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Abstract  
  

  

In the present healthcare climate, there is an urgent need to increase the efficiency with which 

novel therapies are evaluated. Multi-arm adaptive trials allow multiple treatments to be tested 

within a single protocol and offer the facility to respond to emerging data. Such trials allow 

treatment arms to be dropped or even added partway through the trial, directing resources to 

promising treatments. In this thesis, methodologies for two-stage adaptive trials with binary 

outcomes are explored, focussing on those approaches in which an intermediate outcome may 

be used for the purposes of treatment selection.   

Methodology for the multi-arm multi-stage approach developed by Royston et al. (2003, 2011), 

here denoted MAMS(R), is extended so that feasible and admissible trial designs may be 

obtained under the log odds ratio parameterisation. A simulation study suggests that these 

MAMS(R) designs perform favourably compared with the well-established combination 

method when a common outcome is monitored, but not when an intermediate outcome is 

incorporated.   

A proposal is made for increasing the efficiency and flexibility of MAMS(R) methodology by 

implementing conditional error calculations within a closed testing procedure. This approach 

allows the trial design to be updated at the interim analysis, resulting in gains in efficiency, 

particularly in trials where an intermediate outcome is used and where some promising 

treatments are dropped. The conditional error approach is then extended to offer the facility of 

adding a new treatment arm to an ongoing multi-arm adaptive trial. The procedure achieves 

good power, ensures Type I error rate control and performs particularly well if a new treatment 

arm is added when promising treatments have been dropped from the trial.   

Recommendations for using the new developments are given. It is hoped that this research will 

widen the use of MAMS(R) methodology in practice.  
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Chapter 1. Introduction  

  

  

1.1 Motivation and context of this research  

A randomised controlled clinical trial (RCT) is the widely used tool for evaluating new 

treatments for human diseases. Since human subjects are involved, RCTs have been developed 

to provide a rigorous scientific method for conducting treatment comparisons whilst also 

conforming to stringent ethical standards. For decades this approach has been used successfully 

to evaluate and bring to market many novel therapies.  

  

In the last two decades there have been a number of changes in the healthcare and 

pharmaceutical landscape, due to issues such as globalisation, changes in lifestyles and life 

expectancy and the advent of new scientific discoveries and technologies. These changes have 

resulted in an urgent need to increase the speed and efficiency with which potential new 

treatments are evaluated. A particular example is the increasing prevalence of chronic diseases, 

encompassing both non-communicable conditions such as Diabetes, for which global 

prevalence is estimated at 463 million (Saeedi et al., 2019), and communicable diseases such 

as tuberculosis, which is one of the top ten causes of death worldwide (WHO Global 

Tuberculosis Report, 2019).  Treatments for these diseases are often more complex and may 

involve combinations of drugs or other interventions. To evaluate these treatments there is a 

need for clinical trials in which a number of competing regimens can be compared. Another 

change is that it is increasingly necessary to evaluate new treatments against an active 

comparator rather than a placebo, which means that anticipated treatment effects tend to be 

smaller than previously and also that non-inferiority trials are more common. Moreover, there 

is the new and rapidly advancing field of personalised medicine resulting in the desire to 

evaluate new treatments in particular groups of patients rather than adopting a ‘one size fits all’ 

approach. Together, these and other changes have brought immense challenges to all aspects of 

drug development and evaluation.  It has been estimated that only 1 in 5000 drugs advance from 

the discovery stage to marketing, with this process taking on average 12.5 years and costing 

£1.15 billion for each drug brought to market (Torjesen, 2015). It is recognised that a 

coordinated response involving academics, healthcare professionals, patient groups and 

regulators is required to meet the new challenges and ensure a more timely, safe and cost- 

effective evaluation of medical interventions.  
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The scale of this challenge has been recognised and considered by a number of agencies. In 

2004, the Food and Drug Administration (FDA), the agency responsible for regulating the 

development and evaluation of medical products in the US, published a report entitled 

‘Innovation/Stagnation: Challenge and Opportunity on the Critical Path to New Medical 

Products’ (U.S. Dept Health and Human Services, FDA, 2004), which highlighted ‘the 

widening gap between basic biomedical knowledge and clinical application’ and the need for 

‘moving basic discoveries into the clinic more efficiently.’ The FDA then released a critical 

path opportunity list (U.S. Dept Health and Human services. FDA, 2006) which proposed the 

need for advancing innovative trial designs. As summarised by Mahajan and Gupta (2010), ‘one 

of the innovations suggested was the adaptive designed clinical trials, a method promoting 

introduction of pre-specified modifications in the design or statistical procedures of an on-going 

trial depending on the data generated from the concerned trial thus making a trial more flexible. 

The adaptive design trials are proposed to boost clinical research by cutting on the cost and time 

factor’. In a similar vein, a report published by the Ministerial Industry Strategy Group Clinical  

Research Working Group entitled ‘Complex Innovative Design Trials’, (Great Britain, Dept 

Health and Social Services, 2018) states that ‘developments in science and technology mean 

that innovative clinical trials are needed to assess new medicines, in different (often smaller, 

more specific) patient populations. We can and should look to be more efficient in how we 

assess new medicines.’  

  

The need for improved efficiency in clinical trials has led to the development of new trial 

designs and in particular the concept of multi-arm adaptive trials. In a multi-arm adaptive trial, 

multiple experimental treatments are evaluated within one protocol and elements of trial 

conduct are determined by the accumulating data, for example poorly performing treatment 

arms may be dropped from the trial following an interim data analysis. Using these designs 

confers a number of advantages over running separate trials for each new treatment, for example 

a shared control group may be used rather than having a separate control group for each 

treatment, there is the facility to direct resources to promising treatments and competing 

treatments can be directly compared within one protocol (Wason et al., 2016).  Such designs 

have already been utilised by some investigators, a high-profile example being the Systemic 

Therapy in Advancing or Metastatic Prostate Cancer: Evaluation of Drug Efficacy 

(STAMPEDE) trial, which follows an extended multi-arm multi-stage design (Sydes et al., 
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2012). However, there are still aspects of adaptive trial methodology which are poorly 

understood and which require clarification if these designs are to be adopted more widely. The 

FDA CPI specifically mentions the need to further explore ‘use of accumulated information in 

trial design’ and ‘Adaptive designs’. The document discusses specific issues which need 

elucidation including when it is appropriate for treatment arms to be dropped during a trial, 

when the selection of treatments to be continued can be based on the use of an intermediate 

outcome, and when different phases of a trial can be combined to form a so-called ‘seamless 

trial.’ 

 

The Association of the British Pharmaceutical Industry (ABPI) has also reported on the current 

challenge of drug development and evaluation. This agency has highlighted the important role 

which clinical trial simulation can play in different aspects of drug development. A document 

entitled ‘Clinical trial simulations – an essential tool in drug development’; published jointly 

by the ABPI and the Statisticians in the Pharmaceutical Industry (PSI) group discusses the use 

of simulations in optimising trial design, testing statistical integrity and exploring departure 

from expected treatment effects. It is specifically stated that ‘clinical trial simulations may hold 

promise in clinical trials which use an adaptive design’ (Bedding et al., 2014).  

  

In this research, approaches and methods used in developing multi-arm adaptive trial designs 

are reviewed and explored with particular consideration given to one methodology which can 

accommodate an intermediate outcome for the purposes of treatment selection, and which has 

been recently improved and extended (Bratton, 2015). The context envisaged is the testing of a 

number of competing treatments for chronic disease, although the applications of the findings 

are more general. Detailed simulation studies are conducted to compare different adaptive 

methods across a range of scenarios and to explore the effect of departures from expected 

treatment effects. Novel suggestions for improving the flexibility and efficiency of the adaptive 

methodology are proposed and evaluated. The less familiar concept of adding a treatment arm 

to an ongoing trial is considered and a method is proposed which offers this facility in the 

context of a multi-arm adaptive trial.  

  

1.2 Historical aspects and definition of the RCT  

Historically, treatments for human disease were not subject to any formal testing. Medical 

practitioners recommended treatments based on anecdotal evidence or their own opinions of 
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effectiveness. Although there are a few early accounts of treatments being tested scientifically, 

such as the clinical trial conducted to compare treatments for scurvy aboard HMS Salisbury in 

1747, it was not until 1948 that the results of the first RCT in medicine were published by Sir 

Austin Bradford Hill and others. The RCT proposed by Bradford Hill was a widely applicable 

scientific method for making treatment comparisons, enabling the detection of much smaller 

treatment effects than it had been previously possible to identify. From this time onwards, 

uptake of the RCT method gradually increased until, by the mid to late twentieth century, the 

RCT had become the widely accepted gold standard for scientific treatment evaluation. A 

comprehensive introduction to historical and methodological aspects of RCTs is given by 

Matthews (2006).  

  

A RCT may be defined as ‘an experiment performed on human subjects to assess the efficacy 

of a new treatment for some condition.’  In a standard two arm RCT, patients are allocated by 

randomisation into treatment groups; one group is given the new treatment and the other group 

receives an active or inactive comparator. After a fixed number of observations have been made, 

the outcomes observed in the two groups are compared and statistical methods are used in order 

to determine whether any difference is important once the inherent background variability of 

the observed outcome is taken into account.  

  

The underlying principles and objectives of the RCT have remained largely unchanged since its 

inception over seventy years ago. However, during this time the methodology developed for the 

standard two-arm trial has been extended and modified in a number of ways, offering today’s 

investigators a wide array of RCT designs to choose from. Multi-arm trials improve efficiency 

by enabling more than one treatment to be evaluated in a single trial. Multi-stage trials 

incorporate mid-trial analyses and introduce the concept of adaptivity, where decisions 

concerning the remainder of the trial are made on the basis of evidence from the accumulating 

data. Adaptive trials combining both of these elements have also been proposed. Such trials are 

often referred to as multi-arm adaptive trials and may offer the potential for substantial gains in 

efficiency compared with conducting separate trials (Jaki and Wason, 2018). More recently, 

there has been a drive towards developing multi arm adaptive trials which offer even greater 

levels of flexibility and efficiency, such as the option to add new treatment arms to an ongoing 

trial.  Some groups advocate the concept of a ‘platform trial’, a fully flexible RCT specified 

according to a ‘master protocol’, which has a common control arm and many different 
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experimental arms that enter and exit the trial as futility or efficacy are demonstrated (Renfro 

and Sargent, 2017; Sydes et al., 2012).   

  

The advent of new RCT designs has significantly influenced the structure of the drug 

development process. Traditionally, four phases of drug development have been recognised, 

with Phases I and II being the learning phases in which smaller exploratory trials are carried out 

and Phases III and IV consisting of larger scale confirmatory trials. The phases have usually 

been approached on an individual basis, with a separate trial being conducted for each phase. 

However, the development of methodology for multi-arm adaptive trials has given rise to the 

concept of ‘seamless trials’ in which two phases are combined within one trial (Bretz et al., 

2006; Stallard and Todd, 2011). For example, in a trial combining Phases II and III, the first 

stage is viewed as a learning phase akin to a Phase II trial, which may involve evaluating several 

treatments or doses against a common control group and then selecting one or more treatments 

on the basis of a first or ‘interim’ analysis. This is followed by a second, confirmatory stage 

akin to a Phase III trial, where patients are randomised to selected treatments only. A final 

analysis of treatment efficacy is conducted at the end of this stage using data from both stages 

of the trial. There are two key advantages of a seamless trial of this kind. Firstly, the often 

lengthy ‘white space’ which exists between the end of a Phase II trial and the start of a Phase 

III trial is removed.  Secondly, the data from patients in both stages of the trial are used in the 

final analysis of treatment efficacy, hence improving statistical efficiency compared with 

conducting Phase II and Phase III separately. Seamless trials sometimes incorporate an 

intermediate endpoint for the purposes of treatment selection which is especially useful in trials 

where the definitive outcome of interest is observed after a long time period. For example, in 

trials which evaluate treatments for Multiple Sclerosis, where the main outcome of interest may 

be the change in disability after three years as measured by the Expanded Disability Status 

Scale, an intermediate outcome could be some measure of changes observed on an MRI scan 

after one year, for example the cube root of the percentage change in brain volume (Friede et 

al. 2011).   

