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Experimental and numerical approaches have their own advantages and limitations, in particular
when dealing with complex phenomena such as snow particles falling at moderate Reynolds number
(𝑅𝑒). Time-resolved, three-dimensional Particle Tracking Velocimetry (4D-PTV) experiments of free-
falling, three-dimensional (3D)-printed snowflakes analogs shed light on the elaborate falling dynamics
of irregular snow particles, but present a lower resolution (tracer seeding density) and a limited field of
view (domain size) to fully capture the wake flow. Delayed-Detached Eddy Simulations of fixed snow
particles do not realistically represent all the physics of a falling ice particle, especially for cases with
unsteady falling attitudes, but accurately predict the drag coefficient and capture wake characteristics
for steadily falling snowflakes. In this work, we compare both approaches on time- and space-averaged
flow quantities in the snowflake wake. Firstly, we cross-validate the two approaches for low 𝑅𝑒 cases
where close agreement of the wake features is expected and, secondly, we assess how strongly the
unsteady falling motion perturbs the average wake pattern as compared to a fixed particle at higher
𝑅𝑒. For steadily falling snowflakes, the fixed-particle model can properly represent the wake flow with
errors within the experimental uncertainty (±15%). At moderate/high 𝑅𝑒 (unsteady falling motion)
larger differences are present. Applying a co-moving frame to the experimental data to account for the
particle movement or filtering the numerical data on larger grids reduces these differences only to some
extent, implying that an unsteady fall significantly alters the average wake structure as compared to a
fixed particle model.

I. INTRODUCTION

The shape and the orientation of falling ice parti-
cles influence snow precipitation and are crucial for
weather prediction and polarimetric radar measure-
ments, respectively. Snow crystals display different
sizes and shapes in nature [Kikuchi et al. 2013] and for
snowflakes larger than few micrometers Stokesian dy-
namics is not valid anymore [Brady and Bossis 1988;
Westbrook 2008] (𝑅𝑒 ≫ 1, where 𝑅𝑒 = (𝑢𝑡𝐷𝑚𝑎𝑥)/𝜈,
with 𝑅𝑒 being the particle Reynolds number, 𝑢𝑡 the
snowflake terminal velocity (m/s), 𝐷𝑚𝑎𝑥 being the
maximum span of the particle normal to the fall
direction (m), and 𝜈 the kinematic viscosity of air
(m2/s)). Hence, the interaction with the surround-
ing air becomes non-linear (large 𝐷𝑚𝑎𝑥 implies large
𝑅𝑒) [Abraham 1970]. Large snow particles (𝐷𝑚𝑎𝑥 ≫
100 𝜇m) exhibit tangled falling trajectories due to the
combined effects of irregular particle shape, size and
flow regime (i.e., Reynolds number).

A large variety of experimental techniques are
nowadays available to investigate complex flows. PIV
(Particle Image Velocimetry) appeared more than
three decades ago and it became a widely used as a
quantitative flowmeasurement solution [Adrian 1991;
Fu et al. 2015; Chen and Chang 2018]. Its success
can be explained by its ability to visualize and quantify
the instantaneous velocity field within an entire plane
of the flow domain [Brossard et al. 2015]. When
studying turbulent flow, there is the need of recording
a three-dimensional velocity field and one can rely
on volumetric techniques, such as Tomographic PIV
[Elsinga et al. 2006; Scarano 2013; Qureshi et al.
2021], because of their capability to tackle the in-
stantaneous 3D organization of the coherent struc-
tures in turbulence, in particular for three-dimensional
wake flow [Bearman 1997; Chen and Chang 2018;
Terra et al. 2019]. Lagrangian particle tracking
methods are also available, alongside PIV [Wieneke
2013]. Among these techniques, time-resolved, three-
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dimensional PTV (4D-PTV) is becoming increasingly
popular, especially after the development of the mod-
ern velocimetry algorithms, such as shake-the-box by
Schanz et al. 2016, which allows the use of much
higher seeding densities and, thus, a measurement res-
olution comparable to the one of PIV. Next to measur-
ing the flow velocity field around falling snowflakes
based on tracers, stereoscopic imaging can also be
employed to measure the position and orientation of
the snow flakes themselves. This was done by Mc-
Corquodale and Westbrook 2020b to investigate the
falling behavior and drag coefficient of freely falling,
three-dimensional (3D)-printed snowflakes analogs in
a mixture of water and glycerol. This study also
aimed to improve former parametrized models for
snowflake terminal velocity [Mitchell and Heymsfield
2005; Heymsfield and Westbrook 2010], which are
generally constrained by their specific experimental or
numerical set-up and confined to moderate Reynolds
numbers (𝑅𝑒 ≲ 1000).
Flow visualization methods are often combined

with numerical approaches (DNS, LES or RANS) to
validate the latter, when studying turbulent flows. For
instance, such a comparison has been used to test the
applicability of LES to turbulent wakes of a rectan-
gular cylinder [Kuroda et al. 2007], human-shaped
manikin [Luo et al. 2018], and wind turbines wakes
[Lignarolo et al. 2016; Wang et al. 2019]. In these
works, the experimental set-up accurately reproduces
the numerical one and the object geometries are usu-
ally quite simple (spheres, cylinders, or airfoils), often
at large Reynolds numbers (𝑅𝑒 ∼ 4000). Very few
works [Luo et al. 2018; Terra et al. 2019] that com-
bine experiments and computational models are to be
found on wakes of complex-shaped objects.
The falling behavior of non-spherical particles has

been widely explored both experimentally and numer-
ically since many years. Field et al. 1997 studied
the behavior of falling disks and identified different
falling motion (steady, periodic, and chaotic), accord-
ing to dimensionless moment of inertia and Reynolds
number. Other works on disks include the numer-
ical investigation of Fabre et al. 2008 and Auguste
et al. 2013, while and Vincent et al. 2016 and Este-
ban et al. 2019 experimentally investigated the influ-
ence of central holes in falling coins and the wake
coherent structures of falling disks, hexagonal, and
squared plates, respectively. The importance of in-
vestigating the wake characteristics of spherical and
non-spherical particles lies in the influence of the lat-
ter on the drag and falling trajectory [Fernandes et al.
2007; Kim et al. 2018]. Snow particles may exhibit
fractal-like geometries [Stein et al. 2015; Dunnavan
et al. 2019] that can affect their drag and wake. In
this view, the studies by Nedic et al. 2013 and Nedic
et al. 2015 looked into the impact of fractal dimension

