]                                                                             (20) 

 

Once the number of cointegration relationships between all seven variables in the system is 

established – namely, the cross-border flows from Germany to France (GERFR), from 

Germany to Switzerland (GERSWI), from France to the UK (FRUK), from France to Spain 

(FRSP), from France to Italy (FRITA), from Switzerland to Italy (SWIITA), and from 

Switzerland to France (SWIFR) – the VECM takes the following form: 

 

  𝑃 = 𝑏  𝐺 𝑅 𝑅 + 𝑏  𝐺 𝑅𝑆𝑊  + 𝑏   𝑅𝑈𝐾 + 𝑏   𝑅𝑆𝑃 + 𝑏   𝑅 𝑇  +

𝑏  𝑆𝑊  𝑇  + 𝑏 (𝐺 𝑅 𝑅   −   𝐺 𝑅𝑆𝑊    −    𝑅𝑈𝐾   −    𝑅𝑆𝑃   −

    𝑅 𝑇    −   𝑆𝑊  𝑇    −   𝑆𝑊  𝑅    +                                                            (21) 

 

The same methodology is followed when testing the   : of the processes G–F (monthly), P–F 

(daily), and F–F (daily). The residuals of the model need to be tested for stationarity because 

they will be non-stationary if the variables are not cointegrated. This is done with the help of 

the ADF test with the null hypothesis of a unit root in the cointegrating regression residuals, 

or   :     (1  

 

According to Lütkepohl (2005), the optimal lag order of the model is estimated with the help 

of the Akaike information criterion (AIC), the Schwartz/Bayesian information criterion 

(BIC), the Hannan–Quinn information criterion (HQIC), as well as the final prediction error. 

The most important difference between the various criteria is the severity with which they 

penalize an increase in the model order. The motivation behind a strong penalty for high 

model orders is to reduce overfitting, which has an impact on the models‘ forecasting skill.  

 

I employ VAR models/VECMs for reasons different from forecasting. The model 

investigates the interaction between selected endogenous variables. More specifically, the 

aim is to investigate the causal relationships in the processes described under equation (6). 

This means that I prefer to select an information criterion that does not impose too strong a 

penalty on the model order. According to Lütkepohl (2005), the HQIC penalizes high model 

orders more than the AIC, but less than the BIC. I choose to work with the HQIC when 

selecting the optimal number of lags of the VAR model, based on the size of the data sample 
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as well. The consensus in the literature (Lütkepohl 2005) is that the AIC/final prediction error 

outperforms the HQIC for small samples, but the HQIC is better for bigger samples. An 

information criterion different from zero indicates that the variables in the model are jointly 

significant. 

 

Conclusions on possible causal relationships are also drawn from studying the responses of 

one variable to an impulse/shock introduced to another variable in the same multivariable 

system. This view is derived by removing elements from the structural model that are 

expected at t - 1. The VAR models focus only on modelling unexpected changes in a variable 

y at time t, which is a major difference with the traditional modelling practice, where 

dynamic simultaneous equations models do not make a difference between expected and 

unexpected changes in yt.  

 

The outcome from the shock is displayed in the form of impulse response functions (IRFs). 

To isolate the effect from the shock, suppose that all the variables in the system assume their 

mean value before time t = 0, yt = μ, t < 0, and one of the variables increases by one unit at t 

= 0. If no further shocks are introduced, one can trace the impact from this single shock on 

the first variable at t = 0, which can be represented as follows: 

 

  yt = [

   

 
   

] = [

   

 
   

] = [
1
 
0

]                                                                                                       (22) 

Therefore, y1 = [

   

 
   

] =     , where Φ represents the effect of the shocks to the variables in 

the system after i periods. This procedure is repeated for all the variables in the model. If the 

variables have different scales, it is common practice to apply a shock of one standard 

deviation, rather than a one-unit shock. The trend of the reaction of the dependent variable is 

recorded within 10 days of the shock‘s introduction. The observed value of the IRF is equal 

to one if the reaction to the shock is positive – that is, the dependent variable increases after 

the shock is introduced to the independent variable – and equal to -1 if the reaction is 

negative. 

The last test is a block exogeneity Wald test based on the VECM results. The block 

exogeneity Wald test is a bilateral test of whether the lags of an exogenous variable affect an 

endogenous variable. The test probes for joint significance between each of the variables for 
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each VAR equation. A variable is block exogenous if it does not Granger-cause any of the 

other variables in the VAR model. Similar to the pairwise Granger test discussed above, the 

results are recorded in the form of p-values, and, if   : for non-causality is rejected with a 

5% level of confidence, the score equals one, and zero otherwise. If   : is rejected both ways, 

the direction of causality is determined by the smallest p-value, and this is the pair that 

receives a score of one. 

4.4.6. Research design procedure: Stage 6 

The results from all five tests discussed above, namely, the CR test, the SSP test, the VAR 

pairwise Granger causality test (i.e., G-test), the VECM IRF test, and the VEC block 

exogeneity Wald test (or just Wald test), are summarized in tables (see Table 6 in Section 

4.5) and aggregated in a single outcome table Π (see Table 7a in Section 4.5). These results 

indicate the strongest causal relationships to be between the independent variable (trade flow) 

and the dependent variable: 

 

Π = ACR + BSSP + CIRF + DGRANGER + EWALD                                                                                 (23) 

 

A summary of the scores for each dependent variable in Π reveals the strength of the 

conviction behind each market signal of the trading model, discussed later, in Stage 7. The 

probability of occurrence is also calculated with the help of 

 

𝑃(𝑥 =  
 

 
                                                                                                                               (24) 

 

Where: 𝑃(𝑥  is the probability of an occurrence, n is the number of causal relationships 

detected, and N is the total number of potential outcomes. The results are displayed in Table 

9b in Section 4.5, on the results). 

4.4.7. Research design procedure: Stage 7 

The design of the trading model relies upon the output displayed in Π. The higher the score of 

each pair of results recorded in the table, the stronger the conviction of the trade on that pair. 

The sign of each coefficient indicates the direction of the relationship, that is, whether the 

correlation is positive or negative. The timing for the execution signal is denoted by the 

change in the independent variable. The exit timing is predefined at five days after entry, 
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because the combined results from the VECM IRF and SSP tests clearly indicate that the 

price reaction to changes in trade flow, if any, dissipates, on average, 5.83 days after the 

shock is introduced. The first derivatives of the price and flow time series are calculated, 

respectively, as 

 

 𝑃 
 = 𝑃 

 − 𝑃   
                                                                                                               (25a) 

   
  =   

  −     
                                                                                                             (25b) 

 

Where:     
   is the electricity flow at times t and t - 1 between countries A and B and 𝑃   

  is 

the price of electricity at times t and t + 5, where t + 5 reflects the holding period, as 

discussed above. 

 

The direction of electricity flow is estimated with the help of a filter, where a rolling window 

of the standard deviation over the last five trading days is subtracted from the last 

observation. The sign of the numerical outcome with this filter defines the direction of the 

signal. A positive (negative) sign indicates that the electricity flow is rising above (falling 

below) the standard deviation of the last five trading days, which, in turn, dictates the 

direction of the trade: 

 

   
  =  𝑃 

  −                                                                                                                     (26) 

 

Where:    is the standard deviation of the flow sample and    
  is the standardized flow 

between countries A and B. 

 

To avoid contract roll skew between the last trading day of the first month and the first 

trading day of the second month, no trade is executed on the last trading day, to allow for a 

smooth contract roll. This case is handled with the following filter: 

 

{
  = 0 →       𝑆 
                          

                                                                                                            (27) 

 

Where:    is the filter that differentiates in-month days versus end-of-month days, S‘ is the 

sample, and     is the flow on the last trading day of month. 
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The filtered price is represented with the help of    as follows: 

 

{
𝑃  =  𝑃  →     = 0

                      𝑃 

                                                                                                         (28) 

Where: 𝑃    is the final price at time t. 

 

Long (short) positions are taken if the sign of the oscillator is positive (negative), provided 

that the correlation between the price and electricity flow for this particular market is found 

to be positive in the pre-selection process. Should the correlation be found to be negative, the 

opposite action is taken, that is, a long (short) position is entered when the sign of the flow 

oscillator is negative (positive): 

 

{  = 1 →     
  > 0 and  𝑃 > 0

                                                           0 
                                                                                     (29a) 

{ 𝑆 = 1 →     
  < 0 and  𝑃 < 0

                                                           0 
                                                                                     (29b) 

 

Where: L is a long position and S is a short position. 

 

The first combined result is calculated by adding successful long and short positions, which 

are matched with the corresponding first derivative of the price, as follows: 

 

I = L + S                                                                                                                                 (30) 

 

Where: the signal I is a combination of long and short signals. 

 

The final result 𝑋  is derived after applying a filter for a contract roll, as follows: 

 

{
𝑋 = 1 →    = 0

                                         
                                                                                                         (31) 

Finally, the accumulated result is calculated by adding each day‘s positive or negative result 

to that achieved the previous day, and only pairs with a success ratio of 70% and above are 

included in the model: 
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,
𝐾 = 𝑃𝑓  if 𝑋 = 1 → |𝑃𝑓 |
                                               0   

                                                                                              (32a) 

{
  = 𝐾  if 𝐾  0 → 𝐾 

                                   −|𝑃𝑓 |
                                                                                                  (32b) 

 

Where: 𝐾  is the positive-only return from each trade and    is the positive or negative return 

for each trade. 

 

Finally, the accrued return net of transaction costs is calculated: 

 

𝑊 =    + 𝑊   −                                                                                                              (33) 

 

Where: 𝑊  is the accrued net return and C is transaction costs. 

The results supporting the statistical output are discussed in the following section. 

 

4.5. Results 

4.5.1. Test results for   
  

Table 1a displays the descriptive statistics of all the time series involved in the analysis. 

Table 1a: Descriptive statistics of electricity cross-border flows 

This table displays the descriptive statistics of the non-stationary time series of the electricity trade flows , 

including the number of observations, mean, median, minimum and maximum, standard deviation, sum of 

squared standard deviations, skewness, kurtosis, Jarque–Bera test result, and probability. The cross -border trade 

flow between two countries is indicated with the country initials, namely, FRITA for France to Italy, FRSP for 

France to Spain, GERFR for Germany to France, GERSWI for Germany to Switzerland, SW IFR for 

Switzerland to France, and SWIITA for Switzerland to Italy 

  

 
  FRITA FRSP FRUK GERFR GERSWI SWIFR SWIITA 

Mean 1402.07 59.05375 1494.143 1188.179 1918.522 205.7204 2476.822 

Median 1446.45 2.21 1575.5 987.95 1794.9 32.44 2527.3 

Maximum 2717.9 2377.58 2048 4081.9 4769 3377.75 4490.5 

Minimum 186.7 0 0 180.9 149.8 0 0 

Std. Dev. 591.6074 257.3019 457.0666 695.7997 1071.97 564.8775 1017.522 

Skewness -0.144783 6.838233 -1.11301 1.016649 0.233916 3.481786 -0.368796 

Kurtosis 2.144592 52.18803 3.820705 3.580155 1.93849 14.59328 2.591668 

Jarque–Bera 42.06988 134452.3 290.3483 230.6229 69.41416 9434.359 36.66433 

Probability 0 0 0 0 0 0 0 

Sum 1735762 73108.54 1849749 1470966 2375130 254681.8 3066306 

Sum Sq. Dev. 4.33E+08 81894667 2.58E+08 5.99E+08 1.42E+09 3.95E+08 1.28E+09 

Observations 1238 1238 1238 1238 1238 1238 1238 
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Table 1b: Descriptive statistics of electricity price 

The table displays the descriptive statistics of the non-stationary time series of the electricity day-ahead prices , 

including the number of observations, mean, median, minimum and maximum, standard deviation, sum of 

squared standard deviations, skewness, kurtosis, Jarque–Bera test result, and probability.   

  

 
  France Germany Italy Spain Switzerland UK 

Mean 39.65208 32.55969 49.4409 47.41506 41.61387 45.3588 

Median 37 32 49.34 48.575 37.09 44.5 

Maximum 99.25 47.13 69.85 72.07 90.98 87.45 

Minimum 20.5 20.28 31.39 23.21 22.22 29.4 

Std. Dev. 13.36716 5.538541 8.106359 9.607562 12.66387 9.127706 

Skewness 1.727116 0.332352 -0.00708 -0.48538 0.792411 1.289698 

Kurtosis 7.221904 3.208686 2.842052 3.216617 3.02332 6.844928 

Jarque–Bera 1534.923 25.03753 1.297219 51.03084 129.588 1105.779 

Probability 0 0.000004 0.522772 0 0 0 

Sum 49089.27 40308.9 61207.83 58699.85 51517.97 56154.19 

Sum Sq. Dev. 221028.4 37945.51 81287.06 114181.6 198382 103060.7 

Observations 1238 1238 1238 1238 1238 1238 

 

Preliminary ADF test results on the pricing and trade flow data reveal a unit root in the time 

series at I(1), or stationarity in first differences. In the next step, all the time series are 

differenced and tested again for a unit root. In this case, the ADF test results reject the test‘s 

null hypothesis of non-stationarity. 

 

The results from the CR test based on stationary data reveal that, even if the total cross-

border trade flow increases within the sample period (January 2015 to August 2018), the 

number of coincidental cross-border transactions decreases. A positive slope of the linear 

regression line on the test observations signals the increasing occurrence of price reactions to 

changes in trade flow, denoted by +1, and a negative slope is denoted by -1. The results of all 

the pairs are displayed in Table 2 and Figure 1C. This means that the electricity flow 

transiting from country A through country B to country C has decreased, while the single 

cross-border transaction volume between A and B or B and C has increased. France is the 

only electricity market in the sample whose sensitivity to trade flows increases. All the other 

markets exhibit a reduction in sensitivity. 
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Table 2: CR test of the flow on price impact 

This table shows the binary (+1 and -1) outcomes of the CR test on the reaction of prices (columns) to changes 

in electricity flow (rows). The frequency of the time series is daily. The sign (+/ -) depends on the slope of the 

linear regression line y = ax + b applied to the CR test results. A positive slope for the linear regression lin e on 

the CR test observations signals increasing numbers of price reactions to changes in trade flow, and a negative 

slope signals decreasing numbers of price reactions to changes in trade flow. 

 

    Dependent 

  Flow\Price UK FRANCE GERMANY SPAIN SWI ITA 

In
d

ep
en

d
en

t 

GERFR 1 1 -1 -1 1 -1 

FRUK -1 1 1 -1 1 -1 

FRSP -1 1 -1 1 1 -1 

FRITA -1 1 -1 -1 -1 -1 

GERSWI -1 -1 -1 -1 -1 -1 

SWIITA 1 1 1 -1 -1 1 

SWIFR 1 1 -1 -1 -1 1 

  Total score -1 5 -3 -5 -1 -3 

Figure 1C: CR test sensitivity to flow scores  

This figure displays the sums of all the sensitivity values to cross -border electricity flow (y-axis) per market (x-

axis), as in the total scores in Table 2. France stands out as the one market that increases its sensitivity to cross -

border electricity trade flows. 

 

Furthermore, the results from the SSP test based on the stationary dataset, which studies the 

evolution of the lagged CCF, suggest that the seven cross-border trade flows exhibit the 

strongest leading properties with the highest combined correlation coefficients in the Italian 

electricity market, followed by France and the UK. This result is displayed in Tables 3a 

(nominal values) and 3b (absolute values), as well as in Figure 2. The values for the 

combined cross-correlations are calculated with the help of the absolute values displayed in 

Table 3b. Absolute values are necessary, because some of the correlation coefficients are 

negative. 

 

The Pearson correlation does not involve dependent and independent variables, since both 

sides are treated equally. However, since the SSP test is applied in both directions (see the 

methodology in Section 4.4) and the focus of this paper is to examine the leading properties 

of electricity flow over the price of electricity, I record the coefficients only in cases where 

price is the dependent variable and lagging, and flow is the independent variable and leading. 

Instances of price leading flow are indicated by empty cells in Table 3a or are indicated by a 

zero in Table 3b. 

-5
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Even if the coefficients‘ strength is weak, the aim of this test is predominantly to establish the 

direction of the relationship and the lead–lag period. The results are later input into the 

proposed trading algorithm with equal weights of +1 and -1. 

Table 3: SSP test of the flow on price, daily 

The top panel of this table displays the average nominal values of the lagged CCF(k), which measures the price 

reaction to changes in cross-border electricity flow. The lower panel displays the absolute values from the test.   

 

   Dependent 

 

  Flow\Price UK France Germany Spain Switzerland Italy 

In
d

e
p

e
n

d
e
n

t 

GERFR -0.09 -0.07     -0.08   

FRUK -0.2 -0.15   -0.13   0.14 

FRSP -0.16 -0.17 -0.18 0.15   -0.14 

FRITA 0.1   0.11   0.12 -0.13 

GERSWI 0.14 0.08 0.13 0.17 0.15 0.15 

SWIITA         0.07 0.06 

SWIFR   -0.15 0.09 -0.12   0.13 

In
d

e
p

e
n

d
e
n

t 

GERFR 0.09 0.07 0 0 0.08 0 

FRUK 0.2 0.15 0 0.13 0 0.14 

FRSP 0.16 0.17 0.18 0.15 0 0.14 

FRITA 0.1 0 0.11 0 0.12 0.13 

GERSWI 0.14 0.08 0.13 0.17 0.15 0.15 

SWIITA 0 0 0 0 0.07 0.06 

SWIFR 0 0.15 0.09 0.12 0 0.13 

  Total score 0.69 0.62 0.51 0.57 0.42 0.75 

Figure 2: SSP test total scores  

This figure displays the sum, or combined score, of the absolute values of the lagged CCF(k) between the 

market price and cross-border electricity flows for each market, as presented with Table 3 under total score. 

 

 
 

A bivariate Granger causality test applied to the electricity price and cross-border flow data 

reveals no evidence of causality running from flow in the direction of price. The two 

exceptions are the two pairs with cross-border flows, namely, the France–UK and France–

Spain flows versus the Swiss electricity price. Both flows are found to Granger-cause 

changes in the Swiss power market, since the null is rejected within a 5% confidence interval. 

The results are summarized in Table 4a and, later, in Table 6. 
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Table 4a: Pairwise Granger causality test 

This table displays the outcomes of a pairwise bivariate Granger causality test between all variables with the 

three tested conditions, namely: flow against price, flow againstflow, and price against price, at the 5% level of 

statistical significance. Flow data between countries is indicated as ―FLOW_Country1Country2‖ where the 

country initials are used. Electricity price is indicated with the initials of the individual country. The frequency 

of the time series in the test is daily, with 1,237 data points. Only pairs with causality (p -value rejected at the 5% 

level of significance) that is taken into account by the trading algorithm are displayed in the table.   

 

Null hypothesis Prob. 

ITA does not Granger-cause FLOW_FRSP 0.0478 

FLOW_FRSP does not Granger-cause SWI 0.0356 

FRANCE does not Granger-cause FLOW_FRUK 0.0031 

FLOW_FRUK does not Granger-cause SWI 0.0078 

FRANCE does not Granger-cause FLOW_GERSWI 0.0359 

ITA does not Granger-cause FLOW_GERSWI 0.0388 

SPAIN does not Granger-cause FLOW_GERSWI 0.0283 

ITA does not Granger-cause FLOW_SWIFR 0.0325 

 

All original (non-stationary) time series are tested for cointegration by applying Johansen‘s 

test. The test specifications are such that no deterministic trend in data is selected, and the lag 

intervals are equal to one and two. Strong cointegration is identified, since the test finds eight 

CEs. The test results are summarized in Table 4b. 

 

Table 4b: Johansen cointegration test of the flow on price, daily 
This table shows the results from a Johansen unrestricted cointegration rank test on the non-stationary daily time 

series. The original sample comprises 1,238 data points, and 1,233 after adjustments. A linear deterministic 

trend is assumed, and the lag intervals in first differences are from one to four. The notation ―*‖ indicates CE. 

The notation Prob.** corresponds to statistical significance at the 5% level. 

 

No. of CE(s) Eigenvalue Statistic Critical value Prob.** 

None 0.094243 654.1686 NA NA 

At most 1 * 0.077896 532.1205 334.9837 0 

At most 2 * 0.070315 432.1273 285.1425 0 

At most 3 * 0.06005 342.2298 239.2354 0 

At most 4 * 0.055269 265.8718 197.3709 0 

At most 5 * 0.042617 195.7695 159.5297 0.0001 

At most 6 * 0.033542 142.0696 125.6154 0.0034 

At most 7 * 0.023689 100.0032 95.75366 0.0247 

At most 8 * 0.021153 70.44347 69.81889 0.0445 

At most 9 0.016123 44.08261 47.85613 0.1083 

At most 10 0.013035 24.04123 29.79707 0.1987 

At most 11 0.006096 7.86294 15.49471 0.4802 

At most 12 0.000263 0.32407 3.841466 0.5692 

 

Furthermore, I construct the error correction terms, also known as the cointegration of the 

estimated CEs, and I estimate the restricted VAR, or VECM, with the error correction term as 

the regressor. Since the data are stationary in first differences, the deterministic trend 

specification of the VECM involves no trend or intercept. Equal tothe number of CEs, the 
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rank of the cointegrating matrix is eight. No further restrictions on the VECM are imposed; 

therefore the model uses default normalization to identify all cointegrating relations. The lag 

structure of the VAR model is calculated according to the methodology in Section 4.4 and 

Lütkepohl (2005). The HQIC returns the lowest lag length of two. The results from the 

VECM are displayed in Tables 5a and 5b. 

 

Table 5a: VECM of cross-border electricity flow and the electricity market price 
This table displays the ordinary least squares (OLS) regression summary statistics for the VECM system as a 

whole. These statistics include the determinant of the residual covariance, log-likelihood, the associated 

information criteria (AIC, BIC), and the number of coefficients. The original sample comprises 1,238 data 

points, and the adjusted sample is 1,235 points. 

 

  Flows from … to … 

  FRITA FRSP FRUK GERFR GERSWI SWIFR SWIITA 

R-Squared 0.196641 0.165999 0.338329 0.205275 0.174467 0.246055 0.188841 

Adj. R-squared 0.173879 0.142369 0.319582 0.182758 0.151077 0.224693 0.165858 

Sum sq. resids. 1.72E+08 24348023 1.33E+08 2.72E+08 1.95E+08 53783637 5.29E+08 

S.E. equation 378.125 142.443 332.3085 475.8254 402.9666 211.7066 664.2483 

F-Statistic 8.639041 7.024911 18.04679 9.116377 7.459008 11.51847 8.216601 

Log-likelihood -9064.639 -7858.93 -8905.125 -9348.474 -9143.221 -8348.31 -9760.476 

AIC 14.73626 12.78369 14.47794 15.19591 14.86352 13.57621 15.86312 

BIC 14.88133 12.92876 14.623 15.34098 15.00858 13.72128 16.00819 

Mean dependent -0.232874 0.046802 -0.136842 2.082348 -2.055142 2.592567 -1.397328 

S.D. dependent 416.0193 153.8123 402.8595 526.3472 437.3557 240.435 727.2947 

 

 

Table 5b: VECM of cross-border electricity flow and the electricity market price 

This table shows the summary statistics for the VECM system as a whole. These statistics include the 

determinant of the residual covariance, log-likelihood, the associated information criteria (AIC, BIC), and the 

number of coefficients. The original sample comprises 1,238 data points, and the adjusted sample is 1,235 

points. 

  Electricity prices 

  France Germany Italy Spain Switzerland UK 

R-Squared 0.075136 0.03601 0.043141 0.054396 0.085558 0.112144 

Adj. R-squared 0.048931 0.008697 0.01603 0.027604 0.059649 0.086988 

Sum sq. resids. 2715.019 453.1658 1168.201 1539.67 2616.913 2060.522 

S.E. equation 1.504166 0.614523 0.986662 1.132722 1.47674 1.310382 

F-Statistic 2.867288 1.318419 1.591276 2.030301 3.302229 4.457973 

Log-likelihood -2238.811 -1133.303 -1718.052 -1888.546 -2216.085 -2068.48 

AIC 3.682285 1.891989 2.838951 3.115054 3.645481 3.406446 

BIC 3.827353 2.037057 2.984019 3.260122 3.790549 3.551514 

Mean dependent 0.016721 0.013401 0.011951 0.012057 -0.004939 0.008826 

S.D. dependent 1.542375 0.617213 0.994666 1.148687 1.522856 1.371387 

 

Diagnostics are run on the VECM and the results are illustrated in Figure 3, showing the 

inverse roots of the AR characteristic polynomial (Lütkepohl 2005). 
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Figure 3: Output comprising the inverse roots of the AR characteristic polynomial 

This figure shows the inverse roots of the AR characteristic polynomial resulting from the diagnostic test on the 

VECM. 

 
 

The estimated VECM is stable (stationary) if all the roots have modulus less than one and lie 

inside the unit circle. If the model is not stable, certain results, such as impulse response 

standard errors, will be spurious. When the VECM is estimated with cointegrating relations, 

the roots should be equal to unity, such as the observations within the unit circle. 

 

As discussed in the methodology in Section 4.4, the VECM is utilized for identifying and 

tracing shocks introduced to a system. This is done with the help of impulse responses (IRFs) 

and variance decomposition analysis by imposing restrictions on the model matrices.  

4.5.1. Trading model based on   
  

Following the methodology described in the previous section, I combine the results of all five 

tests displayed in Table 6 into a single matrix, presented in Table 7a, whose coefficients 

report both the direction of and conviction behind each trade. In the case of pairwise Granger 

and Wald causality tests, only pairs that reject the null are reported in their relevant matrices 

D and E. 
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Table 6: Consolidated test results 
This table summarizes the results for the five tests included in the model, namely, the CR, SSP, Granger, Wald, 

and VECM IRF tests. The outcome of each test is binary, that is, one or zero, where a value of one indicates a 

causal link detected from flow to price.  

 

      Dependent 

    Flow\Price UK France Germany Spain Switzerland Italy 

G
ra

n
g

e
r 

te
st

 

In
d

e
p

e
n

d
e
n

t 
GERFR             

FRUK         1   

FRSP         1   

FRITA             

GERSWI             

SWIITA             

SWIFR             

G
ra

n
g

e
r 

te
st

 

In
d

e
p

e
n

d
e
n

t 

GERFR 1 1     1   

FRUK 1 1   1   1 

FRSP 1 1 1 1   1 

FRITA 1   1   1 1 

GERSWI 1 1 1 1 1 1 

SWIITA         1 1 

SWIFR   1 1 1   1 

C
R

T
 t

e
st

 

In
d

e
p

e
n

d
e
n

t 

GERFR 1 1     1   

FRUK   1 1   1   

FRSP   1   1 1   

FRITA   1         

GERSWI             

SWIITA 1 1 1     1 

SWIFR 1 1       1 

V
E

C
M

 I
R

F
 t

e
st

 

In
d

e
p

e
n

d
e
n

t 

GERFR   1     1 1 

FRUK 1 1 1 1 1 1 

FRSP       1 1   

FRITA   1     1 1 

GERSWI 1 1 1 1 1 1 

SWIITA 1 1 1 1 1 1 

SWIFR 1 1 1 1 1 1 

V
E

C
M

 W
a
ld

 t
e
st

 

In
d

e
p

e
n

d
e
n

t 

GERFR             

FRUK           1 

FRSP         1   

FRITA             

GERSWI             

SWIITA             

SWIFR 1     1     
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Tables 7a and b: Sums of the coefficients from all five tests and the probability of an event 

The top panel summarizes the results of all five causality tests employed in the model and displayed in Table 6. 

These results combine the binary results of one and zero from the CR, SSP, Granger, Wald, and VECM IRF 

tests for each cross-border flow–electricity market pair. The total score is the sum of the combined results per 

market. The lower panel displays the probability of occurrence, calculated as the score obtained divided by th e 

maximum possible score of five. 

 

    Dependent 

 
Flow\Price UK France Germany Spain Switzerland Italy 

P
a
n

e
l 

a
 

In
d

e
p

e
n

d
e
n

t 

GERFR 2 3 0 0 3 1 

FRUK 2 3 2 2 3 3 

FRSP 1 2 1 3 4 1 

FRITA 1 2 1 0 2 2 

GERSWI 2 2 2 2 2 2 

SWIITA 2 2 2 1 2 3 

SWIFR 3 3 2 3 1 3 

  Total score 13 17 10 11 17 15 

P
a
n

e
l 

b
 

In
d

e
p

e
n

d
e
n

t 

GERFR 40% 60% 0% 0% 60% 20% 

FRUK 40% 60% 40% 40% 60% 60% 

FRSP 20% 40% 20% 60% 80% 20% 

FRITA 20% 40% 20% 0% 40% 40% 

GERSWI 40% 40% 40% 40% 40% 40% 

SWIITA 40% 40% 40% 20% 40% 60% 

SWIFR 60% 60% 40% 60% 20% 60% 

  Average 37% 49% 29% 31% 49% 43% 

Figure 4: Sums of the coefficients from all five tests and the probability of an event 

This figure summarizes the results from all five causality tests employed in the model and displayed in Table  7a. 

These results combine the binary results of one and zero from the CR, SSP, Granger, Wald, and VECM IRF 

tests for each cross-border flow–electricity market pair. The total score is the sum of the combined results per 

market. 
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Figure 5: Probabilities of occurrence 

This figure shows the three-dimensional distribution of the probability of occurrence as derived in Table 7b. The 

diagram demonstrates the link between flow, price, and the probability of occurrence. 

 

The results, as displayed in Table 7a&b and Figures 4 and 5, show the market trading system 

with the strongest chance of reacting to a change in trade flow. Arbitrarily, only probability 

coefficients higher than 50% are taken into account. The numbers in bold represent the 

inverse / negative relationships. This is an important point, since the trading algorithm 

requires adjustments if the direction of the relationship is to be taken into account. 

In this case, the Swiss and French markets are on top in terms of the probability of reaction, 

with average scores of 49%. Italy is third, with 43%. It is important to note that, on all three 

occasions when the French market reached a probability above 50%, the relationship with 

trade flow is actually negative; that is, as the trade flow increases, the price is more likely to 

decrease. Italy is on the other end of the spectrum, with two occasions when flow and price 

are strongly (>50% probability of reaction) and positively related. 