  

  

Although new RCT designs offer great potential to improve efficiency in the drug evaluation 

process compared with the standard two-arm trial, they also raise new statistical and operational 

challenges. In multi-arm adaptive trials these challenges include maintaining acceptable error 
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rates when testing a family of hypotheses and incorporating interim analyses, estimating 

required sample size at the outset of a trial, defining selection rules for the dropping of 

treatments, and issues concerning the use of intermediate endpoints.   

  

1.3 Ethical considerations for the RCT  

Since RCTs are experiments which involve human subjects, ethical considerations should 

always be paramount when planning a trial. It is most regrettable that medical experiments 

involving human subjects have not always been conducted ethically in the past, as illustrated 

by the 1932 Syphilis trials and the experiments conducted on prisoners in Nazi concentration 

camps in 1939-1945.  In 1947, following the Nuremberg trials, a ten-point code of conduct for 

human medical research, named ‘The Nuremberg code’, was composed. The code provides a 

set of principles for conducting human experiments ethically, detailing matters such as the 

necessity for informed consent to be given by study participants. In the 1960s an extensive 

statement based partly on the Nuremberg code was issued, known as ‘The Declaration of 

Helsinki’. This was adopted by the World Medical Authority (WMA) in 1964 and remains, in 

updated form, the internationally recognised guidelines for ethical medical research and practice 

today (WMA, 2013).  In the UK, ethical guidelines are also supplied by bodies such as the 

British Medical Association and the General Medical Council. When an RCT is proposed, it 

must be approved by local ethical committees which are responsible for interpreting 

international and national ethical directives and ensuring that all aspects of the design and 

conduct of an RCT conform to these ethical standards.   

 

A more comprehensive discussion of ethics in the context of medical research on human 

subjects is provided elsewhere (Matthews (2006); Piantodosi (2017)). However, the following 

four points summarise the main ethical considerations when planning an RCT. Firstly, there 

should be a balanced approach such that the welfare of each individual patient is prioritised 

alongside the anticipated benefit of the trial to current and future patients. Secondly, the research 

should be planned and carried out in a manner which is as scientifically sound as possible, with 

due consideration given to avoiding bias and ensuring adequate power. Thirdly, patients should 

be fully informed about all aspects of the study including the potential risks and benefits, and 

voluntary consent should be sought from all participants. Finally, patients should be treated well 

and their privacy respected at all points of the trial. Their interests should be monitored to check 
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that their continued participation in the trial is appropriate and the best possible existing care 

should be offered when the trial finishes or if the patient withdraws from the trial for any reason.   

 

1.4 Introduction to trial design  

For an RCT to be ethically justified, it must be carefully designed to ensure that the main 

question of interest is addressed satisfactorily. In the Declaration of Helsinki, it is stated that 

‘The design and performance of each research study involving human subjects must be clearly 

described and justified in a research protocol.’ The protocol is a comprehensive document 

which describes in detail the ethical, scientific and operational aspects of the RCT and must be 

subject to approval by regulatory bodies before a trial can proceed.  

  

An important aspect of trial design which must be specified in an RCT protocol concerns the 

specification of the significance level and power of the test.  In the context of a standard two 

arm superiority trial, a Type I error occurs if a researcher declares the experimental treatment 

to be superior when in fact it is no better than the comparator. This event is also referred to as 

a ‘false positive’. On the other hand, a Type II error (or ‘false negative’ event) occurs if a 

researcher declares the experimental treatment no better than the comparator when it is in fact 

superior. A researcher may specify the significance level and power of the test in order to 

control the probability of incurring these errors (see Section 2.1.2 for fuller details). In a 

standard two-arm trial, assuming that the variability of the outcome can be estimated, the 

approximate number of participants required to identify a specified treatment effect may be 

readily calculated using standard formulae once the required power and significance level of 

the test have been specified.   

  

Describing a trial design in a protocol is relatively straightforward for a standard two-arm study 

where the sample size is fixed at the outset and all statistical analysis is carried out at the end 

of the trial. However, for multi-arm adaptive trials, there are many additional issues and 

complexities which need to be carefully considered and described in the protocol. For example, 

it may be appropriate to consider the Type I error rate across the trial as a whole, rather than for 

each pairwise comparison (see Section 2.2.1). This quantity is known as the familywise error 

rate (FWER), the probability of making one or more Type I errors when performing multiple 

hypothesis tests. Similarly, when considering power, it should be stated whether a target power 

is specified for each treatment comparison or across the whole family of treatment comparisons. 
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The number and timing of any proposed interim analyses must be specified and justified and 

clear details provided concerning what adaptations may be carried out on the basis of these 

analyses. Furthermore, if intermediate endpoints are proposed, there must be adequate 

demonstration of their suitability for the proposed trial. Establishing an overall sample size for 

a multi-arm adaptive trial is a particular challenge, since this will depend on which treatments 

are dropped and retained at each stage of the trial and this information will not be available at 

the outset. Clinical trial simulation is a very useful tool for dealing with this issue, providing a 

method for obtaining an expected sample size for a particular multi-arm adaptive design, thus 

enabling a comparison of the efficiency of different designs. Similarly, clinical trial simulation 

can be used to investigate the operating characteristics of a multi-arm adaptive trial, for example 

its robustness when treatment effects deviate from their anticipated value.  

  

A further matter for consideration concerns the satisfactory reporting of these new types of trial. 

The Consolidated Standards of Reporting Trials (CONSORT) 2010 Statement (Schultz, Altman 

and Moher, 2010), was developed to provide guidelines for reporting RCTs but the main focus 

of this document was on standard two-arm trials and many of the features which are present in 

more complex trial designs were not adequately addressed. More recently, it has been 

recognised that there is a need for specific recommendations for reporting trials in which 

multiple treatments are evaluated or which use an adaptive design. In response, two extensions 

to the CONSORT 2010 Statement have been developed, with the aim of increasing the 

transparency and accuracy with which these trials are reported.  The first addresses the 

additional issues relevant to the reporting of multi-arm parallel-group trials (Juszczak et al., 

2019) and the second providing guidelines for reporting trials which use an adaptive design 

(Dimairo et al., 2020).   

  

1.5 Structure of thesis  

Chapter 2 gives an overview of different RCT designs, ranging from standard two-arm trials 

through to complex multi-arm adaptive designs.  Section 2.1 describes the methodology for a 

conventional two-arm trial and introduces the notation which is used in this thesis. Single-stage 

multi-arm trials are described in Section 2.2 and the statistical considerations which arise in 

such trials are discussed. In Section 2.3, the multi-stage or adaptive RCT is defined and the 

distinction between pre-planned and flexible adaptivity is fully detailed.  In Sections 2.4 – 2.8, 

multi-arm adaptive trials which incorporate both multiple stages and multiple experimental 
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treatment arms are discussed and four methodologies which may be used in these trials are 

described in turn. The issues of treatment selection and intermediate endpoints are considered 

and recent developments in methodology for the Multi-arm Multistage (MAMS) approach 

developed by Royston, Parmar and Qian (2003), referred to in this thesis as the MAMS(R) 

approach, are described.  

  

Chapter 3 introduces multi-arm adaptive trials with binary endpoints, and the parameterisation 

of treatment effects for binary outcomes is discussed. In Section 3.3 details are given of the 

steps taken to adapt the methodology used to generate feasible and admissible MAMS(R) 

designs so that treatment effects are parameterised as a log odds ratio (LOR).  A proposal for 

refining suggested sample sizes is given in Section 3.4.  

  

Chapter 4 discusses and compares different methodologies which are used in multi-arm 

adaptive trials. A literature review of previous comparison studies is presented in Section 4.2. 

In Sections 4.3- 4.6, two extensive simulation studies are described in which multi-arm adaptive 

trials incorporating pre-planned adaptivity are investigated. These studies are conducted to 

compare the performance of the combination test with the MAMS(R) approach in adaptive 

multi-arm trials with binary outcomes parameterised as a LOR. In each study, designs with two 

and with five experimental treatment arms are considered, different selection rules are 

incorporated and performance across a range of true treatment effects are explored. Trials in 

which an intermediate endpoint is used to inform treatment selection are explored, as well as 

trials in which the same endpoint is used throughout the trial.   

  

Chapter 5 presents methods for incorporating flexible adaptivity into MAMS(R) trials using the 

conditional error approach. In Section 5.2, details of the methodology for the conditional error 

approach are presented. In Section 5.3 a method is proposed which introduces the conditional 

error approach into MAMS(R) methodology allowing changes in trial design at an interim 

analysis. In Section 5.4 a simulation study is described which explores whether this approach 

can improve efficiency when some treatments are dropped at an interim analysis despite 

meeting efficacy thresholds.  

  

Chapter 6 details methods which facilitate further adaptivity, such that a new treatment arm may 

be added to an existing MAMS(R) trial. In Section 6.1, the issue of adding an arm to an ongoing 



 

10  

  

trial is discussed generally, with reference to the literature on this subject. In Sections 6.2 and 

6.3, the particular issue of adding a treatment arm to an ongoing adaptive MAMS(R) trial is 

considered. In Section 6.4 a method is proposed, based again on the conditional error approach, 

which enables addition of a new treatment arm at an interim analysis where other adaptive 

changes are occurring. Details of the method are given in Section 6.5 and a simulation study, 

designed to evaluate the properties of the procedure, is described. The results of the simulation 

study are presented in Section 6.6 and the main findings are then discussed in Section 6.7.  

 

Chapter 7 gives a summary of the findings of the research presented in this thesis, and strengths 

and limitations of the work are presented.  Recommendations for practical application of the 

findings are provided. Suggestions for further work in this area are made.  
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Chapter 2. Randomised controlled clinical trials  
  

  

The randomised controlled clinical trial (RCT) remains the standard procedure for the scientific 

evaluation of new treatments in humans.  As discussed in Chapter 1, formal methodology was 

first developed for standard two-arm clinical trials and has since been adapted and extended in 

a number of ways, resulting in the wide array of different trial types and designs that exist today.  

The advances in methodology have offered the opportunity for new features to be incorporated, 

such as the testing of multiple treatments and the monitoring of accumulating data through 

interim analyses.  In this chapter an overview of RCT methodology is given. In Section 2.1, 

methodology for the standard two-arm trial is described and the notation used in this thesis is 

introduced. Single stage multi-arm trials are outlined in Section 2.2 and the closed testing 

procedure (CTP) is explained.  In Section 2.3, multi-stage trials are introduced and the concept 

of adaptivity is discussed.  In Sections 2.4 – 2.8, four different methods used in multi-stage 

trials are described in detail. These are the group sequential method (Section 2.4), the 

MAMS(R) method (Section 2.5), the combination test (Section 2.7) and the conditional error 

approach (Section 2.8).  

  

2.1 The standard two-arm RCT  

In a standard two-arm trial, a single experimental treatment is compared with a comparator in 

order to assess its effectiveness for treating some condition in a specified population.  When 

planning a trial, a suitable endpoint must be chosen which can be measured for each patient at 

the end of the trial and which will demonstrate the benefit which the treatment may provide. 

Several types of endpoint are commonly used in clinical trials. Some endpoints can be assumed 

to be normally distributed with mean 𝜇 and variance 𝜎2, examples include blood pressure and 

birth weight. Moreover, a simple transformation of the data, such as taking the log of the 

observed outcome, can sometimes be used to achieve approximate normality if endpoints have 

a skewed distribution. Other endpoints are binary in nature, for example, a success or failure 

may be recorded depending on whether or not a patient has experienced a relapse of a chronic 

disease.  The number of successes then follows a binomial distribution with parameters 𝑛, the 

number of observations and 𝑝, the probability of success, which is assumed constant. Binary 

endpoints are commonly encountered when evaluating treatments for chronic disease and are 

the particular focus of this thesis.  A third type of endpoint is known as ‘time to event’ (TTE), 
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where the time taken for a particular event to occur is recorded. For example, if the event is 

death, the observation recorded will be the length of time between a patient entering the trial 

and their death.  