of plate-like geometries on the drag coefficient, wake
size and vortex shedding. By increasing the fractal
dimension, i.e., longer particle perimeter (while keep-
ing the frontal area constant), the drag coefficient and
the shedding intensity increase, while the wake size
decreases, together with the vortex shedding energy.
Other works analyzed non-spherical particles, such
as plate-like crystals [Cheng et al. 2015], and colum-
nar crystals [Hashino et al. 2016]. Hashino et al.
2016 and Toupoint et al. 2019 found a strong depen-
dence of the falling attitudes on the aspect ratio of
the investigated geometry and described in detail the
changing of forces and torques in relation to the parti-
cle falling motion. Furthermore, the wake that forms
behind a snowflake impacts the snow crystal growth
(or sublimation) [Wang and Ji 1997; Ji and Wang
1999] and its interactions with neighboring particles
and the surrounding air [Nemes et al. 2017; Li et al.
2021]. Notwithstanding this extensive literature, the
high complexity of snow particles geometries is only
partially addressed in previous studies and the flow
regimes are generally moderate (𝑅𝑒 ≲ 103), due to
limitations in the employed experimental techniques
or in the computational capability of the chosen nu-
merical approach. With regards to the first limita-
tion (lack of studies tackling complex shapes), Zeugin
et al. 2020 investigated realistic snow particles in the
Stokes regime and proposed sphericity-based relations
to estimate the particle aerodynamic coefficients and
settling velocity up to Re∼ 10. With regards to the
second limitation (most studies tackle low Re), in our
previous work, we proposed a novel approach based
on a DDES model and the particle inertia tensor to
accurately predict snow particles drag coefficient and
terminal velocity [Tagliavini et al. 2021a], at moder-
ately high 𝑅𝑒, and we investigated the influence of the
particle shape on the wake flow and the drag coeffi-
cient of complex-shaped snowflakes at a fixed position
[Tagliavini et al. 2021b].
In this work, we combine 4D-PTV measurements

of freely falling, 3D-printed snowflakes analogs and
a Delayed-Detached Eddy Simulation (DDES) that
solves for the airflow around a fixed snow particle,
previously validated for the drag coefficient prediction
[Tagliavini et al. 2021a]. The measurements are com-
paredwith the numerical results of the same snowflake
shape (kept fixed in the computational domain), at the
same Reynolds number, to assess the ability of the
fixed-particle model to reproduce the velocity field
of the same free-falling particle. For the compari-
son, time- and space-averaged, non-dimensional flow
quantities in the wake are evaluated. The aim is
to, first, cross-validate the two approaches for low
Reynolds number cases, where close agreement of the
wake characteristics is expected, and, second, to as-
sess how strongly the unsteady fallingmotion perturbs
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the average wake patterns as compared to a fixed par-
ticle at the same 𝑅𝑒. To do so, following the criteria
employed in our previous works [McCorquodale and
Westbrook 2020b; Tagliavini et al. 2021b], two flow
regimes are identified according to the type of falling
motion displayed by the snow particles during labo-
ratory tests: a flow regime at which the particles fall
steadily (low 𝑅𝑒), and another one at which the parti-
cles exhibit unsteady falling behavior (moderate/high
𝑅𝑒). The combination of 4D-PTV data of free-falling
particles and a DDES model will allow us to shed
light on the capabilities and the limitations of both
approaches and better understand differences between
the wakes of fixed and freely falling particles.
In Section II, the experimental set-up, the velocity

field reconstruction, and the observations concerning
the particle falling behavior are firstly described. Sub-
sequently, the computational model is presented (Sec-
tion II C), followed by the preparation of the data sets
for the comparison and the analyzed quantities (Sec-
tion II D). In Section III, the results from the compar-
ison are provided and discussed. Initially, the steady
falling cases are presented (Section III A), for which
good agreement is found. Thereafter, the particle with
unsteady falling attitudes are taken into account (Sec-
tion III B). To facilitate the comparison, additional
experimental data, whose reconstruction is done by
including the particle rotation (Section II A 1), and
the numerical data filtered on larger grids (2 and 4
mm) are also considered for unsteady cases. The con-
clusions from the comparison are drawn in Section
IV.

II. MATERIALS AND METHODS

This section includes the description of the exper-
imental set-up, the velocity field reconstruction, the
laboratory observations, and the main features of the
DDES model. Conform to our previous works [Tagli-
avini et al. 2021a; Tagliavini et al. 2021b], the numeri-
cal model exploits the information about the Reynolds
number and the final orientation of each snow particle
from the experiments. The numerical solution is then
compared with the measurements of the same particle
geometry. The data sets preparation is also described
in Section II D.

A. Experimental set up

A schematic view of the experimental set-up is
shown in Fig. 1. The experiments are conducted in
a transparent acrylic box, the cross-section of which
is a regular decagon with circumscribing diameter of

400 mm. The tank is filled with uniform mixtures of
water and glycerol, in which the volume fraction of
glycerol is set between 0% and approximately 50%,
to a total liquid depth of approximately 1.44 m. The
density and temperature of the mixtures are measured
before each experiment; these measurements are used
to estimate the viscosity of the mixture [Cheng 2008;
Volk and Kähler 2018]. The parameters of the water
tank match with the ambient. Ambient humidity has
no effect on the present design of the experiment. The
temperature of the glycerin water mixture was noted
for each set of experiments and the values exhibited
minimal variation. Across the period of several weeks
in which experiments were conducted, the tempera-
ture of the glycerin water mixture was observed to
lie between 14.3◦C to 17.5◦C. Since the 3D-printed
ice-particle analogues are placed in the water for some
time, equilibrium is obtained between the fluid and the
particle analogues. During experiments, the analogs
are submerged close to the top of the tank and placed
inside a hemispherical cup. To initiate the experiment
the cup is tilted, releasing an analog with a random
orientation. Care is taken to remove any air bubbles
from the analogs before they are released. Qualitative
observations indicate that following a short transient
phase (typically over a vertical extent of less than 0.3
m), the subsequent fall of the analogs is independent
of orientation upon release. That is, the analogs either
(i) exhibit a clear preferred orientation in free-fall that
is insensitive to release conditions, at low Reynolds
numbers, or (ii) exhibit a chaotic trajectory (moder-
ate/high 𝑅𝑒), the details of which are unreproducible
even should the particle be released from a nominally
identical orientation. To ensure quiescent conditions
during experiments, the release of analogs is separated
by a time period of at least 15 minutes. Measurements
of instantaneous fluid velocities are obtained using
four-dimensional particle tracking velocimetry (4D-
PTV), employing the shake-the-box method [Schanz
et al. 2016], applied to a volume approximately 10 cm
x 10 cm x 10 cm in size approximately 1.25 m below
the surface of the fluid. Small, tracer particles (Flu-
orescent Red/Orange polyethlene Microspheres with
diameter range 125 to 150 𝜇m) are added to the water
volume and thoroughly stirred. Seeding particles are
selected to ensure they were approximately neutrally
buoyant within thewater-glycerolmixtures; tracer par-
ticles with densities of 1000, 1090 and 1200 kg/m3 are
used in water-glycerol mixtures of approximate densi-
ties of 999, 1088 and 1144 kg/m3 respectively. A LED
flash-light (LaVision LEDFlashlight 300Blue), which
emits blue light with a peak intensity at a wavelength
of 451 nm, is used to illuminate the tracer particles
located within the central region of interest (see Fig.
1). When excited by the blue light of the LED, the
tracer particles fluoresce and emit light with a peak
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intensity at a wavelength of 606 nm. As analogs fall
through the region of the interest, the motion of the
illuminated tracer particles, as they are advected by
the wake, is recorded using a series of high-speed dig-
ital cameras (VC-Phantom Miro M120) positioned to
point horizontally into the tank’s interior (see Fig. 1
(b) and Fig. 1 (c)). The camera lenses (Zeiss Pla-
nar T* 50mm f/1.4 ZF.2), attached to the cameras
via Scheimpflug adapters to apply perspective correc-
tions, are fitted with a filter (Hoya MHCYA3 Orange)
that permits the transmission of the red light emitted
by the fluorescent tracer particles but blocks the blue
light emitted by the LED flash-light. The cameras’
capture is synchronized with the pulse of the LED-
flashlight. The frame-rate of the flash-light and the
cameras is varied according to the terminal velocity
of the particle analogs; images are recorded at be-
tween 13 and 200 frames per second (at 1920 x 1200
pixel resolution). Tracer particle trajectories are de-
termined using LaVision’s Shake-the-box algorithm.
Tracer particle velocities are gridded to reconstruct
velocity fields using a sub-volume size of 64 x 64 x
64 voxels (of order 0.6 x 0.6 x 0.6 cm in size), over-
lapped by 75% to achieve 16 voxel spacing between
velocity vectors. This results in a physical spacing
between velocity vectors of approximately 0.15 cm.
A velocity vector is only returned in sub-volumes in
which a particle track is present; spatial fitting, or in-
terpolation across sub-volumes, is not applied. The
velocity data are calculated and analyzed relative to
the right-handed coordinate system (x; y; z); here,
z denotes the vertical axis, and (x; y) are the hori-
zontal coordinates perpendicular to the fall-direction
(see Fig. 1). The corresponding velocity components
are denoted (u; v; w). A custom algorithm (TRAIL)
[McCorquodale and Westbrook 2020a] is also used to
digitally reconstruct the trajectory and orientation of
the 3D-printed analogs from the images recorded by
the digital cameras, which enables the falling analog
to be co-located within the velocity fields measured
through the Shake-the-box algorithm.