 

As already discussed, the strengths of the coefficients and the probabilities of occurrence in 

Table 7 demonstrate which trade flows are most likely to provide a trading signal. To 

complete the trading strategy, the system also requires an exit signal. The combined results 

from the VECM IRF and SSP tests, which can be found in Table 8, indicate that price 

reactions to changes in trade flow dissipate, on average, 5.83 days after the shock is 

introduced. This result is used to inform the trading strategy of closing any open position on 

day 5. 
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Table 8: Number of days in which flow leads price 

This table shows the number of days in which the cross -border electricity flow leads the electricity price. Empty 

cells indicate instances where the flow does not lead the price. The results are obtained from the VECM IRF and 

SSP tests. These are the two tests from the five included in the model that specify the duration of the lead–lag 

period.   

    Dependent 

  Flow\Price UK France Germany Spain Switzerland Italy 

In
d

e
p

e
n

d
e
n

t 

GERFR   3.5     8.5   

FRUK   6     7.5 8 

FRSP       6.5 3   

FRITA             

GERSWI             

SWIITA           6 

SWIFR 3.5 7   4   6.5 

 

 

The first results from the suggested trading system are displayed with Table 9. A total of 12 

flow–price relationships are selected on the basis of the scoring system described earlier in 

the chapter. The success ratio is calculated as the number of occasions the model‘s predicted 

direction of price changes over the total number of observations. As expected, the Swiss and 

Italian markets register the highest success ratios once again, both averaging above 71.8%. 

This means that the proposed model of trading in the electricity market using the trade flow 

to signal changes is correct 71.8% of the time. 

Table 9: Trading strategy success ratios  

This table presents the ratios between the number of occasions the model predicted the direction of the price 

movement and the total number of possible predictions. Cross -border electricity flows are shown across the 

columns, and the electricity markets are shown as the rows. 

  

    Dependent 

  Flow\Price UK France Germany Spain Switzerland Italy 

In
d

e
p

e
n

d
e
n

t 

GERFR   68.19%     73.67%   

FRUK   68.90%     73.55% 72.88% 

FRSP       70.97% 74.37%   

FRITA             

GERSWI             

SWIITA           74.01% 

SWIFR 72.48% 68.27%   70.11%   73.96% 

 

 

The result suggests a strong probability of gains if the signals generated by the proposed 

arbitrage model are heeded. The evolution of the trading record, which is constructed 

according to the approach described in the methodology in Section 4.4, is displayed in Figure 

6. Only pairs with a success ratio of 70% or above, as displayed in Table 9, are included in 

the model. The filter is arbitrary, but a high threshold of over 70% ensures that only pairs 
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with a statistically strong ratio are considered by the algorithm. The ROI is calculated by 

applying holding period of five trading days, as recommended by tests and models mentioned 

earlier.38 Figure 6 shows a cumulative return of 129.10% for the period. 

 

Figure 6: Evolution of cumulative returns  

This chart presents the evolution of accumulated returns based on a two-day and a five-day holding period. The 

return is net of transaction costs. 

 

 
 

The results of the trading model have been positive during the sample period, with the 

exception of the short-lived drawdowns in March 2015, December 2015, and October 2016. 

Tests on risk-adjusted returns based on different holding periods are performed. The results, 

calculated with the help of the commonly used Sharpe (1966) ratio for the risk-adjusted 

returns, are displayed in Tables 10a and 10b and Figure 7. 

Table 10a: ROI calculation variables 

This table displays the data for the ROI calculation and total FXeosure, namely, the number of contract days, 

which is the duration of the traded front month contract; the price movement of the contract; the number of 

hours per month of the contract; the number of megawatts traded, which is the size of the contract; and the 

result, which is equal to the product of the price movement,  number of hours per month of the contract, and the 

number of megawatts traded. 

 

  

Contract days Price move Hrs/month MW traded Result 

30 0.5 720 5 1,800 

 

 

 

 

 

    

                                                                 
38

 Other assumptions in the ROI calculation are as follows. The size of each trade is 5  MW, which is standard 

for the EU electricity market, and trades are executed on the month-ahead market, which FXilies 720 hours per 
month. Therefore, the result equals the product of the price change dP, the number of hours per month, and 
the number of megawatts per trade size (see also Table 11a).       
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Table 10b: Sharpe ratios of the proposed trading strategy 

This table shows the statistics of the trading strategy, based on different holding periods. The metrics listed are 

used in the calculation of the Sharpe ratio as described in the methodology in Section 4.4. The sample period is 

from 2 June 2015 to 25 June 2018. 

   

Holding period Cumulative return Annualized return St. dev. Risk-free return Sharpe ratio 

1 day 10.60% 2.20% 16.10% 1.00% 0.6 

 2 days 59.30% 12.10% 24.20% 1.00% 2.41 

3 days 61.20% 12.50% 30.60% 1.00% 1.97 

4 days 97.30% 19.80% 43.30% 1.00% 2.22 

5 days 129.10% 26.30% 59.50% 1.00% 2.15 

6 days 113.20% 23.10% 58.90% 1.00% 1.91 

Figure 7: Sharpe ratio results  

This figure displays the Sharpe ratios calculated based on different holding periods, as presented in Table 10b. 

The sample period runs from 2 June 2015 to 25 June 2018. The higher the Sharpe ratio, the better the risk–

reward trade-off will be for an investment. 

 
 

The results demonstrate strong performance for the proposed methodology in terms of 

annualized returns, since a holding period of five days delivers an annualized ROI of 

129.10%. However, tests for the risk-adjusted return using the Sharpe ratio reveal that the 

optimal holding period is two days, with an ROI of 59.27% and a Sharpe ratio of 2.41. 

4.5.2   
  – Test results 

The second hypothesis of this study,   
 , relates to the interaction between one trade flow and 

another trade flow. The results from the preliminary CR test reveal that, even if the amount of 

cross-border electricity volume has grown during the period, the number of positive flow 

reactions to changes in another flow is decreasing. A positive gradient of the linear regression 

line is assigned the value +1, and a negative slope is assigned a value of -1. The results are 

displayed in Table 11. 
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Table 11: CR test of flow on flow 

This table shows the binary outcomes (+1 and -1) of the CR test on the reaction of cross -border electricity flow 

(columns) to changes in another cross -border flow (rows). The frequency of the time series is daily. The sign 

depends on the slope of the linear regression line y = ax + b applied to the CR test results. A positive slope of 

the linear regression line for the CR test observations signals the rising occurrence of price reactions to changes 

in the trade flow, and a negative slope signals the decreasing occurrence o f price reactions to changes in trade 

flow. 

 

    Dependent flow 

    GERFR FRUK FRSP FRITA GERSWI SWIITA SWIFR 

In
d

e
p

e
n

d
e
n

t 
fl

o
w

 GERFR 0 1 -1 -1 1 -1 -1 

FRUK -1 0 -1 -1 -1 -1 1 

FRSP -1 -1 0 -1 -1 -1 -1 

FRITA -1 -1 -1 0 -1 -1 -1 

GERSWI 1 -1 -1 -1 0 -1 -1 

SWIITA -1 -1 -1 -1 -1 0 1 

SWIFR -1 1 -1 -1 -1 1 0 

  Total score -4 -2 -6 -6 -4 -4 -2 

Figure 8: CR test total scores 

This figure displays the sum of all the values of sensitivity to cross -border electricity flow per market, as 

presented in Table 11 as the total score. All the pairs in the study appear to have diminished sensitivity to other 

cross-border electricity trade flows (negative sign). 

 

The results of the SSP test that studies the lead–lag dynamics between any two variables are 

shown in Table 14. This test evidently shows that some of the F–F pairs do not have 

sufficiently strong lead correlation coefficients. Some pairs, such as Germany–France and 

France–UK, do not have any significant relationship at all. 

Switzerland–France exhibits the strongest evidence of a flow that is influenced by another 

flow. For example, compared to all the other flows, the flow from Germany to France appears 

to have an abnormally strong impact on that of Switzerland to France. The case of the flow 

from France to Italy flow is similar, in that it is strongly affected by movements in the flow 

from Switzerland to Italy. 
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Table 12a: SSP test of flow on flow 

This table displays the average nominal values of the lagged CCF(k), which measure the reactions of one cross-

border trade flow to changes in another cross -border electricity flow. 

 

    Dependent flow 

    GERFR FRUK FRSP FRITA GERSWI SWIITA SWIFR 

In
d

e
p

e
n

d
e
n

t 
fl

o
w

 GERFR 0   0.12 0.14   0.1 0.61 

FRUK 0.13 0       0.18 0.17 

FRSP   0.12 0         

FRITA 0.15 0.15 0.16 0 0.13 0.65 0.24 

GERSWI 0.14 0.19 0.15   0     

SWIITA     0.21 0.65 0.17 0 0.15 

SWIFR       0.16 0.17   0 

Figure 9: SSP test of flow on flow 

This figure displays the sums, or combined scores, of the absolute values of the lagged CCF(k) between one 

cross-border electricity flow and another. 

 

While some of the interactions involve pairs of countries with a common border, others do 

not. Following the example above, trade flow between Germany and France affects the flow 

between Switzerland and France. This is to be expected if one considers the findings of 

Cartea, Flora, Slavov, and Vargiolu (2019), as well as the level of integration of the electrical 

grids and minimal transportation friction costs between these three countries. The strongest 

coefficients belong to pairs of trade flows with one country as a common denominator, for 

example, Germany–France and France–Switzerland or France–Italy and Switzerland–Italy. 

What is more difficult to explain is the lead–lag relationship between countries without a 

common border. For example, the test results show that a change in the flow between 

Switzerland and Italy has a positive and leading impact on the flow between France and 

Spain. Another example is the impact of the flow between Germany and Switzerland on 

flows between France and the UK. 

 

The bivariate Granger causality test results in Table 12 reveal strong causality from the 

Germany–Switzerland cross-border flow towards the France–Spain flow. Another pair that 

rejects the null hypothesis    of non-causality is the Switzerland–France flow in the direction 

of France–Spain. The third pair is the France–UK flow towards Germany–Switzerland. 
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Table 12b: Pairwise Granger causality test 

This table displays the outcomes of a pairwise bivariate Granger causality test between cross -border electricity 

flows at the 5% statistical significance with two lags.  

 

Null hypothesis Prob. 

FLOW_GERSWI does not Granger-cause FLOW_FRSP 0.0194 

FLOW_SWIFR does not Granger-cause FLOW_FRSP 5.00E-15 

FLOW_FRUK does not Granger-cause FLOW_GERSWI 0.0491 

 

The data are also tested for cointegration with the results of a Johansen cointegration test 

indicating the seven CEs (see Table 12a). 

Table 12c: Johansen cointegration test 

This table shows the results of a Johansen cointegration test for the number of cointegrated equations, which 

indicates the cointegration matrix rank on the non-stationary monthly time series of seven cross -border 

electricity flows. The original sample comprises 41 data points, and 39 after adjustments. A linear deterministic 

trend is assumed, and the lag intervals in first differences are from one to one. The notation Prob.** corresponds 

to a statistical significance level of 5%.  

 

 

Hypothesized no. of CE(s) 

Eigenvalue Trace statistic Critical value 0.05 Prob.** 

None * 0.917796 262.0134 125.6154 0 

At most 1 * 0.777717 164.5699 95.75366 0 

At most 2 * 0.649141 105.9216 69.81889 0 

At most 3 * 0.467079 65.07413 47.85613 0.0006 

At most 4 * 0.454773 40.52825 29.79707 0.002 

At most 5 * 0.26506 16.87272 15.49471 0.0308 

At most 6 * 0.11721 4.862044 3.841466 0.0274 

 

 

A VECM is employed also in this case, with the results in Table 12b. The relevant IRFs and 

variance decomposition are calculated and displayed in Figures 10a and 10b. 



 

130| P a g e  
 

Table 12d: VECM output 

This table displays the summary statistics for the VEC Model. These statistics include the determinant of the residual covariance, the log -likelihood, the associated 

information criteria (AIC, SIC), and the number of coefficients.  

  Flows from … to …     

  FRITA FRSP FRUK GERFR GERSWI SWIFR SWIITA Summary statistics of the VECM Value 

R-Squared 0.627381 0.995842 0.416497 0.580176 0.787939 0.826835 0.448 Determinant resid. covariance (df adj.) 6.78E+31 

Adj. R-squared 0.325736 0.992477 -0.055862 0.240319 0.616271 0.686654 0.001142 Determinant resid. covariance 8.90E+29 

Sum sq. resids. 2.42E+06 9993.006 1.86E+06 2.73E+06 3.61E+06 639472.6 9.67E+06 Log-likelihood -1732.102 

S.E. equation 339.7629 21.81416 297.2618 360.5531 414.4269 174.5024 678.7035 AIC 96.3642 

F-Statistic 2.079868 295.8754 0.881739 1.707116 4.589898 5.898345 1.002556 BIC 102.6345 

Log-likelihood -270.569 -163.4871 -265.3573 -272.8853 -278.3163 -244.5829 -297.5545 Number of coefficients  147 

AIC 14.79841 9.307033 14.53114 14.91719 15.19571 13.46579 16.18228     

BIC 15.56621 10.07483 15.29894 15.68499 15.96351 14.23359 16.95008     

Mean dependent -8.82359 0.950769 -0.37 45.67769 -22.53179 57.45538 -30.49667     

S.D. dependent 413.7719 251.4955 289.2914 413.6695 669.0149 311.7379 679.0913     
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After the introduction of a positive shock to all 49 pairs (7 flows × 7 reactions), the French 

electricity market appears to have the strongest impact on the other cross-border flows. This 

finding is backed by Eurostat39 data, which identifies France as a leading exporter in the EU. 

What is not clear from the official data – and which this study offers insight into – is how the 

French market influences not only neighbouring markets, but also flows beyond the country‘s 

immediate borders. The variance decomposition clearly indicates that France is on one side of 

the flows in six of all seven groups, as shown in Figure 8b. Most of the identified impact 

pairs (six in total) include a neighbouring market as the most likely receiver of the shock. For 

example, a shock to the France–UK flow has a positive impact on the flow between France 

and Italy. Interestingly, the impact grows with the time. Another example is the reaction of 

the flow between Switzerland–France to a shock to the flow between France–Spain, which is 

also identified as a causal pair by the Granger test. 

 

There is one occasion when shock to the flow between France and the UK has an impact on a 

market that does not share a common border, namely, the Germany–Switzerland flow. This 

observation is also supported by the outcome of the Granger causality test discussed above. 

This finding represents an important piece of evidence that suggests that the flow of 

electricity between one pair of countries can potentially affect the flow between another pair 

of unrelated countries, that is, without a common border. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                 
39

 Latest Eurostat data release on EU electricity generation, September 2018, ava ilable at 
https://ec.europa.eu/eurostat/web/energy/data/database. 

https://ec.europa.eu/eurostat/web/energy/data/database
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Figures 10a: IRF plots 

This figureconsists of VECM IRF plots with projected accumulated responses based on a Cholesky one standard 

deviation innovation on the sample of cross-border electricity flows. The x-axis is time, and the coefficient on 

the y-axis is the IRF value of the reaction to a positive introduced shock of one standard deviation. 
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Figures 10b: Variance decomposition plots  

This figure shows the VECM variance decomposition plots describing the evolution of the balance between 

each model variable, as it is expected to react, on Cholesky factors. The x-axis is time and the coefficient on the 

y-axis displays the decomposed balance between the different model variables. 
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4.5.3.   
  – Test results 

The analysis of the third hypothesis,   
 , involves the familiar CR, SSP, and Granger 

causality tests on the relationship between the gravity of trade and cross-border electricity 

trade flows. An analysis with a VAR model/VECM with a subsequent IRF and variance 

decomposition is performed. The time series are monthly, with 41 data points. This is 

problematic for a multivariate regression analysis, since the model‘s degree of freedom is 

then too low. The solution would be to either increase T or decrease the number of variables. 

Since I am not able to increase T, the only option is to decrease the number of variables and 

run the VAR analysis on 15 gravity pairs and seven cross-border trade flows, not all at once, 

but groups. Some variability and important information on the interactions between all 22 

variables can be lost. Therefore, the conclusions drawn from this section could be weak. 
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Nevertheless, I include this sub-hypothesis in the paper, because it provides the framework 

for future research on the trade gravity and electricity trading. 

Table 13: CR test results  

This table displays the results of the CR test on the coefficient of the gravity of trade (rows) versus cross -border 

electricity flow (columns). The time series frequency in the test is month ly. Only pairs that display a response 

are included and are denoted by a value of one. Values in bold indicate a negative correlation. 

 
    Dependent: Flow 

    GERFR SWIFR FRUK GERSWI FRSP 

In
d

e
p

e
n

d
e
n

t:
 

G
ra

v
it

y
  

FRSWI           

SPITA     1 1   

GERSWI   1       

GERFR   1     1 

GERSP           

UKSP           

FRSP     1     

 

The CR test results displayed in Table 13 reveal that only 6% of the 105 flow pairs in the 

study display coincidental reactions. In addition, 33% of pairs with such properties do not 

share a common border. This is the first, albeit inconclusive result in support of the gravity 

theory of trade. 

 

The next test is the SSP test, whose results can be found in Table 14. The results are very 

similar the results of the CR test, with 6% of the trade flow showing some degree of causality 

for gravity pairs. Only two pairs without a common border are detected, and they are 

indicated in bold: the coefficient of the gravity of trade of Spain–Italy versus the France–UK 

trade flow and the coefficient of gravity of trade of Germany–Spain versus the France–Spain 

trade flow. 

 

Table 14: SSP test results  

This table shows the binary (one or zero) outcomes of the lagged CCF(k) that measures the reactions of 

electricity cross-border flows to changes in the coefficient of the gravity of trade. If such a causal process is 

detected, the ratio of gravity to flow is assigned a value of one. Coefficients in bold indicate a negative 

correlation. Only pairs that display a causal relationship are shown. The time series utilized in the test have 

monthly frequency. 

    Dependent: Flow 

    GERFR SWIFR FRUK GERSWI FRSP 

In
d

e
p

e
n

d
e
n

t:
 

G
ra

v
it

y
  

FRSWI   1       

SPITA     1     

GERSWI   1       

GERFR         1 

GERSP         1 

UKSP     1     

FRSP     1     
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The next test is a pairwise bivariate Granger causality test and the complete results are shown 

in Tables 15a and 15b. The test produces higher numbers of causal relationships than are 

detected by the SSP test above. There are 13 pairs, or 12.4% of the total, with p-values under 

0.05, which is a sufficient threshold to reject the null hypothesis. Regardless, the share of 

pairs with no common border remains stable, at 31%. 

Table 15a Pairwise Granger causality test results  

This table displays the outcome of a pairwise bivariate Granger causality test between the coefficient of the 

gravity of trade and the flow time series with a 5% level of statistical significance and two lags.  

 

Null hypothesis Prob. 

 FLOW_FRSP does not Granger-cause G_FRITA 0.0499 

 G_FRSWI does not Granger-cause FLOW_FRSP 0.0191 

 FLOW_FRSP does not Granger-cause G_FRSWI 0.0019 

 G_GERFR does not Granger-cause FLOW_FRSP 0.0002 

 FLOW_FRSP does not Granger-cause G_GERFR 0.0471 

 G_GERSWI does not Granger-cause FLOW_FRSP 0.0101 

 FLOW_FRSP does not Granger-cause G_GERSWI 0.0209 

 FLOW_FRSP does not Granger-cause G_SWIITA 0.039 

 G__UKSP does not Granger-cause FLOW_FRUK 0.0257 

 G_SPITA does not Granger-cause FLOW_FRUK 0.0048 

 G_FRSWI does not Granger-cause FLOW_GERFR 0.0411 

 FLOW_GERFR does not Granger-cause G_FRUK 0.0043 

 G_GERFR does not Granger-cause FLOW_GERFR 0.0292 

 FLOW_GERFR does not Granger-cause G_GERUK 0.0276 

 G_SPITA does not Granger-cause FLOW_GERSWI 0.0232 

 G_FRSWI does not Granger-cause FLOW_SWIFR 0.0448 

 G_GERFR does not Granger-cause FLOW_SWIFR 0.0031 

 G_GERSWI does not Granger-cause FLOW_SWIFR 0.0407 

Table 15b: Pairwise bivariate Granger causality test results  

This table displays the outcome of a pairwise bivariate Granger causality test. The test outcome is binary, that is, 

one or zero, where a value of one indicates a causal link is detected (   rejected at the 5% level of statistical 

significance) from gravity to flow. The coefficients in bold indicate possible causality, but a negative correlation 

between the variables.  

 
    Dependent: Flow 

    GERFR SWIFR FRUK GERSWI FRSP 

In
d

e
p

e
n

d
e
n

t:
 

G
ra

v
it

y
  

FRSWI 1 1       

SPITA     1 1   

GERSWI 1 1     1 

GERFR 1 1     1 

GERSP         1 

UKSP     1     

FRSP     1     

 

The data are tested for cointegration, and the results are displayed in Table 16. The test 

returns evidence of cointegration, with eight cointegrating equations. 
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Table 16: Johansen cointegration rank test results  

This table shows the results from an unrestricted Johansen cointegration rank test on the non-stationary monthly 

time series of seven cross-border electricity flows and one gravity coefficient (UK–Spain). The original sample 

comprises 41 data points, with 39 after adjustments. A linear deterministic trend is assumed and the lag intervals 

in first differences are from one to one. The notation Prob.** corresponds to a statistical significance level of 

5%. 

     Hypothesized no. of CE(s) Eigenvalue Trace statistic Critical value 0.05 Prob.** 

None *  0.933784  324.5242  159.5297  0.0000 

At most 1 *  0.820898  218.6456  125.6154  0.0000 

At most 2 *  0.672282  151.5735  95.75366  0.0000 

At most 3 *  0.646409  108.0649  69.81889  0.0000 

At most 4 *  0.462800  67.52003  47.85613  0.0003 

At most 5 *  0.446298  43.28606  29.79707  0.0008 

At most 6 *  0.317459  20.23206  15.49471  0.0089 

At most 7 *  0.127888  5.336673  3.841466  0.0209 

 

The application of a restricted VAR in the face of a VECM is therefore appropriate. Due to a 

small T value, I am forced to decrease the number of variables in the model. Therefore, the 

analysis is performed in clusters of one gravity pair versus seven flow pairs. I begin with the 

gravity of UK–Spain versus all seven flows. The VECM output is displayed in Table 17a, the 

IRF is shown in Figure 11a, and the variance decomposition plots are shown in Figure 11b. 

The results reveal no significant impact on any of the flows from a shock to the gravity of 

UK–Spain. 
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Table 17a:  VECM output 

The table displays the summary statistics for the VECM system as a whole. These statistics include the determinant of the res idual covariance, log-likelihood, associated 

information criteria (AIC, SIC), and the number of coefficients.. 

 

  Flows from … to …       

  FRITA FRSP FRUK GERFR GERSWI SWIFR SWIITA GRAVITY_FRITA Summary statistics of the VECM Value 

R-Squared 0.196641 0.165999 0.338329 0.205275 0.174467 0.246055 0.188841 0.075136 
Determinant resid. covariance (df 

adj.) 

2.24E+3

5 

Adj. R-

squared 
0.173879 0.142369 0.319582 0.182758 0.151077 0.224693 0.165858 0.048931 Determinant resid. covariance 

1.07E+3

3 

Sum sq. 

resids. 

1.72E+0

8 

2434802

3 

1.33E+0

8 

2.72E+0

8 

1.95E+0

8 

5378363

7 

5.29E+0

8 
2715.019 Log-likelihood 

-

1925.744 

S.E. equation 378.125 142.443 332.3085 475.8254 402.9666 211.7066 664.2483 1.504166 AIC 107.3715 

F-Statistic 8.639041 7.024911 18.04679 9.116377 7.459008 11.51847 8.216601 2.867288 BIC 114.5376 

Log-

likelihood 

-

9064.639 
-7858.93 

-

8905.125 

-

9348.474 

-

9143.221 
-8348.31 

-

9760.476 
-2238.811 Number of coefficients 168 

AIC 14.73626 12.78369 14.47794 15.19591 14.86352 13.57621 15.86312 3.682285     

BIC 14.88133 12.92876 14.623 15.34098 15.00858 13.72128 16.00819 3.827353     

Mean 

dependent 

-

0.232874 
0.046802 

-

0.136842 
2.082348 

-

2.055142 
2.592567 

-

1.397328 
0.016721 

    

S.D. 

dependent 
416.0193 153.8123 402.8595 526.3472 437.3557 240.435 727.2947 1.542375 
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Figure 11a: VECM IRF plots 

This figure consists of the VECM IRF plots the coefficient of the trade gravity of UK–Spain versus cross-border 

trade flow pairs, with projected accumulated responses based on a Cholesky one standard deviation innovation. 

The data frequency is monthly, and there are 41 data points in the sample. 
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Figure 11b: VECM variance decomposition analysis  

This figure shows VECM variance decomposition plots of thegravity coefficent of the UK–Spain pair against all 

seven cross-border electricity trade flows, describing the evolution of the balance between each model variable 

as it is expected to react on Cholesky factors. The frequency of the time series is monthly. 
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The identical analysis is performed on the other 14 gravity pairs, and the results are 

summarized in Table 17b, where only variance decomposition coefficients of over 10% of the 

total are taken into account and denoted by a value of one. 
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Table 17b: Summary of the VECM IRF results  

This table summarize all 105 (15 gravity × 7 trade flow) variables tested within the VECM IRF framework. 

Each plot represents projected accumulated responses based on a Cholesky one standard deviation innov ation. 

The recorded outcome after applying a positive one standard deviation shock is binary, that is, one or zero, 

where a value of ―1‖ indicates a causal link of flow reacting to a shock to gravity.  

 

    Dependent: Flow 

    GERFR SWIFR FRUK GERSWI FRSP SWIITA FRITA 

In
d

e
p

e
n

d
e
n

t:
 

G
ra

v
it

y
  

FRSWI         1 1   

SPITA     1   1     

GERSWI         1 1   

GERFR               

GERSP               

UKSP               

FRSP               

UKITA               

UKSWI 1 1     1     

FRITA               

FRUK 1             

GERITA     1         

GERUK               

SPSWI       1 1 1   

SWIITA   1     1 1 1 

 

 

It is evident from the results that the gravity of trade has a significant impact on 17% of all 

105 pairs. The VECM indicates that, of the 18 pairs with a variance decomposition 

coefficient above 10%, only six pairs (or 5.7%) do not have a common border, and they  are 

gravity (Spain–Italy) versus flow (France–UK), gravity (Germany–Switzerland) versus 

flow(France–Spain), gravity(UK–Switzerland) versus flow (Germany–France) and flow 

(France–Spain), gravity (Germany–Italy) versus flow (France–UK), and gravity 

(Switzerland–Italy) versus flow (France–Spain). These results from the electricity market in 

Europe appear to support Tinbergen‘s gravity model of trade. 
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4.6. Conclusions 

4.6.1.   
  – The gravity theory of trade does not apply to the European electricity 

market 

 

Under the first hypothesis, I apply the gravity theory of trade to the electricity market in 

Europe. The impact of the gravity of trade on electricity prices is detected in 18 gravity–

electricity flow pairs, of which only six do not have a common border. This represents 5.7% 

of all 105 pairs tested with   
 . These results make it plausible to reject the hypothesis   

  of 

non-applicability, that is, the gravity equation of trade also holds for the electricity market. In 

other words, distance does matter when it comes to electricity cross-border trading. This 

conclusion is reached independent of any consideration based on the cost of transportation of 

electricity in the face of transmission losses. Apart from the academic value of testing for the 

first time the gravity theory of international trade on the European electricity market,   
  

paves the way for future research into how the macroeconomic data of one country are priced 

by the electricity market in another country within the environment of an energy union. Any 

mispricing is likely to attract the attention of regulators and market participants alike. 

4.6.2.   
  – The cross-border flow between any pair of adjacent countries does not have 

any impact on the cross-border flow of other pairs of countries 

The second null hypothesis is rejected on the grounds that analysis of the cross-border flow 

of one pair of countries versus another cross-border flow reveals evidence of consistent 

interactions between the Switzerland–France and Germany–France electricity cross-border 

flows. The results also suggest positive feedback between the flows of Switzerland–Italy and 

France–Italy. Furthermore, the number of instances that one flow impacts another flow shows 

signs of decreasing. While the strongest impact of a flow on another flow is documented for a 

number of pairs of adjacent countries, such as Germany–France versus France–Switzerland 

and France–Italy versus Switzerland–Italy, evidence of an impact between two flows with no 

common border is also detected. The  France–Spain flow appears to be the most likely to be 

affected by other flows, such as the Switzerland–Italy and Germany–Switzerland flows. 

Overall, the French power market is shown to have the strongest cross-border impact on other 

markets, providing insight into the price formation mechanism affecting the European power 

market at its core. 
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4.6.3.   
   – The electricity price in any two adjacent countries is not a function of the 

cross-border electricity trade flow 

The results from examining the third hypothesis suggest that, with the exception of the 

French market, the reaction of price to flow in all the markets in this study has become less 

pronounced over time. The third null hypothesis is rejected on the grounds of numerous 

findings that the price of electricity is influenced and lags behind cross-border electricity 

flow. The Italian, Swiss, and French electricity prices appear to be the most responsive to 

electricity flow changes. The outcome of the cross-border trading model advanced in this 

study under   
  is unambiguous. The proposed algorithm, which is guided exclusively by 

changes in cross-border electricity flows, has a 71.8% success rate, which reveals 

inefficiencies in the system. This rate equates to an accrued ROI (with a five- day holding 

period and a Sharpe ratio of 2.15) of 129.10% that is net of transaction costs for the test 

period from February 2015 to June 2018. A lower nominal return of 59.3% with a higher 

Sharpe ratio of 2.41 can also be considered. 