 

For a chosen endpoint, some measure of the treatment effect, which will here be denoted 𝜃, may 

then be specified. This quantity represents the advantage which an experimental treatment may 

have over the control treatment. For a normally distributed endpoint, where 𝜇𝐸 and 𝜇𝐶 are the 

true mean values of that outcome in the experimental and control group populations 

respectively, the treatment difference could be the difference in mean outcomes between the 

two groups,  

  𝜃 = 𝜇𝐸 − 𝜇𝐶 .  

For binary endpoints, where the true proportion of successes in the experimental and control 

groups are 𝑝𝐸 and 𝑝𝐶 respectively, the treatment effect could be parameterised as the difference 

in proportions between the two groups,  

𝜃 = 𝑝𝐸 − 𝑝𝐶 ,  

or alternatively as the log odds ratio (LOR),   

𝜃 = log{𝑝𝐸(1 − 𝑝𝐶)⁄𝑝𝐶(1 − 𝑝𝐸)}.  

For time to event endpoints where proportional hazards can be assumed, with 𝑡 ≥ 0, if ℎ𝐸(𝑡) 

and ℎ𝐶(𝑡) represent the true instantaneous hazard rates for the experimental and control groups, 

the treatment effect can be parameterised as a log hazard ratio (LHR), where the hazard ratio is 

the ratio of the hazard rates in the experimental versus the control groups:    

𝜃 = 𝜃(𝑡)= −log {ℎ𝐸(𝑡)/ℎ𝐶(𝑡)}.  

  

2.1.1 Hypothesis Testing  

Once an outcome of interest and a suitable treatment effect have been specified, inference in 

the frequentist framework is conducted by proposing two statements concerning the true value 

of 𝜃; these are the null hypothesis (𝐻0) and the alternative hypothesis (𝐻𝐴) and are stated at the 

start of the trial.  For example, 𝐻0 could be that 𝜃 is less than or equal to some predefined value, 

here denoted 𝜃0, and 𝐻𝐴 could be that 𝜃 is greater than this value;  

𝐻0: 𝜃 ≤ 𝜃0  

𝐻𝐴: 𝜃 > 𝜃0.  
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In this thesis, both superiority and non-inferiority trials, are considered. In a superiority trial, 

the objective is to demonstrate that a new treatment is better than an existing one, by considering 

the difference in outcomes between the two groups. If this difference is greater than zero, and 

the result is statistically significant, then the new treatment is declared to be superior to the 

existing one. Using the notation given above, 

𝐻0: 𝜃 ≤ 0 

 𝐻𝐴: 𝜃 > 0. 

In a non-inferiority (NI) trial, the aim is to show that a new treatment is not inferior to the 

existing one; it may be equally effective or it may in fact be superior. NI trials require the 

investigator to specify a NI margin, to which the difference in outcomes between the two groups 

is compared. Using the notation above, if the NI margin for the trial is set at −∆, 

𝐻0: 𝜃 ≤  −∆ 

 𝐻𝐴: 𝜃 > −∆. 

The NI margin is the smallest negative difference in outcomes between the two groups which 

would be sufficient to conclude that the new treatment is inferior to the existing one. If the 

difference is greater than the NI margin then the new treatment is declared non-inferior. 

Demonstration of non-inferiority may allow a new treatment to replace the existing one, perhaps 

because there is a cost or safety advantage. Note that the setting of the NI margin is a critical 

part of the trial design and must be approached on a trial-by-trial basis, generally requiring 

expert opinion from clinicians. 

  

Once 𝐻0 and 𝐻𝐴 have been clearly stated, a test is then devised to assess the strength of evidence 

for 𝐻A. Often this is based on obtaining an estimate of 𝜃, denoted 𝜃, using the data collected in 

an RCT as follows. First, a sample of patients is drawn from the specified population and 

patients are randomised to receive either the experimental treatment or the comparator. At the 

end of the trial, each patient contributes an observation regarding the endpoint of interest, such 

that 𝑥𝑖𝐸 (𝑖 = 1, … 𝑛𝐸) is an observation from the 𝑖𝑡ℎ patient in the experimental group, 𝑥𝑖𝐶 (𝑖 = 

1, … 𝑛𝐶) is an observation from the control group and 𝑛𝐸 and 𝑛𝐶 are the number of patients in 

the experimental and control group respectively. The observed treatment effect, 𝜃, may then be 

calculated. For normally distributed outcomes, with the parameterisation given above, the 
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treatment effect is estimated as the difference in observed means between the experimental and 

control groups,  

  𝜃̂  = 𝑥 𝐸 − 𝑥 𝐶.  

For binary outcomes, when the probability difference parameterisation is used, an estimate is 

the difference in observed proportions between the two groups,  

𝜃̂ = 𝑝 𝐸 − 𝑝 𝐶,  

or alternatively when the LOR is used, an estimate is the observed LOR,   

𝜃̂ = log{𝑝 𝐸 (1 − 𝑝 𝐶)⁄𝑝 𝐶(1 − 𝑝 𝐸)}.  

For time to event outcomes, using the LHR, an estimate could be the observed LHR,    

𝜃̂ = −log {ℎ 𝐸(𝑡)/ℎ 𝐶(𝑡)}.  

The observed treatment effect 𝜃  may then be standardised by subtracting 𝜃0 and dividing by the 

standard error of 𝜃 ,  to produce a Wald test statistic, here denoted 𝑇. When 𝜃 is defined as a 

difference in means, a LOR or a LHR, 𝑇 can reasonably be assumed to follow a standard normal 

distribution asymptotically,  

𝑇 =  𝜃̂−𝜃0
𝑆𝐸(𝜃̂)

   ~𝑁 (0,1).  

 

In this thesis, where binary outcomes and a LOR parameterisation are used, for 𝜃0 = 0, the  

Wald test statistic is then  

𝑇 =
log{𝑝 𝐸 (1 − 𝑝 𝐶) 𝑝 𝐶(1 − 𝑝 𝐸)⁄ }

√𝑉𝑎𝑟(𝐿𝑂𝑅)̂

, 

the variance of the LOR being given by  

𝑉𝑎𝑟(𝐿𝑂𝑅)̂ =
1

𝑛𝐶𝑝 𝐶
+

1

𝑛𝐶(1 − 𝑝 𝐶)
+

1

𝑛𝐸𝑝 𝐶
+

1

𝑛𝐸(1 − 𝑝 𝐶)
. 

 

By comparing the quantity 𝑇 to the quantiles of a standard normal distribution, the probability 

of obtaining an observed treatment effect of this size or larger, under 𝐻0, may be calculated. 

This quantity is called the p-value. If the p-value is small, the trial provides evidence to reject 

𝐻0 in favour of 𝐻𝐴.  
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2.1.2 Significance level and Power   

The results of a confirmatory RCT may inform important decisions about whether a particular 

treatment is given to patients. It is therefore necessary to design a trial so that error rates are 

controlled at a low level.  

 

A Type I error occurs if 𝐻0 is rejected in favour of 𝐻𝐴 when in fact 𝐻0 is true. This event may 

result in a new treatment being declared beneficial when it is not truly so. If the treatment is 

then prescribed to patients, there could be serious consequences. When an RCT is proposed, a 

reference value for the Type I error rate is specified, this is called the significance level of the 

test and is denoted 𝛼, such that  

Pr (𝑟𝑒𝑗𝑒𝑐𝑡 𝑡𝑟𝑢𝑒 𝐻0) ≤ 𝛼.   

The quantity 𝛼 is conventionally set to a small value such as 0.025 or 0.01. If the p-value of the 

test is smaller than this value then it may be stated that 𝐻0 has been rejected at level 𝛼.   

  

A Type II error, denoted 𝛽, occurs if a researcher fails to reject 𝐻0 in favour of 𝐻𝐴 when in 

fact 𝐻𝐴 is true;  

Pr (fail to 𝑟𝑒𝑗𝑒𝑐𝑡 𝑓𝑎𝑙𝑠𝑒 𝐻0) ≤ 𝛽.   

A Type II error may result in a beneficial new treatment being incorrectly declared ineffective 

and hence a missed opportunity for patients to benefit from a new treatment. For a given 

significance level, the probability of not making a Type II error is termed the power of the test 

and may be denoted by 1 − 𝛽. The power for a test is conventionally set to a high value such as 

0.8 or 0.9.  

  

2.1.3 Sample size   

One of the key aspects in the planning phase of an RCT is the calculation of the required sample 

size, the number of patients which must be recruited in order to meet the objectives of the trial.  

Firstly, a reference treatment effect, here denoted 𝜃𝑅, must be specified. This represents what is 

considered to be a clinically important treatment effect, one which should be identified with 

high probability if present.  For a standard two-arm trial, the required per group sample size to 

detect a treatment difference 𝜃𝑅 with power equal to 1 − 𝛽 and with a significance level of 𝛼, 

can then be approximated using standard formulae. For example, in trials of the type considered 
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in this thesis where the outcome is binary, if the treatment effect is parameterised as a difference 

in success proportions, the Wald sample size approximation for the control group is given by  

𝑛𝐶 =
𝑝𝐶(1 − 𝑝𝐶) + 𝑝𝐸(1 − 𝑝𝐸)

(𝜃𝑅 − 𝜃0)2
(𝑧1−𝛼 + 𝑧𝛽)

2, 

and if treatment effects are parameterised as a LOR, by 

𝑛𝐶 = (
1

𝑃𝐶(1 − 𝑃𝐶)
+

1

𝑃𝐸(1 − 𝑃𝐸)
) (
𝑧1−𝛼 + 𝑧𝛽

𝜃𝑅 − 𝜃0
)
2

, 

where 𝑧1−𝛼 and 𝑧𝛽 are the 1 − 𝛼 and 𝛽 percentiles of the standard normal distribution.   

 

 

2.2 Single stage multi-arm trials  

Sometimes a single stage RCT is planned in which more than one experimental treatment is to 

be evaluated. For example, in a traditional Phase II trial, several different treatments or dose 

regimens may be tested against a common control group with the aim of putting forward the 

most effective for subsequent Phase III testing. There is now a null and alternative hypothesis 

relating to each experimental treatment, indexed using the subscript 𝑖.  For a trial with 𝐾 

experimental treatments,   

𝐻0(𝑖) ∶ 𝜃𝑖 ≤ 𝜃0  (𝑖 = 1, … 𝐾)  

𝐻𝐴(𝑖) ∶ 𝜃𝑖 > 𝜃0  (𝑖 = 1, … 𝐾).  

Similarly, there are corresponding test statistics for each treatment control comparison denoted 

here by 𝑇𝑖 (𝑖 = 1, … 𝐾).  In a trial of this kind, multiple hypotheses are tested in a single trial 

and as a consequence, the overall Type I error and power of the test will be affected if no 

adjustment is made.  In this thesis, the particular focus is on the testing of multiple hypotheses 

due to multiplicity of experimental treatments.  However, note that in a single stage trial, the 

testing of multiple elementary hypotheses may occur for reasons other than the evaluation of 

multiple treatments, for example multiple endpoints may be simultaneously evaluated or a 

single experimental treatment may be evaluated in different subgroups.   

  

2.2.1 Type I error control for multi-arm trials  

When multiple hypotheses are tested within a single trial, Type I error control may be 

approached in a number of ways.  One option is to ignore the multiplicity of treatment arms and 

simply to control the Type I error rate for each treatment arm at the significance level (𝛼) that 

would be used in a single arm trial. This is known as pairwise error rate (PWER) control. 
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However, the probability of rejecting one or more of the elementary null hypotheses rises 

substantially as the number of treatment arms increases and so PWER control is often 

considered inadequate, particularly in confirmatory trials.   

  

An alternative approach is to ensure that the Type I error for the trial as a whole does not exceed 

level 𝛼, that is   

Pr(𝑟𝑒𝑗𝑒𝑐𝑡 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑡𝑟𝑢𝑒 𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) ≤ 𝛼.  

This is known as familywise error rate (FWER) control. There are two types of FWER control 

which are described in the literature, named weak and strong FWER control. To illustrate, 

suppose a trial is proposed where there are 𝐾 experimental treatments which are to be compared 

with a common control group. In this case, there are now 𝐾 treatment effects to consider (𝜃1, … 

𝜃𝐾) and 𝐾 elementary null hypotheses being tested (𝐻0(1), … . 𝐻0(𝐾)).  Now consider the global 

null hypothesis 𝐻0(𝐺), which is defined as the intersection of all 𝐾 null hypotheses, 𝐻0(1), … . 