1. Reconstruction of the experimental flow field

Since the particles employed in the simulations are
fixed and the 4D-PTV measurements are performed
for freely falling particles, it is necessary to transform
the experimental data to facilitate the comparison. To
do this, the coordinate system of each frame of the
experimental data is adjusted to match the one used
in the simulations (see Fig. 3), and the flow field is
translated so that the center of mass of the particle is
located at the origin. Next, the flow field is rotated
such that the orientation of the reconstructed particle

in the experiment matches the orientation in the simu-
lation. Although it is known a priori how the particle
is oriented relative to the fall direction (see Section
II B), the orientation within the horizontal plane is
not controlled in the experiment, and indeed complex
particles are observed to slowly rotate over time. To
match this to the fixed orientation in the simulation,
different rotations around the fall direction are tested.
The closest match between the 2D projections in the
horizontal plane is selected, and then the complete
flow field for that frame is rotated to match the sim-
ulation particle orientation. Finally, a sequence of
such co-moving, co-rotating flow field measurements
are time-averaged together. Following these steps, a
second experimental data set is created and added to
the comparison to appraise the influence of two differ-
ent types of measurements reconstruction approaches
(with andwithout accounting for the particle rotation).

B. Falling behavior of snow particles

The snow particles analyzed in this study are shown
in Fig. 2 (a). Given that snowflakes exhibit a large
variety of sizes and shapes in nature [Kikuchi et al.
2013], we took into consideration shapes that are ex-
amples of the most common classes of ice particles:
monocrystals (D1), multi-habit crystals (CC), poly-
crystals (MR), and aggregates (AG). As a consequence
of their diverse shapes, each snow particle displayed
a peculiar falling behavior that is concisely described
in this section within the Reynolds number range in-
vestigated in this study (60 ≲ 𝑅𝑒 ≲ 1700).
The plate-like crystal (D1) falls steadily during

the laboratory observations throughout the entire 𝑅𝑒
range. The largest projected area of the geometry is
orthogonal to the falling direction (i.e., the maximum
principal moment of inertia is aligned to the fall direc-
tion), as shown in Fig. 2 (a). AG displays a spiraling
trajectory even at low Reynolds numbers, although its
falling behavior can be considered steady up to 𝑅𝑒 ≲
1000 in view of the small changes in the orientation
(Fig. 2). It deviates from a steady motion as the
Reynolds number increases, and spirals around a ver-
tical axis parallel to the falling direction at high 𝑅𝑒

(periodic motion). For what concerns CC, a steady
falling attitude is present up to 𝑅𝑒 ≲ 70, after that, the
capped columns exhibits helical motions, whereby the
long-axis of the particle is approximately aligned par-
allel to the fall direction. Initially, the helical motions
shows a clear periodicity, but as 𝑅𝑒 increases the he-
lical motions becomes chaotic. The same behavior is
also seen by Kim et al. 2018 for rigidly linked disks.
MR falls steadily up to 𝑅𝑒 ≈ 250, then its motion be-
comes chaotic with huge variation in its orientation.
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More details on the falling behavior of each particle
can be found inMcCorquodale andWestbrook 2020b.
To better illustrate the particles falling behavior, Fig. 2
reports the variations of the angle between the falling
direction and the largest (𝛼), the intermediate (𝛾), and
the smallest (𝛽) principal axis of inertia for each shape.
The computational model utilizes the Reynolds

numbers and the observed orientations from experi-
ments to define the inflow velocity and the particle po-
sition with respect to the flow direction, as described
in Section II C. Fig. 2 (a) shows the final orienta-
tion of each snow particle. This orientation matches
the one achieved by the particle after falling steadily
for some time and after reaching its terminal velocity
[Tagliavini et al. 2021a]. This position is employed
in the computational model also for cases in which
particles are falling unsteadily (i.e., at moderate/high
Reynolds numbers). This is motivated by the fact
that the low Reynolds number orientation (i.e., steady
falling) lies within the range of the recorded orienta-
tions even when the particles display unsteady falling
attitude. Nevertheless, we showed that for certain par-
ticles, at high Re, the drag coefficient evaluated for
these orientations differs significantly from the ones
exhibited by the snowflake during experiments [Tagli-
avini et al. 2021a] because those particles frequently
visited positions that are far from the final orienta-
tion. As a consequence, in our second work, we also
explored "extreme orientations" [see Tagliavini et al.
2021b for a detailed description]. In particular, in this
study, we retain the extreme orientation of CC at 𝑅𝑒 =
488, i.e., the position for which the angle between the
long axis of the columnar crystal and the vertical fall
direction is the greatest.