 

With all three null hypotheses of the study rejected, important implications for academics, 

professionals, and regulators can be drawn. Academics are likely to benefit from the 

preliminary conclusions of the direct application of the gravity theory of trade, which begets 

further and more detailed investigation by employing a bigger data set. The results of the 

various econometric tests on the links of flows with other flows, and the links of flows with 

electricity prices are also significant and are likely to draw further academic research 

attention to the subject. Market participants can benefit from the proposed electricity trading 

model. The energy market integration process in the EU is far from over. This makes the 

results from the econometric flow on flow tests and models very topical. The outcomes and 

sensitivities identified are likely to attract the interest of regulators involved in the design of 

the European energy market. 

 

Although the results from the arbitrage trading model under the main hypothesis of this paper 

are a formidable argument in favour of the proposed methodology, questions about market 

access can be raised. The intensity of the proposed trading activity is such that it favours 

incumbent market participants, that is, companies with an established infrastructure on the 

physical electricity market and the ability to trade in multiple markets at the same time. 

Missing trades from either the timing or geographical flow perspective will result in 

significant deviation from the model results. Another weakness of the model is the 
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insufficient amount of data for the gravity of trade sub-hypothesis. All the results from the 

multivariate regression analysis need to be revisited, with a longer time series in the model. 

 

Further research is needed to gain an even more detailed understanding of the EU-wide 

electricity market. Sizeable markets have been omitted from this study, which, if included, 

could alter some of the outcomes discussed. The issue here would be the length of the 

available pricing and trade flow time series. The number of degrees of freedom of the 

multivariate regression model drops too low as the number of variables n is increased. 

Therefore, significantly longer time series are required to study the rest of the EU power 

market. 

 

The suggested trading model based on cross-border trade flow signals can benefit from 

further investigation into the ROI analysis. This is because a relatively high frequency of 

recommended transactions is likely to deliver a strong ROI only if the transaction costs are 

carefully considered. 

 

Another topic worth investigating further is the gravity–flow CR test, which is currently 

based on the binary conditions +1 and -1, indicating the reaction of flow to changes in the 

gravity of trade. This model is worth testing with the actual coefficient of the intercept. It is 

plausible to assume that this test will reveal more information about the changing dynamics 

through the steepness of the regression line, which, in turn, indicates the higher or lower 

probability of the occurrence of the event. 

 

Another potential theme for further research could include tests on the gravity–price and 

flow–price relationships, not only with an outright, that is, flat price, but also with price 

spreads. Spreads tend to behave differently from a flat price, since they are influenced by 

both statistical arbitrage trading flows and the diverging fundamental views in the two 

markets that constitute the spread. This scenario has the potential of delivering different end 

results for the proposed trading model. 
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Appendix of Chapter 4 

Table A1: Empirical studies of the price–volume relationship 

This table summarizes the first recorded empirical studies from which inferences can be drawn about the 

relationship between the market price and the trading volume. The information provided includes the authors, 

the year the study was published, a description of the sample data and period, the time interval, and the 

conclusion. Source: Karpoff (1987).  

 

Author 
Year of 

publication 
Sample data Sample period 

Differencing 

interval 

Support positive 

correlation? 

Granger and 

Morgenstern 
1963 

Stock market 

aggregates, 2 

common stocks 

1939–1961 Weekly No 

Godfrey, 

Granger, and 

Morgenstein 

1964 

Stock market 

aggregates, 3 

common stocks 

1959–1962 
Weekly, 

daily 
No 

Ying 1966 
Stock market 

aggregates 
1957–1962 Daily Yes 

Epps 1975 20 NYSE bonds 1971 Transactions Yes 

Morgan 1976 17 common stocks 1962–1965 4 days Yes 

Morgan 1976 44 common stocks 1926–1968 Monthly Yes 

Epps 1977 20 common stocks 1971 Transactions Yes 

Hanna 1978 20 NYSE bonds 1971 Transactions Yes 

Rogalski 1978 

10 common stocks 

and 10 associated 

warrants 

1968–1973 Monthly Yes 

James and 

Edmister 
1983 

500 common 

stocks 

1975, 1977–

1979 
Daily No 

Comiskey, 

Walking, and 

Weeks 

1984 
211 common 

stocks 
1976–1979 Daily Yes 

Harns 1984 50 common stocks 1981–1983 Daily Yes 

Smirlock and 

Starks 
1985 

131 common 

stocks 
1981 Transactions Yes 

Wood, McInish, 

and Ord 
1985 

946 common 

stocks 
1971–1972 Minutes No 

Harns 1986 
479 common 

stocks 
1976–1977 Daily Yes 

Jain and Joh 1986 
Stock market 

aggregates 
1979–1983 Hourly Yes 

Richardson, 

Sefcik, and 

Thompson 

1987 
106 common 

stocks 
1973–1982 Weekly Yes 
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5. The importance of currency in the process of commodity 

market price formation 

 

5.1. Introduction 
 

In this paper, I examine the predictability of key energy, metal, grain, and shipping 

commodity markets by the foreign exchange (FX) rates of the major exporters and importers 

of these commodities. With the US dollar (USD) at the centre of the global commodity 

trading in terms of commodity pricing and credit (Boz, Gopinath, and Plagborg- Møller 

2017), the FX markets have the potential to accumulate unique information about the 

incentives of producers to supply the market with a commodity and of consumers to purchase 

the required amount of material on the international market. The FX markets are also 

significantly bigger than the commodity markets in terms of transactional value, which is a 

prerequisite for more efficient price discovery (for equity markets, see Chung and Hrazdel 

(2010); for commodity markets, see Belke, Bordon, and Voltz (2013)).40 In addition, they can 

gather and channel forward-looking information (e.g. Van Foreest and De Vries 2003). It is 

this combination of properties that makes the currency markets a suitable candidate for 

predicting commodity price movements across different time frames. 

 

Although there are studies on the interaction between FX and commodity markets, they have 

at least six limitations. First, only the currencies of Exporters are used in the relevant 

analysis. The possibility of utilizing the currencies of Importers is only briefly mentioned by 

Chen, Rossi, and Rogoff (2010), henceforth CRR (2010). The idea remains outside the scope 

of their discussion and, to the best of my knowledge, no other paper investigates the topic 

further. Many trade flows in the global supply chain are supply pull – that is, production is 

based on actual demand (e.g. Christopher 2011) – which means that important drivers of 

trade flows are not captured if only the currencies of commodity exporters are used in the 

analysis. According to international trade theory reasoning, the value of the exporters‘ 

currencies should be partly influenced by the value of sales generated on the international 

market, which captures directly the amount of commodity supplied (e.g. Chen and Rogoff 

2003). Demand, on the other hand, is best captured by measuring the purchasing power of the 

                                                                 
40

 According to the Bank for International Settlements, the sizes of the global currency and commodity markets 
in 2018 were 90.66 tril l ion USD and 1.90 tril l ion USD, respectively.   
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buyer (Devereux, Shi, and Xu 2007). An indirect demand component is included in the value 

of the currency, if one assumes that the supply chain for the commodity in question is 

demand pull, that is, a supply chain that is highly responsive to changes in demand. 

 

Second, not only are other studies – for example, CRR (2010), Bork, Kaltwasser, and Sercu 

(2014; henceforth BKS), Ferraro, Rogoff, and Rossi (2015), henceforth FRR (2015), and 

Zhang, Dufour, and Galbraith (2014) – based just on exporter currencies, but also the samples 

of FX pairs selected are limited to six pairs of local currency against the USD, involving the 

Australian dollar (AUD), the Canadian dollar (CAD), the Chilean peso (CLP), the South 

African rand (ZAR), the New Zealand dollar (NZD), and the Norwegian krone (NOK). The 

increasing complexity and variety of trade flows (Krugman 1995) and the world of global 

commodity trading dictate the need for a significantly larger sample of currency pairs that can 

potentially capture more information about the forces driving these flows. 

 

Third, the idea of combining currency pairs of importers and exporters of commodities and 

thus extracting information from their joint relationship has not been considered in the 

literature. Naturally, the currencies of exporters of commodities represent supply-side 

pressure to the market, since a stronger domestic currency is likely to limit incentives for 

producers to export. The opposite situation is also true, namely that weaker domestic 

currency incentivises the producers to export. Currencies of importers, on the other hand, 

represent the demand side through the purchasing power channel. Combining the two signals 

requires taking into account valuable information on the pressure from both the supply and 

demand (S&D) channels. The two signals combined represent a synthetic S&D balance based 

exclusively on the currencies of the main importers and exporters of the commodity in 

question. This balance is achieved by proposing a model, henceforth called the FX Impact 

Model (FXIM). Such explicitly designed importer and exporter trade-weighted currency 

indices that are specific to the commodity, direction, and size of the trade flow in question 

offer both theoretical and methodological contributions. The advantage of the proposed 

methodology lies in creating a significantly more relevant representation of the specific 

commodity market than the basket of only six currency pairs widely used in the literature. 

 

Fourth, the academic literature employs relatively low-frequency data, such as monthly 

(Prokopczuk, Tharann, and Simen 2021), quarterly (Zhang, Dufour, and Galbraith 2014), and 

annual data (Gargano and Timmermann 2014). The use of higher-frequency data offers a 
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different perspective. Although low-frequency data might be the norm in macroeconomic 

research, long-term investing, and policy decision making, where slower-moving and often 

more reliable data are used, trading and risk management require a higher data frequency, due 

to the speed and numbers of decisions made within limited amounts of time. Lower-

frequency macroeconomic data are typically released with a delay of 10 to 30 days after the 

period described by the data (monthly, quarterly, or annual). The ability to remove this lag is 

invaluable from both trading and risk management perspectives. The solution is to work with 

higher-frequency (daily, weekly) data that allows for the modelling of processes developing 

during the period described by the data, and not afterward. The application of weekly time 

series is a significant departure from the lower data frequency used in research and comprises 

an important methodological contribution. 

 

Fifth, the direction of causality between commodity prices and currency pairs stated in the 

literature is a point of contention. Chen (2004) and Zhang, Dufour, and Galbraith (2014) 

report evidence of stronger causality from commodity prices to the FX market. BKS (2014) 

argue in favour of a contemporaneous relationship between currency and price and find no 

evidence of predictive power of currency over price. The results in the current study, 

however, support the view that the FX market possesses predictive power over price (P), 

which is an important empirical contribution. Quantifying the direction in which causality 

flows between commodity prices and currency values is an important first step when studying 

predictability. Whether the aim is to construct a short-term trading model or inform policy 

makers about future changes in commodity prices and exchange rates, a causal link between 

the two variables needs to be established. This task is not trivial, since certain assumptions 

about the market properties in terms of efficiency and structure need to be made. For 

example, BKS (2014) assume that commodity prices, even physical spot prices, can be 

considered financial assets, since spot and future prices move in tandem (Fama and French 

1988). Therefore, BKS also assume that the commodity markets are efficient, that is, prices 

are set efficiently by the relevant financial markets. Such a conjecture is in accordance with 

Fama‘s Efficient Market Hypothesis, but contradicts the conclusions of De Bondt and Thaler 

(1989), who find no evidence that the market price represents an unbiased gauge of changes 

in stock market fundamentals. Moreover, directly relevant to the topic of this paper, Froot 

and Thaler (1990) find large and persistent anomalies on the global FX market, which they 

define as a condition of outright inefficiency within the price formation process of the largest 

financial market in the world. 
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Sixth, to the best of my knowledge, the literature lacks analysis on the differences in impact 

that currency markets can have on spot and forward commodity prices. This study measures 

the differences between the reactions of spot and forward commodity prices to the 

information contained in the FXmarkets, which is another empirical contribution. 

Understanding the differences in the reactions of spot and forward prices is valuable for 

market practitioners and regulators alike. From practitioners‘ point of view, any divergence 

between spot and forward prices creates trading opportunities in the face of cash and carry 

arbitrage, as defined by Kawaller and Koch (1984) and Lien and Quirk (1984), amongst 

others. On the other hand, the focus of regulators is likely to be on the impact that spot prices 

can have on end user prices and demand. 

 

The relationship between commodity prices and the proposed baskets of currencies of 

importers and exporters does not appear to be homogeneous across markets or time frames. 

The initial results confirm the claims of CRR (2010, and BKS (2014), that commodity prices 

and the currencies of exporters are positively correlated. This result is observed through the 

consistently strong negative correlation between spot prices (Ps) and forward prices (Pf) and 

the currency indices of exporters (FXe) and importers (FXi), relations that hold across all 

three time frames (daily, weekly, and monthly).41 The evidence suggests that the correlation 

between FXe and P is the strongest one across all time frames, with a stronger correlation 

with Ps, and not Pf. The correlation between FXe and P is stronger than that between FXi and 

P for all commodities except freight. Furthermore, the strength of the correlation increases 

with decreasing frequency, that is, the correlation appears to be stronger for a monthly 

frequency compared to daily or weekly. Significant correlations are found throughout 

between FXIM and P and between FXi and P for the weekly frequency, whereas the 

correlation between FXe and P is strongest for the monthly frequency. 

 

The results from a series of Granger causality tests reveal that the strength of the causal 

processes diminishes with decreasing data frequency. In other words, more causal processes 

are detected in the daily frequency dataset than in the monthly frequency dataset. Comparison 

across markets also reveals that, overall, the shipping, iron ore, and oil markets have more 

                                                                 
41

 Since FXi and FXe consist of currency pairs with the USD in the numerator of the currency cross, any 
weakness in the currency index equates to strength in the currency of the FXeorter (or FXiorter), which is in 
the denominator of the currency cross. 
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causal links than copper and soybeans, but the evidence is weak, since the only causal link 

detected is between FXIM and Ps for the shipping market, where FXIM Granger-causes Ps. 

 

The outcomes from one of the tests employed in the paper, namely, the coincidental response 

(CR) test, confirm that all markets respond strongly to changes in FXi. The reaction to FXi is 

significantly stronger than that to FXe, which is a rejection of the first hypothesis   
  . This is 

particularly the case for daily data frequency. Furthermore, all markets respond strongly to 

the proposed synthetic S&D, that is, FXIM, which confirms the second hypothesis   
  . The 

response is mainly concentrated within the weekly and monthly time domains. Furthermore 

and contrary to the results in the literature, FXi appears to play an important role in relation to 

both spot and forward prices Ps and Pf, respectively. Such results are significant because they 

cast doubt on the claims in the academic literature in relation to the importance of FXe for 

commodity markets‘ price formation. 

 

Another test applied in this paper is the sliding scalar product (SSP) test. Its results indicate 

that FXi leads Pf for the shipping, crude oil, and soybean markets. The coefficients are 

stronger than for FXe versus P, which is an argument in favour of rejecting   
  . Signals of 

FXIM leading Ps for the soybean and iron ore markets are also detected when confirming 

  
  . The leading properties appear to be stronger for the daily data frequency; the signal is 

lost for the weekly frequency but reappears, albeit weakly, for the monthly frequency. The 

results of the SSP test are significant because the test not only addresses the two hypotheses 

of the study, but also provides guidance on the most suitable data frequency for the lead–lag 

relationship. 

 

The final test applied to both hypotheses consists of running series of multivariate vector 

autoregressive (VAR) models and comparing how much of the variation each equation 

explains, using their R-squared values. Contrary to the established academic literature, the 

results point to evidence that the currencies of importers, FXi, have higher explanatory power 

than the currencies of exporters, FXe. Furthermore, and in line with   
  , the proposed 

synthetic S&D metric FXIM is found to significantly improve the explanatory power of the 

vector error correction model (VECM). 
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The remainder of this paper is organized as follows. Section 2 reviews the literature. 

Section 3 discusses the hypothesis development. Section 4 describes the data, samples, 

sources, and time frame selection criteria. Section 5 presents the methodological framework. 

Section 5 discusses the results and Section 6 concludes the paper. 

 

5.2. Literature review 
 

This paper analyses the relationship between the prices of selected commodities with the 

currency exchange rates of the most important exporters and importers of these 

commodities.42 The paper draws insights from multiple branches of the literature that study 

the interaction between commodity prices and macroeconomic variables, including currency 

values. Four branches of academic research are relevant to this study. 

 

The first branch of the literature revolves around the importance of international trade 

fundamentals in exchange rate price formation within the framework of established trade 

theory. For example, the claim that the value of national currency is linked to the USD 

amount of exports is supported by Amano and van Norden (1998a&b), who find a negative 

correlation between the CAD and the oil price, with causality running from the commodity 

price to the currency value. Further studies on the topic include those of Chen and Rogoff 

(2003), Cashin, Céspedes, and Sahay (2004), and Chen (2004), who argue that commodity 

prices play an important role in exchange rate fundamentals. All of these works explore the 

channel of rising commodity prices followed by an increase in revenue for the country selling 

on the international market in USD, which, in turn, appreciates the value of the domestic 

currency as demand for the commodity also increases. Therefore, according to the authors, 

changes in commodity prices should cause changes in the exchange rate values for those 

countries most exposed to the production and export of the commodity in question. The 

argument, in this case, is largely macroeconomic and supported by trade theory, and it states 

that an economy exposed to a disproportionately large value of commodity exports should 

see its currency value appreciate as demand for the currency increases. 

 

More recently, published works in this branch of the literature also find evidence that 

commodity prices explain some of the movements in the FX values of those countries most 

                                                                 
42

 The selection is based on the share of trade flow. 
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exposed to businesses exporting these commodities. FRR (2015), who study the daily data of 

five currency pairs and three commodity markets, ascertain a positive correlation and 

causality and demonstrate that the price of crude oil is positively correlated with the chosen 

currency values. The authors also detect a statistically significant causal process running from 

the price of oil to the currency values at the daily frequency. No such evidence is found for 

the monthly or quarterly frequency. 

 

Another comprehensive study of the causality between exchange rates and commodity prices 

is that of Zhang, Dufour, and Galbraith (2014). They employ high-frequency data (daily and 

intra-day) for four commodity-exporting economies (Canada, Norway, Australia, and Chile) 

and the prices of their main export commodities (WTI crude oil, Brent crude oil, gold, and 

copper, respectively). The authors find that causality from commodity prices to exchange 

rates is stronger than in the opposite direction. They also conclude that the trade theory–

related mechanism dictates the exchange rate dynamics. 

 

The second branch of the literature considers the impact that currency values can have on the 

prices of commodities. This branch of the literature is also where this paper makes its main 

contribution. The links between commodities and currencies are fundamentally strong, as 

dictated by trade theory. The common denominator for all the commodity markets in the 

study is the USD, which sits at the centre of the global commodity trading in terms of 

commodity pricing and credit (Boz, Gopinath, and Plagborg- Møller 2017. Furthermore, FX 

markets are significantly more liquid compared to other commodity market in terms of 

transactional value, as evidenced by data from the Bank for International Settlements (2018), 

a state that requires more efficient price discovery (Garbade and Silver 1983). In turn, more 

efficient price discovery begets faster information flow and signal generation. Therefore, one 

way to explain the hypothetical causal link from currencies to commodity prices is the ability 

of the FX markets to gather and channel forward-looking information (Van Foreest and De 

Vries 2003). 

 

Furthermore, Meese and Rogoff (1983), Cheung, Chinn, Pascual (2005), and Rogoff and 

Stavrakeva (2008) ascertain that exchange rates have the capacity to predict prices, due to 

their speculative nature and ability to efficiently price in forward-looking information. 

Andersen, Bollerslev, Diebold, Labys (2003) provide further evidence that exchange rates are 

correlated with news about future fundamentals, in agreement with Engel and West (2005), 
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who offer evidence that currency markets are able to predict market fundamentals. Engel and 

West‘s conclusion is in line with the established present value model. They also stipulate that 

the statistical significance of predictability is not uniform, since they find that the causality 

from fundamentals to currency is weaker than in the opposite direction.  

In addition, CRR offer further support to this line of thought with their finding, using 

quarterly data, that currencies have predictive power over the value of commodity price 

indices. Gargano and Timmerman (2014) claim similar results, namely, that currency markets 

possess predictive power over commodity indices. Their study demonstrates that 

predictability not only varies over time and across commodities, but also is a function of the 

economic cycle. 

 

Academic works discussing the relationship between macroeconomic variables and asset 

prices form the third branch of research relevant to this paper. It is worth considering the fact 

that the present value models mentioned earlier are not the only models able to justify the 

mechanics of the currency market leading to a particular price of a commodity. For example, 

changes in currency values are likely to affect consumer prices, since currency value is 

passed onto domestic prices with some delay. Such an effect does not explain the evidence 

that the currency also leads to changes in commodity futures and baskets of financial 

commodity prices. Another argument is the fact that the value of currency can also cause 

fluctuations in the money supply, since policy makers monitor currency value and set 

monetary policy accordingly. Early work by Bessembender and Chan (1992) concludes that 

macroeconomic drivers can cause variations in the prices of commodities. Cheung, Chinn, 

Pascual (2005) and Chen, Rogoff, Rossi (2010) also suggest that macroeconomic conditions 

can be a predictor of the prices of stocks and bonds. More recently, Prokopczuk, Tharann, 

and Simen (2021) have confirmed the short- and long-term predictability of macroeconomic 

variables over commodity prices. 

 

The fourth stream of research establishes the role of commodity markets as a stand-alone 

investment class. For example, the evidence of Sadorsky (2002) and Gorton and 

Rouwenhorst (2013) in support of this claim is based predominantly on the low correlation of 

the commodity sector with traditional asset classes. Another argument in favour of 

establishing commodities as a new investment class is offered by Erb and Harvey (2006), 

who demonstrate that commodities and equities have similar average returns (e.g. Gorton and 

Rouwenhorst 2013, Kogan, Livdan, and Yaron, 2009). Furthermore, Filer, Hanousek, and 
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Campos (2000) establish causality flowing from the stock market to currency value. Since the 

established literature unanimously agrees on the positive relationship between currency value 

and stock market performance (e.g. Swanson 2003) and argues in favour of commodities as 

an independent investment class, it is plausible to infer that a relationship also exists between 

the commodity and currency markets. 

 

One important gap in the research literature is that only the currencies of exporters are used in 

the research. The proposal to utilize importers‘ currencies is only briefly mentioned by CRR 

(2010). The idea remains outside the scope of their discussion and, to the best of my 

knowledge, no other academic work investigates the topic further. 

 

A prominent branch of the literature (e.g. CRR 2010, BKS (2014), FRR 2015, Zhang, 

Dufour, and Galbraith 2014) works with only a small sample of currency pairs, involving the 

AUD, CAD, CLP, ZAR, NZD, and NOK. I consider this to be a limitation, since these 

currency pairs fail to represent the global commodity trading well. Another constraint 

identified in scholarly work is the relatively few times monthly (Prokopczuk, Tharann, and 

Simen 2021), quarterly (Zhang, Dufour, and Galbraith 2014), and annual (Gargano and 

Timmermann 2014) data are used. And important gap is also revealed with the help of the 

proposed FXIM. The model extracts information from the joint relationship between different 

the currency pairs of commodity importers and exporters and thus conveys a unique metric 

for the implied short-term S&D market conditions. The proposed solution disputes one of the 

key assumptions behind the hypothesis of BKS, and, to the best of my knowledge, my idea is 

unique in the academic literature. 

 

The direction of causality between commodity prices and currency pairs is another point of 

debate between this paper and the academic work. For example, Chen (2004) and Zhang, 

Dufour, and Galbraith (2014) report evidence of stronger causality from commodity prices 

(P) to FX rates. Furthermore, BKS (2014) argue in favour of a contemporaneous relationship 

between the FX markets and commodity prices (P) and find no evidence of causality flowing 

from FX to P. Both sets of authors make two assumptions: first, commodity prices, even 

physical prices, can be considered financial assets, according to Fama and French (1988). 

Second, commodity markets are efficient; that is, P is set efficiently by the relevant financial 

markets. Such conjectures are consistent with the efficient market hypothesis of Fama (1970), 

but contradict De Bondt and Thaler (1989), who find no evidence that the market price 
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represents an unbiased gauge of changes in market fundamentals. Differences in reactions 

between Ps and Pf are a key driver behind the theory of cash and carry arbitrage as defined 

by Kawaller and Koch (1984) and Lien and Quirk (1984), amongst others. To the best of my 

knowledge, there is no significant analysis on the differences in impact that currency markets 

can have on Ps and Pf commodity prices. 

 

The concepts of bivariate and multivariate causality and predictability are central to the 

hypotheses tested in this study. Three distinctly different tests are employed in the process of 

identifying and quantifying the causal link between custom-designed currency pairs and 

commodity prices. Causality is also tested within the VAR model/VECM environment with 

the help of impulse response functions (IRFs). The three tests are the pairwise Granger test, 

the CR test, and the SSP test. An important advantage of the Granger causality test is that 

endogenous variables can be treated as exogenous (Granger 1969). Additionally, according to 

Sørensen (2005), Granger tests appear to be most successful in detecting causal links in two-

dimensional systems, or bivariate causal relationships, which is an important reason why this 

paper focuses on pairwise Granger causality tests. On the other hand, a disadvantage is the 

test‘s inefficiency at measuring multivariate causality. Moreover, causality is often hidden in 

long periods of data, which is logical, since causality is not likely to be a static process. This 

is precisely why I construct and run CR and SSP tests. 

 

The SSP test involves a bivariate descriptive statistical analysis of the evolution of the cross-

correlations between each pair of variables. The cross-correlation of multivariate time series 

involves more than one process and is thus a function of the relative time between the signals. 

Von Storch and Xu (1990) describe cross-correlation in principal signal oscillation 

processing analysis. They provide a detailed account of the measure of similarity of two 

waveforms as a function of a time lag applied to one of them, a process also defined as the 

sliding dot product (SSP) or sliding inner product. 

 

Since the original (non-differenced) time series have a unit root, ordinary regression analysis 

is not appropriate for the estimation, because there could be one or more equilibrium 

(cointegrated) relationships, that is, they can have a common stochastic trend. Therefore, the 

time series are further tested for cointegration with Johansen‘s (1991) cointegration 

procedure. Johansen‘s approach is based on an unrestricted VAR approach. Unlike the 
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Granger test, Johansen‘s test allows for the hypotheses to be tested for an equilibrium 

relationship between the variables. 

5.3. Hypothesis development 
 

This paper advances three hypotheses that aim to address the gaps in the academic literature, 

as discussed in the previous section. The first hypothesis (H1) proposes that valuable 

information about future commodity price movements is contained in not only the traditional 

currency pairs of exporters, but also the currency values of the importers. Moreover, the 

proposed hypothesis challenges the assumption that the currencies of exporters and importers 

possess equal predictive power over the price of a commodity. Naturally, FXe represents 

supply-side pressure to the market, since the stronger domestic currency is likely to limit the 

incentive of producers to produce and sell. On the other hand, the opposite also applies, 

where FXi represents the demand side through the purchasing power channel. The research 

process also tests the sub-hypothesis that the price of commodity and the currency of 

exporters are positively correlated, as claimed by CRR (2010) and BKS (2014).  

 

According to international trade theory, the value of exporters‘ currencies should be partly 

influenced by the value of sales generated on the international market, which directly 

captures the amount of commodity supplied. Demand, on the other hand, is best captured by 

measuring the buyer‘s purchasing power. An indirect demand component is included in the 

value of the currency, but only if the supply chain for this particular commodity is assumed to 

be demand pull, that is, highly responsive to changes in demand. Many of the trade flows in 

the global supply chain are supply push (Christopher and Towill 2001), which means that a 

significant part of the trade flows are not captured if only the currencies of commodity 

exporters are used. Therefore, I hypothesize that the explanatory power of the currencies of 

importers is stronger than that of the currencies of exporters traditionally used. Expanding the 

sample of currency pairs and increasing the data frequency lead to two sub-hypotheses. 

A comprehensive body of academic research discusses the pros and cons of H1 (e.g. Meese 

and Rogoff 1983, Van Foreest and De Vries 2003, Engel and West 2005, Boz, Gopinath, and 

Plagborg- Møller 2017). This paper‘s contribution is placed in the second branch of scholarly 

work, as described earlier. For example, contrary to the findings of BKS (2014), the results of 

this paper support the view that FX possesses predictive power over P, which is a key 

empirical contribution. 
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The second hypothesis (H2) states that a causal relationship exists between the exchange rates 

and commodity prices. The debate in the academic literature about causality between the 

currency and commodity markets and whether the forex markets possess predictive properties 

over the commodity prices is not settled. There are two distinctly different and conflicting 

schools of thought. The first is supported by the work of Amano and van Norden (1998a&b), 

Chen and Rogoff (2003), Cashin, Céspedes, and Sahay (2004), and Chen (2004), who argue 

that commodity prices are important exchange rate fundamentals. Therefore, according to 

these authors, changes in commodity prices should cause changes in the exchange rate values 

for those countries most exposed to the production and export of a particular commodity. The 

argument in this case is largely supported by macroeconomics and trade theory, and it states 

that the FX value of an economy exposed to a disproportionately large value of commodity 

exports should appreciate as demand for its currency increases. Another line of thought, 

however, suggests that exchange rates have the capacity to predict prices due to their 

speculative nature and ability to efficiently price in forward-looking information (Meese and 

Rogoff 1983, Cheung, Chinn, Pascual (2005), Rogoff and Stavrakeva 2008). Studies have 

also proposed to determine the exchange rates by the net present value of fundamentals 

(Engel and West 2005, CRR 2010,  Gargano and Timmerman 2014). 

 

Under the third hypothesis (H3), I theorize that combining baskets of importers‘ and 

exporters‘ currencies into a joint FXIM produces a unique metric for the implied short-term 

S&D market conditions, with stronger predictive power over commodity pricing compared to 

the predictive powers of each of the FXIM constituents  𝑋  and  𝑋𝑒. In turn, this result 

disputes one of the key assumptions behind the financial asset hypothesis of BKS (2014). A 

further limitation of BKS‘s approach is that they base their conclusions exclusively on 

information on the behaviour of a handful of exporters‘ currency pairs. As discussed earlier, 

such a sample of currencies is incomplete, in view of the complexity of global commodity 

trading and the nature of the pressure along the supply chain, that is, demand pull versus 

supply push. Moreover, the proposed FXIM conveys a unique metric for the implied S&D 

market conditions that possesses stronger predictive power over the price of the commodity 

market (P) compared to those of each of the FXIM constituents  𝑋  and  𝑋𝑒. The sub-

hypothesis states that the FX market has stronger predictive power over the future commodity 

price (Pf) compared to the spot price (Ps). This result is tested after FXIM is compared with 

the commodity price in the relevant term structure, that is, spot versus forward prices. 
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The proposed hypotheses reveal novel ideas that demand further research. For H1, which 

tests for a positive correlation between FX and commodity prices, the idea disputes the 

assumption that the currency of exporters and importers possess equally predictive power 

over the price of commodities. For H2, it involves a call for more comprehensive lists of 

commodities and the relevant importers‘ currencies. For H3, it is the need to experiment not 

only with bigger samples of commodities and currencies, but also with different weighted 

averages that ultimately arise in the model after a sample change. Further research is also 

warranted to compare the performance of the proposed synthetic S&D model in the face of 

FXIM with that of the traditional S&D models for each market. 