𝐻0(𝐾). The FWER is said to be controlled weakly if the probability of making a Type I error is 

no greater than 𝛼 given that 𝑯𝟎(𝑮) is true. Strong control of the FWER is more stringent, 

requiring that the probability of making a Type I error is no greater than 𝛼 under any 

configuration of true/false null hypotheses. Although there are some authors who have argued 

that FWER control is not always necessary in confirmatory multi-arm trials (Freidlin et al., 

2008), strong control of the FWER is generally regarded as the usual requirement (see for 

example ‘Points to consider on multiplicity issues in clinical trials (Technical report, EMEA, 

2002)) and this is the standard assumed in this thesis.   

 

Various procedures for achieving strong control of the FWER have been proposed. In the 

remainder of this section, two well-known single-step methods are described; the Bonferroni 

correction (Bonferroni, 1936 cited in Hsu, 1996), which is based on adjusted p-values, and the 

Dunnett test (Dunnett, 1955) which uses a parametric approach. An explanation of the CTP is 

then given and it is shown how the CTP may be implemented to obtain stepwise versions of 

both Bonferroni and Dunnett methods.  These stepwise procedures are uniformly more 

powerful than their single-step counterparts.   
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Bonferroni correction  

The Bonferroni correction (Hsu, 1996) is a simple and widely applicable method for achieving 

strong FWER control. The method assumes the independence of the test statistics but makes no 

other distributional assumptions. Suppose again that 𝐾 elementary null hypotheses (𝐻0(1), … 

𝐻0(𝐾)) are to be tested in a multi-arm RCT resulting in a p-value 𝑝𝑖, (𝑖 = 1, … 𝐾) for each test. 

Suppose also that the FWER for the trial is specified to be no greater than 𝛼. The quantity 𝛼 is 

simply divided equally between the hypotheses being tested such that 𝐻0(𝑖) is rejected if 𝑝𝑖 ≤ 𝛼 

⁄𝐾. The main disadvantage of the Bonferroni method is that it tends to be conservative, 

particularly when many hypotheses are tested and for scenarios where treatment effects are 

correlated due to the use of a common control group.  

  

Dunnett test  

A parametric procedure, developed by Dunnett (Dunnett, 1955), provides a suitable approach 

for testing multiple hypotheses when a common control group is used and when the test 

statistics can be reasonably assumed to be normally distributed, this is the context considered 

in this thesis. The Dunnett test is more powerful than the Bonferroni correction when treatment 

effects are correlated by virtue of the common control group.  Taking a trial in which 𝐾 

experimental treatment arms are compared to a common control group, Dunnett derived the 

joint null distribution of the 𝐾 test statistics, (𝑇1, … . 𝑇𝐾 ).  The distribution is 𝐾 dimensional 

multivariate normal with correlation matrix 𝐶, where matrix 𝐶 is of dimension 𝐾 by 𝐾 and 

specifies the correlation between the test statistics. The (𝑖, 𝑖′)th entry is 𝑟⁄(𝑟 + 1) where 𝑖 ≠ 𝑖′, 

and 1 otherwise, where the quantity 𝑟 is the allocation ratio, defined as the number of patients 

per experimental group for each control group patient (for equally sized groups, 𝑟 = 1).   If the 

FWER for the 𝐾-arm test is specified as 𝛼, a Dunnett critical value (𝑧𝛼𝐷) is then obtained from 

the joint distribution such that under 𝐻0(G), the probability that one or more of the test statistics 

is larger than 𝑧𝛼𝐷, is equal to 𝛼.   

                                                         Pr(𝑇1 < 𝑧𝛼𝐷 , … 𝑇𝐾 < 𝑧𝛼𝐷) = 1 − 𝛼 .  

An elementary null hypothesis, 𝐻0(𝑖), is then rejected if 𝑇𝑖 > 𝑧𝛼𝐷.  

  

The Closed Testing Procedure (CTP)  

The CTP (Marcus, Peritz and Gabriel, 1976) is a mechanism which may be used in conjunction 

with the Bonferroni or Dunnett test to increase power whilst ensuring strong control of the 
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FWER. In a CTP, consideration is given to the full set of intersection hypotheses and elementary 

hypotheses which arise from the multiple testing and local tests are performed on each member 

of the set. The structure of a CTP in which three elementary null hypotheses are tested is 

illustrated in Figure 2-1.  

  

The concept underlying the CTP is that a primary hypothesis 𝐻0(𝑖) can be rejected at level 𝛼 

provided that 𝐻0(𝑖) and all intersection hypotheses which contain 𝐻0(𝑖) are also rejected at local 

significance level 𝛼. For example, in a trial with three experimental treatments (𝐾 = 3), in 

which three primary hypotheses (𝐻0(1), 𝐻0(2) and 𝐻0(3)) are tested, the elementary null 

hypothesis 𝐻0(3) is rejected at level α provided the intersection hypotheses 𝐻0(1) ∩ 𝐻0(3), 𝐻0(2) ∩ 

𝐻0(3) and 𝐻0(1) ∩ 𝐻0(2) ∩ 𝐻0(3) and the elementary hypothesis are all rejected at level 𝛼. This is 

shown in Figure 2-2, where the shaded boxes indicate the set of hypotheses which must all be 

rejected in order to reject the elementary null hypothesis 𝐻0(3) and declare the corresponding 

treatment beneficial. 

 

 

 

 

Figure 2-1 Closed testing procedure for three elementary hypotheses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐻0(1) ∩ 𝐻0(2) ∩ 𝐻0(3) 

𝐻0(1) ∩ 𝐻0(3) 𝐻0(2) ∩ 𝐻0(3) 𝐻0(1) ∩ 𝐻0(2) 

𝐻0(1) 𝐻0(2) 𝐻0(3) 
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Figure 2-2 Decision for rejection of elementary hypothesis H 0 (3) within closed testing procedure 
 

 

In order to implement a CTP, a suitable procedure must be chosen as a local test for the 

intersection hypotheses. For some scenarios, a non-parametric approach such as a Bonferroni 

correction may be the most appropriate choice. For scenarios such as those considered in this 

thesis, where normality assumptions apply and a common control group is used, a Dunnett test 

may be applied.  This is illustrated in Figure 2-3. For each intersection hypothesis, the listed test 

statistics are compared to a Dunnett critical value adjusted for the number of hypotheses 

contained within the intersection. Here a Dunnett critical value for an intersection of three null 

hypotheses is denoted   𝑧𝛼𝐷(3)  while  𝑧𝛼𝐷(2) denotes the value for an intersection of two null 

hypotheses.  If the required critical value is exceeded then the intersection is rejected. Note that 

for elementary hypotheses, the critical value is simply 𝑧𝛼. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐻0(1) ∩ 𝐻0(2) ∩ 𝐻0(3) 

𝐻0(1) ∩ 𝐻0(3) 𝐻0(2) ∩ 𝐻0(3) 𝐻0(1) ∩ 𝐻0(2) 

𝐻0(1) 𝐻0(2) 𝐻0(3) 
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Figure 2-3 Closed testing procedure based on Dunnett test 

 

 

  

Step-down procedures  

In practice, application of the CTP leads to a hierarchical procedure which relaxes critical values 

for the rejection of successive elementary hypotheses.  To illustrate this, consider the 

construction of hypotheses illustrated in Figure 2-3 where a Dunnett test is chosen for the local 

tests. Suppose that the observed values of the test statistics (𝑇1,…, 𝑇3) are first ranked from 

largest to smallest.  The elementary hypothesis relating to the best performing treatment is 

rejected provided the largest test statistic exceeds 𝑧𝛼𝐷(3). If this occurs, the global null hypothesis 

has been rejected, and so a second elementary hypothesis relating to the next best treatment 

effect is rejected provided the corresponding test statistic exceeds 𝑧𝛼𝐷(2), which will be smaller 

than 𝑧𝛼𝐷(3).  Similarly, the third elementary hypothesis is rejected provided the last (and smallest) 

test statistic exceeds 𝑧𝛼. When Dunnett tests are used in conjunction with a CTP in this way, the 

resulting procedure is known as a step-down Dunnett test.  The step-down Dunnett test is 

utilised in the flexible designs proposed in Chapters 5 and 6 of this thesis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐻0(1) ∩ 𝐻0(2) ∩ 𝐻0(3) 

𝑇1  > 𝑧𝛼𝐷(3)
𝑜𝑟 𝑇2 > 𝑧𝛼𝐷(3)

 𝑜𝑟 𝑇3 > 𝑧𝛼𝐷(3)
 

𝐻0(1) ∩ 𝐻0(3) 

𝑇1  > 𝑧𝛼𝐷(2)
𝑜𝑟 𝑇 > 𝑧𝛼𝐷(2)

 

𝐻0(2) ∩ 𝐻0(3) 

𝑇2  > 𝑧𝛼𝐷(2)
𝑜𝑟 𝑇3 > 𝑧𝛼𝐷(2)

 

𝐻0(1) ∩ 𝐻0(2) 

𝑇 > 𝑧𝛼𝐷(2)
𝑜𝑟 𝑇2 > 𝑧𝛼𝐷(2)

 

𝐻0(1) 

𝑇1  > 𝑧𝛼  

𝐻0(2) 

𝑇2  > 𝑧𝛼  

𝐻0(3) 

𝑇3  > 𝑧𝛼  
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When a CTP is used with local tests based on a Bonferroni correction, the resulting scheme is 

known as the Holm procedure. Note that both the Holm procedure and the step-down Dunnett 

test are examples of step-down procedures.  Alternative ‘step-up’ versions, which also control 

the FWER strongly and are again based on application of the CTP, are also available. For a full 

account of these and other multiple comparison procedures see Hsu (1996).  

  

2.3 Multi-stage trials  

The trials which have been described in previous sections of this chapter are all examples of 

single stage procedures.  In such trials, statistical analysis of the treatment effect takes place at 

the end of the trial when observations from the full cohort of patients are available. Single stage 

trials are advantageous from a planning perspective because a design can be specified in full at 

the outset and the required sample size calculated. However, as discussed in Chapter 1, to ensure 

timely and efficient treatment evaluation in the present healthcare climate, there is a need to 

provide a framework for a more flexible kind of trial, where aspects of the trial may be modified 

while recruitment is still ongoing.  Multi-stage trials have been developed for this purpose. In a 

multi-stage trial, the recruitment of patients is planned to take place in a series of stages with 

some type of data analysis being carried out at the end of each stage. Based on the evidence 

gained, decisions about the conduct of the remainder of the trial may be made. For example, the 

trial may be terminated early if convincing efficacy has already been demonstrated, or 

alternatively, a re-estimation of the sample size may be carried out informed by updated 

estimates of treatment effects. If multiple treatments are being evaluated, some form of 

treatment selection may occur following an interim analysis, for example future patients may 

be recruited only to strongly performing treatment arms. Note that in some multi-stage trials an 

intermediate outcome, here denoted 𝐼, may be used to inform treatment selection while the final 

test of treatment efficacy is based on the definitive outcome, denoted 𝐷. This subject is described 

in more detail in Section 2.5.1.  

  

Control of the Type I error rate is an important issue in designing multi-stage trials. If 

significance tests at a specified level are repeated at stages as data accumulate, and the trial can 

stop early if efficacy is demonstrated, the overall Type I error rate rises substantially. This is 

shown in Table 2-1 which draws on trial data in which a single experimental treatment is 

compared to control and where no adjustment is made for the repeated testing (Armitage et al., 
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1969). In this example, the rate at which a significant result is obtained under the null hypothesis 

rises to almost three times the specified significance level if five sequential analyses are carried 

out. Indeed, the overall Type I error rate will tend to one as the number of analyses approaches 

infinity. Robust control of Type I error is clearly of central importance in methodology for 

multi-stage trials.  