C. Computational model and simulations

The computational model presented here is built up
with Open source Field Operation And Manipulation
(OpenFOAM 4.1), a C++ code based on the finite vol-
ume method [OpenFOAM 2017]. The model solves
for the airflow domain, where a fixed, realistic snow
particle is positioned (at its final orientation) at the ori-
gin of the domain coordinates (Fig. 3) and impinged
by the flow. The fluid motion is attained by solving
the transient Navier-Stokes equations:

∇ ·u = 0 ,

𝜌

(
𝜕u

𝜕𝑡
+ (u ·∇)u

)
= −∇𝑝 + 𝜇∇2u+ 𝜌f ,

(1)

in which u is the flow velocity (m/s), 𝑝 the pressure
(Pa), 𝜇 is the dynamic viscosity of the fluid (Pa· s),
𝜌 is the fluid density (kg/m3), and f are any external

forces per unit mass (N/kg). Newton’s second law of
motion describes the one-way interaction between the
air and the snowflake:

F = F𝑝 +F𝜈 =

∫
𝐴

𝑝n𝑑𝐴+
∫
𝐴

𝜏n𝑑𝐴 , (2)

with n the unit vector pointing out of the particle sur-
face A and 𝜏 the viscous stresses (Pa). The computa-
tional domain and mesh are shown in Fig. 3 and are
based on general guidelines for computational fluid
dynamics [Ferziger and Perić 2002]. Both domain
size and grid convergence studies are performed by
means of Richardson’s extrapolation [Roache 1994].
The volume of each snowflake is scaled to be equal to
that of a sphere with a diameter of 1 cm and the di-
mensions of the computational domain are defined as
a function of the volume-equivalent sphere diameter
[Tagliavini et al. 2021a]. For each case, the Reynolds
numbermatches the one of the laboratory experiments
(Section II A) and is used to evaluate the uniform air
speed set at the inlet boundary:

𝑢∞ =
𝑅𝑒 · 𝜈
𝐷𝑚𝑎𝑥

, (3)

where 𝑅𝑒 is the desired particle Reynolds number
(from experiments), 𝐷𝑚𝑎𝑥 is the maximum dimen-
sion of the snowflake orthogonal to the flow direction
(m), 𝑢∞ is the inlet velocity (m/s), and 𝜈 is the kine-
matic viscosity of the fluid (m2/s). At the outlet, a
zero static pressure is established. The snowflake is
treated as a fixed wall, on whose surface a no-slip
condition is imposed. A symmetry boundary condi-
tion is chosen for the lateral boundaries of the domain
(Fig. 3). More details about the computational do-
main size, grid, initial and boundary conditions can
be found in Tagliavini et al. 2021a. In relation to the
coarse-graining operations performed on the numer-
ical data, we highlight that the grid size in the wake
region (refinement region (b) in Fig. 3) and in the
proximity of the snow particle (refinement region (c)
in Fig. 3) is ≈ 5·10−4 m and ≈ 3·10−5 m, respectively.
The numerical model employs a DDES [Spalart

et al. 2006] turbulence modeling approach (hybrid
URANS-LES) with the Spalart-Allmaras turbulence
closure model for 𝜈̃ (modified eddy viscosity) for
the URANS calculation [Spalart and Allmaras 1992].
The turbulence model was previously validated in
Tagliavini et al. 2021a, where more details about
the implementation, the solver, and the numerical
schemes can be found.
The flow regimes (𝑅𝑒) at which the simulations are

carried out are chosen such that they include either
cases of steady (low 𝑅𝑒) and unsteady (moderate/high
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𝑅𝑒) falling behavior. Namely, D1 is simulated at 𝑅𝑒 =
206 (steady), AG at 𝑅𝑒 = 62 (steady), 1691 (unsteady,
periodic), MR at 𝑅𝑒 = 1110 (unsteady, chaotic), and
CC is evaluated at 𝑅𝑒 = 488 (unsteady, chaotic). All
the particles are simulated at their final orientation, ex-
cept CC for which the additional extreme orientation
is also considered (Section II B). For the summary of
the different particle orientations and 𝑅𝑒 investigated,
see Tab. I.

D. Comparison between numerical and experimental
data

Before evaluating the quantities employed in the
comparison, the numerical velocity field is modified
to a pseudo lab frame-of-reference by subtracting the
inflow velocity 𝑢∞ to the vertical component of the
velocity. In this way, the experimental and numeri-
cal flow filed are much easier to compare. Moreover,
the coordinates of both data sets are normalized using
the particle maximum dimension 𝐷𝑚𝑎𝑥 (m) orthog-
onal to the flow direction. As a consequence, the
non-dimensional coordinate in the flow direction 𝑥∗ is
evaluated using the following formula:

𝑥∗ =
𝑥

𝐷𝑚𝑎𝑥

, (4)

where 𝑥 in the coordinate in the flow direction (m).
We then calculate the time-averaged, non-dimensional
velocity u∗ defined as:

u∗ =
u

𝑢0
, (5)

in which u is the time-averaged velocity vector (m/s)
and 𝑢0 is the inflow velocity equal to 𝑢∞ (m/s) in
the computational case and the snow particle termi-
nal velocity 𝑢𝑡 in the experimental one (m/s), re-
spectively. Using the normalized coordinates and the
time-averaged, non-dimensional velocity u∗, the non-
dimensional velocity gradient 𝑔𝑟𝑎𝑑 (u∗) is obtained,
whose 𝐿2 norm (magnitude) is also calculated.
The snow particle wake is identified by an iso-

volume of the time-averaged, non-dimensional veloc-
ity magnitude (𝑢∗). The iso-volume is delimited by
threshold on 𝑢∗ set at 90% of its maximum value.
Given that the field of view captured in the experi-
ments extends only a few 𝐷𝑚𝑎𝑥 from the particle, the
comparison focuses on the quantities in the near wake
(𝑥∗ ≤ 3𝐷𝑚𝑎𝑥). Furthermore, the particle center of
mass is fixed at the coordinate system origin in both
flow fields. In this way, the geometry of the wake in
the numerical data overlaps the one of the laboratory

field (Fig. 4 (f), (g)). Once the wake is outlined,
the time-averaged, non-dimensional velocity magni-
tude (𝑢∗) and the 𝐿2 norm of the time-averaged, non-
dimensional velocity gradient 𝑔𝑟𝑎𝑑 (𝑢∗) are spatially
averaged over different surfaces orthogonal to the flow
direction along the wake iso-volume (𝑈∗ and 𝑔𝑟𝑎𝑑𝑈∗,
respectively, for which the time-averaging symbol is
omitted to simplify the notation). For the compar-
ison between the numerical data and the measure-
ments accounting for the particle rotation, to speed
up the measurements reconstruction, only the verti-
cal component of the time- and space-averaged, non-
dimensional velocity is taken into account (𝑈∗

𝑥 , see
Section III B 1). The distance between these surfaces
is Δ𝑥∗ = 0.25𝐷𝑚𝑎𝑥 and the starting point is at 𝑥∗ =
0.5𝐷𝑚𝑎𝑥 for AG and D1, while for MR and CC is at
𝑥∗ = 0.75𝐷𝑚𝑎𝑥 due to the larger extension of those par-
ticles along the x axis (streamwise direction). Fig. 4
depicts the comparison between the wake coefficients
𝐶𝑤 of the numerical and experimental data, that works
as an indicator of the geometry matching of the wakes.
The wake coefficient is evaluated as:

𝐶𝑤 =
𝐴𝑤

𝐴𝑝

, (6)

where 𝐴𝑤 is the wake area, i.e., the area of each sur-
face normal to the flow direction along the wake iso-
volume (m2), and 𝐴𝑝 is the projected area of the
snowflake in the flow direction (m2) [Nedic et al.
2013]. The difference in the geometry of the exper-
imental and numerical wake, for steady falling cases
(Fig. 4 (a) and (b)), stays below 3%. Larger devia-
tions can be found for particles with unsteady falling
behavior, where the experimental wake is sometimes
tilted in the y or z direction, and this is due to the dis-
similarities in the wake shape between the numerical
and the experimental field (Tab. I).This results in a
less accurate matching of the wake iso-volumes (see
Tab. I and Fig. 4 (f) and (g)).
The estimate of the velocity uncertainty in the

experimental flow field reconstruction is of around
±15%. The difference in the time- and space-
averaged, non-dimensional velocity magnitude𝑈∗ be-
tween the measurements and the numerics are esti-
mated using the relative percentage error:

𝜖𝑖 =
𝑈∗
𝑒𝑥𝑝 −𝑈∗

𝑠𝑖𝑚

𝑈∗
𝑒𝑥𝑝

·100 , (7)

with 𝜖𝑖 the error at each surface 𝑖 normal to the flow
direction, along the wake iso-volume. By averaging
the absolute values of 𝜖𝑖 , the averaged absolute error 𝜖
is obtained. The data analysis and the post-processing
is performed with ParaView 5.9 [Ayachit 2015].
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The spatial resolution of the computational field is
higher than the one of the measurements, therefore
filtering operations are also carried out to facilitate
the comparison of the unsteady cases (moderate/high
𝑅𝑒), where the differences between the data sets are
expected to be larger (Tab. I) [Buzzicotti et al. 2018;
Corso et al. 2021]. With this aim, two different uni-
form grids are employed with 2 mm and 4 mm resolu-
tion (Fig. 5 (b) and (c), respectively). These grid sizes
are selected to be close to the experimental resolution
(Section II A). Among the different methods avail-
able in ParaView [Ayachit 2015], a Gaussian function
is chosen for the interpolation over the coarser grid,
varying the sampling radius according to the mini-
mum grid size. The filtering of the numerical data
and their comparison with experimental results are
presented in Section III B 2.

III. RESULTS AND DISCUSSION

In this section, the results of the comparison be-
tween numerical and experimental data are presented
and discussed. The analysis is first carried out
for snow particles with steady falling attitudes (low
𝑅𝑒), for which a good agreement between the ex-
periments and the numerics is found (Section III A).
Subsequently, the unsteady falling particles at moder-
ate/high Reynolds numbers are considered. For these
cases, two different analysis are performed: the first
one involving the numerical data and the measure-
ments with and without accounting for the particle
rotation in the reconstruction (Section III B 1), and
the second one including the experiments (without
particle rotation), the numerical data, and the numer-
ical data filtered on two larger grids (Section III B 2).
This is done because, for unsteady falling snow parti-
cles, the differences between the numerical and exper-
imental velocity field are much larger due to the high
rotation rates displayed by the snowflakes. There is,
therefore, the necessity to bring the two data sets closer
for an easier comparison. Throughout this compara-
tive study, the time-averaged, non-dimensional veloc-
ity field, together with the wake shape, is qualitatively
compared. Then, for a more quantitative appraisal,
the same quantities are spatially averaged over dif-
ferent sections in the streamwise direction along the
wake iso-volume (𝑈∗ and 𝑔𝑟𝑎𝑑𝑈∗, Section II D). The
𝑈∗ relative error (Eq. 7) is also reported to quantify
the differences between the data sets. For the compar-
ison in Section III B 1, only the vertical component of
𝑈∗, i.e.,𝑈∗

𝑥 , is considered in the analysis.

A. Steady falling motion

Fig. 6 (a), (b) and Fig. 7 (a), (b), and (c) illus-
trates the comparison for AG at 𝑅𝑒 = 62. At this flow
regime, AG has been observed to fall steadily. The
time-averaged, non-dimensional velocity field shows
similar values in both wakes (Fig. 6 (a) and (b)),
with slightly lower velocity close to the particle for
the experimental case. In the latter, the wake shape is
moderately tilted (Fig. 4), although the error in 𝐶𝑤

is low (≈ 3%, see Tab. I). The comparison of both
𝑈∗ and 𝑔𝑟𝑎𝑑𝑈∗ highlights a good agreement between
the two data sets, with an averaged absolute error of
3.10% for𝑈∗ (see Fig. 7 (a), (b), and (c)).
D1 at 𝑅𝑒 = 206 also displayed a steady falling be-

havior during laboratory observations (Fig. 2). For
this particle, the shape of the wake in the numerical
field matches well the one from the experiments (see
Tab. I and Fig. 6 (c) and (d)). The 𝑈∗ experimental
field moderately differs from the numerical case in the
vicinity of the particle (Fig. 6 (c) and (d)). This dif-
ference is most likely caused by a lower density of the
tracer particles close to the particle combined with its
optical occlusion (i.e., the particle is not transparent
and tracers are barely visible in some camera views
near the snowflake analog, see Section II A), but this
does not affect the quality of the comparison (Fig. 7
(d), (e), and (f)), that results in an averaged absolute
error of 1.79% for𝑈∗.
At low 𝑅𝑒, the investigated snowparticles presented

a steady falling behavior. This means that all the three
angles (𝛼, 𝛽, and 𝛾) between the particle principal
axes and its falling direction have values lower than
5◦ (see Fig. 2), i.e., the snowflake falls, on average,
without a significant variation from its final orienta-
tion, as reconstructed from the experiments (Section
II B). The 4D-PTV captures well the free-fall of snow
particles, but presents a lower resolution, especially
in the vicinity of the particle, as compared to the nu-
merical model. On the other hand, the DDES model
of a fixed snow particle is a simplification of the real
phenomenon, i.e., the particle is kept fixed and, thus,
lacks the two-way coupling between the particle and
the airflow. However, for particles that fall steadily,
the numerical model succeeds in accurately represent-
ing the velocity field of a freely falling snow particle,
despite the simplification. Therefore, it can be used as
a robust tool to investigate snow particles with steady
falling attitude.

B. Unsteady falling motion

At moderate/high Reynolds numbers (𝑅𝑒 ≳ 400),
all the examined snowflakes, except from D1, fall un-
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steadily. Fig. 2 (b), (c), and (d) show higher values of
the averaged angles variation for CC and MR, which
display chaotic falling behavior, whilst the angle vari-
ation for AG (periodic fallingmotion) stays below 20◦.
The large variation in the orientation of CC andMR is
also visible in Fig. 8 (a) and (b) that present the instan-
taneous positions manifested by both particles during
their free-fall. Here, we see that the final orientation,
as reconstructed from the experiments, is displayed
by CC and MR only at a couple of instants along
the entire trajectory, while for the majority of their
free-fall time other orientations are exhibited. The
situation is much different for AG (Fig. 8 (c)). Due
to its periodic falling attitude, it moderately changes
its orientation, while its vertical trajectory is spiral-
ing with respect to the falling direction. With this in
mind, we analyzed the wake characteristics in cases
of unsteady falling behavior performing two different
comparisons: one that involves the numerical data and
two different experimental data sets (with and without
the particle rotation included in the velocity field re-
construction, as described in Section II A 1) presented
in Section III B 1, and a second one that concerns the
experimental data (without particle rotation) against
the numerical data on two additional coarser grids,
as compared to the computational one, described in
Section III B 2. The measurements reconstruction in-
cluding the particle rotation and the filtering opera-
tions on the numerical data are performed to facilitate
the comparison of unsteady falling cases, for which
larger differences are expected.