 

5.4. Data, sources, and time frame selection criteria 
 

The data consist of daily time series on the spot and futures commodity prices of five 

commodity markets, as well the exchange rates against the USD of the biggest importers and 

exporters of these commodities, between January 2013 and September 2019.43 The markets 

(and relevant sectors) are as follows: crude oil (oil), soybean (agriculture), copper (non-

ferrous metals), iron ore (ferrous metals), and freight rates (industrial transportation). The 

commodities selected for the study represent the biggest markets in their sectors by market 

value in USD per metric tonne traded. The sources for the market values are the Chicago 

Mercantile Exchange (CME), the Intercontinental Exchange (ICE), the Singapore Exchange 

SGX, the London Metals Exchange (LME), and the Baltic Exchange (BAX). 

 

The Ps price is defined as the daily closing price of a cash commodity market. The sources 

for the Ps price time series are the US Department of Agriculture (USDA) for soybeans, 

Platts for iron ore, Bloomberg (BBG) for crude oil, the LME for copper, and BAX for freight. 

The forward price is the first futures contract for the commodity. A contract is rolled five 

trading days before expiry. The data sources for the first future contract are ICE for crude oil, 

LME for copper, SGX for iron ore, BAX for shipping, and CME for soybeans.44  

 

 

Table 1 summarizes these spot and forward markets and their sources. 

                                                                 
43

 The combined share of the FXiorters or FXeorters of any given commodity is at least 67% of the total.  
44

 ICE is the Intercontinental Exchange, SGX is the Singapore Exchange, LME is the London Metals Exchange, 
BAX is the Baltic Exchange, and CME is the Chicago Mercantile Exchange.   
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Table 1: Market data sources  

This table shows the markets studied and their data sources. 

 
  Oil Soybean Copper Iron ore Freight 

Spot BBG USDA LME Platts BAX 

Forward ICE CBT CME SGX BAX 
 

The time series of the currency pairs have a daily frequency (using closing values) and span 

from 1 January 2013 to 30 Sept 2019, for a total of 2,405 observations. The data are from 

Bloomberg.  

 

The currency pairs are used to construct trade weighted indices, with the initial weighting per 

country determined by the imported or exported commodity‘s share of the total global trade. 

The sources of the data on shares per country and global total are the UN Comtrade database, 

the BACI International Trade database, and Simoes and Hidalgo (2011).45 A filter of at least 

a 67% market share is applied to be included in a basket. This filter guarantees that a 

minimum of two-thirds of the trade flow for the selected commodity is accounted for. Such a 

threshold is necessary to reduce the noise in the model from small trade flows and the 

currencies of countries with a marginal influence on global trade. A secondary weighting for 

each pair is based on each initial weighting‘s share of the total weighting in the basket. The 

FX forex data are then indexed, and the weighted-average baskets with currency pairs of 

importers and exporters are calculated. Finally, weekly and monthly averages are derived 

from the daily data points of the FXIM. 

 

5.5. Methodological framework 
 

This paper examines the predictability of the spot and forward prices of key energy, metal, 

agriculture, and shipping commodity markets by the currency exchange rates of the major 

exporters and importers of these commodities. The three hypotheses tested can be described 

as follows: 

                                                                 
45

 UN Comtrade is part of the United Nations Department of Economic and Social  Affairs, Statistics Division; 
the BACI International Trade Database is a product of CEPII (Centre d’études prospectives et d’informations 
internationales), a leading French centre for research and FXeertise on the world economy. 
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 : Currencies of Exporters ( 𝑋 ) and currencies of importers ( 𝑋𝑒) have equal 

predictive power over the commodity price (P). Under a sub-hypothesis, P and  𝑋𝑒 

are positively correlated. 

  
 : Causality flows from  𝑋  and  𝑋𝑒 to spot (𝑃 ) and forward (𝑃𝑓) commodity 

prices. 

  
 : The FXIM ( 𝑋  ) has stronger predictive power over P compared to the 

predictive powers of each of its constituents  𝑋  and  𝑋𝑒. The sub-hypothesis states 

that the predictive power of  𝑋   is stronger over 𝑃𝑓 than over 𝑃 . 

The empirical analysis proceeds in four steps. In Step 1, I create the trade-weighted currency 

indices     and     and the model     . Properties of the time series of the newly created 

indices and those relevant to each market‘s spot (  ) and future (  ) prices are tested in Step 

2. Step 3 probes the relationship between the proposed indices and    and   . This includes 

tests for correlation, causality, and cointegration with the help of the CR and SSP tests, as 

well as the widely used Granger causality and Johansen cointegration tests. Step 4 quantifies 

the interaction between    ,    , and      and    and    within the VECM framework 

(with cointegration detected). The strength of the indices‘ explanatory power and how it 

evolves over time are also measured with the help of the VAR IRF. 

5.5.1. Step 1: Index construction 

I construct trade-weighted indices from the time series of the currency pairs. The initial index 

weightings are determined by the particular imported or exported commodity‘s share of the 

total global trade, as discussed in Section 5.4 and displayed in Tables 2a and b. 
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Table 2a: Initial and secondary index weightings, Exporters 

This table displays the initial weightings, as determined by the commodity ‘s trade flow share of the total global 

trade. The initial weighting per country is determined by the particular imported or exported commodity‘s share 

of the total global trade. The secondary weighting for each pair is based on each initial weighting‘s share of the 

total weighting in the basket Source: Data on country and global total shares from UN Comtrade database, 

BACI International Trade database, Simoes and Hidalgo (2011). . 

  

  Initial weighting Secondary weighting 

Exporter Oil Soybean Copper 
Iron 

ore 
Freight Oil Soybean Copper 

Iron 

ore 
Freight 

NIGERIA 0.045         0.0772         

S. ARABIA 0.14         0.2401         

VENEZUELA 0.028         0.048         

UAE 0.05         0.0858         

RUSSIA 0.12         0.2058         

IRAQ 0.073         0.1252         

CANADA 0.068         0.1166         

ANGOLA 0.034         0.0583         

MEXICO 0.025         0.0429         

BRAZIL   0.45         0.8094       

ARGENTINA   0.049         0.0881       

PARAGUAY   0.038         0.0683       

UKRAINE   0.019         0.0342       

CHILE     0.28         0.3966     

PERU     0.21         0.2975     

AUSTRALIA     0.072         0.102     

INDONESIA     0.054         0.0765     

CANADA     0.048         0.068     

BRAZIL     0.042         0.0595     

AUSTRALIA       0.52         0.5923   

BRAZIL       0.22         0.2506   

S. AFRICA       0.043         0.049   

CANADA       0.042         0.0478   

UKRAINE       0.028         0.0319   

EU       0.025         0.0285   

UAE         0.05         0.0833 

IRAQ         0.073         0.1217 

CANADA         0.068         0.1133 

S. ARABIA         0.15         0.25 

NORWAY         0.035         0.0583 

NIGERIA         0.045         0.075 

RUSSIA         0.12         0.2 

ANGOLA         0.034         0.0567 

MEXICO         0.025         0.0417 
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Table 2b: Initial and secondary index weightings, Importers 

The table displays the secondary weightings as determined by the initial weightings‘ share of the total weighting 

in the basket. 

 

  Initial weighting Secondary weighting 

Importer Oil Soybean Copper 
Iron 

ore 
Freight Oil Soybean Copper 

Iron 

ore 
Freight 

CHINA 0.18         0.2651         

EUROPE 0.236         0.3476         

JAPAN 0.073         0.1075         

KOREA 0.071         0.1046         

INDIA 0.094         0.1384         

SINGAPORE 0.025         0.0368         

CHINA   0.63         0.8678       

MEXICO   0.03         0.0413       

JAPAN   0.024         0.0331       

SPAIN   0.023         0.0317       

INDONESIA   0.019         0.0262       

CHINA     0.43         0.4886     

JAPAN     0.14         0.1591     

INDIA     0.076         0.0864     

KOREA     0.068         0.0773     

EU     0.166         0.1886     

CHINA       0.63         0.7184   

JAPAN       0.083         0.0946   

KOREA       0.051         0.0582   

EU       0.1         0.114   

MALAYSIA       0.013         0.0148   

CHINA         0.18         0.2651 

EUROPE         0.236         0.3476 

JAPAN         0.073         0.1075 

KOREA         0.071         0.1046 

INDIA         0.094         0.1384 

SINGAPORE         0.025         0.0368 
 

 

The secondary index weighting for each pair is based on each initial weighting‘s share of the 

total weighting in the basket. To calculate the coefficients, displayed in Tables 2a and 2b, I 

follow the following procedure. 

Given 

𝑊   = ∑   

 

   

                                                                                                                                          (1  
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𝑉   = ∑  

 

   

                                                                                                                                           (2  

with    and    being the individual countries with primary weightings   for   exporting and 

  importing countries, the secondary index weightings for exporting and importing countries 
are respectively defined as 

   =
  

   
                                                                                                                                   (3) 

and 

   =
  

   
                                                                                                                                   (4) 

The daily time series (   = 𝑓  

 , 𝑓  

 ,      for the different countries   are anchored on start date 

𝑡 , which is set to 1 January 2013, and normalized as 𝑓 , as follows: 

𝑓 
 = 𝑓  

  = 𝑓  (𝑡   (5) 

with 

  
  = (

  
 

  
 )  100, where i is the country and n is the date.(6) 

Then, the export baskets  𝑋 
       are computed for any time step 𝑡  (< 𝑡 ) as 

 𝑋 
       =  𝑋      (𝑡  = ∑   

 
   (  

 ) (7) 

Similarly, for the import baskets, 

 𝑋 
        𝑋      (𝑡  = ∑   

 
   (  

 ) (8) 

Finally the ratio is computed as 

𝑅  = 𝑅(𝑡  =
   

      

   
       (9) 

The final step is to calculate the synthetic S&D FXIM, as follows: 

 

 𝑋  (𝑡  := 𝑅(𝑡  −
 

  
∑ 𝑅(𝑡      

  

   
                                                                                (10) 

 

where 𝑡 = 31. Therefore 

 

 𝑋   (𝑡    = 𝑅(𝑡   −
 

  
{𝑅  +  + 𝑅   }                                                                          (11) 

 

For the purpose of the relevant tests in the paper, weekly and monthly averages are derived 

from the daily data points of the  𝑋   time series. 
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5.5.2. Step 2: Descriptive statistics 

This stage concerns the standard evaluation of the time series properties, which includes 

descriptive statistics on the data across all three time frames (daily, weekly, and monthly), 

such as the mean, median, standard deviation, skewness, kurtosis, autocorrelation. Time 

series stationarity is tested with a standard augmented Dickey–Fuller (ADF) test. The 

complete results are displayed in Table A1 in the Appendix and discussed in the results in 

Section 5.6. 

5.5.3. Step 3: Relationship between    ,    ,     , and P 

The interactions between the individual time series form the core of   
 ,   

  and   
  , and are 

assessed with the help of Pearson correlation and the CR, SSP, Granger causality, and 

Johansen cointegration tests. The final test consists of running series of multivariate VAR 

models and comparing the extent to which the variation is explained by each equation, using 

R-squared values. 

 

The CR and SSP tests are not part of the standard econometric software package, but they are 

widely used in signal processing, with the design procedure described below. All tests except 

the cointegration test require stationary data. Since both the ADF and Kwiatkowski–Phillips–

Schmidt–Shin tests reveal the presence of a unit root for all time series across all three time 

frames except for FXIM, the data are differenced and tested again for stationarity. In this 

case, the ADF test results reject the null hypothesis of the test for non-stationarity. 

 

One of the advantages of the Granger causality test is that an endogenous variable can be 

treated as exogenous (Granger 1969). According to Sørensen (2005), Granger tests appear to 

be most successful in detecting causal links in two-dimensional systems, or bivariate causal 

relationships. This is an important reason why this paper focuses on a pairwise Granger 

causality test. Granger also suggests caution when selecting the length of the sampling 

period. For example, long sampling period tends to hide causality. This result is logical, since 

causality is not likely to be a static process. This is why I choose to run the CR and SSP tests 

discussed above and described below. 

5.5.3.1. CR test 

Testing for a causal link between any of the currency indices  𝑋 ,  𝑋𝑒, and  𝑋   and P 

(H1–H3) is performed with the help of a CR test, where the binary conditions of one and zero 
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are used to define the reaction of the time series. First, the period variation for each of the 

time series is calculated, with 𝑡    − 𝑡  = 𝑐   : 

  
    =  𝑋 −  𝑋                                                                                                             (12a) 

   = 𝑃 − 𝑃                                                                                                                      (12b) 

 

Where:   𝑋  and     are the changes in price between times t and t - 1. 

 

The pre-set rule searches for coincidental reactions along the timeline of {t ,t ,…,t ,} and 

assigns the value of one if it finds any, and zero otherwise. In other words, if either of the two 

conditions is met, the test returns the value of one. If the two variables move in different 

directions, the result is zero. In essence, the test quantifies the number of coincidental 

reactions of the dependent variable     on any change in the independent variable     . 

Therefore, for the time series of lenght i = 1, …, n,  

 

 𝑅𝑡(  =  {

     

     
> 0 → 𝑍𝑡 = 1

    

    
< 0 → 𝑍𝑡 = 0

                                                                                         (13) 

 

Where:   𝑅𝑡(   is the outcome of the CR test,     i  as specified above, and Z is a binary 
test variable. 
 

The statistcs of the time-series from the Coincidental Response Test are calculated, as 

follows: 

 

 𝑅𝑇𝑡(  =  
 

 
∑  𝑅𝑇  

                                                                                                           (14) 

 

The procedure is repeated for the relationships between     ,   i, e , and       , and between 

  f ,   i,e , and       . 

5.5.3.2. SSP test 

The proposed SSP test is further used to test   
 ,   

  and   
 , which involves bivariate 

descriptive statistical analysis of the evolution of the cross-correlation between each pair. The 

cross-correlation of multivariate time series involves more than one process. It is thus a 

function of the relative time between the signals. Von Storch and Xu (1990) describe cross-
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correlation in principal signal oscillation processing analysis. They provide a detailed account 

of the measure of similarity of two waveforms as a function of a time lag applied to one of 

them, also defined as a sliding scalar product (SSP). 

I compute the cross-correlation time series 𝑃     ,…,   from two input time series 𝑌     ,…,   

and 𝑋   𝑥 ,…,𝑥  by computing Pearson‘s correlation coefficient  (𝑋, 𝑌  on a rolling window, 

as follows: 

 

 (𝑋, 𝑌 =
   ( ,  

    
                                                                                                                  (15) 

 

which is the usual Pearson‘s coefficient, with 𝑐  (𝑋, 𝑌  the covariance and  𝑋 and  𝑌 the 

standard deviations of the variables X and Y, respectively. For every time step t and lead–lag 

k in the constructed time series 𝑃  , the correlation coefficient of a window of size n is 

computed. Explicitly, to compute 𝑃  with a window size of n for a lead–lag step k = 0, 

 

𝑊   =  {𝑥 ,…,𝑥   }, for k = 0                                                                                                 (16) 

𝑉   =  {  ,…,     }, for k = 0                                                                                                  (17) 

𝑃   =   (𝑋 ,𝑌  )                                                                                                                       (18) 

 

with the lead–lag k from 10 days beforehand to 10 days afterward, where k = 0 indicates a 

coincidental correlation. A negative k means that  𝑋   is lagged by k days relative to 𝑉 . 

The cross-correlation time series 𝑃     ,…,     is constructed by repeating T - n time series 

for every   . Therefore: 

 

𝑃   =   (𝑊 ,𝑉  )                                                                                                                   (19a) 

𝑃   =   (𝑊 ,𝑉  )                                                                                                                    (19b) 

 

Using the procedure outlined, additional correlation time series are computed on the input 

pair in which the series  𝑋 
  is time lagged against the series 𝑃 . A lead–lag operator is 

defined as: 

 

  𝑋 = 𝑋                                                                                                                              (20) 

 

which is then applied as follows: 
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 𝑋 
  =    ( 𝑋  =  {𝑋   ,…,𝑋     }                                                                                   (21) 

𝑃 
  =    (𝑃  =  {𝑌   ,…,𝑌     }                                                                                          (22) 

 

Where: k > 0 denotes a lead and k < 0 denotes a lag. 

The new correlation time series on the input pair is then computed as 

 

  
  =  ( 𝑋 

 ,𝑃 
                                                                                                                    (23) 

 

In the final step, the series of all lags of the cross-correlation time series mean      
  is 

constructed as 

 

      
  =  

 

(  | |   
∑    

   | |  
                                                                                              (24) 

SSP(k): =      
  , … ,      

 , … ,      
                                                                                    (25) 

 

The process is presented in the schematic in Figure 1. 

Figure 1: Schematic of the proposed SSP model 

This figure displays the elements of the proposed SSP model, where x and y are the time series, t is the time 

step, T is the total length of the time series, k is the lead–lag step, Wt and Vt are the lagged series, Pt is the 

cross-correlation time series of X and Y, n is the window size,   
  is the new correlation series on the input pair, 

and      
 is the cross-correlation series mean. 
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The time frames tested in this paper vary from a daily frequency to weekly to monthly. 

Therefore, to accommodate practical considerations (e.g. there is no point in testing the lead–

lag relationship between currency and price with a 24- or 36-month lag), different lags are 

considered for each of the time frames. In tests using monthly data points, a maximum of 12 

lags will be considered (k = 12), because the impact from a change in the currency value is 

assumed to dissipate within a maximum of 12 months. For daily data, k = 12, and for weekly 

data, k = 12. 

 

First, it allows for the precise (up to the time unit chosen for the study) identification of the 

lead–lag periods between the x and y variables. This is important for the process of building 

trading strategies, since it accounts for the better timing of a position entry and exit. Second, 

SSP test data can be plotted in a coordinate system for better visualization of the x–y 

relationship. Since the sign of the correlation does not matter (I examine the correlation 

strength, not the direction), the ideal outcome would be to record observations of lead periods 

clustered in the top-right or bottom-right corners of the scatter plot chart. In the case of a line 

chart, this would consist of lines starting from the top-right or bottom-right corners. The 

advantage of such a visualization is in the ability to quickly measure not only the lead–lag 

periods between the two variables along the x-axis, but also the strength of their lead–lag 

signal on the y-axis. Third, there are periods in the data sample when the lead property of the 

independent variable is clearly detected and displayed. However, there are also periods when 

its reaction lags. This finding does not clash with the null hypothesis of the test, which allows 

for changes in lead–lag regimes. It is important to be able to establish the existence of any 

long-term pattern in the x–y relationship. For example, higher conviction trades can be 

established at times when x has clear lead properties. 

5.5.3.3. Bivariate Granger causality test 

A bivariate Granger test is also used for examining   
 ,  

  and   
 . True causality is a 

debated concept in academia, and the Granger (1969) test claims to find only predictive 

causality. This is done with the help of t-tests and F-tests on lagged data points of  𝑋 ,  𝑋𝑒, 

 𝑋  , 𝑃 , and 𝑃𝑓 time-series at daily, weekly, and monthly frequencies, as follows: 

 

  =   +       +  +       +    𝑥   +  +    𝑥   +                                          (26a) 

𝑥 =   +   𝑥   +  +   𝑥   +        +  +        +                                          (26b) 
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where i is the lag period of the autoregressive model, 𝑥  and    are the studied variables at 

time t,    is the intercept,    and    are the residual errors, and t = (1,… , N  is the length of 

the time series. I choose lag i = 2 because it is reasonable to believe that the most liquid 

market in the world, such as foreign currency, is able to price in the available information 

within two days of an event‘s occurrence. When the specific variables of the test for the daily 

 𝑋  and 𝑃  series are substituted into equations (26a) and (26b), respectively, the result is 

 

 𝑋  =   + ∑   
2
 =1    𝑋    + ∑    

2
 =1   𝑃     +                                                        (27a) 

𝑃  =   + ∑   
2
 =1   𝑃    + ∑    

2
 =1    𝑋     +                                                            (27b) 

 

The process is repeated for all the other pairs within the five regression variables and the 

three time frames, namely,  𝑋 ,  𝑋𝑒,  𝑋  , 𝑃 , and 𝑃𝑓 at daily, weekly, and monthly 

frequencies. 

5.5.3.4. Cointegration of time series test 

Since the original (non-differenced) time series have a unit root, ordinary regression analysis 

is not appropriate for the estimation, because there could be one or more equilibrium 

(cointegrated) relationships; that is, they can have a common stochastic trend. Therefore, the 

time series are tested further for cointegration with Johansen‘s (1991) cointegration test. 

Johansen‘s approach is based on an unrestricted VAR approach. Unlike the Engle–Granger 

(1987) test, Johansen‘s test allows for the testing of hypotheses for an equilibrium 

relationship between the variables. 

Cointegration is established by the rank of matrix Π via the number of its characteristic 

roots/eigenvalues. The two tests are        and     . According to the literature (e.g. 

Granger and Joyeux 1980), differencing all the variables of the model to force them into 

stationarity is the correct approach for univariate models. However, if there are important 

relationships between the variables in the long run, such forced stationarity is seen as a 

weakness in the methodology. If a cointegration relationship is established, this would imply 

a stationary linear combination of some of the variables. The VECM, and not a standard 

VAR model, in first differences is the most suitable approach for non-stationary and 

cointegrated time series, since it allows for both long- and short-run relationships to be 

captured. 
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5.5.4. Step 4: VECM application 

Cointegration relationships between the five variables  𝑋 ,  𝑋𝑒,  𝑋  , 𝑃 , and 𝑃𝑓 are 

detected by the Johansen test.Since matrix Π is defined as the product of matrices 𝞪 and β`, 

the matrix has the following form: 

 

Π = 𝞪β`                                                                                                                                  (28) 

 

or, in the case with five variables, 

 

 = [
 11   1 

   
  1   7 

][
 11   1 

   
  1     

]                                                                             (29) 

 

Once the number of cointegrating relationships between all five variables in the system is  

established, the VECM takes the following form: 

 

  𝑃 = 𝑏  𝑃  + 𝑏  𝑃𝑓 + 𝑏   𝑋   + 𝑏   𝑋   + 𝑏   𝑋𝑒 + 𝑏 (𝑃    −   𝑃𝑓   −

    𝑋    −    𝑋𝑒   −    𝑋      +                                                                            (30) 

The same methodology is followed when testing the set with weekly and monthly 

frequencies. The residuals of the model need to be tested for stationarity, because they will be 

non-stationary if the variables are not cointegrated. This is done with the help of the ADF test 

with a null hypothesis for a unit root in the cointegrating regression residuals, or   :    

 (1 . Following Lütkepohl (1991), the optimal lag order of the model is estimated with the 

help of the Akaike information criterion (AIC), the Schwartz/Bayesian information criterion 

(BIC), the Hannan–Quinn information criterion (HQIC), as well as the final prediction error. 

The most important difference between the various criteria is the severity with which they 

penalize an increase in the model order. The motivation behind a strong penalty for high 

model orders is to reduce over-fitting, which has an impact on the model‘s forecasting ability.  

I employ VECMs for reasons other from forecasting. The model investigates the interaction 

between selected endogenous variables. More specifically, the aim is to investigate the causal 

relationships in the processes described in equation (30). This means that I prefer to select an 

information criterion that does not impose too strong a penalty on the model order. As 

discussed by Lütkepohl (2005), the HQIC penalizes high model orders more than the AIC, 
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but less than the BIC. I work with the HQIC when selecting the optimal number of lags of the 

VECM based on the size of the data sample as well. The consensus in the literature is that the 

AIC/final predication error outperforms the HQIC for small samples, but the HQIC is better 

for bigger samples (Lütkepohl 2005). An information criterion different from zero is a sign 

that the variables in the model are jointly significant. 

Conclusions on possible causal relationships are also drawn from studying the responses of 

one variable to an impulse/shock introduced to another variable in a multivariable system. 

This view is derived by removing elements from the structural model that are expected at 

time t - 1. The VAR models focus only on modelling unexpected changes in a variable y at 

time t, which is a major difference with traditional modelling practice, where dynamic 

simultaneous equation models do not differentiate between expected and unexpected changes 

in yt. The outcomes from the shock are exhibited in the form of IRFs. 

 

5.6. Results 
 

This section discusses the results of the tests. The data are first tested for a unit root with the 

ADF test, since the bivariate and multivariate regression analysis in the form of VAR models 

that are part of the proposed methodological framework requires stationarity. This also 

includes the correlation, CR, SSP, and Granger causality tests, as discussed in the 

methodology in Section 5.5. Time series are further tested for cointegration with the standard 

Johansen test. No cointegration is detected across any of the time frames, and I(1) stationary 

time series are therefore employed under an unrestricted VAR framework. 

Descriptive statistics of all the time series involved in the analysis are displayed in Table A1 

in the Appendix. Preliminary ADF test results on the pricing and trade flow data reveal the 

existence of a unit root in the time series at I(1), or stationarity in first differences. In the next 

step, all the time series are differenced and tested again for a unit root. In this case, the ADF 

test results reject the null hypothesis of the test of non-stationarity. The next step is the 

calculation of the correlation between all the time series. The results are displayed in Tables 3 

and 4 and in Figures 2 and 3. 
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Table 3: Correlation coefficients 

This table displays the Pearson correlation coefficient matrix of the stationary daily, weekly and monthly time series for th e five commodity markets included in the study 

(copper, freight, iron ore, crude oil, and soybeans) against the five market drivers, namely, the currency indices of the major exporters, the currency indices of the major 

importers, the forward commodity price, the spot (Ps) commodity price, and the currency impact model. 

  

    Daily Weekly Monthly 

    Exporters Forward FXIM Importers Ps Export Forward FXIM Import Ps Export Forward FXIM Import Ps 

C
o

p
p

e
r FXe 1.00 -0.39 0.00 0.41 -0.38 1.00 -0.49 0.09 0.54 -0.48 1.00 -0.50 0.14 0.61 -0.49 

Pf -0.39 1.00 0.07 -0.13 0.92 -0.49 1.00 -0.08 -0.26 0.98 -0.50 1.00 0.03 -0.25 0.99 

FXIM 0.00 0.07 1.00 0.00 0.04 0.09 -0.08 1.00 -0.08 -0.08 0.14 0.03 1.00 -0.04 0.02 

FXi 0.41 -0.13 0.00 1.00 -0.14 0.54 -0.26 -0.08 1.00 -0.26 0.61 -0.25 -0.04 1.00 -0.25 

  Ps -0.38 0.92 0.04 -0.14 1.00 -0.48 0.98 -0.08 -0.26 1.00 -0.49 0.99 0.02 -0.25 1.00 

F
re

ig
h

t 

FXe 1.00 0.00 0.00 0.23 -0.02 1.00 -0.06 -0.04 0.32 -0.05 1.00 0.04 -0.01 0.45 -0.03 

Pf 0.00 1.00 0.00 0.02 0.25 -0.06 1.00 -0.01 0.09 0.43 0.04 1.00 -0.02 0.31 0.47 

FXIM 0.00 0.00 1.00 -0.01 -0.02 -0.04 -0.01 1.00 -0.04 0.03 -0.01 -0.02 1.00 -0.01 0.05 

FXi 0.23 0.02 -0.01 1.00 -0.01 0.32 0.09 -0.04 1.00 -0.01 0.45 0.31 -0.01 1.00 0.13 

Ps -0.02 0.25 -0.02 -0.01 1.00 -0.05 0.43 0.03 -0.01 1.00 -0.03 0.47 0.05 0.13 1.00 

Ir
o

n
 o

re
 

FXe 1.00 -0.04 -0.01 0.40 -0.05 1.00 -0.22 -0.13 0.48 -0.28 1.00 -0.36 0.11 0.51 -0.36 

Pf -0.04 1.00 -0.05 -0.01 0.38 -0.22 1.00 0.00 -0.08 0.75 -0.36 1.00 -0.22 -0.15 0.95 

FXIM -0.01 -0.05 1.00 0.01 0.00 -0.13 0.00 1.00 -0.02 -0.02 0.11 -0.22 1.00 -0.08 -0.25 

FXi 0.40 -0.01 0.01 1.00 -0.09 0.48 -0.08 -0.02 1.00 -0.17 0.51 -0.15 -0.08 1.00 -0.16 

Ps -0.05 0.38 0.00 -0.09 1.00 -0.28 0.75 -0.02 -0.17 1.00 -0.36 0.95 -0.25 -0.16 1.00 

O
il

 

FXe01 1.00 -0.39 0.00 -0.16 -0.38 1.00 -0.47 -0.15 0.26 -0.44 1.00 -0.62 -0.01 0.41 -0.61 

Pf -0.39 1.00 0.02 0.41 0.92 -0.47 1.00 0.06 -0.07 0.98 -0.62 1.00 -0.02 -0.24 1.00 

FXIM 0.00 0.02 1.00 -0.24 0.03 -0.15 0.06 1.00 0.01 0.06 -0.01 -0.02 1.00 -0.01 -0.02 

FXi -0.03 0.47 0.05 1.00 -0.03 0.26 -0.07 0.01 1.00 -0.07 0.41 -0.24 -0.01 1.00 -0.23 

Ps -0.38 0.92 0.03 0.31 1.00 -0.44 0.98 0.06 -0.07 1.00 -0.61 1.00 -0.02 -0.23 1.00 

S
o

y
b

e
a
n

 

FXe01 1.00 0.00 -0.14 0.32 -0.17 1.00 -0.16 -0.09 0.25 -0.17 1.00 -0.23 -0.02 0.41 -0.24 

FXIM 0.00 1.00 -0.02 0.00 -0.02 -0.16 1.00 0.05 -0.07 0.88 -0.23 1.00 0.03 -0.06 0.99 

Pf -0.14 -0.02 1.00 -0.13 0.74 -0.09 0.05 1.00 0.01 0.06 -0.02 0.03 1.00 -0.05 0.04 

FXi 0.32 0.00 -0.13 1.00 -0.13 0.25 -0.07 0.01 1.00 -0.08 0.41 -0.06 -0.05 1.00 -0.06 

Ps -0.17 -0.02 0.74 -0.13 1.00 -0.17 0.88 0.06 -0.08 1.00 -0.24 0.99 0.04 -0.06 1.00 
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The coefficients displayed with Table 3 reveal that the relationship of FXe with Ps and Pf is 

stronger when compared to that of FXi for copper, shipping, iron ore, and soybeans. Crude 

oil, on the other hand, appears to be correlated more closely with the value of the currencies 

of importers, as represented by FXi. The data from Table 3 are transformed and displayed in 

Table 4. 