  
Table 2-1 Overall Type I error rate applying repeated significance tests at 5% to accumulating 

data. (Armitage et al., 1969, Table 2)  

  

Number of analyses  Overall Type I error rate  

1  0.05  

2  0.08  

5  0.14  

10  0.19  

100  0.37  

1000  >0.5  

  

In the literature, a multi-stage trial is often referred to as an ‘adaptive trial’ reflecting the facility 

to adapt the design of the trial on the basis of emerging information. Recently, a working group 

made up of members from the public sector and industry proposed the following definition of 

an adaptive trial (Dimairo et al., 2018): ‘A clinical trial design that offers pre-planned 

opportunities to use accumulating trial data to modify aspects of an ongoing trial while 

preserving the validity and integrity of that trial.’ Researchers have developed adaptive trial 

methodology using a number of different approaches.  In order to understand the advantages 

and limitations of each method, it is helpful first to distinguish two distinct types of adaptivity 

that are of relevance in clinical trials; these are sometimes referred to as pre-planned 

adaptivity and flexible adaptivity.  

 

Here, we define pre-planned adaptivity as the facility to respond to accumulating data at an 

interim analysis, by implementing rules according to a pre-specified schema.  Consider the 

example of a multi-arm adaptive trial where there is a desire to incorporate treatment selection.  

At the outset, features of the design at each stage, such as per-group sample sizes, selection 

rules and critical values are set for all stages of the trial. Once the trial is underway, treatments 
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may then be dropped or retained according to the pre-specified design.   Choosing to implement 

only pre-planned adaptivity has advantages from a practical and regulatory standpoint.  

However, such an approach only works well when sufficient information concerning the 

parameters of interest is available to inform a full trial design at the outset. If some unexpected 

deviation from the pre-planned schedule occurs, a loss of power or an inflation of Type I error 

may result. For example, in the scenario described, a safety concern requiring a treatment arm 

to be dropped at an interim analysis despite its meeting the efficacy threshold would result in 

reduced power for the test.  

  

On occasions there may be uncertainty regarding some aspects of trial design at the outset, and 

information obtained while the trial is in progress may suggest that some change to the initial 

design is desirable. Here we define flexible adaptivity as the facility to modify the design of 

an ongoing trial at an interim analysis, in response to accumulating internal and external 

data. Consider again the scenario of a multi-arm trial where treatment selection is envisaged 

and suppose a trial design and selection rule have been proposed.  Suppose that at an interim 

analysis, new evidence external to the trial suggests that some of the treatment arms should be 

withdrawn despite meeting efficacy requirements and even possibly that a new treatment might 

be introduced to the trial. Then, the objective is to modify the design for the remainder of the 

trial in such a way that the Type I error and power requirements for the trial as a whole are 

preserved but with only the selected treatments being included. The facility to implement 

flexible adaptivity is attractive because it offers the ability to respond to new information both 

internal and external to the trial. However, if features of the trial are not fully described at the 

outset, it can be more difficult to plan the trial and to achieve regulatory approval.  It is therefore 

important that where uncertainty exists, this is acknowledged at the outset. Features such as the 

timing of any interim analyses where new information is assessed is specified, the nature of any 

potential design changes and the methods used to implement them should be made as clear as 

possible at the start of the trial.  Note that there will almost certainly be a need to gain regulatory 

approval for any substantial amendments to the original protocol, which may delay the progress 

of the trial.    

  

Sections 2.4, 2.5, 2.7 and 2.8 of this chapter describe four methods, each one providing a 

framework in which adaptive clinical trials may be conducted. In keeping with the main 

research aims of this thesis, the emphasis is on methodology for adaptive trials in the multi-arm 
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setting. However, where appropriate, the methods will first be described for a two-arm trial, in 

order to provide a clear and logical account.     

  

The first two methods are the group sequential (Section 2.4) and the MAMS(R) method 

(Section 2.5). Both of these methods are based on boundaries defined by critical values, which 

are pre-specified at the start of the trial and both use cumulative sufficient test statistics for 

hypothesis testing of the accumulating data.   These are methods best suited to facilitating pre-

planned adaptivity. Note that although the MAMS(R) method is the primary focus of this thesis, 

the group sequential method is described first partly because it preceded MAMS(R) 

chronologically and also because this order provides the most logical way for introducing 

notation.    

  

The remaining two methods are the combination test (Section 2.7) and the conditional error 

approach (Section 2.8). Both of these methods are based on the principle of conditional 

invariance (described in Section 2.6) and both require data from separate stages to be handled 

separately such that the use of conventional cumulative sufficient test statistics may not be 

possible.  These methods are able to facilitate flexible as well as pre-planned adaptivity.  

  

2.4 Group sequential method  

The group sequential method is a well-established framework for conducting multi-stage 

clinical trials in which pre-planned adaptivity can take place. The approach is applicable to 

many types of outcome with the asymptotic normality of test statistics often being used as the 

basis for developing a trial design. Group sequential methods were initially developed for trials 

in which one experimental treatment is compared to a control and the main motivation was to 

improve the efficiency of drug evaluation by allowing a trial to stop early should strong 

evidence of efficacy or inferiority materialise during the course of the trial. More recently, 

methodology has been extended allowing the group sequential approach to be used for trials 

with multiple treatment arms and treatment selection. A comprehensive introduction to group 

sequential methodology is given by Jennison and Turnbull (1999).  
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2.4.1 Group sequential methodology for two-arm trials   

Consider first a two-stage group sequential trial in which a single experimental arm is compared 

to a control by means of hypothesis tests conducted at an interim analysis and at the end of the 

trial. Assuming the same null and alternative hypotheses at both stages,   

𝐻0 ∶ 𝜃 ≤ 𝜃0    

𝐻𝐴 ∶ 𝜃 > 𝜃0.  

In a group sequential trial, the analyses are conducted using the accumulated data, so that in a 

two-stage trial the interim analysis will include patients recruited in stage one only and the final 

analysis will include patients from both stages.  The results of the interim analysis are used to 

inform decisions about whether the trial stops early or continues to the second stage.   Let 𝑆1 

and 𝑆2 be cumulative test statistics which provide a measure of the evidence for 𝐻0 at stage one 

and stage two respectively and assume these are standardised test statistics, which may be of 

the Wald-type or alternatively may be derived from a score statistic (Whitehead, 1997).  Then 

let 𝐼1 and 𝐼2 be further statistics which provide a measure of the amount of information which 

is available in the trial at stage one and stage two respectively; related in some way to the total 

number of observations in the trial so far.  The joint distribution of the test statistics is then 

bivariate normal with the correlation between 𝑆1 and 𝑆2 being related to the ratio of information 

available at the two stages,  

(
𝑆1
𝑆2
)~𝐵𝑉𝑁((

0
0
) , (

1 𝜌
𝜌 1

))   𝜌 = √(𝐼1/𝐼2). 

At the end of stage one, when the amount of available information is equal to 𝐼1, 𝑆1 is compared 

to pre-defined upper and lower critical values (𝑢1 and 𝑙1) for the purpose of decision making: 

if 𝑆1 > 𝑢1, the trial stops with rejection of 𝐻0 and the treatment is declared effective; if 𝑆1 < 𝑙1, 

the trial stops without the treatment being declared effective.  If 𝑙1 ≤ 𝑆1 ≤ 𝑢1, the trial continues 

to the next stage, since more information is required before a decision about the efficacy of the 

treatment can be reached.  Assuming the trial continues, a final analysis is conducted at the end 

of stage two where 𝑆2 is compared to a second upper boundary 𝑢2. and 𝐻0 is rejected if 𝑆2 > 𝑢2. 

The stage-wise critical values, 𝑢1, 𝑢2 𝑎𝑛𝑑 𝑙1, and the quantities 𝐼1 and 𝐼2 must be determined in 

such a way that the overall Type I error and power requirements of the test are maintained at 

level α and level 1 − 𝛽 respectively. To obtain these unknowns, further constraints will usually 

be imposed (Whitehead, 2011), for example by specifying three quantities, 𝑟, 𝑐 and 𝑑, and 
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setting 𝐼2 = 𝑟𝐼1, 𝑙1 = 𝑐𝑢1 and 𝑢2 = 𝑑𝑢1. Standard software evaluating integrals of standard and 

bivariate normal distributions can then be used to obtain the stage-wise critical values and the 

amount of information required at each stage.  

  

Group sequential methodology extends naturally to accommodate multi-stage trial designs. For 

a trial with 𝐽 stages, the 𝑗th analysis will take place when the amount of information reaches 𝐼𝑗 

with the corresponding cumulative test statistic being 𝑆𝑗.  At each analysis, the trial stops with 

rejection of 𝐻0 if 𝑆𝑗 > 𝑢𝑗, stops for futility if 𝑆𝑗 < 𝑙 and continues to the (𝑗 + 1)th stage otherwise.  

Specifying Type I error and power requirements and setting 𝑢𝐽 = 𝑙𝐽,  there still remains a large 

number of quantities to evaluate (𝑢𝑗, 𝑙𝑗 and 𝐼𝑗. 𝑖 = 1, … 𝐽), requiring additional constraints to be 

imposed.  It is useful to first implement a systematic method to specify how the Type I error 

will be spent at each stage.  One approach for specifying the Type I error spending is to specify 

the timing of the analyses and then to define a function with a single parameter 𝑎 which links 

all of the stage-wise boundaries; this method can be used to produce well known designs such 

as Pocock’s test (Pocock, 1977) and the O’Brien Fleming (OBF) test (O’Brien and Fleming, 

1979). The second and more flexible approach, proposed by Demets and Lan (1994), is to 

specify an alpha spending function, which for an upper boundary is here denoted 𝛼𝑢∗ (𝑡𝑗).  This 

function determines that the Type I error of the test is ‘spent’ throughout the course of a trial at 

a rate determined by some function of 𝑡𝑗, the fraction of the total information if the trial should 

reach the final stage. The function  𝛼𝑢
∗(𝑡𝑗)  is a non-decreasing function with  𝛼𝑢

∗(0) = 0  and 

𝛼𝑢
∗(1) = 𝛼 (the overall Type I error rate specified for the trial). The alpha allowance 𝛼𝑗 for the 

one-sided hypothesis test at stage 𝑗 is the increment  𝛼𝑢
∗(𝑡𝑗) − 𝛼𝑢

∗(𝑡𝑗−1) and this quantity is used 

to determine the critical values for stopping for efficacy at stage 𝑗 (and not before) under 𝐻0. 

This approach offers more flexibility than the previous method which requires that the number 

and timing of all interim analyses to be specified at the outset.  Note that separate alpha spending 

functions may be specified for lower and upper boundaries to facilitate the construction of 

asymmetric tests.   

 

Once the alpha spending function has been specified, the null distribution of the test statistics 

at each stage is then determined, under the assumption that the trial has not stopped previously.  

Using specialist software, evaluation of the outer integrals of each distribution across a range 

of critical values can be carried out until solutions are found which satisfy the 𝛼 spent at each 
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stage. The null distribution of 𝑆1 is standard normal, and appropriate stopping limits (𝑢1 and 𝑙1) 

can be obtained as described for a two-stage test. Assuming the trial does not stop at stage 1, 

the conditional distribution of 𝑆2 given 𝑆1 = 𝑠1, is obtained for the next stage using numerical 

integration and the stopping limits (𝑢2 and  𝑙2)  are then obtained using a search as before.  This 

process may then be continued to obtain the critical values (𝑢𝑗, 𝑙𝑗) for all 𝐽 stages of the trial.   

  

2.4.2 Group sequential methodology for multi-arm trials   

Multi-arm versions of the group sequential methods outlined in the previous section have also 

been developed.  These allow treatment selection to take place at an interim analysis whilst also 

incorporating the option for early stopping for efficacy.  In order to index the test statistics that 

relate to a specific experimental treatment and a specific stage, the double subscript 𝑖𝑗 is used.  

For a trial with 𝐾 experimental treatments and 𝐽 stages,  

𝐻0(𝑖) ∶ 𝜃𝑖 ≤ 𝜃0  (𝑖 = 1, … 𝐾)  

𝐻𝐴(𝑖) ∶ 𝜃𝑖 > 𝜃0  (𝑖 = 1, … 𝐾),  

and the cumulative test statistic corresponding to treatment 𝑖 at stage 𝑗 is denoted 𝑆𝑖𝑗.  