1. Experimental data reconstructed accounting for the
snow particle rotation

Firstly, we analyze CC at 𝑅𝑒 = 488, shown in Fig. 9
(ab), (b), (c), and (d) and Fig. 10 (a) and (b). For CC,
both its final and its extreme orientations (see Section
II B and Tagliavini et al. 2021b) are used in the nu-
merical model. The extreme orientation corresponds
to the position for which the angle between the long
axis of the particle and the vertical fall direction is ob-
served to be the greatest. This particular orientation is
included because it is closer to the orientations that the
particle typically displays during its fall (Fig. 8 (a)).
If we look at the wake non-dimensional velocity field
(Fig. 9 (a) for the final orientation model, (b) for the
extreme orientation one, (c) for the experiments with-
out rotation, and (d) the experiments with rotation
in the reconstruction, left-side image) and the wake
shape (Fig. 9 (a), (b), (c) and (d), right-side image)
significant differences are present. In particular, in the
experimental case without rotation the wake is slightly
tilted due to the unsteady falling motion of the parti-
cle. This is why the 𝐶𝑤 comparison results in high

discrepancies of 18.65% and 23.29%, as compared to
the final and extreme orientation model, respectively
(Tab. I, Fig. 4 (d)). For this reason, the experimental
data set reconstructed considering the particle rotation
is included to improve the comparison by bringing the
numerical data closer to the experiments. In this case,
the differences in the matching of the wake geome-
tries (𝐶𝑤) are reduced, even if only for the extreme
orientation model (see Tab. I and Fig. 4 (c)), from
an average error of 23.29% to 7.22%. For a more
quantitative comparison, the values of 𝑈∗

𝑥 are shown
in Fig. 10 (a) and its relative error in Fig. 10 (b).
Implementing the rotation in the experimental field
reconstruction allows to properly take into account all
the positions that the particle exhibits, including those
similar to the final orientation. As a consequence, the
two data sets show lower differences that drop from
37.79% (without rotation) to 20.71% (with rotation)
for the comparison with the final orientation model
and from 12.00% (without rotation) to 11.70% (with
rotation) for the extreme orientation one (see Tab. I).
The reason why the dissimilarities for the extreme
orientation model are lower, as compared to the final
orientation model, can be explained by the helical mo-
tion of CC (see Section II B) with positions frequently
similar to the extreme orientation along its trajectory
(Fig. 8 (a)). The average error for the extreme orien-
tation model stays below the experimental uncertainty
(±15%).
The same comparison is carried out for MR at 𝑅𝑒 =

1110 (chaotic falling behavior). For this case, the
final orientation model is compared with the experi-
ments reconstructed with andwithout particle rotation
(Fig. 9 (e), (f), and (g), respectively). Despite the
qualitative differences in the non-dimensional vertical
velocity (Fig. 9 (e), (f), and (g), left), the geome-
try matching of the wake is improved if the particle
rotation is taken into account measurements recon-
struction (from 11.66% to 6.67%, see Tab. I and Fig.
4 (d)). This additional manipulation of the experi-
mental data allows for a decrease in the error of 𝑈∗

𝑥

from 36.41% to 22.68%, as shown in Fig. 10 (c) and
(d) and in Tab. I.
For AG at 𝑅𝑒 = 1691 (periodic falling motion, Fig.

9 (h), (i), and (j)), the experiments with the particle
rotation show a better agreement with the final ori-
entation model, and the improvement in the error of
𝑈∗

𝑥 is in the same order of magnitude as for MR (ap-
proximately 13%). The measurements with rotation
(Fig. 9 (j), left) present two clearly separated recir-
culation zones in the wake, which slightly resemble
the numerical velocity field, despite the more marked
separation. The wake shape in this case is also more
similar to the numerical one (Fig. 9 (h), (i), and (j),
right), although more tilted in the negative z direction.
𝐶𝑤 in the experimental case with rotation is also in
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good agreement with the numerical one (Tab. I), but
the matching of𝑈∗

𝑥 (Fig. 10 (e) and (f)) still results in
an averaged error larger than the experimental uncer-
tainty of the velocity field reconstruction (±15%), as
for MR.
The additional manipulation of the experimental

data to include the particle rotation in the reconstruc-
tion of the velocity field (Section II A 1) brings the
measurements values closer to the numerical ones.
This is achieved because the orientation of the par-
ticle in the experimental field is forced to match the
numerical one. Nevertheless, in the majority of the
investigated cases, the differences are larger than the
experimental uncertainty due to the unsteady falling
behavior of the particle that significantly modifies the
average wake structure as compared to the fixed par-
ticle model.

2. Numerical data filtered on coarser grids

MR at 𝑅𝑒 = 1110 displayed chaotic falling behavior
at high flow regimes. For this second comparison, the
numerical data with the particle at its final orientation
is filtered on two larger grids (namely, 2 mm and 4
mm, as described in Section II D), to investigate the
influence of a different spatial resolution on the com-
parison. While for the DDES model (Fig. 11 (a)) and
the two filtered numerical data sets (Fig. 11 (b) for
2 mm and (c) for 4 mm, respectively) the differences
in the non-dimensional velocity field and in the wake
shape are barely visible (a part from a slight change in
the wake shape at the bottom). The experimental field
(without rotation) substantially differs from the previ-
ous ones (see Tab. I and Fig. 11 (d)). Nevertheless,
the wake matching error remains around 12% (Fig. 4
(d)). The gap between the data sets is however evident
in the comparison of𝑈∗ and 𝑔𝑟𝑎𝑑𝑈∗ (Fig. 12 (a) and
(c), respectively). Interestingly, the 𝑈∗ relative errors
(Fig. 12 (b)) show an improvement of ≈ 13% for the
4 mm grid, compared to the original numerical data.
The same approach is followed for the analysis of

AG at 𝑅𝑒 = 1691 (Fig. 11 (e), (f), (g), and (h)), for
which two filtered numerical data sets are also in-
cluded (using a 2 mm and a 4 mm grid, as for MR).
From Fig. 11 (e), (f), (g), and (h) (left), we can see
that the strong velocity deficit in the wake is progres-
sively smeared out in the filtered numerical fields as
the grid size is increased and reaches values compa-
rable to the experimental field (without rotation). The
wake matching for this comparison (Fig. 4 (e), Tab.
I) presents an error of roughly 11%, and the wake
shape is flattened as the filtering grid is increased.
The comparison of 𝑈∗ and 𝑔𝑟𝑎𝑑𝑈∗ (Fig. 12 (d) and
(f), respectively) shows that the filtering of the numer-

ical data brings the values closer to the ones of the
experimental flow filed, as it is also illustrated in Fig.
12 (e), where the filtering on a 4 mm grid lowers the
differences for𝑈∗ of ≈ 12%.
The comparison at moderate/high 𝑅𝑒 allows a