Table 4: Summary of correlation coefficients after transformations (x), (y), and (z) 

This table displays the sum of the correlation coefficients between FXI, FXE, FXIM, and Ps and Pf. This can be 

represented as follows: 𝑅 , 
 = ∑ 𝑟 

 
   , where R is the sum of Pearson correlation coefficients 𝑟  between Ps 

and FXe across time frequency k (k = daily, weekly, monthly), where m denotes a specific market, such as 

copper, freight, iron ore, oil, or soybeans, e = FXe, and s = Ps. 

 

  Copper Freight Iron ore Oil Soybean 

  Ps Pf Ps Pf Ps Pf Ps Pf Ps Pf 

Exporters -1.31 -1.34 -0.09 -0.02 -0.67 -0.61 -1.41 -1.46 -0.58 -0.53 

Importers -0.64 -0.64 0.11 0.41 -0.41 -0.23 -0.36 -0.35 -0.25 -0.24 

FXIM 0.73 0.79 -0.14 0.09 0.24 0.21 1.00 1.04 0.39 0.36 

Figure 2: Display of the summary data in Table 3 

The first row of charts summarizes the correlation coefficients between FXe and Pf. The second row 

summarizes the correlation coefficients between FXe and Pf. 

 

 
 

Significant differences appear in the relationships between the FX indices and the spot (Ps) 

and forward (Pf) commodity prices. For example, it is evident from Figure 2 that the 
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correlation between FXe and Pf is strongest (negative) for the crude oil market, while that 

between FXi and Pf is highest (negative) for copper. The FX Impact Index (FXIM) is clearly 

influential (positive) for the oil market as displayed in the diagram for FXIM–Pf. 

Spot prices (Ps) seem to be most closely (negatively) correlated with FXe on the crude oil 

market, while FXi is (negatively) correlated best with Ps on the copper market, which is no 

different from the previous examples using forward prices. The correlation between FXIM 

and Ps is similar to that between FXIM and Pf, with the strongest (positive) link maintained 

for oil. 

Figure 3: Consolidated correlation coefficients across all three time frames for Ps and FXe, FXi, and 

FXIM 

This set of charts consists of two panels. Panel 1, in the top row, displays the sum of the correlation coefficients 

between FXI, FXE, and FXIM and Ps. Panel 2, in the bottom row, displays the sum of the correlations between 

the same variables against Pf. The original data for the charts can be found in Table 3. 

 
 

 

It is evident from Panel 1 of Figure 3 that, for copper, iron ore, and oil, the correlation 

between Ps and FXe is the strongest. Freight is the exception, with the correlation between 

FXi and Ps being the strongest. Another important exception is the soybean spot market, 

which demonstrates the strongest correlation with FXIM. Panel 2 displays the same pairs, but 

with Pf instead of Ps. It can be inferred that FXe versus Pf exhibits the strongest correlation 

across all the markets, with the exception of freight. The correlation coefficients from the 

original correlation matrix displayed in Figure 2 are consolidated in the form of Table 5 for 

further analysis.  

P
a

n
e

l 1
 

P
a

n
e

l 2
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Table 5: Summary of correlation coefficients  

This table consists of four panels summarizing, for different combinations and data frequencies, the correlation coefficients  between FXi, FXe, and FXIM, on the one hand, 

and Ps and Pf on the other. The first two panels summarize the correlation coefficien ts for Ps versus FXe across all five markets for the three time frequencies, which can be 

represented as follows: 𝑅 
 = ∑ 𝑟 

  
   , where i = 1,…, k for daily, weekly, and monthly frequencies; r is Pearson correlation coefficient between FXe and Ps; and 𝑅 

  is the 

sum of the individual r coefficients between FXe and Ps for each market. The process is replicated across all pairs and frequencies for Ps. The process for Pf takes the 

form 𝑅 
 = ∑ 𝑟 

 
 

   
 , and the results are displayed in panel b. Panel c summarizes the results for all the markets across Ps and Pf under   , 

      =  𝑅 , 
      

+ 𝑅 , 
       

+

𝑅 , 
   + 𝑅  ,

   + 𝑅 , 
   

, where 𝑅 , 
       is the sum of the correlation coefficients between FXe and Ps for each market. The calculation is repeated for FXi and FXIM in relation to 

Ps under   , 
       and   ,    

      . The same calculation is repeated for Pf under   , 
      ,   , 

      , and   ,    
      . Panel d presents the sums of the coefficients for both the Ps 

and forward markets, which can be described as follows:   
      = ∑ 𝑅 , 

       

   
, where i = 1, …, k as the daily, weekly, and monthly frequencies, 𝑅 , 

       is the sum of 

correlation coefficients across all frequencies, and A is the average between Ps and Pf. 

 

 

  Ps (all markets) Forward (all markets) All markets Overall price (Ps + Pf) correlation 

  Daily Weekly Monthly Daily Weekly Monthly Ps Pf Copper Freight I. Ore Oil Soybean 

Exporter -1.00 -1.39 -1.67 -0.97 -1.38 -1.61 -4.06 -3.96 -2.65 -0.11 -1.28 -2.87 -1.11 

Importers -0.42 -0.56 -0.42 -0.30 -0.37 -0.38 -1.55 -1.05 -1.28 0.52 -0.64 -0.72 -0.50 

FXIM 0.79 0.88 0.55 0.78 0.96 0.74 2.22 2.49 1.52 -0.05 0.45 2.04 0.74 
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The results, part of sub-hypothesis H1, confirm the claims of CRR (2010) and BKS (2014) 

that commodity prices and the currencies of exporters are positively correlated. Since each of 

the currency indices consists of a currency pair with the USD in the numerator of the 

currency cross, any weakness in the FX index equates to strength in the currency of the 

exporter (or importer) in the denominator of the FX cross. 

 

When the correlations of Ps are consolidated by data frequency, as displayed in Table 5, they 

are found to be strongest for FXe at a monthly frequency and for FXi and FXIM at a weekly 

frequency. This result is indicative of the data frequency most suitable for explaining the 

relationship. Consolidation across markets suggests that the correlation between P and FXe is 

strongest for the oil market, that between P and FXi is strongest for copper, and that between 

P and FXIM is strongest for crude oil. 

Figures 4a–d: Summary of the correlation coefficients  

The data for these charts can be found in Table 5. The charts summarize the correlation coefficients for different 

combinations and data frequencies between FXI, FXE, and FXIM, on one hand, and Ps and Pf, on the other. The 

first two charts summarize the correlation coefficients between Ps and FXe across all five markets at the three 

time frequencies. 

 

 
 

 

Furthermore, the following conclusions can be inferred from the results in Table 5 and 

Figures 4a to 4d. First, the correlation between FXe and P is the strongest one across all the 

time frames. Second, the correlation is stronger for Ps, not Pf. Third, all the commodities 

exhibit an inverse correlation between price P and FXe or FXi, except freight, which shows a 

positive correlation for FXi. Fourth, the correlation strength increases with decreasing 

frequency, that is, the correlation appears to be stronger for a monthly frequency compared to 

daily or weekly. Fifth, the correlation between FXe and P is stronger than that between FXi 

and P for all commodities except freight. Sixth, a significant correlation is detected between 

FXIM and P with a daily frequency, but its strength declines steadily and the correlation 
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disappears for weekly and monthly frequencies. Finally, seventh, the correlations between 

FXi, FXe, and FXIM and P are stronger for Ps compared to Pf. 

 

These results are supported by purchasing power parity theory and general trade theory, 

which dictate that, for goods traded in USD, the currency value of an importer should have an 

impact on the purchasing power in USD terms. In turn, this affects the quantity purchased on 

the market, which alters demand. The positive relationship between P and FXe is also 

explained by general trade theory, since higher international prices incentivize exporters to 

produce and ultimately export more. In turn, this has a positive impact on their trade balance, 

which increases the demand for the local currency and its value. 

 

However, correlation does not imply causation, which is key element of the proposed 

hypotheses,   
 ,   

 , and   
 . This is why the CR and SSP tests and the universally accepted 

Granger causality test are applied to the daily, weekly, and monthly time series with Ps, Pf, 

FXe, FXi, and FXIM data. The first of the three tests used to examine the causal forces 

between FX and commodity prices is the CR test, described in Section 5.5.3.1. The results 

from the tests across all three time frames (daily, weekly, monthly), commodities, and 

regimes can be found in Table 6. Figures A1 and A2 in the Appendix illustrate the results. 
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Table 6: CR test results, by regime 

This table displays the results of the CR test by market, by time frame (daily, weekly, monthly), lead period, and by pair te sted. A CR coefficient greater than 0.50 indicates 

that the percentage of times variable A reacts to changes in variable B is great er 50% of all instances in the sample. For example, within the daily time frame for copper, the 

number of positive reactions of Ps to changes in FXIM is highest for the lagged variables, as in the columns called ―Coincidental‖. In other words, the reaction of Ps to 

changes in FXIM is the strongest as a coincidental move. If FXIM is forced to lead by one to five periods, the number of positive reactions declines to less than 50% of the 

entire sample. 

                     
  Daily Weekly Monthly 

  Coincidental 1 2 3 4 5 Coincidental 1 2 3 4 5 Coincidental 1 2 3 4 5 

  FXIM vs. Ps FXIM vs. Ps FXIM vs. Ps 

Copper 0.56 0.49 0.49 0.48 0.51 0.5 0.63 0.57 0.51 0.46 0.49 0.49 0.56 0.56 0.39 0.49 0.52 0.57 

Freight 0.49 0.5 0.49 0.49 0.5 0.49 0.47 0.52 0.5 0.49 0.52 0.53 0.47 0.53 0.57 0.53 0.41 0.42 
Iron ore 0.5 0.51 0.5 0.49 0.49 0.51 0.58 0.55 0.49 0.49 0.48 0.49 0.49 0.57 0.47 0.32 0.51 0.53 

Oil 0.57 0.5 0.5 0.49 0.49 0.5 0.61 0.56 0.49 0.48 0.46 0.45 0.62 0.54 0.49 0.56 0.38 0.51 

Soybean 0.54 0.49 0.5 0.5 0.5 0.5 0.54 0.53 0.49 0.48 0.47 0.47 0.53 0.53 0.59 0.44 0.41 0.49 

  FXIM vs. Pf FXIM vs. Pf FXIM vs. Pf 
Copper 0.58 0.49 0.5 0.49 0.5 0.51 0.64 0.59 0.49 0.44 0.47 0.49 0.57 0.52 0.41 0.53 0.48 0.58 

Freight 0.5 0.5 0.51 0.5 0.5 0.5 0.52 0.53 0.51 0.47 0.51 0.51 0.49 0.43 0.65 0.53 0.41 0.43 

Iron ore 0.51 0.5 0.5 0.51 0.49 0.5 0.58 0.55 0.52 0.5 0.48 0.49 0.47 0.57 0.47 0.37 0.48 0.58 

Oil 0.57 0.51 0.5 0.5 0.5 0.51 0.61 0.54 0.47 0.47 0.45 0.43 0.62 0.54 0.49 0.56 0.38 0.51 
Soybean 0.53 0.5 0.5 0.5 0.5 0.5 0.56 0.53 0.51 0.48 0.48 0.47 0.56 0.51 0.57 0.39 0.46 0.49 

  Fxe vs. Ps Fxe vs. Ps Fxe vs. Ps 

Copper 0.56 0.57 0.51 0.51 0.48 0.49 0.31 0.43 0.48 0.5 0.53 0.5 0.33 0.44 0.56 0.47 0.38 0.39 

Freight 0.64 0.58 0.52 0.51 0.5 0.5 0.47 0.51 0.53 0.53 0.48 0.49 0.48 0.48 0.41 0.57 0.58 0.51 
Iron ore 0.62 0.56 0.52 0.54 0.53 0.53 0.41 0.45 0.45 0.48 0.5 0.49 0.35 0.44 0.56 0.52 0.42 0.42 

Oil 0.55 0.58 0.5 0.49 0.49 0.47 0.36 0.43 0.47 0.46 0.45 0.47 0.32 0.48 0.57 0.56 0.49 0.53 

Soybean 0.59 0.57 0.51 0.49 0.5 0.5 0.42 0.43 0.46 0.5 0.49 0.47 0.37 0.48 0.49 0.56 0.57 0.48 
  Fxe vs. Pf Fxe vs. Pf Fxe vs. Pf 

Copper 0.55 0.58 0.5 0.51 0.5 0.49 0.29 0.42 0.49 0.52 0.55 0.49 0.29 0.43 0.49 0.43 0.39 0.38 

Freight 0.62 0.57 0.52 0.52 0.51 0.5 0.51 0.53 0.54 0.53 0.5 0.5 0.51 0.51 0.43 0.59 0.56 0.54 

Iron ore 0.63 0.56 0.49 0.5 0.51 0.5 0.41 0.42 0.44 0.46 0.47 0.51 0.41 0.42 0.53 0.52 0.44 0.42 
Oil 0.54 0.58 0.5 0.49 0.49 0.48 0.39 0.44 0.49 0.45 0.47 0.47 0.32 0.48 0.57 0.56 0.49 0.53 

Soybean 0.59 0.57 0.5 0.49 0.5 0.5 0.42 0.43 0.48 0.52 0.49 0.47 0.39 0.48 0.47 0.51 0.52 0.46 

  Fxi vs. Ps Fxi vs. Ps Fxi vs. Ps 

Copper 0.6 0.57 0.51 0.49 0.47 0.48 0.39 0.43 0.49 0.45 0.46 0.49 0.38 0.52 0.46 0.49 0.38 0.35 
Freight 0.65 0.59 0.51 0.51 0.5 0.5 0.47 0.49 0.53 0.55 0.54 0.52 0.54 0.65 0.56 0.52 0.63 0.57 

Iron ore 0.61 0.57 0.51 0.52 0.52 0.52 0.43 0.48 0.47 0.49 0.47 0.47 0.47 0.48 0.54 0.49 0.47 0.49 

Oil 0.63 0.58 0.51 0.49 0.48 0.48 0.47 0.46 0.44 0.44 0.45 0.48 0.32 0.41 0.41 0.52 0.38 0.51 
Soybean 0.62 0.57 0.51 0.5 0.5 0.5 0.47 0.45 0.49 0.47 0.47 0.48 0.52 0.48 0.49 0.47 0.48 0.48 

  Fxi vs. Pf Fxi vs. Pf Fxi vs. Pf 

Copper 0.6 0.57 0.5 0.48 0.49 0.48 0.39 0.44 0.48 0.45 0.48 0.49 0.37 0.46 0.47 0.48 0.34 0.39 

Freight 0.64 0.59 0.54 0.51 0.51 0.5 0.54 0.54 0.54 0.51 0.51 0.49 0.62 0.59 0.56 0.49 0.58 0.51 
Iron ore 0.63 0.58 0.49 0.51 0.5 0.47 0.47 0.49 0.46 0.45 0.48 0.47 0.47 0.48 0.52 0.49 0.47 0.49 

Oil 0.63 0.58 0.5 0.49 0.48 0.48 0.47 0.45 0.43 0.45 0.45 0.49 0.32 0.41 0.41 0.52 0.38 0.51 

Soybean 0.61 0.57 0.51 0.5 0.5 0.5 0.47 0.5 0.53 0.49 0.49 0.48 0.54 0.48 0.44 0.49 0.56 0.51 
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Analysis of the CR test coefficients reveals that both Ps and Pf appear to be the most 

responsive to changes in FXIM in the copper market for the weekly and monthly time 

frequency, since they present the highest CR test coefficients. On the other hand, FXi is 

strongest for the daily frequency. The reaction of Ps to changes in FXi in the freight market is 

strongest for all three frequencies. On the other hand, the highest CR coefficient is found in 

the iron ore market, for the daily reaction of Ps to changes in FXi, while the price reaction to 

changes of FXIM is strongest for the weekly and monthly frequencies. The same result is 

noted for the crude oil market, where the coefficient is strongest for FXi and Ps at for daily 

frequency, while weekly and monthly frequencies reveal FXIM to be the main price driver. 

The strongest coefficients with a daily frequency are between FXi and Ps, Pf and FXIM for 

the soybean market at a weekly frequency, and FXi within a monthly frequency. These results 

are significant in the following ways. 

 

All the markets appear to respond strongly to changes in FXi. The reaction to FXi is 

significantly stronger than to FXe. This is particularly the case for the daily data frequency. 

Therefore,   
  can be rejected. Furthermore, all the markets respond strongly to the proposed 

synthetic S&D, that is, FXIM. The reaction is mainly concentrated within the weekly and 

monthly time frequencies. Furthermore, contrary to the results discussed in the literature, FXi 

appears to play an important role in relation to both spot and forward prices Ps and Pf, 

respectively. Such results are significant because they cast doubt on the claims made in the 

academic literature regarding the importance of FXe in commodity market price formation. 

 

The links between the time series of FXIM, FXi, FXe, Ps, and Pf are next tested with the help 

of the SSP test, as described in Section 5.3.3.2. This is a test on the lead–lag relationship 

between each pair, called regimes, which quantifies the period of the lead–lag reaction. The 

initial results for the daily data frequency are displayed in Table 7 and summarized across all 

time frames and regimes in Table 8 and Figures 7a and 7b. The results for the weekly and 

monthly frequencies can be found in Tables 3A and 4A in the Appendix. 
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Table 7: SSP test results, by market and term 

This table displays the results of the SSP test on the time series with daily data, by market, regime, and lead –lag period. Column zero shows coincidental reactions. 

Columns -1 to -8 show the lead coefficients for the variables FXIM, FXi, and FXe, respectively, tested against Ps and Pf. Columns +1 to +8 show the lag coefficients of the 

variables tested against price. The lead and lag coefficients are summed in columns ∑- and ∑+, and the absolute values of their sums are displayed in columns ABS- and 

ABS+, respectively. The sign represents the direction of the relationship between the two variables, and in this case it is removed in order to focus attention on the overall 

strength of this relationship. Tables with weekly and monthly data frequencies can be found in the Appendix. 

 

    -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 ∑- ABS- ∑- ABS+ 

FRT_Ps FXIM_Ps 
-

0.005 

-

0.001 
0.003 

-

0.002 

-

0.007 

-

0.006 

-

0.009 

-

0.005 

-

0.002 

-

0.009 

-

0.024 

-

0.039 

-

0.056 

-

0.067 

-

0.085 

-

0.089 

-

0.091 

-

0.032 
0.032 

-

0.460 
0.460 

  

FXE_Ps 0.006 0.001 
-

0.006 
0.002 0.005 0.005 0.009 0.002 

-

0.009 

-

0.017 

-

0.016 

-

0.018 

-

0.010 

-

0.003 
0.014 0.027 0.043 0.025 0.025 0.019 0.019 

  

FXI_Ps 0.048 0.038 0.029 0.027 0.021 0.019 0.016 0.013 0.004 
-

0.006 

-

0.016 

-

0.026 

-

0.029 

-

0.028 

-

0.026 

-

0.013 

-

0.002 
0.211 0.211 

-

0.145 
0.145 

FRT_Pf FXIM_Pf 0.026 0.035 0.051 0.065 0.072 0.074 0.079 0.069 0.066 0.058 0.035 0.019 0.008 
-

0.015 

-

0.047 

-

0.067 

-

0.077 
0.472 0.472 

-

0.087 
0.087 

  FXE_Pf 0.026 0.017 
-

0.002 

-

0.011 

-

0.022 

-

0.020 

-

0.021 

-

0.019 

-

0.021 

-

0.014 
0.008 0.021 0.021 0.021 0.033 0.044 0.050 

-

0.052 
0.052 0.185 0.185 

  FXI_Pf 0.069 0.063 0.057 0.056 0.054 0.059 0.067 0.070 0.065 0.068 0.067 0.066 0.059 0.040 0.021 0.016 0.020 0.495 0.495 0.357 0.357 

COP_Ps FXIM_Ps 0.111 0.121 0.134 0.143 0.157 0.165 0.191 0.231 0.289 0.217 0.156 0.110 0.059 0.016 
-

0.027 

-

0.041 

-

0.055 
1.252 1.252 0.436 0.436 

  FXE_Ps 
-

0.148 

-

0.158 

-

0.170 

-

0.195 

-

0.225 

-

0.250 

-

0.293 

-

0.348 

-

0.434 

-

0.358 

-

0.287 

-

0.238 

-

0.188 

-

0.148 

-

0.097 

-

0.074 

-

0.055 

-

1.787 
1.787 

-

1.444 
1.444 

  FXI_P 
-

0.088 

-

0.094 

-

0.087 

-

0.107 

-

0.130 

-

0.153 

-

0.173 

-

0.194 

-

0.222 

-

0.189 

-

0.157 

-

0.136 

-

0.115 

-

0.101 

-

0.079 

-

0.070 

-

0.057 

-

1.027 
1.027 

-

0.905 
0.905 

COP_Pf FXIM_Pf 0.127 0.134 0.146 0.154 0.169 0.181 0.208 0.251 0.313 0.238 0.178 0.126 0.075 0.029 
-

0.015 

-

0.036 

-

0.054 
1.371 1.371 0.539 0.539 

  FXE_Pf 
-

0.148 

-

0.158 

-

0.171 

-

0.197 

-

0.228 

-

0.257 

-

0.302 

-

0.362 

-

0.448 

-

0.372 

-

0.300 

-

0.248 

-

0.195 

-

0.151 

-

0.100 

-

0.071 

-

0.048 

-

1.823 
1.823 

-

1.485 
1.485 

  FXI_Pf 
-

0.088 

-

0.095 

-

0.088 

-

0.106 

-

0.127 

-

0.148 

-

0.168 

-

0.194 

-

0.222 

-

0.192 

-

0.159 

-

0.142 

-

0.121 

-

0.105 

-

0.083 

-

0.073 

-

0.059 

-

1.012 
1.012 

-

0.934 
0.934 
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Table 7 (continued) 

    -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 ∑- ABS- ∑- ABS+ 

OIL_Ps FXIM_Ps 0.066 0.079 0.094 0.114 0.132 0.155 0.188 0.223 0.285 0.227 0.191 0.156 0.136 0.113 0.095 0.067 0.049 1.050 1.050 1.033 1.033 

  FXE_Ps 
-

0.085 

-

0.087 

-

0.097 

-

0.121 

-

0.150 

-

0.194 

-

0.243 

-

0.301 

-

0.386 

-

0.320 

-

0.269 

-

0.226 

-

0.203 

-

0.173 

-

0.154 

-

0.127 

-

0.117 

-

1.277 
1.277 

-

1.588 
1.588 

  FXI_Ps 
-

0.066 

-

0.062 

-

0.053 

-

0.052 

-

0.058 

-

0.072 

-

0.081 

-

0.091 

-

0.101 

-

0.089 

-

0.068 

-

0.053 

-

0.039 

-

0.023 

-

0.011 

-

0.009 

-

0.013 

-

0.533 
0.533 

-

0.306 
0.306 

OIL_Pf FXIM_Pf 0.053 0.065 0.083 0.104 0.131 0.162 0.196 0.235 0.294 0.229 0.195 0.157 0.135 0.111 0.095 0.070 0.054 1.029 1.029 1.046 1.046 

  FXE_Pf 
-

0.064 

-

0.069 

-

0.090 

-

0.116 

-

0.149 

-

0.197 

-

0.247 

-

0.308 

-

0.390 

-

0.320 

-

0.272 

-

0.232 

-

0.210 

-

0.175 

-

0.152 

-

0.128 

-

0.120 

-

1.240 
1.240 

-

1.610 
1.610 

  FXI_Pf 
-

0.069 

-

0.066 

-

0.064 

-

0.064 

-

0.066 

-

0.076 

-

0.085 

-

0.094 

-

0.104 

-

0.097 

-

0.073 

-

0.062 

-

0.050 

-

0.033 

-

0.015 

-

0.012 

-

0.017 

-

0.583 
0.583 

-

0.358 
0.358 

SOY_Ps FXIM_Ps 
-

0.006 

-

0.006 
0.004 0.030 0.051 0.066 0.098 0.138 0.165 0.123 0.076 0.038 0.023 0.008 

-

0.007 

-

0.016 

-

0.018 
0.375 0.375 0.226 0.226 

  FXE_Ps 
-

0.022 

-

0.023 

-

0.034 

-

0.057 

-

0.073 

-

0.089 

-

0.126 

-

0.174 

-

0.210 

-

0.158 

-

0.107 

-

0.070 

-

0.055 

-

0.039 

-

0.024 

-

0.018 

-

0.026 

-

0.598 
0.598 

-

0.497 
0.497 

  FXI_Ps 0.001 
-

0.002 

-

0.003 

-

0.011 

-

0.021 

-

0.030 

-

0.052 

-

0.083 

-

0.112 

-

0.074 

-

0.039 

-

0.024 

-

0.010 
0.016 0.038 0.057 0.048 

-

0.201 
0.201 0.013 0.013 

SOY_Pf FXIM_Pf 
-

0.004 

-

0.005 
0.009 0.032 0.048 0.060 0.094 0.141 0.169 0.134 0.087 0.054 0.046 0.038 0.024 0.012 0.005 0.374 0.374 0.400 0.400 

  FXE_Pf 
-

0.017 

-

0.016 

-

0.034 

-

0.053 

-

0.064 

-

0.075 

-

0.112 

-

0.164 

-

0.201 

-

0.153 

-

0.101 

-

0.068 

-

0.061 

-

0.051 

-

0.037 

-

0.030 

-

0.034 

-

0.534 
0.534 

-

0.535 
0.535 

  FXI_Pf 0.020 0.013 0.001 
-

0.010 

-

0.017 

-

0.027 

-

0.050 

-

0.084 

-

0.116 

-

0.075 

-

0.043 

-

0.028 

-

0.019 
0.007 0.032 0.048 0.046 

-

0.156 
0.156 

-

0.032 
0.032 
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Table 7 (continued) 

 

 

    -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 ∑- ABS- ∑- ABS+ 

IO_Ps FXIM_Ps 0.055 0.078 0.095 0.105 0.104 0.109 0.121 0.135 0.117 0.102 0.084 0.057 0.037 0.021 0.005 0.004 
-

0.006 
0.802 0.802 0.304 0.304 

  FXE_Ps 
-

0.101 

-

0.122 

-

0.138 

-

0.152 

-

0.162 

-

0.177 

-

0.197 

-

0.220 

-

0.216 

-

0.199 

-

0.178 

-

0.156 

-

0.145 

-

0.133 

-

0.124 

-

0.127 

-

0.117 

-

1.269 
1.269 

-

1.180 
1.180 

  FXI_Ps 
-

0.076 

-

0.082 

-

0.084 

-

0.091 

-

0.098 

-

0.104 

-

0.104 

-

0.111 

-

0.115 

-

0.097 

-

0.084 

-

0.076 

-

0.075 

-

0.077 

-

0.086 

-

0.095 

-

0.092 

-

0.750 
0.750 

-

0.682 
0.682 

IO_Pf FXIM_Pf 0.079 0.089 0.096 0.112 0.122 0.127 0.120 0.119 0.100 0.063 0.041 0.014 
-

0.003 

-

0.026 

-

0.040 

-

0.054 

-

0.048 
0.864 0.864 

-

0.052 
0.052 

  FXE_Pf 
-

0.136 

-

0.142 

-

0.148 

-

0.160 

-

0.170 

-

0.175 

-

0.170 

-

0.173 

-

0.162 

-

0.138 

-

0.126 

-

0.111 

-

0.109 

-

0.102 

-

0.102 

-

0.096 

-

0.094 

-

1.275 
1.275 

-

0.879 
0.879 

  FXI_Pf 
-

0.051 

-

0.043 

-

0.045 

-

0.058 

-

0.051 

-

0.050 

-

0.042 

-

0.038 

-

0.035 

-

0.032 

-

0.030 

-

0.035 

-

0.043 

-

0.055 

-

0.076 

-

0.091 

-

0.086 

-

0.378 
0.378 

-

0.448 
0.448 
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Table 8: Consolidated SSP test results  

This table displays the consolidated results from the ABS+ and ABS- columns in Table 7. A value of zero indicates that no leading properties are detected for the particular 

regime. A value of one indicates that leading properties are detected. The number of occurrences per time frame, that is, daily, weekly, and monthly, is display ed at the 

bottom of the table. This number indicates the data frequency at which the proposed indicators are most likely to exhibit  lead properties over price. The values of lead 

occurrences per regime against Ps and Pf are displayed in the Ps regime and forward regime columns. 