 

Before describing various multi-arm group sequential designs which incorporate treatment 

selection, it is instructive to consider two early designs in which some of the relevant concepts 

were introduced.  The first is a two-stage method for binary outcomes proposed by Thall, Simon 

and Ellenberg (1988), and the second is a two-stage procedure for survival outcomes, proposed 

by Schaid et al. (1988).   In these designs, multiple experimental arms are evaluated against a 

control in the first stage and the best performing treatments are taken through to a larger second 

stage if sufficiently promising.  At the end of the second stage a final analysis is performed, 

including patients in these groups from both stages of the trial, adjustment being made to 

account for the selection process at stage one. These designs have a number of limitations such 

as being restricted to two stages and one type of outcome and not facilitating early stopping for 

efficacy.  Multi-arm group sequential methodology builds on the ideas introduced in these early 

trial designs.  

  

Another early design incorporating treatment selection was described by Follmann, Proschan 

and Geller (1994), who proposed a method for conducting group sequential multi arm trials 

using a generalised version of Dunnett’s procedure.  Simulation was used to obtain the critical 
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values for multi-arm analogues of the Pocock and OBF tests introduced in Section 2.4.1.  The 

method controls the FWER strongly and allows early stopping for efficacy.  A disadvantage of 

this design there is no facility for dropping treatments for futility, so that poorly performing 

treatments remain in the trial and there is no facility to direct resources to the best performing 

treatments.  

  

Stallard and Todd (2003) proposed a multi-arm group sequential design which enables the best 

performing treatment to be selected at the first stage of a trial. Any number of stages can be 

accommodated and all response types may be specified provided a normally distributed test 

statistic can be assumed. The authors denote the test statistic relating to the best performing 

treatment as 𝑆𝑠. By formulating the form of the null distribution of 𝑆𝑠, upper and lower critical 

values for stage one may be obtained based on the distribution of 𝑆𝑠.  Assuming the trial does 

not stop at stage one, the trial continues with patients now being allocated only to the selected 

experimental treatment or control group.  The stopping limits for the remaining stages of the 

trial can be obtained by deriving the conditional distributions of test statistics at all subsequent 

stages of the trial and applying the methods described for two-arm trials. This design controls 

the FWER strongly and improves on Thall’s design by accommodating more than two stages 

and a variety of outcome types.  Also, a treatment other than the best performing one may be 

selected, although this will result in the test losing power. The main limitations are firstly that 

selection must occur early on in the trial, at the first interim analysis, and secondly, that only 

one treatment can be selected.  This may not be desirable, for example if many experimental 

treatments are effective then it might be advantageous to continue with several treatments, 

enabling comparisons to be made at a later stage of the trial when more data are available.  

  

The ‘select the best’ design of Stallard and Todd (2003) may be adapted to accommodate a 

change of endpoint, with the best treatment being selected based only on information from the 

intermediate endpoint (Todd and Stallard, 2005) or by combining information on both the 

definitive outcome and an intermediate outcome measure. Methodology for the latter design 

was proposed by Stallard (2010), however this method was subsequently demonstrated to result 

in Type I error inflation in some scenarios. An improved version of Stallard’s method which 

avoids the potential for Type I error inflation was then developed by Stallard et al. (2015) 

whereby treatment selection occurs to maximise the conditional error given the interim data. 

Again, note that this methodology permits only one treatment to be selected, which may be 
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restrictive in some scenarios. Also, the procedure for treatment selection requires that some 

information on the definitive outcome is available at the interim analysis, which may not be 

possible in some trials.  

  

Stallard and Friede (2008) adapted the ‘select the best’ design of Stallard and Todd (2003) to 

allow the selection of any number of treatments at the end of each stage, provided the number 

is pre-specified at the start of the trial. The procedure is based on obtaining the distribution of 

the largest increment among all test statistics using a modified version of the procedure 

described in Stallard and Todd (2003), and then defining the distribution of the sum of all of 

these maxima at each stage to obtain stopping limits which maintain the overall Type I error at 

level α. Strong control of FWER is achieved as long as the numbers of treatments included in 

each stage are predetermined although there is no restriction as to which treatments are included 

in a given stage, allowing factors other than efficacy to influence selection.  This method tends 

to be conservative, particularly if many effective treatments are specified to continue.    

  

Magirr, Jaki and Whitehead (2012) developed a particularly flexible group sequential design for 

multi-arm trials which incorporates data-driven treatment selection. Their method allows any 

number of treatments to continue at any stage of the trial without the need to pre-specify these 

details at the start of the trial.  Their approach was developed first for normally distributed data 

and is based on a generalised Dunnett procedure akin to that proposed by Follmann, Proschan 

and Geller (1994) but extended so that efficacy and futility boundaries are derived 

independently. Futility boundaries facilitate the dropping of poorly performing arms so that 

resources are directed towards the most promising treatments. To obtain these boundaries they 

use numerical integration which they are able to simplify by considering the stagewise test 

statistics for the 𝑖th treatment, 𝑆𝑖1, … … 𝑆𝑖𝐽, conditionally independent of the stagewise test 

statistics relating to any other treatment, 𝑆𝑖΄1, … … 𝑆𝑖΄𝐽. The procedure ensures strong control of 

the FWER and boundaries of different types can be accommodated. However, as more stages 

are incorporated, the computational complexity and time taken to obtain designs increases 

substantially making the approach impractical. In response to this issue, Ghosh et al. (2017) 

developed a faster algorithm, which facilitates the computation of multi-arm group sequential 

trial designs such that designs with five stages can be obtained in just a few minutes.     
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Although the method proposed by Magirr, Jaki and Whitehead offers flexible treatment 

selection, it should be noted that if treatments are dropped despite meeting efficacy boundaries, 

the test loses power. In Jaki and Magirr (2013), it is suggested that a procedure based on the 

conditional error approach may be used to address this issue; this procedure is developed in 

Magirr, Stallard and Jaki (2014) and is described in Section 2.8. Jaki and Magirr (2013) also 

show how the group sequential multi-arm multi-stage approach of Magirr, Jaki and Whitehead 

can be extended to accommodate additional explanatory variables. They further demonstrate 

that the framework can be used to obtain designs for trials with binary, ordinal and survival 

endpoints, by consideration of the asymptotic normality of efficient score statistics based on 

these endpoints, and show that any changes to the target power and FWER are small for survival 

endpoints and negligible for ordinal and binary endpoints.   

  

When treatment selection is determined on the basis of efficacy thresholds, the actual sample 

size of the trial cannot be determined at the outset. This may be problematic when estimating 

the costs and administrative requirements of a trial. An alternative approach which addresses 

this issue is proposed by Wason et al., (2017), The authors extend the method proposed by 

Thall, Simon and Ellenberg (1988) to more than two stages, with a pre-specified number of the 

poorest performing treatments being dropped at each stage, and only the best performing 

treatment and the control treatment progressing to the final stage. For trials in which four or 

more treatments are evaluated, the design affords a worthwhile reduction in sample size 

compared to the original two-stage procedure. Furthermore, in a simulation study based on a 

three-stage trial it is shown that, for most sets of treatment effects, the fixed sample size under 

this design is comparable to, or only slightly greater than, the median sample size for the group 

sequential procedure of Magirr, Jaki and Whitehead. This design may therefore appeal to 

investigators since the advantages of the fixed sample size design seem not to be outweighed 

by a heavy penalty of increased average sample size.  

  

2.5 MAMS(R) method  

MAMS(R) methodology provides another approach for conducting multi-stage clinical trials in 

which pre-planned adaptivity is implemented. As stated previously, this method has many 

features in common with the group sequential framework such as the specification of 

boundaries at the outset of the trial and the monitoring of cumulative test statistics. Initially, the 

MAMS(R) method was proposed by Royston, Parmar and Qian (2003) in order to increase the 
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efficiency of treatment evaluation in trials where the outcome of interest is a survival time 

response.  In survival trials there may be a long time period between the recruitment of patients 

and the availability of survival time responses, making it difficult to base mid-trial adaptations 

on this outcome.  A central feature of the Royston et al. method which addresses this issue is 

the facility to monitor an intermediate outcome, here denoted 𝐼, in the earlier stages of a trial, 

and to use this information as the basis for treatment selection.  Recently, MAMS(R) 

methodology has been extended to accommodate binary outcomes and to facilitate strong 

FWER control (Bratton, Phillips and Parmar, 2013; Bratton, 2015), both of which are features 

of particular interest in this thesis.  

  

2.5.1 Two-stage MAMS(R)   

MAMS(R) methodology was first developed for two stage multi-arm trials where the primary 

endpoint is a survival time, and the treatment effect is parameterised as a log hazard ratio (LHR).  

In the MAMS(R) framework, treatment selection is often based on an intermediate outcome, 𝐼;  

such procedures may be referred to as 𝐼 ≠ 𝐷 trials.  A suitable intermediate outcome is one 

which is correlated with the definitive primary outcome, here denoted 𝐷, but observed more 

commonly and at an earlier stage than 𝐷. For example, if the definitive outcome is time to death, 

the intermediate outcome could be time to disease progression. The required number of 𝐼 events 

in the control group occurs at an earlier point in the trial, and so analysis of treatment efficacy 

based on the outcome 𝐼 is possible early on in the trial. There are now treatment effects relating 

to both the intermediate and definitive outcomes to consider and these are indexed by means of 

the subscripts 𝐼 and 𝐷 respectively. The null and alternative hypotheses for each of the 𝐾 

experimental treatments are then given by  

𝐻0(𝑖): {
 𝜃𝐼𝑖 ≤ 𝜃𝐼

0

  𝜃𝐷𝑖 ≤ 𝜃𝐷
0} (𝑖 = 1,…𝐾) 

𝐻𝐴(𝑖): {
 𝜃𝐼𝑖 > 𝜃𝐼

0

  𝜃𝐷𝑖 > 𝜃𝐷
0} (𝑖 = 1,…𝐾). 

 

In a two stage MAMS(R) trial, a hypothesis test relating to the intermediate outcome is 

conducted at the end of stage one for each experimental treatment. At the end of stage two, a 

further hypothesis test is conducted for each treatment arm remaining in the trial. This test 
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relates to the definitive outcome and the test statistics are based on data from both stages of the 

trial.  At each stage, the test statistics calculated for each treatment are compared against 

predetermined critical values.  At the end of stage one, a treatment is dropped if the test statistic 

relating to the intermediate outcome falls below the stage one critical value (𝐶1).  At the end of 

the second stage, any remaining treatment is declared beneficial if the cumulative test statistic 

relating to the definitive outcome exceeds the stage two critical value (𝐶2).  A key issue in 

MAMS(R) methodology is how to determine 𝐶1 and 𝐶2 so that the Type I error is controlled at 

some specified value.  In Royston et al.’s original MAMS(R) methodology, although designs 

included several experimental treatment arms, Type I error control centred on the PWER rather 

than the FWER.  Assuming the null hypothesis is true, let standardised test statistics obtained 

for a given treatment control comparison at stage one and stage two be denoted 𝑆𝐼𝑖 and 𝑆𝐷𝑖 

respectively.  Then, assuming the equal size of all experimental treatment groups,  

(
𝑆𝐼𝑖
𝑆𝐷𝑖

)~𝐵𝑉𝑁((
0
0
) , (

1 𝜌
𝜌 1

)) 

 

where BVN denotes the bivariate normal distribution with correlation matrix 𝑅0 whose entries 

are the correlations between the treatment effects at the interim and final analyses under 𝐻0. 

Note that all features of this methodology may be applied to a trial in which the same endpoint 

is used at all stages of the trial (𝐼 = 𝐷), simply by setting the underlying correlation between 

hazard ratios to 1. When 𝐼 = 𝐷, 𝜌 is a function of the stage-wise sample sizes only, whereas 

when  𝐼 ≠ 𝐷, 𝜌 is a function of both the stage-wise sample sizes and the underlying correlation 

between the intermediate and definitive outcomes at the individual patient level.    