deeper insight in the capabilities and limits of both
approaches (experiments and computational model).
With regard to the experimental data, they correctly
capture the wake characteristics of a freely falling
snowflake analogs, but have a limited spatial and
temporal resolution that lead to a lower accuracy
(±15% error in the velocity) and temporal statistics,
as compared to the numerical model. On the other
hand, more fine scale details of the velocity field and
larger temporal statistics are present in the numeri-
cal model, albeit the use of DDES (hybrid URANS-
LES), which carries intrinsic modeling inaccuracies
[Tagliavini et al. 2021b]. The numerical model be-
comes problematicwhen dealingwith unsteady falling
particles because it requires a fixed orientation to be
specified. For the majority of the tested geometries
at moderate/high 𝑅𝑒, their orientation considerably
varies and the falling unsteadiness growswith increas-
ingReynolds numbers [McCorquodale andWestbrook
2020b]. In this view, the numerical model is not able
to accurately reproduce the average wake of freely
falling snowflakes at moderate/high 𝑅𝑒. Including the
particle rotation in the experimental field reconstruc-
tion and filtering the numerical data on coarser grids
partially improves the comparison. Accounting for
the particle rotation in the measurements reconstruc-
tion bring a significant decrease in the wake geometry
matching error (𝐶𝑤), as compared to the filtering oper-
ation. Nevertheless, a good agreement is not achieved
for unsteady falling particle because their movement
alters significantly the wake characteristics. Measure-
ments with larger time and space windows will allow
for more orientations similar to the ones used in the
model to be visited by the particle during its free-fall
(smaller differences in the wake characteristics) and,
therefore, may provide a better agreement with the
numerical data. In this view, we assess that using
extreme orientations as fixed orientation in the model
may better represent the average wake of variable ori-
entations visited during free fall and, together with
additional investigations over larger space/time win-
dows, may provide a further understanding to what
extent the fixed-particle model still gives reasonable
results for unsteady falling snowflakes.

IV. CONCLUSIONS

In this paper, velocity field data from aDDESmodel
of a complex-shaped, fixed snowflake were compared



10

with velocity measurements of freely falling, 3D-
printed snow particle analogs of the same shape and
at the same flow regime. To do so, the data were
made non-dimensional to facilitate the comparison
and time- and space-averaged quantities were consid-
ered (𝑈∗ and 𝑔𝑟𝑎𝑑𝑈∗, non-dimensional velocity mag-
nitude and non-dimensional velocity gradient magni-
tude, respectively). Before performing the compari-
son, the matching of the wake geometry of both data
sets was assured. Two different particle falling atti-
tudes were identified (steady and unsteady falling mo-
tion) and the comparison was carried out separately
for each falling attitude. To investigate the sensitivity
of the comparison, for particles with unsteady falling
behavior, two analyses were performed: one involv-
ing the numerical data set and two reconstructed the
measurement fields (with and without accounting for
the particle rotation in the reconstruction), and the
other one with the experiments (without rotation) and
the numerical data filtered on two coarser grids of 2
mm and 4 mm resolution, respectively. Both the ap-
proaches had the objective of bringing the two data
sets (experiments and numerics) closer for a suitable
comparison.
With respect to snow particles with a steady falling

attitude (low Reynolds numbers, 𝑅𝑒 ≲ 400), two cases
were investigated: AG at 𝑅𝑒 = 62 and D1 at 𝑅𝑒 = 206.
Both particles fell without significant variations from
their final orientation, as reconstructed from the exper-
iments. The differences between the experimental and
numerical data are much smaller than the experimen-
tal uncertainty (±15%). Therefore, the fixed-particle,
DDES model succeeded in representing the wake dy-
namics of steady falling cases, despite the simplified
numerical set-up.
For unsteady falling snowflakes, although the intro-

duction of the experimental data with particle rotation
implemented or the filtering of the numerical data, the
discrepancies between the measurements and the nu-
merics remained above the experimental uncertainty
even if not dramatically. This second comparison
highlighted the limitations of both approaches: the
limited time and space window of the experimental
set-up, that nevertheless captures well the free-fall
of snowflake analogs, and the lack of two-way cou-
pling between the particle and the airflow in the DDES
model (fixed particle). Measurements with larger time
and space windows and additional numerical data on
extreme orientations may provide a better agreement
with the numerical data. Therefore, using extreme
orientations as fixed orientation in the model may bet-
ter represent the average wake of visited orientations
during free fall and, together with experimental data
over larger space/time windows, may provide a fur-
ther understanding to what extent the fixed-particle
model still gives reasonable results for unsteady falling

snowflakes.
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TABLE I: Summary of the cases studied in this work. The Reynolds number and the falling behavior of each particle,
together with the averaged absolute error (Eq. 7) of the wake coefficient and of the time- and space-averaged,

non-dimensional velocity magnitude are listed. The error for 𝐶𝑤 and𝑈∗ are separated for the two different experimental
data sets: with and without the particle rotation implemented in the reconstruction (Section II A 1). Furthermore, the results
from the filtering operation (coarser grids) of the numerical data are also presented. In the comparison of the experimental

data with the particle rotation included, the errors are evaluated with respect to the vertical component of the
non-dimensional velocity𝑈∗

𝑥 (Section II D).

Particle Re Falling behavior 𝐶𝑤𝜖 (%) 𝑈∗𝜖 (%) 𝑈∗
𝑥𝜖 (%)

without rotation with rotation without rotation coarse grid (2 mm) coarse grid (4 mm) without rotation with rotation
AG 62 Steady 2.86 - 3.10 - - - -
D1 206 Steady 0.87 - 1.79 - - - -
CC 488 Chaotic 18.65 18.73 31.67 - - 37.79 20.71

CC extr. orient. 488 Chaotic 23.29 7.22 11.30 - - 12.00 11.70
MR 1110 Chaotic 11.66 6.67 41.42 32.79 29.32 36.41 22.68
AG 1691 Periodic 7.34 2.95 36.40 32.25 24.85 34.17 21.22

(b)

(c)(a)

FIG. 1: Sketches of the experimental set-up showing its key components, including the position of the cameras, relative to
the LED illumination, and the region of interest that they record. (a) Side and (b) plan view of the set-up. Also shown are

the coordinate directions (x, y, z), and (c) the real experimental set-up.
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(d)

(c)

(b)

final orientation

final orientation

final orientation

final orientation

extreme orientation

(a)

FIG. 2: (a) 3D geometries of the snow particles investigated in this paper (in blue). They are examples of common classes
of snow particles observed in nature: aggregates (AG), rosette crystals (MR), capped-column crystal (CC), and plate-like
crystals (D1). The respective projected area of each snowflake in the flow direction x is illustrated in black (according to the

final orientation reconstruction). For CC, the extreme orientation is also shown. The names of the geometries are
abbreviations of the nomenclature used by McCorquodale and Westbrook 2020b to facilitate the comparison. (b), (c), and
(d) variations of the angles between the principal axes and the fall direction for each geometry (e.g., Δ𝛼 = 𝛼𝑚𝑎𝑥 −𝛼𝑚𝑖𝑛). 𝛼,
𝛽, and 𝛾 are the angle between the fall direction and the largest (b), the intermediate (c), and the smallest (d) principal axis,

respectively. Variations larger than 5◦ indicate the onset of unsteady falling behavior.