 

 

Market Regime Daily Weekly Monthly Regime Daily Weekly Monthly   Ps regime 
Forward 

regime 

F
re

ig
h

t FXIM_Ps 0 0 1 FXIM_PF 1 0 0   1 1 

FXE_Ps 1 0 1 FXE_PF 0 0 0   2 0 

FXI_Ps 1 0 0 FXI_PF 1 0 1   1 2 

C
o

p
p

er
 FXIM_Ps 1 0 0 FXIM_PF 1 0 0   1 1 

FXE_Ps 1 0 1 FXE_PF 1 0 1   2 2 

FXI_Ps 1 0 0 FXI_PF 1 0 0   1 1 

O
il

 

FXIM_Ps 1 1 0 FXIM_PF 0 1 0   2 1 

FXE_Ps 0 0 1 FXE_PF 0 0 1   1 1 

FXI_Ps 1 1 1 FXI_PF 1 1 1   3 3 

S
o

y
b

ea

n
 FXIM_Ps 1 1 1 FXIM_PF 0 1 1   3 2 

FXE_Ps 1 0 0 FXE_PF 0 0 0   1 0 

  FXI_Ps 1 1 1 FXI_PF 1 1 1   3 3 

Ir
o

n
 o

re
 FXIM_Ps 1 1 1 FXIM_PF 1 1 0   3 2 

FXE_Ps 1 0 0 FXE_PF 1 0 0   1 1 

FXI_Ps 1 0 0 FXI_PF 0 0 0   1 0 

Total ∑ occurrences  13 5 8   9 5 6   26 20 

 

 

 

 

 



 

183| P a g e  
 

Figure 5a: SSP test results, by data frequency and response to Ps or forward prices 

This figure shows the strength and data frequency with which the proposed indicators are most likely to lead 

price. 

 

 

Figure 5b: SSP test results, by regime data frequency and response to Ps or forward prices 

This figure shows the strength and data frequency with which the proposed indicators are most likely to lead 

price. 

 

 
 

 

First, it is evident from the data in Tables 7 and 8 that the proposed and tested variables 

FXIM, FXi, and FXe exhibit stronger lead properties over Ps compared to Pf. Second, the 

lead properties appear to be stronger for the daily data frequency (see Figure 5a). The signal 

is lost at the weekly frequency, but it reappears, albeit weakly, at the monthly frequency. This 

result is significant because it provides guidance on the most suitable data frequency when 

applying the proposed FX indices. The data in Figure 5b show the results by individual 

markets across all three time frames. Freight, for example, shows higher responses for Ps to 

FXe and for Pf to FXi. Copper‘s response is highest for FXe, while oil‘s response is strongest 

to FXi. 

 

The final test used to examine the causal forces between FX and prices is the commonly used 

bivariate Granger causality test, as described in Section 5.3.3.3. 
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Table 9: Bivariate Granger causality tests  

The three panels of this  table display the results from the Granger causality tests for the daily , weekly, and monthly time series of FXi, FXe, FXIM, Ps, and Pf. The null 

hypothesis (  ) is dismissed at p-value ≤ 0.05.  

 

  Copper 
Prob. H0: 
rejected 

Freight 
Prob. H0: 
rejected 

Iron ore 
Prob. H0: 
rejected 

Oil  
Prob. H0: 
rejected 

Soybean 
Prob. H0: 
rejected 

D
ai

ly
 

Pf_FXe 0.6502 Pf_FXe 0.5676 Pf_FXe 0.7813 Pf_FXe 0.6618 Pf_FXe 0.3128 

FXe_Pf 0.3225 FXe_Pf 0.9737 FXe_Pf 0.3345 FXe_Pf 0.1727 FXe_Pf 0.5882 

FXIM_FXe 0.8134 FXIM_FXe 0.9235 FXIM_FXe 0.4514 FXIM_FXe 0.9764 FXIM_FXe 0.3501 

FXe_FXIM 0.02 FXe_FXIM 0 FXe_FXIM 0 FXe_FXIM 0 FXe_FXIM 0.012 

FXi_FXe 0.4004 FXi_FXe 0.804 FXi_FXe 0.2927 FXi_FXe 0.8612 FXi_FXe 0.0814 

FXe_FXi  0.0169 FXe_FXi  0.1119 FXe_FXi  0.0003 FXe_FXi  0.099 FXe_FXi  0.0186 

Ps_FXe 0.4793 Ps_FXe 0.4943 Ps_FXe 0.3771 Ps_FXe 0.8345 Ps_FXe 0.638 

FXe_Ps 0.2504 FXe_Ps 0.0977 FXe_Ps 0.0021 FXe_Ps 0.1235 FXe_Ps 0.5638 

FXIM_Pf 0.8603 FXIM_Pf 0.9044 FXIM_Pf 0.5416 FXIM_Pf 0.4219 FXIM_Pf 0.5147 

Pf_FXIM 0.7259 Pf_FXIM 0.7287 Pf_FXIM 0.6706 Pf_FXIM 0.0952 Pf_FXIM 0.1008 

FXi_Pf 0.1608 FXi_Pf 0.7393 FXi_Pf 0.8623 FXi_Pf 0.5965 FXi_Pf 0.544 

Pf_FXi 0.3218 Pf_FXi 0.6038 Pf_FXi 0.2311 Pf_FXi 0.0746 Pf_FXi 0.3597 

Ps_Pf 0.006 Ps_Pf 0.0011 Ps_Pf 0.506 Ps_Pf 0 Ps_Pf 0.1009 

Pf_Ps 0.0002 Pf_Ps 0.0068 Pf_Ps 0 Pf_Ps 0.1117 Pf_Ps 0.8288 

Fxi_FXIM 0.2123 Fxi_FXIM 0.0603 Fxi_FXIM 0.0015 Fxi_FXIM 0.0437 Fxi_FXIM 0.3535 

FXIM_FXi 0.0156 FXIM_FXi 0.2646 FXIM_FXi 0.0011 FXIM_FXi 0.2514 FXIM_FXi 0.1134 

Ps_FXIM 0.347 Ps_FXIM 0.9046 Ps_FXIM 0.6628 Ps_FXIM 0.8225 Ps_FXIM 0.8641 

FXIM_Ps 0.7181 FXIM_Ps 0.0702 FXIM_Ps 0.0049 FXIM_Ps 0.2613 FXIM_Ps 0.4928 

Ps_FXi 0.5245 Ps_FXi 0.4084 Ps_FXi 0.3709 Ps_FXi 0.397 Ps_FXi 0.4604 

FXi_Ps 0.2608 FXi_Ps 0.8706 FXi_Ps 0.6676 FXi_Ps 0.7418 FXi_Ps 0.7195 
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Table 9 (continued) 

 

 

  Copper 
Prob. H0: 
rejected 

Freight 
Prob. H0: 
rejected 

Iron ore 
Prob. H0: 
rejected 

Oil  
Prob. H0: 
rejected 

Soybean 
Prob. H0: 
rejected 

W
ee

kl
y 

Pf_FXe 0.4668 Pf_FXe 0.1171 Pf_FXe 0.2566 Pf_FXe 0.0289 Pf_FXe 0.5949 

FXe_Pf 0.8046 FXe_Pf 0.7294 FXe_Pf 0.019 FXe_Pf 0.697 FXe_Pf 0.9399 

FXIM_FXe 0.9763 FXIM_FXe 0.1244 FXIM_FXe 0.3582 FXIM_FXe 0.148 FXIM_FXe 0.1976 

FXe_FXIM 0.6583 FXe_FXIM 0.4101 FXe_FXIM 0.2447 FXe_FXIM 0.3137 FXe_FXIM 0.488 

FXi_FXe 0.5224 FXi_FXe 0.0439 FXi_FXe 0.5956 FXi_FXe 0.0712 FXi_FXe 0.0869 

FXe_FXi  0.6599 FXe_FXi  0.17 FXe_FXi  0.759 FXe_FXi  0.1568 FXe_FXi  0.1679 

Ps_FXe 0.5406 Ps_FXe 0.209 Ps_FXe 0.5112 Ps_FXe 0.0175 Ps_FXe 0.7802 

FXe_Ps 0.8506 FXe_Ps 0.6164 FXe_Ps 0.4425 FXe_Ps 0.463 FXe_Ps 0.9411 

FXIM_Pf 0.9359 FXIM_Pf 0.1882 FXIM_Pf 0.0733 FXIM_Pf 0.876 FXIM_Pf 0.4994 

Pf_FXIM 0.5351 Pf_FXIM 0.3111 Pf_FXIM 0.6432 Pf_FXIM 0.0094 Pf_FXIM 0.2496 

FXi_Pf 0.39 FXi_Pf 0.1267 FXi_Pf 0.1982 FXi_Pf 0.5954 FXi_Pf 0.8373 

Pf_FXi 0.6305 Pf_FXi 0.3868 Pf_FXi 0.2244 Pf_FXi 0.218 Pf_FXi 0.5954 

Ps_Pf 0.7378 Ps_Pf 0.4057 Ps_Pf 0 Ps_Pf 0.6369 Ps_Pf 0 

Pf_Ps 0.9261 Pf_Ps 0.0251 Pf_Ps 0 Pf_Ps 0.2458 Pf_Ps 0.7344 

Fxi_FXIM 0.8269 Fxi_FXIM 0.372 Fxi_FXIM 0.5161 Fxi_FXIM 0.2699 Fxi_FXIM 0.3355 

FXIM_FXi 0.9246 FXIM_FXi 0.3156 FXIM_FXi 0.6931 FXIM_FXi 0.3147 FXIM_FXi 0.7604 

Ps_FXIM 0.5661 Ps_FXIM 0.2606 Ps_FXIM 0.761 Ps_FXIM 0.0039 Ps_FXIM 0.3629 

FXIM_Ps 0.9572 FXIM_Ps 0.2749 FXIM_Ps 0.5713 FXIM_Ps 0.959 FXIM_Ps 0.5893 

Ps_FXi 0.7229 Ps_FXi 0.5623 Ps_FXi 0.4895 Ps_FXi 0.274 Ps_FXi 0.4118 

FXi_Ps 0.3977 FXi_Ps 0.3216 FXi_Ps 0.7519 FXi_Ps 0.5848 FXi_Ps 0.7844 
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Table 9 (continued) 

 

 

  Copper 
Prob. H0: 
rejected 

Freight 
Prob. H0: 
rejected 

Iron ore 
Prob. H0: 
rejected 

Oil  
Prob. H0: 
rejected 

Soybean 
Prob. H0: 
rejected 

M
o

n
th

ly
 

Pf_FXe 0.0704 Pf_FXe 0.1626 Pf_FXe 0.6915 Pf_FXe 0.776 Pf_FXe 0.5804 

FXe_Pf 0.6077 FXe_Pf 0.9852 FXe_Pf 0.2071 FXe_Pf 0.0266 FXe_Pf 0.7949 

FXIM_FXe 0.9741 FXIM_FXe 0.7538 FXIM_FXe 0.2552 FXIM_FXe 0.1744 FXIM_FXe 0.2566 

FXe_FXIM 0.2785 FXe_FXIM 0.0275 FXe_FXIM 0.1242 FXe_FXIM 0.7795 FXe_FXIM 0.3524 

FXi_FXe 0.4792 FXi_FXe 0.6778 FXi_FXe 0.2675 FXi_FXe 0.587 FXi_FXe 0.2454 

FXe_FXi  0.9485 FXe_FXi  0.8033 FXe_FXi  0.9966 FXe_FXi  0.7418 FXe_FXi  0.9485 

Ps_FXe 0.1059 Ps_FXe 0 Ps_FXe 0.4871 Ps_FXe 0.169 Ps_FXe 0.7004 

FXe_Ps 0.5107 FXe_Ps 0.6776 FXe_Ps 0.0902 FXe_Ps 0.8228 FXe_Ps 0.7813 

FXIM_Pf 0.2105 FXIM_Pf 0.4193 FXIM_Pf 0.0928 FXIM_Pf 0.7287 FXIM_Pf 0.693 

Pf_FXIM 0.3083 Pf_FXIM 0.5822 Pf_FXIM 0.3308 Pf_FXIM 0.7911 Pf_FXIM 0.4004 

FXi_Pf 0.764 FXi_Pf 0.4347 FXi_Pf 0.2425 FXi_Pf 0.0208 FXi_Pf 0.7421 

Pf_FXi 0.7189 Pf_FXi 0.3656 Pf_FXi 0.9959 Pf_FXi 0.8274 Pf_FXi 0.7059 

Ps_Pf 0.085 Ps_Pf 0.9586 Ps_Pf 0.1794 Ps_Pf 0.7466 Ps_Pf 0.2244 

Pf_Ps 0.0321 Pf_Ps 0.259 Pf_Ps 0.2486 Pf_Ps 0.8339 Pf_Ps 0.4786 

Fxi_FXIM 0.5629 Fxi_FXIM 0.0272 Fxi_FXIM 0.2974 Fxi_FXIM 0.2819 Fxi_FXIM 0.6146 

FXIM_FXi 0.8192 FXIM_FXi 0.8688 FXIM_FXi 0.4181 FXIM_FXi 0.6469 FXIM_FXi 0.8213 

Ps_FXIM 0.3229 Ps_FXIM 0.0774 Ps_FXIM 0.0005 Ps_FXIM 0.8745 Ps_FXIM 0.4586 

FXIM_Ps 0.1817 FXIM_Ps 0.4767 FXIM_Ps 0.0598 FXIM_Ps 0.9461 FXIM_Ps 0.6946 

Ps_FXi 0.8219 Ps_FXi 0.0076 Ps_FXi 0.285 Ps_FXi 0.5402 Ps_FXi 0.7735 

FXi_Ps 0.6971 FXi_Ps 0.057 FXi_Ps 0.4173 FXi_Ps 0.2956 FXi_Ps 0.7666 
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It is evident from the results displayed in Table 9 and Figure 5a that most of the causal links 

are detected within the higher-frequency domain, namely, for the daily time series. Amongst 

other causal links, the indicator (FXIM) representing the synthetic S&D balance for each 

market as proposed in this paper is found to Granger-cause Ps for the freight and iron ore 

markets and Pf for the iron ore market at the daily frequency. The signal associated with 

potential predictive power of FXIM completely vanishes with decreasing data frequencies, 

namely, weekly and monthly. This result is also evident from the summary of causality 

signals in Table 10 and Figures 6a and 6b. 

Table 10: Summary of bivariate Granger causality tests  

This table displays the sums of the pairs for which    was rejected for all three time frequencies (daily, weekly, 

monthly) for the FXi, FXe, FXIM, Ps, and Pf time series, as initially shown in Table 7. 

 

  Copper Freight Iron ore Oil Soybean Time frequency 

Daily 5 6 7 3 2 23 

Weekly 3 4 4 4 2 17 

Monthly 3 5 2 2 1 13 

Per market 11 15 13 9 5   

Figures 6a: Summary of Granger causality tests  

This figure displays the number of causal links detected, by market. The data for the charts can be found in 

Table 10, which displays the sums of the pairs for which    was rejected for all free time frequencies of the 

FXi, FXe, FXIM, Ps, and Pf time series. 

 

 

 

Figures 6b: Summary of Granger causality tests  

This figure displays the number of causal links detected, by data frequency. The data for the charts can be found 

in Table 10, which displays the sums of the pairs for which    was rejected for all free time frequencies of the 

FXi, FXe, FXIM, Ps, and Pf time series. 
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The result suggests that the higher the frequency, the stronger the causality signal amongst 

the five variables in the study. Furthermore, the freight, iron ore, and oil markets appear to 

possess stronger causality processes compared to copper and soybean. 

 
All three causality tests discussed earlier require a stationary time series, which is why the 

data are first tested for a unit root with the ADF test. Stationarity is also a necessary condition 

for the deployment of a multivariate VAR framework, which is an important part of the 

hypotheses tested in this paper. A multivariate VAR model is employed because causality can 

be successfully tested with the help of the IRF of the VAR model/VECM environment as 

well. Since the original time series are not stationary in levels, their properties are further 

tested for cointegration with the standard (Johansen 1991) cointegration test. No 

cointegration is detected across the time frames, and I(1) stationary time series are therefore 

employed under the unrestricted VAR framework. Since the data are stationary in first 

differences, the deterministic trend specification of the VAR model involves no trend or 

intercept. The lag structure of the VAR model is calculated according to the methodology in 

Section 5.5 and Lütkepohl (2005). The HQIC returns the lowest lag length of two. 

 

Before exposing the results of the actual IRF analysis, it is important to reiterate that a higher 

FX index value indicates weaker domestic currencies in the basket. In turn and according to 

international trade and purchasing power theories, the incentive to produce and export 

commodities increases and the purchasing power of the consumers/importers decreases. Both 

conditions promote lower commodity prices. 

 

The first hypothesis of the study investigates the flow of causality between FX and P. 

Analysis of the impulse responses of all five markets across the three data frequencies (daily, 

weekly, monthly) confirms earlier findings of the three bivariate causality tests, namely, the 

CR, SSP, and Granger tests, and it reveals strong evidence in support of the hypothesis that 

FX causes P. Moreover, the IRF analysis fails to find a single occasion in which the causal 

link P towards FX is stronger than that of FX to P. Consolidated results from the IRFs of all 

30 VAR models are presented in Tables 11 and 12 and displayed in Figures 7a to 7f. It is 

evident that the number of causal occurrences between FX and Ps and Pf is significantly 

higher than the instances of spillover from P to FX. The complete results for the IRFs across 

all the markets and frequencies can be found in the Appendix. 
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The second hypothesis of the paper, which asserts that FXi and FXe have equal predictive 

power over P (not differentiating between Ps and Pf), is also tested with the help of the 

impulse responses of the 30 VAR models proposed. The sub-hypothesis stipulating that the 

predictive power of FX is stronger for Ps than for Pf is also examined. The hypothesis is 

rejected, since the consolidated results, displayed in Tables 11 and 12 and Figures 7a to 7f, 

demonstrate that the causal processes between FXe and P are both stronger and more frequent 

than the processes between FXi and P. The evidence is strongest for the daily frequency 

(Figure 7a), where only the soybean market registers equal numbers of causal reactions of 

FXe to P as of FXi to P. For the weekly frequency (Figure 8b), soybean again exhibits equal 

numbers of causal reactions, while freight clearly favours the link from FXi to P. Such an 

outcome for the freight market suggests that the value of the currencies of commodity 

importers is more important than the currencies of exporters, evidence in line with the 

discussion in the introduction about changing pressure along the global supply chains 

(demand pull growing in importance versus supply push). Further analysis of the monthly 

data reveals that copper and oil register the same numbers of causal occurrences of reactions 

of FXi to P as of FXe to P (Figure 7c), while freight again favours the signal flowing from 

FXi to P. The iron ore market is the only market in the sample where FXi does not seem to 

have any influence for the daily or weekly frequency, since all the causal links are observed 

from FXe to P. Therefore, it can be inferred that the currencies of exporters have a 

disproportionately stronger impact on the price of iron ore compared to the currencies of 

importers. 

 

The proposed sub-hypothesis tests the different strengths of the causal process between FXi 

and FXe and Ps and Pf. This evidence is based on the same 30 VAR models with the 

corresponding IRFs reported in Tables 11 and 12, Figures 7d and 7e, and Figures A3 in the 

Appendix. The results confirm the sub-hypothesis for FXe as noted in Figure 7d. However, 

the hypothesis cannot be confirmed or rejected for Ps, since the number of causal reactions 

from the spillover effect of the introduced shock is equal to the number of reactions of Pf (see 

Figures 7d and 7e). 
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Table 11: Results from the VAR IRFs for all markets, prices, and frequencies  

This table displays the results for the VAR IRFs. Causal signals detected by the VAR IRFs due to the positive 

shock introduced to the system are marked with a value of one. A lack of a causal reaction is denoted by a value 

of zero. These results are based on the diagrams of IRFs displayed in Figure A3 in the Appendix. 

 

Daily, Ps FXi causes Ps Ps causes FXi FXe causes Ps Ps causes FXe 

Copper     1   

Freight     1   

Iron ore 1   1   

Oil     1   

Soybean 1   1   

Daily, forward FXi causes Ps Ps causes FXi FXe causes Ps Ps causes FXe 

Copper     1   

Freight         

Iron ore     1   

Oil 1   1   

Soybean 1   1   

Weekly, Ps FXi causes Ps Ps causes FXi FXe causes Ps Ps causes FXe 

Copper 1   1   

Freight 1   1   

Iron ore     1   

Oil     1   

Soybean 1   1   

Weekly, forward FXi causes Ps Ps causes FXi FXe causes Ps Ps causes FXe 

Copper     1   

Freight 1       

Iron ore     1   

Oil     1   

Soybean 1   1   

Monthly, Ps FXi causes Ps Ps causes FXi FXe causes Ps Ps causes FXe 

Copper 1   1   

Freight 1   1   

Iron ore     1   

Oil 1   1   

Soybean     1   

Monthly, forward FXi causes Ps Ps causes FXi FXe causes Ps Ps causes FXe 

Copper 1   1   

Freight 1       

Iron ore     1   

Oil 1   1   

Soybean 1   1   
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Table 12: Sums of the results from the VAR IRFs for all markets, prices, and frequencies  

This table displays the sums of the results from the VAR IRFs as displayed in Table 11. 

 

Weekly FXi causes P P causes FXi FXe causes P P causes FXe 

Copper 1 0 2 0 

Freight 2 0 1 0 

Iron ore 0 0 2 0 

Oil 0 0 2 0 

Soybean 2 0 2 0 

          

Monthly FXi causes P P causes FXi FXe causes P P causes FXe 

Copper 2 0 2 0 

Freight 2 0 1 0 

Iron ore 0 0 2 0 

Oil 2 0 2 0 

Soybean 1 0 2 0 

          

Total FXi causes P P causes FXi FXe causes P Ps causes FXe 

Copper 3 0 6 0 

Freight 4 0 3 0 

Iron ore 1 0 6 0 

Oil 3 0 6 0 

Soybean 5 0 6 0 
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Figures 7a to 7f: Summary of IRF results for the three data frequencies  

This charts display the sums of the responses detected by the VAR IRF and presented in Table 12. Figure 7a 

displays the results for the daily frequency, Figure 7b the results for the weekly frequency, Figure 7c the results 

for the monthly frequency, Figure 7d the results for the reaction of Ps, Figure 7e the results for the reaction of 

Pf, and Figure 7f the results for the sums across all frequencies (daily, weekly, monthly) and prices (Ps, Pf).  
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The third hypothesis states that FXIM has stronger predictive power over P compared to the 

predictive power of each of its constituents FXe and FXi. The sub-hypothesis states that the 

predictive power of FXIM is stronger over Pf than over Ps. The hypotheses verification is 

carried out by comparing the R-squared value of the ordinary least squares (OLS) regression 

models. 

The results reveal that the explanatory power of the proposed currency indices FXi, FXe, and 

FXIM is strongest for the oil market (Figures 8d and 8f), followed by copper and iron ore. 

The explanatory power appears to increase with decreasing data frequency, that is, noisier 

daily data register lower R-squared coefficients for the OLS compared to monthly data (see 

the trends of the lines in Figure 8f). Furthermore, the evidence in Table 13 and Figures 8a to 

8f suggests that the OLS regression involving FXIM delivers stronger results compared to the 

R-squared values of the other OLS regressions, namely, OLS 1 (FXi, P), OLS 2 (FXe, P), 

OLS 3 (FXIM, P), and OLS 4 (FXi, FXe, P). 

 

The third hypothesis is thus not confirmed, because the results of the bivariate OLS (FX, Pf) 

and OLS (FXIM, P) regression models produce stronger results than those of OLS (FX, P). 

Therefore, it can be inferred that FXIM alone does not possess stronger predictive power over 

P in comparison with the FX indices. 

 

The results from the tests displayed in Table 13 and Figures 8a to 8f also reveal that the sub-

hypothesis can be confirmed only for the copper market. Data from freight reveal that, for the 

monthly frequency, the FXIM has stronger explanatory power over Ps than over Pf. This is 

the case for iron ore for the weekly frequency, oil for the weekly and monthly frequencies, 

and soybeans for the daily and weekly frequencies. 
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Table 13: R-Squared values of the OLS regression models  

This table displays the results of the OLS regressions for each market and combination of dependent (Ps, Pf) 

and independent (FXi, FXe, FXIM) variables. The last row of each panel is the sum (∑) of all the R-squared 

coefficients, which demonstrates the difference in the OLS regression mode ls‘ explanatory power across 

commodities and dependent variables. 

 

 

    Dependent 

`    Daily Weekly Monthly 

  Independent Ps Pf Ps Pf Ps Pf 

C
o

p
p

er
 

 FXi 0.0211 0.0181 0.0569 0.0589 0.0599 0.0602 

FXe 0.1435 0.1511 0.2232 0.2368 0.2117 0.2172 

FXIM 0.0954 0.1057 0.0923 0.1064 0 0.0026 

FXi, FXe 0.1437 0.1519 0.2233 0.2369 0.2126 0.2182 

FXi, FXe, 

FXIM 
0.1441 0.1524 0.2234 0.2373 0.2249 0.2249 

∑ 0.5478 0.5792 0.8191 0.8763 0.7091 0.7231 

Fr
ei

gh
t 

 FXi 0 0.0002 0 0.008 0.0163 0.0931 

FXe 0.0002 0 0.0013 0.0027 0 0.0015 

FXIM 0 0 0.0003 0.0027 0.0123 0.0001 

FXi, FXe 0.0002 0.0003 0.0012 0.0157 0.0244 0.1057 

FXi, FXe, 
FXIM 

0.0008 0.0008 0.0103 0.0217 0.0571 0.11 

∑ 0.0012 0.0013 0.0131 0.0508 0.1101 0.3104 

Ir
o

n
 o

re
 

 FXi 0.0071 0.0001 0.0231 0.0031 0.0214 0.0161 

FXe 0.0022 0.0013 0.0727 0.0457 0.1228 0.1215 

FXIM 0.0001 0.0002 0.0126 0.0029 0.0001 0.0015 

FXi, FXe 0.0075 0.0013 0.0739 0.0464 0.1232 0.1231 

FXi, FXe, 
FXIM 

0.0082 0.0032 0.0799 0.062 0.1272 0.1271 

∑ 0.0251 0.0061 0.2622 0.1601 0.3947 0.3893 

O
il 

 FXi 0.0023 0.0018 0.0001 0.0001 0.0499 0.0525 

FXe 0.1474 0.1524 0.1879 0.2137 0.3502 0.3649 

FXIM 0.0999 0.1058 0.0915 0.1116 0.1209 0.1179 

FXi, FXe 0.1477 0.1529 0.1895 0.217 0.3502 0.3649 

FXi, FXe, 
FXIM 

0.1479 0.1529 0.1906 0.2187 0.3939 0.4051 

∑ 0.5452 0.5658 0.6596 0.7611 1.2651 1.3053 

So
yb

ea
n

 

 FXi 0.0155 0.0152 0.0006 0.0005 0 0 

FXe 0.0294 0.0203 0.0266 0.0223 0.0534 0.0508 

FXIM 0.02 0.0092 0.0184 0.0159 0 0 

FXi, FXe 0.0351 0.0273 0.028 0.0234 0.0555 0.053 

FXi, FXe, 
FXIM 

0.0365 0.0273 0.0333 0.0281 0.0563 0.0531 

∑ 0.1365 0.0993 0.1069 0.0902 0.1652 0.1569 

 
 

 



 

195| P a g e  
 

5.7. Conclusions 
 

This paper examines the predictability of key energy, metal, grain, and shipping commodity 

markets by the FX rates of major exporters and importers of these commodities. The results 

suggest that it is too simplistic to focus exclusively on the relationship between prices and the 

currency of exporters, which is the dominant theme of research in scholarly work. The 

evidence found in this study indicates that valuable information can be extracted from both 

the currency values of the importers and the proposed synthetic S&D model, also known as 

the FX Impact Index, or FXIM. 

 

Initial correlation analysis across FX indices, prices, markets, and data frequencies reveals 

that the relationship between FXe and P is the strongest across all time frames. This result is 

in line with the view of the established academic literature. The correlation is particularly 

strong for Ps prices, and not future prices. The weaker signal against Pf can be explained by 

the forward-looking nature of the futures markets and the faster speeds at which they price in 

available information. Additionally, all commodities in the sample exhibit an inverse 

correlation between prices and the proposed FX indices, except freight, which has a positive 

correlation with FXi. This finding is due to the fact that higher FX index values indicate 

weaker domestic currencies in the basket. In turn and according to international trade and 

purchasing power theories, the incentive to produce and export commodities increases and 

the purchasing power of the consumers/importers decreases. Both conditions promote lower 

commodity prices. A significant correlation is also detected between prices and the FXIM 

relevant to the specific market at a daily frequency. The correlation declines steadily in 

strength and disappears at the weekly and monthly frequencies. 

 

The fact that correlation does not imply causation is a fundamental principle of modern 

science. However, this paper concludes that that the strong correlations between currency 

rates and price and especially between FXe and P transform into strong causation. The 

bivariate causal tests in the study show that all markets appear to respond to changes in FXi, 

FXe, and FXIM. Further analysis of the IRFs of the 30 VAR models involving all five 

markets across the three data frequencies (daily, weekly, monthly) confirms the flow of 

causality from FX to P. The IRF analysis fails to find a single instance when the causal link P 

towards FX is stronger than that of FX towards P. 
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The currencies of the importers of commodities (FXi) appear to play an important role in 

relation to both Ps and forward prices Ps and Pf, respectively. These results are significant, 

because they cast doubt on the claims made in the academic literature in relation to the 

Importance of FXe for commodity market price formation. Therefore, this paper concludes 

that valuable information about future commodity price movements is contained not only in 

the traditional currency pairs of exporters, but also in the currency values of the importers, a 

claim supported by purchasing power theory. In addition, the methodological approach 

adopted in this paper produces a significantly more relevant representation of the specific 

commodity markets, compared to the small basket of currency pairs widely used in the 

literature. 

 

Another important inference that can be drawn from the results of this study is that spot and 

forward commodity prices react differently to the information contained in the FX markets 

and transmitted by the suggested FX models. This finding provides a significant advantage to 

the professional investment community in building trading or risk management strategies. 

Market regulatory bodies are also likely to benefit from the findings, in view of their interest 

in market signals, price formation, and the impact on end users through Consumer Price 

Index baskets. 

 

One common trait of the correlation and causation analyses in the paper is the data frequency 

at which the relationships between the three proposed FX indices and commodity prices peak. 

It is concluded that the frequency at which correlation and causation return the strongest 

signals is daily. The signal associated with the potential predictive power of FXIM 

completely vanishes as the data frequency decreases to weekly and monthly. This result 

suggests that the higher the frequency, the stronger the causality signal amongst the five 

variables in the study. Therefore, the conclusion can be drawn that the value of the proposed 

FX indices is more valuable for short-term trading strategies, as opposed to longer-term 

investment strategies. 