  

The probability of a given treatment passing both stages and thereby being declared effective, 

under 𝐻0, may be expressed as 𝑝𝑟((𝑆𝐼𝑖 ≥ 𝐶1, 𝑆𝐷𝑖 ≥ 𝐶2)|𝐻0(𝑖)) = 𝑃𝑊𝐸𝑅.  The PWER is calculated 

by integration of the tail areas of the joint distribution.  Similar expressions for pair-wise power 

can be obtained by considering the probability of a treatment passing both stages when the true 

treatment effect is equal to the reference treatment effect, 𝜃𝑅, which is a clinically important 

treatment effect.  Note that in this thesis, the term 𝐻𝑅 is used to denote the specific alternative 

hypothesis when 𝜃 = 𝜃𝑅, whereas   𝐻𝐴 is used to refer to the more general alternative hypothesis, 

𝜃 > 𝜃0.   The critical values 𝐶1 and 𝐶2 can be obtained on a trial-and-error basis such that the 

PWER is no greater than some value, denoted 𝛼, and the pairwise power no less than some 
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value, denoted ω.  This approach has been used for designing both 𝐼 = 𝐷 and 𝐼 ≠ 𝐷 trials.  

However, Bratton (2015), suggests that although this method is appropriate when 𝐼 = 𝐷, it may 

not be suitable when 𝐼 ≠ 𝐷 since in this case the maximum PWER in fact occurs when a 

treatment is ineffective on the definitive outcome, but is fully effective on the intermediate 

outcome, so that 𝐶2 should be determined solely by the target 𝛼 as in a single stage trial. One 

result of this circumstance is that the intermediate critical value is non-binding (see Section 

4.4.1) 

 

2.5.2 Developments in MAMS(R) methodology  

Since the two-stage design for survival outcomes was first proposed, MAMS(R) methodology 

has been developed in a number of areas. Firstly, the original method was extended to 

accommodate any number of intermediate stages (Royston et al., 2011).  For a trial with 𝐾 

treatments, conducted across 𝐽 stages, where the intermediate outcome is used in all but the final 

stage, the null and alternative hypotheses for the 𝑖th experimental treatments are given by  

𝐻0(𝑖): {
   𝜃𝐼𝑖 ≤ 𝜃𝐼

0 (𝑓𝑜𝑟 𝑗 = 1,… 𝐽 − 1)

  𝜃𝐷𝑖 ≤ 𝜃𝐷
0(𝑓𝑜𝑟 𝑗 = 𝐽)

          } (𝑖 = 1,…𝐾) 

𝐻𝐴(𝑖): {
 𝜃𝐼𝑖 > 𝜃𝐼

0  (𝑓𝑜𝑟 𝑗 = 1,… 𝐽 − 1)  

 𝜃𝐷𝑖 > 𝜃𝐷
0  (𝑓𝑜𝑟 𝑗 = 𝐽)

} (𝑖 = 1,…𝐾), 

and the joint distribution of the 𝐽 test statistics for the 𝑖th treatment is then given by 

(

𝑆𝑖𝑗
⋮
𝑆𝑖𝐽

)~𝑀𝑉𝑁((
0
⋮
0
) , (

1 ⋯ 𝜌1𝐽
⋮ ⋱ ⋮
𝜌𝐽1 ⋯ 1

)), 

where MVN denotes the multivariate normal distribution with correlation matrix 𝑅𝐽
0  whose 

(𝑗, 𝑗′)th entry, 𝜌𝑗,𝑗′ , is the correlations between the treatment effects in stages 𝑗 and 𝑗′ under 𝐻0. 

The PWER is then given by 

𝑝𝑟((𝑆1 ≥ 𝐶1, … 𝑆𝐽 ≥ 𝐶𝐽)|𝐻0) = 𝑃𝑊𝐸𝑅. 

 

Secondly, MAMS(R) methodology has been adapted for scenarios other than survival trials, 

facilitating wider application of this approach. In principle, MAMS(R) methods could be 

extended to accommodate any outcome measure which has an asymptotically normally 

distributed test statistic provided the between stage correlation structure is known.  For binary 

endpoints, Bratton, Phillips and Parmar (2013) developed an analytical expression for the 
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correlation between two test statistics where treatment effects are parameterised as the 

difference in success rate between the control and the experimental treatments.  A further 

extension to this work is proposed in Chapter 3 of this thesis.   

  

A third development addressed one of the main criticisms of the original MAMS approach, 

namely that control of PWER may be inadequate given that FWER is the standard requirement 

for confirmatory multi-arm trials. Bratton (2015) proposed a method for obtaining a set of 

critical values for a MAMS(R) trial which ensures that the FWER is controlled at a specified 

level. The approach involves a systematic search procedure to generate a set of designs which 

achieve a specified FWER and pair-wise power; such designs are termed ‘feasible’.  To find 

efficient designs, the expected sample size of each design is obtained under two scenarios and 

feasible designs which minimise a weighted sum of the two measures are identified; the author 

names such designs as ‘admissible’.  In Section 3.2.2, a detailed description of this method is 

presented and a modified version of the approach, which implements the LOR parameterisation, 

is explored.  

  

Fourthly, methods have been proposed for obtaining designs for 𝐼 = 𝐷 and 𝐼 ≠ 𝐷 MAMS(R) 

trials with survival outcomes which incorporate a facility for early stopping, if strong evidence 

of efficacy on the definitive outcome is demonstrated at an interim analysis (Blenkinsop, Parmar 

and Choodari-Oskooei, 2019). The authors demonstrate how these efficacy thresholds impact 

the error rates of a chosen design and show how linear interpolation may be used to calculate 

final stage critical values which control the PWER or FWER at a specified level. However, in 

the examples given, the thresholds governing early stopping for efficacy are very high and 

should be regarded more as a ‘safety net’ for scenarios in which overwhelming efficacy is 

demonstrated at an interim analysis, rather than a true efficacy boundary such as is specified in 

group sequential methodology.  

  

2.6 Conditional invariance  

The remaining two adaptive methods, described in Sections 2.7 and 2.8, differ from those 

described in Sections 2.4 and 2.5 in that they facilitate flexible as well as pre-planned adaptivity. 

A key issue in developing any methodology for flexible adaptivity is that when the design of 

later stages is modified in response to interim data, a conventional cumulative test statistic 

applied at the end of the trial cannot be assumed to be independent of the previous data and 
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design change. If no adjustment is made, this approach may cause inflation of the Type I error 

rate.  A way of addressing this issue is to implement a method in which the data from different 

stages are considered separately by means of assigning stage-wise p-values.  Consider a two-

arm, two-stage trial in which mid-trial design changes are made following the interim analysis. 

The Type I error originally specified for the test may be maintained by defining a second stage 

p-value, whose distribution, conditional on the interim data and the new design, is known and 

fixed under the null hypothesis, irrespective of the interim data and new design. This is known 

as the ‘conditional invariance principle’, because the distribution of the second stage p-value is 

conditionally invariant of the first stage data and design changes.  Since the asymptotic 

distributions of the conditional second stage p-value and the first stage p-value are known and 

assumed to be independent of each other, 𝛼 level tests may be carried out based on the joint 

distribution.  The conditional invariance principle is described in more detail by Bretz et al. 

(2009b) and Brannath, Gutjahr and Bauer (2012). It provides the basis for two related methods 

which allow for flexible adaptivity whilst maintaining control of the Type I error; these are the 

Combination test and the Conditional error function.   

  

2.7 Combination test  

The Combination test is an established method for conducting adaptive clinical trials. The 

procedure readily accommodates pre-planned adaptivity but may also be used to implement 

flexible adaptivity. Combination test methodology can accommodate a variety of outcome types 

and the test statistics used for treatment selection at stage one may relate either to the definitive 

outcome (𝐼 = 𝐷) or to a suitable intermediate outcome (𝐼 ≠ 𝐷). The methodology is applicable 

to two-arm trials and also, through use of the closed testing procedure (CTP), to trials which 

incorporate multiple treatment arms and treatment selection.  

  

2.7.1 Combination test for a two-arm two-stage trial  

The combination test was proposed by Bauer and Köhne (1994) as a method for implementing 

changes to the design of a two-arm trial, in response to information arising either internally or 

externally to the trial. Initially, the main focus was to facilitate a sample size reassessment 

following an interim analysis in a two-arm trial.  Consider a two-arm two-stage trial in which 

the same hypothesis is tested in two stages: 
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𝐻0 ∶ 𝜃 ≤ 𝜃0    

𝐻𝐴 ∶ 𝜃 > 𝜃0.  

At the end of each stage, a p-value is calculated such that 𝑝1 is based only on the first stage data 

and 𝑝2 only on the second stage data. Note that this contrasts with the methods described in 

Sections 2.4 and 2.5 in which cumulative test statistics are used.  At the end of stage one, the 

quantity 𝑝1 may be used to inform decisions about the trial such as early stopping. Assuming 

the trial continues to a second stage, an overall test of efficacy may be carried out by combining 

the stage-wise p-values using a suitable function 𝐶(𝑝1, 𝑝2).  At the start of the trial, assuming 

early stopping for efficacy or futility is to be incorporated, the investigator must specify the 

combination function and the design of the first stage of the trial, including the sample size, the 

test statistic to be used and critical values 𝛼1 and 𝛼0, to which 𝑝1 is compared. Note that there 

is no requirement for the design of the second stage to be specified at the outset.   A critical 

value 𝑐 for rejection of the null hypothesis at the second stage is then deduced such that the 

overall Type I error is maintained at level 𝛼,  

𝛼1 +∫ ∫ 1[𝐶(𝑥,𝑦)≤𝑐} 𝑑𝑦 𝑑𝑥 = 𝛼,
1

0

𝛼0

𝛼1

 

where the indicator function equals 1 if 𝐶(𝑝1, 𝑝2) ≤ 𝑐 and 0 otherwise.  Note that if no design 

changes are made, then the procedure becomes equivalent to a two-stage group sequential test. 

If design changes, such as sample size reassessment, are made, then the Type I error rate will 

still be upheld by appealing to the principle of conditional invariance. The conditional 

invariance applies as long as, under 𝐻0, the distribution of the second stage p-value conditional 

on the first stage p-value is stochastically larger than or equal to the uniform distribution 

(Brannath, Posch and Bauer, 2002). This may be reasonably assumed when data from different 

cohorts of patients are used for each stage of a trial.   

  

Examples of suitable functions which may be used include Fisher’s combination function in 

which the product of the p‐values is calculated, such that 𝐶(𝑝1, 𝑝2) = 𝑝1𝑝2, or the weighted 

inverse normal function proposed by Lehmacher and Wassmer (1999) in which  𝐶(𝑝1, 𝑝2) = 

1 − 𝛷[𝑤1𝛷−1(1 − 𝑝1) + 𝑤2𝛷−1(1 − 𝑝2)], where 𝛷 denotes the normal distribution function 

and 𝑤1 and 𝑤2 are predetermined weights specified for each stage, 𝑠, of the trial such that  𝑤𝑠 > 

0   and  𝑤12+𝑤22 = 1,  the weights being related to the stage-wise sample sizes.   
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Design modifications made at an interim analysis might include an increase in sample size or a 

change in the test statistic used. Theoretically, different null hypotheses might even be used for 

the different stages although this may be inadvisable due to problems with interpretation, as the 

overall test is for the intersection of the null hypotheses tested at each stage. Note that the 

combination test may be used with any outcome or test design providing it yields p-values 

which meet the criteria regarding conditional invariance (Wassmer, Eisebitt and Coburger, 

2001).  Furthermore, this methodology can be readily extended beyond the context of a two-

stage trial to accommodate 𝐽 stages simply by specifying a function which combines the p-

values across all 𝐽 stages.   

  

  

2.7.2. Combination test for multi-arm trials   

Combination test methodology has also been applied to multi-arm trials where treatment 

selection is incorporated (Bauer and Keiser, 1999).  For a two-stage trial in which there are 𝐾 

experimental treatments, and assuming the same null and alternative hypothesis at both stages 

(𝐼 = 𝐷), the treatment effect at the end of each stage is denoted 𝜃𝑖 and the hypotheses of interest 

are then  

𝐻0(𝑖): 𝜃𝑖 ≤ 𝜃0   (𝑖 = 1, … 𝐾)  

𝐻𝐴(𝑖): 𝜃𝑖 > 𝜃0  ( 𝑖 = 1, … 𝐾).  