inlet

outlet

lateral boundary

lateral boundary

snow particle

grid refinement zones
(a)

(b)

(c)

FIG. 3: 3D visualization of the computational domain. The grid refinements (a-c) are indicated, with (a) the refinement
region with the finest mesh and (c) the coarsest one. The background mesh, built using blockMesh [OpenFOAM 2017], is

also visible.
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(a) (b)

AG Re=62 D1 Re=206

(c)

(d) (e)

CC Re=488

MR Re=1110 AG Re=1691

(f) (g)

FIG. 4: Wake coefficient 𝐶𝑤 for each snow particle ((a-b) steady falling cases and (c-e) unsteady falling ones). 𝐶𝑤 works
as an indicator of the wake geometry matching. The averaged absolute error of 𝐶𝑤 for each case is summarized in Tab. I.
The matching of the wakes is shown in (f) and (g) for a steady falling particle (D1 at 𝑅𝑒 = 206) and for an unsteady falling
one (AG at 𝑅𝑒 = 1691), respectively. The experimental wake is the solid one, while the numerical one is transparent.

(a) (b) (c)

FIG. 5: Coarse grids employed in the filtering operation of the numerical data. (a) Original computational grid, (b) 2 mm
grid, and (c) 4 mm grid for particle MR, as example.
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(c) (d)

(b)(a)

simulation experiment

AG Re=62

D1 Re=206

Steady falling behavior

FIG. 6: Results of the comparison between experimental and numerical data for snow particles with steady falling
behavior. The pictures illustrate the contour plots of the time-averaged, non-dimensional velocity magnitude𝑈∗ and the

wake iso-volumes for AG at 𝑅𝑒 = 62 ((a) and (b)) and D1 at 𝑅𝑒 = 206 ((c) and (d)).

(d) (e) (f)

(a) (b) (c)

AG Re=62

D1 Re=206

Steady falling behavior

FIG. 7: Results of the comparison between experimental and numerical data for snow particles with steady falling
behavior. The plots report the comparison of the time- and space-averaged, non-dimensional velocity magnitude𝑈∗, its
relative error, and the time- and space-averaged, non-dimensional velocity gradient magnitude 𝑔𝑟𝑎𝑑𝑈∗ for AG at 𝑅𝑒 = 62
((a), (b), and (c)) and D1 at 𝑅𝑒 = 206 ((d), (e), and (f)). The experimental uncertainty on the velocity field reconstruction
(±15%) (plot (b) and (e), respectively) is shown with dotted lines. Since the coordinate system is made non-dimensional
using the particle maximum diameter 𝐷𝑚𝑎𝑥 , the non-dimensional coordinate 𝑥∗ represents the distance from the particle in

terms of its maximum extension normal to the flow direction.



17

(a) (b) (c)

x/Dmax x/Dmax x/Dmax
z/Dmaxz/Dmaxz/Dmax

y/
D
m
ax

y/
D
m
ax

y/
D
m
ax

FIG. 8: Falling orientations reconstruction for (a) CC at 𝑅𝑒 = 488, (b) MR at 𝑅𝑒 = 1110, and (c) Ag at 𝑅𝑒 = 1691. The
𝑦∗ = 𝑦/𝐷𝑚𝑎𝑥 axis is parallel to the falling direction in this case (𝑥∗ is the falling direction in the comparison). (a) and (b)

exhibit chaotic falling behavior, while (c) falls with a periodic attitude (see Tab. I and Fig. 2).

(c) (d)(a)

sim. fin. orient. experiment

CC Re=488

Unsteady falling behavior: reconstruction with particle rotation

(b)

sim. ext. orient. exp. with rotation

MR Re=1110

(e) (f) (g)

AG Re=1691

(h) (i) (j)

X

X

FIG. 9: Results of the comparison between numerical data and experiments reconstructed with and without the particle
rotation for snow particles with unsteady falling behavior. The pictures illustrate the contour plots of the time-averaged,
non-dimensional streamwise velocity𝑈∗

𝑥 and the wake iso-volumes for CC at 𝑅𝑒 = 488 ((a), (b), (c), and (d)), MR at 𝑅𝑒 =
1110 ((e), (f), and (g)), and AG at 𝑅𝑒 = 1691 ((h), (i), and (j)). Only for CC, the numerical data of the particle at its extreme

orientation (b) is also taken into account in the comparison.
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Unsteady falling behavior: reconstruction with particle rotation

CC Re=488

MR Re=1110

AG Re=1691

(a) (b)

(c) (d)

(e) (f)

FIG. 10: Results of the comparison between numerical data and experiments reconstructed with and without the particle
rotation for snow particles with unsteady falling behavior. The plots report the comparison of the time- and space-averaged,
non-dimensional streamwise velocity𝑈∗

𝑥 and its relative error for CC at 𝑅𝑒 = 488 ((a) and (b)), MR at 𝑅𝑒 = 1110 ((c) and
(d)), and AG at 𝑅𝑒 = 1691 ((e) and (f)). The experimental uncertainty on the velocity field reconstruction (±15%) (plot (b),
(d), and (f), respectively) is shown with dotted lines. Since the coordinate system is made non-dimensional using the

particle maximum diameter 𝐷𝑚𝑎𝑥 , the non-dimensional coordinate 𝑥∗ represents the distance from the particle in terms of
its maximum extension normal to the flow direction.

Unsteady falling behavior: filtering of numerical data

simulation experimentsim. filtered 2mm sim. filtered 4mm

MR Re=1110

AG Re=1691

(c) (d)(a) (b)

(g) (h)(e) (f)

FIG. 11: Results of the comparison between experimental and numerical data for snow particles with unsteady falling
behavior. The numerical data filtered on coarser, uniform grids of 2 mm and 4 mm are also considered in the comparison.
The pictures illustrate the contour plots of the time-averaged, non-dimensional velocity magnitude𝑈∗ and the wake

iso-volumes for MR at 𝑅𝑒 = 1110 ((a), (b), (c), and (d)) and AG at 𝑅𝑒 = 1691 ((e), (f), (g), and (h)).
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Unsteady falling behavior: filtering of numerical data

(d) (e) (f)

(a) (b) (c)

MR Re=1110

AG Re=1691

FIG. 12: Results of the comparison between experimental and numerical data for snow particles with unsteady falling
behavior. The numerical data filtered on coarser, uniform grids of 2 mm and 4 mm are also considered in the comparison.
The plots report the comparison of the time- and space-averaged, non-dimensional velocity magnitude𝑈∗, its relative error,
and the time- and space-averaged, non-dimensional velocity gradient magnitude 𝑔𝑟𝑎𝑑𝑈∗ for MR at 𝑅𝑒 = 1110 ((a), (b), and
(c)) and AG at 𝑅𝑒 = 1691 ((d), (e), and (f)). The experimental uncertainty on the velocity field reconstruction (±15%) (plot
(b) and (e), respectively) is shown with dotted lines. Since the coordinate system is made non-dimensional using the

particle maximum diameter 𝐷𝑚𝑎𝑥 , the non-dimensional coordinate 𝑥∗ represents the distance from the particle in terms of
its maximum extension normal to the flow direction.
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