 

Furthermore, the evidence suggests that, even though FXIM does not possess stronger 

predictive qualities over P than FX, inclusion of FXIM in a model is found to improve its 

explanatory power. The construction of a synthetic S&D balance based exclusively on the 

currencies of the main importers and exporters of a particular commodity presents a distinctly 

different theoretical perspective from that of the literature. Such a novel approach is a 
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departure from traditional methodology. It is therefore a valuable tool for both practitioners 

and regulators in measuring the short-term S&D balance of a given commodity market. 

Further research is encouraged into the differences between the bivariate and multivariate 

causality tests for some commodity markets. In addition, even if the markets chosen for this 

paper are key representatives of the energy, agricultural, metal, and shipping sectors, the 

results clearly demonstrate significant variations in the outcomes between individual markets. 

Therefore, the topic of the causal flow between currencies and commodity markets will also 

benefit from the inclusion of more markets in studies. 
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Appendix of Chapter 5 
 

Figures A8a to A8f: R-squared coefficients of the OLS regressions  

These charts display the OLS regression R-squared coefficients from Table 11, split by markets. The x-axis 

shows the dependent variable, the y-axis is the coefficient strength, and the different-coloured histogram bars 

represent the independent variables/groups of variables. Figure 8f displays the sums of the R-squared 

coefficients (y-axis) by dataset frequency and against Ps or Pf (x-axis). 
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Copper, daily, forward 

Figure A3A: VAR model IRFs (daily, copper) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation inno vation on the model variables, by market. 

The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to a positive shock of one standard deviation.  
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Figure 3A: VAR model FXiulse Response Functions  

All individual plots within Figure 3A consists of VECM FXiulse Response Function plots with projected accumulated responses based on Cholesky 1StDev innovation on the model 

variables per market. The x-axis represents time periods. The coefficient on y-axis displays the IRF value on reaction to the introduced positive shock of 1StDeviation.  

Figure A3B: VAR model IRFs (daily, freight) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation inno vation on the model variables, by market. 

The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  
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Figure A3C: VAR model IRFs (daily, iron ore) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation inno vation on the model variables, by 

market. The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  
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Oil, daily, spot Oil, daily, forward 
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Figure A3D: VAR model IRFs (daily, oil) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation inno vation on the model variables, by 

market. The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  
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Figure A3E: VAR model IRFs (daily, soybeans) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one stan dard deviation innovation on the model variables, by 

market. The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  

1StDeviation.  
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Copper, weekly, spot Copper, weekly, forward 

Figure A4A: VAR model IRFs (weekly, copper) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation inno vation on the model variables, by 

market. The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  
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Freight, weekly, forward Freight, weekly, spot 

Figure A4B: VAR model IRFs (weekly, freight) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation innovation on the model variables, by 

market. The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  
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 Iron ore, weekly, forward Iron ore, weekly, spot 

Figure A4C: VAR model IRFs (weekly, iron ore) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation innovation on the model variables, by 

market. The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  
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Oil, weekly, spot Oil, weekly, forward 

Figure A4D: VAR model IRFs (weekly, oil) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation innovation on the model variables, 

by market. The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  
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Soybeans, weekly, forward Soybeans, weekly, spot 

Figure A4E: VAR model IRFs (weekly, soybeans) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation innovation on the model variables, by 

market. The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  

 



 

209| P a g e  
 

  

Copper, monthly, forward Copper, monthly, spot 

Figure A5A: VAR model IRFs (monthly, copper) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation innovation on the model variables, by 

market. The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  
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Iron ore, monthly, forward Iron ore, monthly, spot 

Figure A5B: VAR model IRFs (monthly, iron ore) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation inno vation on the model variables, by market. 

The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  
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Freight, monthly, forward Freight, monthly, spot 

Figure A5C: VAR model IRFs (monthly, freight) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation inno vation on the model variables, by 

market. The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  
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Crude oil, monthly, forward Crude oil, monthly, spot 

Figure A5D: VAR model IRFs (monthly, oil) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation innovation on the model variables, by 

market. The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  
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Soybeans, monthly, forward Soybeans, monthly, spot 

Figure A5E: VAR model IRFs (monthly, soybeans) 

The individual charts plot the VECM IRFs with projected accumulated responses based on a Cholesky one standard deviation inno vation on the model variables, by 

market. The x-axis represents time. The coefficient on the y-axis displays the IRF value in reaction to the positive shock of one standard deviation.  
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Table A1A: Descriptive statistics of the time series for copper and FXi, FXe, FXIM, Ps and Pf 

    Copper 

    FXe Pf FXIM FXi Ps 

Daily  Mean  129.2606  279.8376 0.00  110.2871  6177.373 
   Median  133.7851  279.5500 0.00  111.8570  6223.500 

   Maximum  148.6322  378.4500  0.021600  119.6225  8267.250 

   Minimum  99.14900  194.3500 -0.04  100.0959  4327.500 

   Std. Dev.  13.04571  39.69027  0.007644  5.250272  861.2739 

   Skewness -0.80 -0.26 -0.22 -0.48 -0.28 

   Kurtosis  2.400540  2.275299  3.810665  1.839628  2.238953 

   Jarque–Bera  290.0219  79.57988  84.39185  225.8589  90.47656 

   Probability  0.000000  0.000000  0.000000  0.000000  0.000000 

   Sum  310871.8  673009.4 -3.09  265240.4  14856582 

   Sum Sq. Dev.  409138.0  3787064.  0.140483  66267.12  1.78E+09 

   Observations  2405  2405  2405  2405  2405 

Weekly  Mean  129.2474  280.0356 0.00  110.2753  6181.592 

   Median  133.6568  279.0929 0.00  111.8530  6223.000 

   Maximum  147.9932  375.8500  0.017900  119.2888  8235.040 

   Minimum  99.31900  196.7500 -0.03  100.2828  4380.710 

   Std. Dev.  13.07758  39.80197  0.007043  5.250387  863.1999 

   Skewness -0.79 -0.26 -0.22 -0.48 -0.29 

   Kurtosis  2.393388  2.265334  3.628822  1.838427  2.232428 

   Jarque–Bera  41.89575  11.64651  8.574704  33.04911  13.29890 

   Probability  0.000000  0.002958  0.013741  0.000000  0.001295 

   Sum  45107.34  97732.43 -0.45  38486.08  2157376. 

   Sum Sq. Dev.  59516.03  551300.6  0.017261  9593.165  2.59E+08 

   Observations  349  349  349  349  349 

Monthly  Mean  128.8800  280.9687 0.00  110.1581  6201.454 

   Median  133.6698  278.3121 0.00  111.8078  6239.000 

   Maximum  147.1426  368.3000  0.010600  118.5059  8076.320 

   Minimum  99.27010  202.2145 -0.02  100.1501  4490.690 

   Std. Dev.  13.42272  40.40108  0.005408  5.341185  876.0692 

   Skewness -0.79 -0.21 -0.41 -0.48 -0.23 

   Kurtosis  2.362746  2.315647  3.590446  1.802720  2.280407 

   Jarque–Bera  9.764155  2.127867  3.355506  7.835596  2.462026 

   Probability  0.007581  0.345096  0.186793  0.019885  0.291997 

   Sum  10310.40  22477.49 -0.10  8812.646  496116.3 

   Sum Sq. Dev.  14233.39  128947.6  0.002311  2253.732  60632279 

   Observations  80  80  80  80  80 
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Table A1B: Descriptive statistics of the time series for freight and FXi, FXe, FXIM, Ps and Pf 

    Freight 

    FXe Pf FXIM FXi Ps 

Daily  Mean  131.1108  52.36986 0.00  111.3898  16828.18 

   Median  138.0003  50.51000 0.00  113.6939  10658.00 

   Maximum  159.0802  101.2370  0.039900  121.7909  92635.00 

   Minimum  99.36960  0.000000 -0.09  99.43650 -19,028.00 

   Std. Dev.  18.53582  14.15061  0.009046  6.003870  21760.35 

   Skewness -0.46  0.360149 -1.05 -0.56  0.966451 

   Kurtosis  1.822330  5.225661  10.01051  1.861887  3.667237 

   Jarque–Bera  225.2142  548.3795  5363.482  254.3771  419.0026 

   Probability  0.000000  0.000000  0.000000  0.000000  0.000000 

   Sum  315321.6  125949.5 -3.75  267892.5  40471775 

   Sum Sq. Dev.  825958.5  481376.5  0.196730  86655.67  1.14E+12 

   Observations  2405  2405  2405  2405  2405 

Weekly  Mean  131.0983  52.37429 0.00  111.3719  17064.38 

   Median  138.0431  50.49160 0.00  113.6987  10504.71 

   Maximum  158.6383  101.2370  0.029600  121.3929  88807.29 

   Minimum  99.59790  0.000000 -0.05  99.63250 -18,575.57 

   Std. Dev.  18.56904  13.85764  0.008317  6.004853  21856.45 

   Skewness -0.46  0.423482 -0.79 -0.56  0.962723 

   Kurtosis  1.822602  5.123526  7.389291  1.859142  3.650811 

   Jarque–Bera  32.54365  76.00507  316.6436  37.14636  60.07015 

   Probability  0.000000  0.000000  0.000000  0.000000  0.000000 

   Sum  45753.32  18278.63 -0.56  38868.80  5955468. 

   Sum Sq. Dev.  119993.6  66827.89  0.024073  12548.27  1.66E+11 

   Observations  349  349  349  349  349 

Monthly  Mean  130.7242  52.18839 0.00  111.2456  16528.00 

   Median  138.2095  49.48640 0.00  113.7354  9668.020 

   Maximum  157.8671  87.01990  0.017900  120.5244  86941.84 

   Minimum  99.70380  12.27450 -0.02  99.92010 -17,013.36 

   Std. Dev.  18.83019  13.16209  0.006851  6.105230  21106.58 

   Skewness -0.44  0.363258 -0.27 -0.55  0.887475 

   Kurtosis  1.781989  3.677941  4.521533  1.811848  3.387492 

   Jarque–Bera  7.556227  3.291437  8.700106  8.792131  11.00200 

   Probability  0.022866  0.192874  0.012906  0.012326  0.004083 

   Sum  10457.93  4175.071 -0.13  8899.645  1322240. 

   Sum Sq. Dev.  28011.50  13686.00  0.003708  2944.633  3.52E+10 

   Observations  80  80  80  80  80 
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Table A1C: Descriptive statistics of the time series for iron ore and FXi, FXe, FXIM, Ps and Pf 

    Iron ore 

    FXe Pf FXIM FXi Ps 

Daily  Mean  140.9546  81.36451 0.00  107.2836  80.53243 
   Median  147.5866  72.28000 0.00  108.3912  71.24000 

   Maximum  171.0996  158.5000  0.038800  116.3776  158.0000 

   Minimum  98.62100  38.15000 -0.04  98.89460  37.50000 

   Std. Dev.  20.20601  28.41756  0.010309  4.910150  28.02846 

   Skewness -0.64  0.839406 -0.35 -0.20  0.915752 

   Kurtosis  2.029643  2.651561  3.874718  1.742092  2.769525 

   Jarque–Bera  258.0926  294.5942  126.5766  174.1360  341.4627 

   Probability  0.000000  0.000000  0.000000  0.000000  0.000000 

   Sum  338995.8  195681.6 -4.87  258017.0  193680.5 

   Sum Sq. Dev.  981511.7  1941369.  0.255464  57959.43  1888569. 

   Observations  2405  2405  2405  2405  2405 

Weekly  Mean  140.9393  81.38968 0.00  107.2698  80.57077 

   Median  147.4538  71.77140 0.00  108.4210  70.95000 

   Maximum  170.5441  157.5829  0.026700  116.1646  155.4286 

   Minimum  99.05570  38.59710 -0.04  99.04450  38.01430 

   Std. Dev.  20.23546  28.55091  0.009547  4.908633  28.14795 

   Skewness -0.64  0.840069 -0.36 -0.20  0.917141 

   Kurtosis  2.024465  2.647261  3.712977  1.740085  2.763267 

   Jarque–Bera  37.49419  42.85847  14.96826  25.41241  49.74171 

   Probability  0.000000  0.000000  0.000562  0.000003  0.000000 

   Sum  49187.83  28405.00 -0.71  37437.17  28119.20 

   Sum Sq. Dev.  142496.9  283673.8  0.031721  8384.949  275723.0 

   Observations  349  349  349  349  349 

Monthly  Mean  140.4334  82.23389 0.00  107.1889  81.41342 

   Median  147.7210  73.21200 0.00  108.3473  72.43950 

   Maximum  168.6263  155.9500  0.016600  115.3490  153.0714 

   Minimum  99.35660  38.92230 -0.03  99.38260  39.75160 

   Std. Dev.  20.66889  29.34539  0.008278  4.950530  28.90102 

   Skewness -0.63  0.834740 -0.42 -0.19  0.913425 

   Kurtosis  1.993683  2.609991  3.474371  1.699908  2.715025 

   Jarque–Bera  8.668780  9.797571  3.137718  6.115156  11.39532 

   Probability  0.013110  0.007456  0.208283  0.047001  0.003354 

   Sum  11234.67  6578.711 -0.16  8575.111  6513.073 

   Sum Sq. Dev.  33749.04  68030.99  0.005413  1936.112  65986.27 

   Observations  80  80  80  80  80 
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Table A1D: Descriptive statistics of the time series for oil and FXi, FXe,FXIM, Ps and Pf 

    Oil 

    FXe Pf FXIM FXi Ps 

Daily  Mean  129.7806  71.02311 0.00  111.3898  70.43948 

   Median  136.6286  63.80000 0.00  113.6939  63.49000 

   Maximum  156.7202  118.9000  0.042600  121.7909  119.3400 

   Minimum  98.59740  27.88000 -0.09  99.43650  26.39000 

   Std. Dev.  18.35942  23.98140  0.009735  6.003870  24.29349 

   Skewness -0.47  0.564508 -0.96 -0.56  0.563205 

   Kurtosis  1.811099  1.980988  9.512546  1.861887  1.990590 

   Jarque–Bera  229.8264  231.7883  4621.186  254.3771  229.2475 

   Probability  0.000000  0.000000  0.000000  0.000000  0.000000 

   Sum  312122.4  170810.6 -3.72  267892.5  169407.0 

   Sum Sq. Dev.  810311.9  1382559.  0.227812  86655.67  1418777. 

   Observations  2405  2405  2405  2405  2405 

Weekly  Mean  129.7688  70.99317 0.00  111.3718  70.41210 

   Median  136.6955  63.81570 0.00  113.6987  63.33570 

   Maximum  156.2356  118.2471  0.031900  121.3929  118.9171 

   Minimum  98.80910  29.67710 -0.05  99.63250  28.48570 

   Std. Dev.  18.39232  24.03848  0.008948  6.004683  24.35581 

   Skewness -0.47  0.568435 -0.71 -0.56  0.567098 

   Kurtosis  1.811617  1.978580  7.049973  1.859110  1.988295 

   Jarque–Bera  33.21109  33.96603  268.0220  37.15353  33.59045 

   Probability  0.000000  0.000000  0.000000  0.000000  0.000000 

   Sum  45289.31  24776.61 -0.56  38868.76  24573.82 

   Sum Sq. Dev.  117720.5  201091.2  0.027860  12547.56  206435.5 

   Observations  349  349  349  349  349 

Monthly  Mean  129.4006  71.53693 0.00  111.2451  70.96929 

   Median  136.7473  64.23790 0.00  113.7354  64.10910 

   Maximum  155.5172  116.2961  0.019200  120.5244  116.6843 

   Minimum  98.87280  32.55390 -0.02  99.92010  31.20870 

   Std. Dev.  18.64479  24.31722  0.007348  6.104713  24.64588 

   Skewness -0.45  0.544320 -0.20 -0.55  0.543560 

   Kurtosis  1.770718  1.916703  4.441584  1.811824  1.925132 

   Jarque–Bera  7.707349  7.862228  7.471778  8.795706  7.790575 

   Probability  0.021202  0.019622  0.023852  0.012304  0.020338 

   Sum  10352.05  5722.955 -0.12  8899.610  5677.543 

   Sum Sq. Dev.  27462.64  46714.86  0.004266  2944.134  47986.15 

   Observations  80  80  80  80  80 

 



 

218| P a g e  
 

Table A1E: Descriptive statistics of the time series for soybeans and FXi, FXe, FXIM, Ps and Pf 

    Soybean 

    FXe Pf FXIM FXi Ps 

Daily  Mean  170.8833  1057.786 0.00  106.9347  10.43830 

   Median  175.3837  985.7500 0.00  107.4479  9.705000 

   Maximum  291.0062  1613.250  0.044400  118.0321  16.10750 

   Minimum  95.72780  791.0000 -0.06  98.37540  7.550000 

   Std. Dev.  46.38928  202.6080  0.013697  5.511168  2.123697 

   Skewness  0.201883  1.089723 -0.45 -0.05  1.063977 

   Kurtosis  2.225727  2.856646  3.728667  1.623614  2.840570 

   Jarque–Bera  76.41144  478.0472  135.4293  191.0090  456.3090 

   Probability  0.000000  0.000000  0.000000  0.000000  0.000000 

   Sum  410974.5  2543976. -8.81  257178.1  25104.10 

   Sum Sq. Dev.  5173324.  98684160  0.450994  73016.63  10842.25 

   Observations  2405  2405  2405  2405  2405 

Weekly  Mean  170.8584  1057.575 0.00  106.9225  10.43664 

   Median  175.4630  985.9643 0.00  107.5077  9.702100 

   Maximum  287.3283  1590.000  0.029600  117.8394  15.76210 

   Minimum  96.39460  810.4643 -0.05  98.49560  7.717900 

   Std. Dev.  46.44641  202.1735  0.012775  5.509414  2.121010 

   Skewness  0.197527  1.086670 -0.41 -0.06  1.061107 

   Kurtosis  2.210490  2.833067  3.478078  1.620419  2.815255 

   Jarque–Bera  11.33368  69.09137  12.89498  27.85997  65.98890 

   Probability  0.003459  0.000000  0.001584  0.000001  0.000000 

   Sum  59629.60  369093.6 -1.29  37315.96  3642.388 

   Sum Sq. Dev.  750729.6  14224195  0.056795  10563.07  1565.542 

   Observations  349  349  349  349  349 

Monthly  Mean  169.9767  1062.464 0.00  106.8392  10.48681 

   Median  175.5053  987.6822 0.00  107.2012  9.683950 

   Maximum  272.8990  1523.830  0.020200  116.6440  15.30470 

   Minimum  96.86620  827.9355 -0.04  98.66310  7.871300 

   Std. Dev.  46.93646  204.6004  0.011339  5.542277  2.148451 

   Skewness  0.195199  1.034110 -0.25 -0.04  1.013062 

   Kurtosis  2.176754  2.639016  3.297722  1.595670  2.640122 

   Jarque–Bera  2.767144  14.69281  1.142592  6.598774  14.11564 

   Probability  0.250681  0.000645  0.564793  0.036906  0.000861 

   Sum  13598.14  84997.09 -0.27  8547.132  838.9447 

   Sum Sq. Dev.  174039.4  3307045.  0.010157  2426.630  364.6515 

   Observations  80  80  80  80  80 
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Table A3A: SSP weekly test results, by market and by term 

This table displays the results of the SSP test on the time series with weekly data, per market, regime, and lead –lag period. The values in the column 0 indicate coincidental 

reactions. The values in columns -1 to -8 indicate the lead coefficients for the tested variables FXIM, FXi, or FXe against Ps or Pf. The values in columns +1 to +8 indicate 

the lag coefficients of the tested variables against price. The lead and lag coefficients are summed up in columns ∑- and ∑+, and the absolute values of the sums are displayed 

in columns ABS- and ABS+. The sign represents the direction of the relationship between the two variables and in this case it is removed, to focus attention exclusively on 

the overall strength of this relationship. 

 

    -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 

F
R

T
_

P
S
 FXIM_Ps 0.1032 0.1274 0.1669 0.1870 0.1620 0.1041 0.0458 -0.0204 -0.1045 -0.1941 -0.2442 -0.2345 -0.1530 -0.0726 -0.0227 -0.0143 0.0053 

FXE_Ps -0.0183 -0.0366 -0.0526 -0.0666 -0.0599 -0.0234 0.0146 0.0469 0.0795 0.1311 0.1939 0.2397 0.2510 0.2560 0.2625 0.2642 0.2439 
FXI_Ps 0.0765 0.1100 0.1650 0.2007 0.2323 0.2750 0.3031 0.2919 0.2663 0.2533 0.2438 0.2301 0.2449 0.2886 0.3235 0.3214 0.3194 

F
R

T
_

P
F
 FXIM_Pf 0.2013 0.1416 0.0954 0.0783 0.0631 0.0482 0.0561 0.0536 -0.0056 -0.1205 -0.2111 -0.2225 -0.1721 -0.1156 -0.0664 -0.0277 0.0036 

FXE_Pf 0.0580 0.0492 0.0492 0.0386 0.0270 0.0313 0.0409 0.0615 0.0961 0.1591 0.2264 0.2695 0.2812 0.2879 0.2909 0.2758 0.2539 
FXI_Pf 0.1898 0.2084 0.2323 0.2366 0.2359 0.2581 0.3016 0.3401 0.3520 0.3526 0.3383 0.3212 0.3016 0.2977 0.3036 0.2911 0.2761 

C
O

P
_

P
S

 FXIM_Ps 0.0867 0.1439 0.1464 0.1108 0.0922 0.1340 0.2048 0.2457 0.1987 0.0177 -0.1435 -0.2226 -0.2442 -0.2126 -0.1624 -0.1222 -0.1070 
FXE_Ps -0.0525 -0.1108 -0.1620 -0.1879 -0.2161 -0.2759 -0.3598 -0.4553 -0.5000 -0.4250 -0.3258 -0.2584 -0.2148 -0.1997 -0.1896 -0.1641 -0.1286 

FXI_Ps -0.0777 -0.0870 -0.1068 -0.1190 -0.1441 -0.1864 -0.2336 -0.2954 -0.3323 -0.3107 -0.2636 -0.2278 -0.2289 -0.2648 -0.2747 -0.2466 -0.2008 

C
O

P
_

P
F
 FXIM_Pf 0.0688 0.1193 0.1184 0.0899 0.0750 0.1238 0.2113 0.2663 0.2274 0.0414 -0.1271 -0.2113 -0.2413 -0.2212 -0.1840 -0.1421 -0.1167 

FXE_Pf -0.0618 -0.1111 -0.1529 -0.1759 -0.2008 -0.2609 -0.3536 -0.4594 -0.5116 -0.4376 -0.3406 -0.2777 -0.2372 -0.2191 -0.2019 -0.1741 -0.1397 
FXI_Pf -0.0888 -0.0948 -0.1146 -0.1268 -0.1489 -0.1884 -0.2378 -0.2986 -0.3347 -0.3124 -0.2641 -0.2294 -0.2369 -0.2757 -0.2914 -0.2683 -0.2259 

O
IL

_
P
S

 FXIM_Ps 0.2128 0.2679 0.2538 0.2042 0.1663 0.1816 0.2404 0.2891 0.2835 0.1807 0.0504 -0.0309 -0.0777 -0.1015 -0.1145 -0.1384 -0.1634 
FXE_Ps 0.0365 0.0070 -0.0343 -0.0749 -0.1121 -0.1606 -0.2221 -0.2991 -0.3585 -0.3504 -0.3160 -0.2772 -0.2286 -0.1886 -0.1696 -0.1496 -0.1133 
FXI_Ps -0.2254 -0.1915 -0.1940 -0.1996 -0.1972 -0.1899 -0.1673 -0.1399 -0.1093 -0.0766 -0.0567 -0.0251 0.0123 0.0376 0.0318 0.0105 -0.0087 

O
IL

_
P
F
 FXIM_Pf 0.1440 0.2183 0.2725 0.2592 0.2087 0.1657 0.1742 0.2327 0.2906 0.2882 0.1775 0.0404 -0.0378 -0.0765 -0.0975 -0.1109 -0.1395 

FXE_Pf 0.0499 0.0294 0.0016 -0.0387 -0.0799 -0.1207 -0.1684 -0.2270 -0.3055 -0.3644 -0.3557 -0.3135 -0.2670 -0.2170 -0.1776 -0.1603 -0.1381 
FXI_Pf -0.2811 -0.2336 -0.1956 -0.1977 -0.2028 -0.2044 -0.1990 -0.1737 -0.1460 -0.1188 -0.0922 -0.0683 -0.0271 0.0159 0.0436 0.0378 0.0130 

S
O

Y
_

P
S

 FXIM_Ps 0.1858 0.1548 0.1098 0.0828 0.0726 0.0918 0.1291 0.1597 0.1862 0.1333 0.0451 -0.0336 -0.0700 -0.0893 -0.0809 -0.0647 -0.0610 

FXE_Ps -0.0757 -0.0974 -0.1023 -0.1033 -0.1020 -0.1162 -0.1560 -0.2090 -0.2625 -0.2658 -0.2415 -0.2156 -0.2114 -0.2066 -0.2065 -0.2118 -0.2123 
FXI_Ps -0.0923 -0.1200 -0.1348 -0.1261 -0.0993 -0.0710 -0.0449 -0.0298 -0.0133 0.0208 0.0413 0.0233 -0.0133 -0.0442 -0.0575 -0.0670 -0.0687 

S
O

Y
_

P
F

 FXIM_Pf 0.1740 0.1345 0.0879 0.0641 0.0600 0.0844 0.1301 0.1696 0.2023 0.1536 0.0637 -0.0151 -0.0541 -0.0867 -0.0918 -0.0753 -0.0630 
FXE_Pf -0.0847 -0.1018 -0.1034 -0.1014 -0.0968 -0.1074 -0.1476 -0.2024 -0.2611 -0.2700 -0.2491 -0.2274 -0.2269 -0.2207 -0.2179 -0.2259 -0.2297 

FXI_Pf -0.0840 -0.1121 -0.1312 -0.1246 -0.0951 -0.0605 -0.0275 -0.0060 0.0124 0.0459 0.0692 0.0553 0.0151 -0.0258 -0.0466 -0.0595 -0.0636 

IO
_

P
S
 FXIM_Ps 0.1606 0.2540 0.2846 0.2607 0.2219 0.1964 0.1652 0.1383 0.0949 0.0136 -0.0727 -0.1366 -0.1427 -0.1101 -0.0791 -0.0522 -0.0453 

FXE_Ps 0.1447 0.0562 -0.0361 -0.1138 -0.1758 -0.2357 -0.2834 -0.3218 -0.3405 -0.3163 -0.2771 -0.2374 -0.2160 -0.2016 -0.1781 -0.1595 -0.1473 
FXI_Ps 0.0509 0.0199 -0.0298 -0.0786 -0.1139 -0.1507 -0.1871 -0.2176 -0.2418 -0.2400 -0.2303 -0.2249 -0.2385 -0.2459 -0.2224 -0.1869 -0.1502 

IO
_

P
F

 FXIM_Pf 0.1712 0.2188 0.2604 0.2596 0.2233 0.1987 0.1715 0.1368 0.0724 -0.0208 -0.0923 -0.1310 -0.1400 -0.1214 -0.0926 -0.0564 -0.0260 
FXE_Pf 0.1157 0.0414 -0.0472 -0.1194 -0.1745 -0.2321 -0.2806 -0.3161 -0.3183 -0.2889 -0.2583 -0.2275 -0.1970 -0.1710 -0.1496 -0.1414 -0.1393 
FXI_Pf 0.0422 0.0023 -0.0422 -0.0769 -0.1120 -0.1472 -0.1744 -0.1976 -0.2092 -0.2159 -0.2250 -0.2316 -0.2405 -0.2384 -0.2122 -0.1752 -0.1391 
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Table A3A (continued) 

 

    ∑- ABS- ∑- ABS+ 
F
R

T
_

P
S
 FXIM_Ps 0.8760 0.8760 -0.9302 0.9302 

FXE_Ps -0.1961 0.1961 1.8421 1.8421 

FXI_Ps 1.6543 1.6543 2.2250 2.2250 

F
R

T
_

P
F
 FXIM_Pf 0.7374 0.7374 -0.9322 0.9322 

FXE_Pf 0.3557 0.3557 2.0447 2.0447 

FXI_Pf 2.0027 2.0027 2.4824 2.4824 

C
O

P
_

P
S

 FXIM_P 1.1645 1.1645 -1.1968 1.1968 

FXE_Ps -1.8203 1.8203 -1.9061 1.9061 

FXI_Ps -1.2499 1.2499 -2.0179 2.0179 

C
O

P
_

P
F

 FXIM_Pf 1.0729 1.0729 -1.2023 1.2023 

FXE_Pf -1.7764 1.7764 -2.0279 2.0279 

FXI_Pf -1.2987 1.2987 -2.1041 2.1041 

O
IL

_
P
S
 FXIM_Ps 1.8161 1.8161 -0.3953 0.3953 

FXE_Ps -0.8598 0.8598 -1.7933 1.7933 

FXI_Ps -1.5047 1.5047 -0.0749 0.0749 

O
IL

_
P
F
 FXIM_Pf 1.6754 1.6754 0.0439 0.0439 

FXE_Pf -0.5536 0.5536 -1.9934 1.9934 

FXI_Pf -1.6879 1.6879 -0.1961 0.1961 

S
O

Y
_

P
S

 FXIM_Ps 0.9863 0.9863 -0.2211 0.2211 

FXE_Ps -0.9619 0.9619 -1.7716 1.7716 

FXI_Ps -0.7182 0.7182 -0.1653 0.1653 

S
O

Y
_

P
F
 FXIM_Pf 0.9047 0.9047 -0.1686 0.1686 

FXE_Pf -0.9455 0.9455 -1.8676 1.8676 

FXI_Pf -0.6410 0.6410 -0.0100 0.0100 

IO
_

P
S
 FXIM_Ps 1.6819 1.6819 -0.6252 0.6252 

FXE_Ps -0.9658 0.9658 -1.7334 1.7334 

FXI_Ps -0.7071 0.7071 -1.7391 1.7391 

IO
_

P
F
 FXIM_Pf 1.6403 1.6403 -0.6805 0.6805 

FXE_Pf -1.0128 1.0128 -1.5730 1.5730 

FXI_Pf -0.7058 0.7058 -1.6778 1.6778 

 

  



 

221| P a g e  
 

Table A4: SSP test results consolidated by market and term 

This table displays the results of the SSP test on the time series with weekly data, per market, regime, and lead –lag period. The values in the column 0 indicate coincidental 

reactions. The values in columns -1 to -8 indicate the lead coefficients for the tested variables FXIM, FXi, or FXe against Ps or Pf. The values in columns +1 to +8 indicate 

the lag coefficients of the tested variables against price. The lead and lag coefficients are summed up in columns ∑ - and ∑+, and the absolute values of the sums are displayed 

in columns ABS- and ABS+. The sign represents the direction of the relationship between the two variables and in this case it is removed, to focus attention exclusively on 

the overall strength of this relationship. 

 

    -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 

F
R

T
_

P
S
 FXIM_Ps 0.2628 0.1307 -0.0212 -0.1020 -0.1544 0.0359 0.1921 0.2134 0.0376 -0.0904 0.0154 0.0781 0.0997 0.0133 -0.1426 -0.1714 -0.0861 

FXE_Ps 0.0020 -0.0362 0.0187 0.1548 0.2847 0.3328 0.3034 0.2738 0.2489 0.2822 0.2136 0.0897 -0.0022 -0.0620 -0.0071 0.1214 0.1723 

FXI_Ps -0.1530 -0.0912 0.0026 0.1283 0.2464 0.3228 0.4044 0.5423 0.5983 0.6181 0.5275 0.3498 0.2022 0.1102 0.0887 0.0986 0.0566 

F
R

T
_

P
F
 FXIM_Pf 0.2228 0.1101 -0.0425 -0.1599 -0.1680 -0.0042 0.2067 0.1583 0.0559 -0.1667 -0.1621 -0.1276 -0.0085 -0.0250 -0.0920 -0.0718 0.0082 

FXE_Pf -0.0182 -0.0949 -0.0639 0.0765 0.2123 0.2712 0.2452 0.2302 0.2183 0.2299 0.1650 0.0657 0.0266 0.0208 0.1325 0.2779 0.3603 

FXI_Pf -0.0644 -0.0751 -0.0179 0.0644 0.1726 0.2362 0.3435 0.4675 0.5583 0.5249 0.3841 0.1287 -0.0211 -0.1147 -0.0969 -0.0350 0.0201 

C
O

P
_

P
S
 FXIM_Ps 0.0319 -0.0116 0.0168 0.0650 0.0002 -0.0922 -0.0165 0.0421 -0.0343 -0.1908 -0.2793 -0.2662 -0.1856 -0.0726 -0.0885 -0.0682 -0.0845 

FXE_Ps -0.4736 -0.5197 -0.5699 -0.6537 -0.7091 -0.7151 -0.7344 -0.7810 -0.8095 -0.7499 -0.6424 -0.5138 -0.3992 -0.3399 -0.2666 -0.1981 -0.1207 

FXI_Ps -0.1468 -0.2063 -0.2702 -0.3507 -0.3921 -0.4223 -0.4360 -0.4658 -0.4971 -0.5013 -0.4847 -0.4544 -0.4269 -0.4228 -0.3940 -0.3379 -0.2727 

C
O

P
_

P
F

 FXIM_Pf 0.0388 -0.0048 0.0235 0.0613 0.0064 -0.0801 -0.0253 0.0375 -0.0324 -0.1951 -0.2832 -0.2735 -0.1978 -0.0798 -0.0870 -0.0657 -0.0811 

FXE_Pf -0.4513 -0.4966 -0.5497 -0.6343 -0.6957 -0.7111 -0.7345 -0.7844 -0.8205 -0.7664 -0.6616 -0.5336 -0.4161 -0.3557 -0.2833 -0.2160 -0.1366 

FXI_Pf -0.1236 -0.1779 -0.2388 -0.3217 -0.3672 -0.4023 -0.4207 -0.4556 -0.4946 -0.5057 -0.4952 -0.4673 -0.4405 -0.4372 -0.4101 -0.3598 -0.2942 

O
IL

_
P
S
 FXIM_Ps -0.1345 -0.0889 -0.1539 -0.1176 -0.0086 0.1212 0.1934 0.2140 0.1689 -0.0814 -0.1769 -0.1887 -0.0159 0.0781 0.0810 0.0262 -0.0018 

FXE_Ps -0.2830 -0.2713 -0.2117 -0.1308 -0.1029 -0.1140 -0.1709 -0.2405 -0.3116 -0.2666 -0.1754 -0.0801 -0.0674 -0.0877 -0.1012 -0.1048 -0.1143 

FXI_Ps -0.3606 -0.4498 -0.5410 -0.5833 -0.5923 -0.5592 -0.5246 -0.4687 -0.3955 -0.3156 -0.2572 -0.2292 -0.2000 -0.1613 -0.1065 -0.0830 -0.1084 

O
IL

_
P
F
 FXIM_Pf -0.1324 -0.0866 -0.1531 -0.1179 -0.0088 0.1190 0.1985 0.2170 0.1694 -0.0808 -0.1711 -0.1832 -0.0094 0.0819 0.0895 0.0241 0.0001 

FXE_Pf -0.2811 -0.2705 -0.2117 -0.1281 -0.1013 -0.1121 -0.1694 -0.2383 -0.3079 -0.2553 -0.1634 -0.0708 -0.0615 -0.0844 -0.1045 -0.1081 -0.1174 

FXI_Pf -0.3669 -0.4560 -0.5507 -0.5896 -0.5993 -0.5668 -0.5314 -0.4716 -0.3933 -0.3086 -0.2450 -0.2155 -0.1863 -0.1464 -0.0912 -0.0704 -0.0980 

S
O

Y
_

P
S

 FXIM_Ps 0.1457 0.2338 0.1270 0.0659 0.0978 0.2451 0.2944 0.2742 0.2019 0.0674 -0.0245 -0.1522 -0.1096 -0.1122 -0.0978 -0.0272 0.0357 

FXE_Ps -0.0743 -0.1282 -0.1414 -0.1231 -0.1272 -0.1931 -0.3034 -0.4248 -0.5364 -0.5943 -0.6116 -0.5551 -0.4779 -0.3870 -0.3310 -0.3454 -0.3968 

FXI_Ps -0.0575 -0.0757 -0.0844 -0.0934 -0.1534 -0.2431 -0.3097 -0.3426 -0.3246 -0.2778 -0.2485 -0.1960 -0.1252 -0.0293 0.0087 -0.0195 -0.0727 

S
O

Y
_

P
F
 FXIM_Pf 0.1461 0.2264 0.1147 0.0617 0.1074 0.2586 0.2884 0.2563 0.1942 0.0551 -0.0395 -0.1689 -0.1266 -0.1264 -0.1164 -0.0419 0.0363 

FXE_Pf -0.0782 -0.1289 -0.1362 -0.1121 -0.1187 -0.1958 -0.3102 -0.4261 -0.5339 -0.5905 -0.6096 -0.5506 -0.4666 -0.3711 -0.3119 -0.3230 -0.3746 

FXI_Pf -0.0507 -0.0634 -0.0645 -0.0644 -0.1203 -0.2157 -0.2906 -0.3304 -0.3163 -0.2757 -0.2560 -0.2075 -0.1349 -0.0373 0.0009 -0.0269 -0.0802 

IO
_

P
S
 FXIM_Ps 0.1439 0.2039 0.2051 0.2593 0.0947 -0.0079 0.1763 0.2600 0.0442 -0.1551 -0.1781 -0.1742 -0.0791 0.0167 -0.1042 -0.2105 -0.2064 

FXE_Ps -0.0075 -0.1194 -0.2319 -0.3129 -0.2863 -0.1995 -0.2259 -0.3846 -0.4820 -0.4800 -0.4189 -0.3541 -0.3721 -0.4668 -0.5010 -0.4353 -0.3550 

FXI_Ps -0.0675 -0.0971 -0.1371 -0.1305 -0.0633 0.0213 0.0590 0.0135 -0.0522 -0.1121 -0.1124 -0.1205 -0.1881 -0.2903 -0.3670 -0.3838 -0.3982 

IO
_

P
F
 FXIM_Pf 0.1290 0.2012 0.2054 0.2387 0.0597 -0.0002 0.2054 0.2408 0.0337 -0.1655 -0.1646 -0.1558 -0.0348 0.0274 -0.1209 -0.2125 -0.2204 

FXE_Pf -0.0287 -0.1460 -0.2586 -0.3244 -0.2713 -0.1829 -0.2249 -0.3757 -0.4593 -0.4511 -0.3877 -0.3221 -0.3577 -0.4618 -0.4817 -0.4101 -0.3357 

FXI_Pf -0.0798 -0.1248 -0.1641 -0.1540 -0.0852 0.0015 0.0373 -0.0082 -0.0627 -0.1195 -0.1074 -0.1046 -0.1687 -0.2651 -0.3274 -0.3339 -0.3573 
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Table A4 (continued) 

    ∑- ABS- ∑- ABS+ 

F
R

T
_

P
S

 FXIM_Ps 0.5574 0.5574 -0.2841 0.2841 

FXE_Ps 1.3340 1.3340 0.8078 0.8078 

FXI_Ps 1.4026 1.4026 2.0517 2.0517 

F
R

T
_

P
F

 FXIM_Pf 0.3233 0.3233 -0.6455 0.6455 

FXE_Pf 0.8584 0.8584 1.2788 1.2788 

FXI_Pf 1.1267 1.1267 0.7900 0.7900 

C
O

P
_

P
S
 FXIM_Ps 0.0358 0.0358 -1.2357 1.2357 

FXE_Ps -5.1566 5.1566 -3.2305 3.2305 

FXI_Ps -2.6903 2.6903 -3.2947 3.2947 

C
O

P
_

P
F
 FXIM_Pf 0.0573 0.0573 -1.2632 1.2632 

FXE_Pf -5.0576 5.0576 -3.3693 3.3693 

FXI_Pf -2.5078 2.5078 -3.4099 3.4099 

O
IL

_
P
S

 FXIM_Ps 0.0253 0.0253 -0.2793 0.2793 

FXE_Ps -1.5250 1.5250 -0.9974 0.9974 

FXI_Ps -4.0795 4.0795 -1.4612 1.4612 

O
IL

_
P
F
 FXIM_Pf 0.0357 0.0357 -0.2488 0.2488 

FXE_Pf -1.5126 1.5126 -0.9655 0.9655 

FXI_Pf -4.1323 4.1323 -1.3613 1.3613 

S
O

Y
_

P
S
 FXIM_Ps 1.4840 1.4840 -0.4205 0.4205 

FXE_Ps -1.5155 1.5155 -3.6990 3.6990 

FXI_Ps -1.3596 1.3596 -0.9603 0.9603 

S
O

Y
_

P
F
 FXIM_Pf 1.4595 1.4595 -0.5284 0.5284 

FXE_Pf -1.5062 1.5062 -3.5980 3.5980 

FXI_Pf -1.2000 1.2000 -1.0175 1.0175 

IO
_

P
S

 FXIM_Ps 1.3353 1.3353 -1.0910 1.0910 

FXE_Ps -1.7680 1.7680 -3.3831 3.3831 

FXI_Ps -0.4017 0.4017 -1.9724 1.9724 

IO
_

P
F

 FXIM_Pf 1.2799 1.2799 -1.0470 1.0470 

FXE_Pf -1.8126 1.8126 -3.2078 3.2078 

FXI_Pf -0.5773 0.5773 -1.7838 1.7838 
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Part III 

 

Conclusion 
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6. Conclusion, contributions, and further research 
 

This thesis examines the role played by the shape and gradient of the crude oil market 

forward curve in the formation of a speculative short-term supply shock on the physical 

market. This implies that the supply needs to increase simultaneously or briefly after the 

forward curve shifts into backwardation. Furthermore, the investigation focuses on the impact 

of the relative strength of the economic activities and distance between two countries on their 

net cross-border electricity flow. The effect from changes of electricity flow between two 

markets on flows between another pair of markets and their market price is also examined. 

Moreover, the thesis probes the predictability of the FX rates of major exporters and 

importers over the prices of key energy, metal, grain, and shipping markets. Such 

predictability is based on the ability of the currency markets to accumulate unique 

information about producers‘ incentives to supply the market with a commodity and 

consumers‘ incentives to purchase the required amount of commodity on the international 

market. 

6.1. Contributions to academic research 
 

To the best of my knowledge, the following gaps exist in the scholarly literature. Specifically, 

the first empirical chapter notes the following:  

 

First, there has not yet been a study on the interaction between the position of the forward 

curve (contango vs. backwardation) and short-term supply shock. The academic literature, 

with the important exception of Litzenberger and Rabinowitz (1995), appears to agree that 

such an interaction occurs between the forward curve and inventory, but not between forward 

curve and direct supply. In contrast, this paper documents a direct link between changes in 

the position of the market forward curve and the appearance of a short-term speculative 

supply shock on the physical market.  

 

Second, the study includes not only the binary position of the curve (contango vs. 

backwardation), but also the curve‘s slope steepness, that is, the gradient,. The gradient of the 

forward curve is found to contribute directly to the intensity of the speculative supply shock, 

which constitutes an important contribution. 
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The third gap is revealed by this thesis through the examination of short-term supply shocks, 

that is, daily or weekly, as opposed to longer-term (monthly, quarterly, or annual) supply 

shocks. A weekly dataset is thus utilized. All studies focusing on crude oil supply shocks use 

monthly or quarterly data. Higher-frequency data are significantly noisier but, when handled 

properly from a statistical perspective, the weekly dataset yields valuable information on 

changes in short-term direct supply on the physical oil market. 

 

Fourth, I propose a form of short-term general equilibrium and vector error correction models 

for the global crude oil market that have not been previously documented in the literature 

under their proposed form, or with the frequency of time series employed. The model, which 

aims to test the relationships between five variables representing short-term supply and 

demand conditions on the crude oil physical spot market, exhibits significantly stronger 

explanatory power for the price of crude oil compared to the form without the forward curve 

gradient. 

 

The second empirical chapter identifies the following gaps: The fifth gap quantifies causal 

processes between cross-border electricity trade flow and electricity prices, which lead to the 

price lagging behind the flow. Contrary to the established literature, which considers the trade 

flow to be the dependent variable (Kiesel and Kustermann 2016), this paper finds that 

changes in cross-border electricity flow anticipate changes in price. The evidence collected 

corroborates the notion that the Italian, Swiss, and French markets are the three most 

responsive to cross-border trade flow markets in the study‘s sample. 

 

Contrary to the results of Gebhardt and Hoffler (2013), strong incentive for participation in 

cross-border trading on the European power market is detected by the proposed algorithm, 

which is based on the identification of causal relationships between electricity flow and price, 

where flow leads price. This finding fills the sixth gap. Since the tradable instrument is the 

electricity price, and not the flow, the algorithm searches for causal signal only for instances 

in which the volume leads the price. The evidence collected in this study yields an annualized 

total accrued return of 129.10% for the sample period, with a Sharpe ratio of 2.15for the risk-

adjusted return. 

 

Seventh, examination of the reaction of one cross-border electricity trade flow to changes in 

another trade flow, that is, the flow-on-flow reaction, allows one to forecast electricity flows 
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between two countries based on the flows between another pair of countries, some of which 

do not even have a common border. 

 

The analysis of the influence of the economic activity and geographical distance between two 

electricity markets by applying Jan Tinbergen‘s (1962) Gravity model for International Trade 

is contribution number eight, and which also confirms the claim by Bergstrand and Egger 

(2010) that the model is applicable to any commodity market. 

 

The third empirical chapter identifies the following gaps. As the ninth gap, I investigate the 

importance of the currencies of the importers of key industrial commodities in the overall 

price formation for each of the commodities. The academic literature discusses only the 

currencies of exporters, and many of the trade flows in the global supply chain are supply 

pull (i.e. production is based on actual demand; e.g., Christopher (2011). If only the 

currencies of commodity exporters are used in the analysis, important drivers of trade flows 

will not be captured. 

As the 10th gap in the academic literature, not only are other studies (e.g. CRR (2010), BKS 

(2014, FRR (2015), Zhang, Dufour, Galbraith 2014) based on only exporters‘ currencies, but 

the sample of chosen foreign exchange pairs is also limited to six pairs for the local currency 

against the USD. The increasing complexity and varieties of trade flows (Krugman 1995) and 

the world of global commodity trading dictate the need for significantly larger samples of 

currency pairs, which are likely to capture more information about the forces driving these 

flows.  

The 11th gap covered is the proposed synthetic supply and demand balance model that 

combines currency pairs of the importers and exporters of commodities, thus extracting 

information from their joint relationship. The currencies of commodity exporters represent 

supply-side pressure to the market, as a stronger (weaker) domestic currency is likely to limit 

(create) producers‘ incentives to produce and sell. Importers‘ currencies, on the other hand, 

represent the demand side through the purchasing power channel. Combining the two signals 

warrants taking into account valuable information on the pressures from both supply and 

demand channels. 

A markedly different perspective is offered by this thesis in the employment of higher-

frequency data in comparison to the relatively low frequency of monthly (Prokopczuk, 

Tharann, and Wesse-Simen 2021), quarterly (Zhang, Dufour, and Galbraith, 2014), and 
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annual data (Gargano and Timmermann 2014) used in academic research. This contribution 

fills the 12th gap. 

The 13th gap involves the currency markets‘ predictive power over the prices of 

commodities, an important point of contention between this paper and the literature. For 

example, Chen (2004) and Zhang, Dufour, and Galbraith (2014) report evidence of stronger 

causality from commodity prices to the foreign exchange market. Bork, Kaltwasser, and 

Sercu  (2014) argue in favour of a contemporaneous relationship between currency and price 

and find no evidence of currency‘s predictive power over price. The results in the current 

paper support the view that the currency market has predictive power over commodity prices. 

This is an important empirical contribution of the study. 

Finally, covering the 14th gap, this study measures the differences in the reactions of Ps and 

forward commodity prices to the information contained in currency markets. An important 

practical inference is drawn from the results, where Ps and forward commodity prices react 

differently to the information contained in and transmitted by the global currency markets. 

 

6.2. Contributions to practice 

The implications for the activity of market practitioners resulting from the findings of the first 

empirical chapter are categorized into two groups: impact on practitioners who are active on 

the physical market, and impact on those who are active on the derivatives markets. 

The effect on the physical market from the position of the oil forward curve and its gradient 

is related to the short-term alteration of crude oil availability and the subsequent supply 

shock. Any short-term stress along industrial supply chains due to a short-term speculative 

supply shock is likely to affect price formation, in terms of both price value and price 

volatility. On one hand, overstretched supply chains of raw materials can lead to disruptions 

in the production process downstream, which affects the financial performance of the 

companies involved. The logical reaction is the accumulation of excessive amounts of 

inventory, which also negatively affects the results of firms, since working capital is locked 

up in idle inventory. On the other hand, given the fact that global oil inventories have 

remained above the long-term average for the last five years and price volatility and 

inventory have a positive relationship when long-term inventory levels are above average, 

speculative supply shocks are likely to increase price volatility and, with it, the uncertainty of 

the cost of production. Therefore, it is plausible to assume that there can be economic impacts 

at both the micro and macro levels.  
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At the microeconomic level, companies are forced to increase their hedging ratios which, 

comes at a cost and, in turn, leads to higher costs of production and higher unit costs. At the 

macroeconomic level, inflationary pressure could arise, since producers typically attempt to 

pass on higher costs to end users/consumers. In other words, due to the very high level of oil 

and oil product usage in the economy of any developed country, a higher unit cost might not 

only put producers in a difficult financial situation, but also cause inflationary pressure in the 

broader economy. 

Moreover, forward prices rising above the current spot level can potentially change the speed 

at which producers extract the commodity from the ground. This triggers a reaction 

throughout the entire production and supply chain, affecting numerous related physical and 

financial markets and activities. For example, hedging and borrowing become costlier when 

uncertainty increases. Storage costs rise as companies scramble to secure supply and increase 

inventory. Shipping, as one of the best examples of derived demand, is directly affected when 

the supply of oil on the physical market fluctuates. Due to the high integration of crude oil 

and its derivatives in the manufacturing process, volatility of the costs along the global 

supply chain is likely to attract the attention of policy makers. 

Derivative markets react to speculative short-term supply changes, which creates trading 

opportunities for the participants involved in crude oil derivatives market operations. This is 

captured by the proposed general market equilibrium model, which offers insight into how to 

improve further short-term oil derivatives trading analytics and risk management for crude 

oil. 

 

The implications from the findings discussed with the second empirical chapter affect are 

split into two groups, related to market practitioners or to policy. For example, the European 

Energy Union is a priority project for the European Commission. The role of the Directorate-

General for Competition is to ensure that the energy markets function properly and deliver 

reliable energy supplies at reasonable prices for businesses and consumers. Evidence of 

deliberately introduced price volatility, as well as higher energy prices for the end user, is 

likely to attract the attention of regulators. Another likely concern of policy makers is 

inflationary pressure, as discussed earlier. 

 

Furthermore, the importance of quantifying flow-on-flow reactions is encapsulated in 

Europe‘s electricity market integration, which makes the results of the econometric flow-on-

flow tests and models developed in this thesis very topical. The research into the flow-on-
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price and flow-on-flow relationships expands market participants‘ understanding of the 

electricity flow within the entire system. Evidence of systemic mispricing is demonstrated 

with the proposed trading algorithm, which delivers a return on investment (ROI) of 129.1% 

after adjustments for transaction costs for the sample period, or an annualized ROI of 26.3%. 

The proposed algorithm also allows for the forecasting of electricity flows between two 

countries based on the flows between two others, sometimes even if they do not have a 

common border. 

Last but not least, using Tinbergen‘s (1962) gravity model for international trade, the 

documented direct link between economic activity and geographical distance between two 

electricity markets is found to have an impact on the operations of market practitioners. The 

model explains electricity flow formation and direction with the help of the gravity equation 

of trade, and it is beneficial for market players Exposed to multiple markets within the 

European Union (EU) electricity network. Different weightings of forecasting models, given 

Improved understanding of how the economic activity in one country is likely to affect the 

electricity market in another country, are a direct consequence of the ideas and results 

discussed in the second empirical chapter. 

 

The implications for market players from the results of the third empirical chapter include 

ways to identify divergence in behaviour between spot and forward prices due to the impact 

of currency values, which creates trading opportunities such as for cash and carry arbitrage. 

Furthermore, quantifying the direction in which the causality between commodity prices and 

currency values flows is an important step in studying the predictability of any trading model. 

The results of the third empirical chapter serve as evidence of the currency market‘s 

predictive power over the price of commodities. Whether the aim is to construct a directional 

or statistical arbitrage trading model or to inform policy makers about future changes in 

commodity prices and exchange rates, a causal link between the two variables needs to be 

established and documented. 

The evidence also suggests that the currencies of importers have higher explanatory power 

than the currencies of exporters. This finding is not only a major departure from the 

established consensus in the academic literature, but also valuable information for the 

calibration of any model that utilizes information from the global currency markets. 

All the commodity markets in the study are found to conform well to the proposed currency-

based supply and demand model, which significantly improves the explanatory power of the 

vector error correction model. This finding strongly argues in favour of implementing the 
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proposed foreign exchange model into practical trading and risk management systems. The 

global currency markets have the potential to accumulate unique information about 

producers‘ incentives to supply the market with a commodity and consumers‘ incentives to 

purchase the required amount of material on the international market. Currency market‘s 

ability to gather and channel forward-looking information is also acknowledged. They are 

also significantly bigger than any of the commodity markets in terms of transactional value, 

which is a prerequisite for more efficient price discovery. Consequently, higher liquidity and 

efficient price discovery lead to lower costs for executing a trading strategy. 

 

Just as importantly, the higher data frequency used for all the tests and models in this thesis 

has important implications for market practitioners. A low data frequency is common in the 

academic literature, due to data availability and data reliability considerations. Such data 

frequencies could be the norm in macroeconomic research, long-term investing, and policy 

decision making, where slower-moving and often more reliable data are used; however, 

trading and risk management require higher data frequencies, due the number and speed of 

the decisions made within a limited amount of time. Lower-frequency macroeconomic data 

are typically released with a delay of 10 to 30 days after the period they describe (monthly, 

quarterly, or annual). The ability to remove this lag is invaluable from both trading and risk 

management perspectives. The solution is to work with higher-frequency (daily, weekly) data 

that allow for the modelling of processes developing during the period the data describe, and 

not after it. Higher-frequency data points allow for the construction of models that explore 

shorter-term price fluctuations. Market practitioners are the direct beneficiaries of the 

improved forecast ability and new trading opportunities. 

6.3. Suggestions for further research 
Several hypotheses and results presented in this thesis can be extended and are thus deemed 

suitable in further research. First, any changes in the availability of short-term crude oil on 

the spot physical market due to a shift in the forward curve is likely to affect not only the 

short-term supply and demand balance on the oil market, but also the demand for shipping 

capacity. Deeper understanding of the origins of the short-term demand shocks for crude oil 

tanker freight offer an opportunity for further research. Shipping is derived demand, and 

changes in the crude oil supply thus directly affect the freight market. Unlike dry bulk 

shipping, crude oil has no substitutes as a shipping capacity demand driver. Therefore, 
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changes in the availability of short-term crude oil on the physical market are likely to affect 

freight rates. 

 

Second, transformation of the dynamics of cost, insurance, and freight and free on board 

price formation on the back of deliberate short-term supply changes on the physical market 

combined with trader‘s increased ability to purchase oil at different points along the supply 

chain can cause a positive volatility feedback loop between free on board and cost, insurance, 

and freight pricing points. This possibility is acknowledged as part of the investigation in the 

first empirical chapter, but more detailed research into the impact of such a volatility 

feedback loop is recommended. 

 

One of the preliminary tests of causality identifies multi-year cyclicality in the lead–lag 

relationship between the forward curve and the reaction of supply, which is the third 

suggestion for additional research. Periods of reaction detected by the tests have a 

convincingly high ratio of +65% that persists for many months, in some cases entire years. 

Periods of no reaction to changes in the curve can also be pronounced. For example, this 

particular test finds no evidence to suggest that crude oil availability was influenced by the 

position of the curve between 2011 and 2014. Analysing the existence of such cyclicality is 

not the aim of this thesis, but the topic deserves further investigation. 

 

Fourth, the proposed models reveal no meaningful reaction of the price of spot crude oil after 

the introduction of a positive structural shock to short-term supply, demand, and inventory. 

This finding clearly contradicts economic theory, cannot be easily explained, and therefore 

warrants further, more detailed investigation. 

 

Fifth, it is not immediately obvious why crude oil stocks should fall steadily after an initial 

increase when the curve slope steepens. A contango market should theoretically create the 

incentive for steady inventory accumulation, as dictated by the positive economics of cash 

and carry arbitrage. Therefore, the reaction of inventory to a steepening forward curve also 

deserves further investigation. 

 

Sixth, there is a lack of research on the electricity flow-on-flow impact on the electricity 

market. Poor connectivity between the various national grids in the past and, therefore, a lack 

of meaningful cross-border electricity flows could be one explanation for this gap in the 
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literature. However, EU market coupling regulation significantly changed the cross-border 

flows. Although a stream of academic research on international trade (e.g. Krugman 1979 ) 

helps identify the potential link between different trade flows, further research is warranted, 

specifically into the impact of short-term flow on flow on electricity markets. 

 

Seventh, sizeable markets are omitted from this study, which, if included, could alter some of 

the outcomes discussed with the second empirical chapter. Therefore, further research is 

needed to obtain an even more detailed understanding of the EU-wide electricity market. The 

issue here would be the length of available pricing and trade flow time series, since the 

number of degrees of freedom of the multivariate regression model drop too low as the 

number of variables n increases. Therefore, significantly longer time-series are required if the 

rest of the EU power market is to be analysed. 

 

Eight, the trading model suggested in the second empirical chapter, based on cross-border 

trade flow signals, could benefit from further investigation into the ROI. This is because the 

relatively high frequencies of the recommended transactions are likely to deliver a strong 

ROI only if the transaction costs are carefully considered. 

 

The gravity flow coincidental response test, which is currently based on the binary conditions 

+1 and -1, indicates the reaction of flow to changes in the gravity of trade. As the ninth topic 

suggested for future research, I propose testing with the actual coefficient of the intercept. It 

is plausible that information about the changing dynamics will be revealed through the 

steepness of the regression line, which, in turn, would indicate the higher or lower probability 

of occurrence of the event in question. 

 

The 10th suggested area of future research involves tests of the gravity–price and flow–price 

relationships performed not only with outright, or flat, prices, but also with price spreads. 

Spreads tend to behave differently from flat prices, since they are influenced by both 

statistical arbitrage trading flows and diverging fundamental views in the two markets 

comprising the spread. Further study on the gravity-price and flow-price relationships with 

selected calendar and location spreads has the potential of delivering different results for the 

proposed trading model. 
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The 11th proposed area of research, as well as part of the third empirical chapter, involves the 

construction of a synthetic supply and demand balance based exclusively on the currencies of 

the main importers and exporters of a particular commodity, representing a distinctly 

different theoretical perspective from that of the literature. Such a novel approach is a 

departure from traditional methodology, and further research is thus warranted to compare 

the performance between the proposed synthetic supply and demand model and the foreign 

exchange impact model, as well as the traditional supply and demand models for each of the 

markets in the study. 

 

Finally, the 12th suggested avenue of additional research involves the different bivariate and 

multivariate causality test results for some commodity markets. Even if the markets chosen 

for the third empirical chapter are key representatives of the energy, agricultural, metal, and 

shipping sectors, the results clearly demonstrate significant variations in the outcomes 

between individual markets. Therefore, research into the causal flow between the currency 

and commodity markets will benefit from not only larger sample of markets, but also the 

application of different weighted averages. 
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