At the end of the first stage, data from the first stage are used to calculate test statistics to test 

𝐻0(𝑖) against 𝐻𝐴(𝑖) for each treatment arm.  These test statistics are initially used to make a 

decision concerning which treatments should be continued into the second stage of the trial, for 

example the treatment arm associated with the largest test statistic may be selected.  At the end 

of the second stage, test statistics relating to each selected treatment arm are calculated as 

before, using data from the second stage only.   

  

At the end of the trial, the test statistics arising from each stage are used in a CTP (Marcus R, 

Peritz E and Gabriel, 1976) to produce a set of stage one and stage two p-values.  As explained 

in Section 2.2.1, a CTP requires that p-values must be obtained for all possible intersection null 

hypotheses as well as for each individual null hypothesis.  In many cases, the methods of 

Dunnett (1955) may be applied to each intersection hypothesis such that for the test of 𝐻0(𝐺), as 

defined in Section 2.2.1, the p-value will equate to the Dunnett-adjusted p-value relating to the 
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largest of the observed test statistics.  For the final analysis of treatment effectiveness, the 

stagewise p-values relating to a given elementary or intersection null hypothesis are combined 

across the two stages using the pre-defined combination function, producing an overall p-value 

for the overall test of each intersection null hypothesis.  An intersection hypothesis is rejected 

at level α if 𝐶(𝑝1, 𝑝2) ≤ 𝛼.  In the same manner as for single stage tests, an experimental 

treatment is declared superior to the control treatment at level 𝛼 only if the individual null 

hypothesis and all relevant intersection hypotheses are rejected.  Implementing the combination 

test in conjunction with a CTP in this way ensures strong control of the FWER when multiple 

hypotheses are being tested.   

  

Note that in stage two, a subset defining an intersection hypothesis may contain a dropped 

treatment.  In this instance, following the methods adopted by Posch et al. (2005) and Friede et 

al. (2011), the stage two p-value for this intersection hypothesis is set as the p-value for the 

group of treatments contained in the original subset and selected for the second stage.  If the set 

is empty then the second stage p value is set to 1.    

 

For the case where 𝐼 ≠ 𝐷, exactly the same procedure is used except that the test statistics 

obtained at the end of stage one relate to an intermediate outcome.  These test statistics are used 

to inform treatment selection but are not used in the final analysis of treatment efficacy.  Once 

data regarding the definitive outcome becomes available, these are used to obtain the test 

statistics and p-values for the stage one group of patients, and the procedure then continues 

exactly as for the 𝐼 = 𝐷 case. Jenkins, Stone and Jennison (2011) point out that when an 

intermediate outcome is used for trials with survival outcomes some caution is required. 

Protection of the FWER is achieved only if the first stage p-value includes primary outcome 

responses for all patients recruited in stage one, even though responses from some patients 

may not be observed until the second stage of the trial is underway.   

  

The main advantage of the combination test is that it facilitates a flexible response to emerging 

information, both internal and external to the trial, so that trial designs do not need to be fully 

specified at the outset (Bauer and Köhne 1994; Bauer and Keiser 1999). This is possible because 

the different stages give rise to independent rather than cumulative test statistics. This flexibility 

is especially useful in multi-arm trials with treatment selection. Many other methods require 

that a rule for treatment selection is specified at the start, the rule in part determining the design 
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of the trial. This rule is generally based on monitoring cumulative test statistics and comparing 

these to predefined boundaries.  If treatments are dropped from a trial due to safety concerns or 

if a need arises to take forward only a selection of the best treatments, then these designs tend 

to become conservative if the original design is adhered to for the remainder of the trial (see 

Section 2.4.2). The combination test, on the other hand, has a twofold advantage. Firstly, it is 

not necessary to specify any selection rule at the outset and data emerging from the trial and 

from elsewhere may be used to inform the selection process and, if necessary, a re-calculation 

of sample size for the second stage. Secondly, if treatments are dropped, the second stage tests 

of some intersection hypotheses may be relaxed, for example if an intersection hypothesis 

contains a dropped treatment then, following the methods adopted by Posch et al. (2005) and 

Friede et al. (2011), the second stage p-value for this intersection hypothesis is adjusted only 

for the number of treatments contained in the original subset and selected for the second stage.   

  

Although the combination test does not require the selection rule to be specified at the outset, it 

is usual for an investigator to specify in the protocol a selection rule which facilitates the aims 

of the particular trial.  For example, if the objective is for the early dropping of poorly 

performing arms then a simple threshold rule may be chosen.  Alternatively, if the aim is for a 

more comparative approach then the best performing treatment may be selected. A flexible 

selection rule which encompasses many different selection options is the ‘epsilon’ rule (see for 

example Kelly, Stallard and Todd, 2005) whereby the treatment associated with the largest test 

statistic is selected to continue along with all others whose test statistic is within a specified 

range (𝜀) of the largest.  Note that when 𝜀 = 0, only the best treatment is selected and when 𝜀 

= ∞ all treatments are selected to continue.  

  

A disadvantage of the combination test is that the analysis of treatment effects is not based on 

sufficient statistics when adaptive changes are implemented and hence there may be a loss of 

power compared with other methods (Jennison and Turnbull, 2003; Kelly, Stallard and Todd, 

2005).  Another disadvantage is that it may be complicated to obtain confidence intervals for 

treatment effects. Finally, it may be argued that such a high level of flexibility may not actually 

be desirable when conducting a clinical trial. Regulatory committees may feel there is a lack of 

clarity concerning the trial objectives, or may have concerns about the integrity of the trial if 

the protocol is not tightly specified or is too open to change.  
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2.8 The conditional error approach   

The conditional error approach provides another method which may be used to facilitate flexible 

adaptivity. It has much in common with the combination test; data from different stages are 

considered separately rather than cumulatively and the integrity of the method relies on the 

principle of conditional invariance (see Bretz et al. (2009) and Brannath, Gutjahr and Bauer 

(2012)).  Again, this methodology was first developed in the context of two-arm trials but the 

application has subsequently been extended, through use of the CTP, to trials which incorporate 

multiple treatment arms and treatment selection.  

  

2.8.1 Conditional error approach for a two-arm trial  

The conditional error approach was first developed for a two-arm, two-stage trial, in response 

to observing the effect of mid-trial sample size adaptations for underpowered trials.  Proschan 

and Hunsberger (1995) investigated the consequences of modifying the sample size of the 

second stage based on the stage one test statistic and showed that substantial Type I error 

inflation could occur in some instances if a conventional analysis, based on cumulative test 

statistics, was carried out at the end of the trial. To address this issue, they proposed the use of 

a function based on the value of the first stage test statistic, here denoted by 𝑧1. This function is 

called the conditional error function and is denoted by 𝐴.  It is chosen such that, under 𝐻0, the 

expected value of this function across all values of 𝑧1 is no greater than 𝛼. The authors showed 

that the Type I error of the test procedure will be controlled at level 𝛼 if the second stage sample 

size and final critical value are chosen such that, under 𝐻0, the probability of a final rejection 

of the null hypothesis, conditional on 𝑧1, is no greater than 𝐴(𝑧1).   

 

This concept was then incorporated into group sequential methodology by Müller and Schäfer 

(2001), who showed how the principle could be applied to a two-arm group sequential trial with 

any number of planned stages.  In this context the conditional error function is defined as the 

probability that the null hypothesis would have been rejected at any future stage of the original 

design, given the interim test statistic and given that the null hypothesis is true. For any test 

statistic which may be assumed to approximate to a Brownian motion model (Lan and Zucker, 

1993), this quantity can be obtained using numerical integration. Müller and Schäfer 

demonstrated that following an interim analysis, it is possible to change the design of the 

remaining stages of the trial whilst preserving the Type I error at level 𝛼, the requirement being 

that the Type I error rate of the new design for the remainder of the trial, conditional on the 



 

42  

  

interim data, must be no greater than that of the original design Modifications to the design 

could include changes to the sample size of subsequent stages or to the number and timing of 

future analyses.  In a later paper (Müller and Schäfer, 2004), the same authors showed that these 

adaptations may be performed at any time during the trial, not just at the pre-specified analysis 

points scheduled in the initial design. Moreover, if deemed necessary, further adaptive changes 

to the design may be made by applying the method again at any point during the remainder of 

the trial.  As for the combination test, the validity of the conditional error procedure holds as 

long as, following design modification, the null conditional distribution of the p-value for the 

remainder of the trial is stochastically larger than or equal to the uniform distribution, which is 

reasonably assumed when new patients are recruited in each stage, thus satisfying the 

conditional invariance principle. It has been demonstrated that the combination test and the 

conditional error function approach are equivalent in principle (Brannath, König and Bauer, 

2007), however from a practical standpoint they differ in that, at the outset, the former requires 

specification of a design for stage one and a combination function whereas the latter requires 

specification of the conditional error function and a proposed design for all stages of the trial.  

  

2.8.2 Conditional error approach for a multi-arm trial  

More recently, this methodology has been extended for use in multi-arm trials, specifically for 

the context of treatment selection in trials where multiple experimental treatments are compared 

to a common control group.  König et al. (2008) proposed a method called the ‘adaptive Dunnett 

test’ which introduced the conditional error function into a trial design based on the step-down 

Dunnett test used with the CTP (see Section 2.2.1).  When one or more experimental treatments 

are dropped, the adaptive procedure is consistently more powerful than the classical Dunnett 

test (König et al., 2008; Friede and Stallard, 2008). Full details of this method are given in 

Chapter 5 where further applications of the conditional error approach are explored.  

  

Furthermore, Magirr, Stallard and Jaki (2014) developed a multi-arm group sequential design 

in which it is possible to implement treatment selection and mid-trial design changes using the 

conditional error approach. At the outset, a suitable multi-arm group sequential design is chosen 

based on the objectives of the study and available knowledge; this procedure is described in 

Section 2.4.2.  If the trial continues as planned, the original sufficient test statistics are 

monitored resulting in a procedure with proven efficiency. However, if information internal or 

external to the trial indicates that mid-trial design adaptations are required, the conditional error 
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approach is implemented, resulting in a procedure which protects the FWER at a specified level 

and which tends to achieve higher power than the non-adaptive test. The main disadvantage of 

this method is its complexity which may deter investigators from adopting it. Also, there is no 

mechanism for obtaining an admissible design at the outset and no facility for using an 

intermediate outcome for the purposes of treatment selection. In Chapter 5, the method 

proposed by Magirr, Stallard and Jaki is described in more detail and use of a similar approach 

in the novel context of the MAMS(R) framework is proposed and evaluated.   

  

2.9 Estimation in multi-arm adaptive trials   

Whilst this thesis focusses exclusively on issues of design in multi-arm adaptive designs, it is 

important to consider how the data from such trials will be analysed when they are complete.  

The estimation of treatment effects and construction of confidence intervals is less 

straightforward for adaptive trials than for standard two-arm trials. In particular, it has been 

shown that maximum likelihood estimation of treatment effects may be subject to bias if trial 

designs incorporate interim analyses at which sample size reassessment, treatment selection 

and/or early stopping at may occur (Bretz et al., 2009). Bauer et al. (2009) explore this bias in 

a multi-arm multi-stage trial where one or more of the best treatments are selected, and show 

that patterns of bias vary depending on features of trial design, such as the timing of analyses 

and the selection rule, as well as the true underlying treatment effects. For two-stage designs, 

various estimators which correct or reduce this bias have been proposed (see, for example, 

Cohen and Sacrowitz, 1989; Bowden and Glimm, 2008; Bretz et al., 2009). However, it has 

been pointed out that these conditionally unbiased estimators often have a larger mean squared 

error (MSE) than the MLE. Furthermore, these methods do not necessarily extend to all types 

of outcome or to designs with more than two stages. For example, Bowden and Glimm (2014) 

explored estimation bias in a three-stage drop-the-losers fixed sample size design and show that 

the multi-stage selection process makes the identification of an unbiased estimator more 

complex. Shrinkage estimation, using Bayesian methods, is an alternative approach which 

offers useful properties such as a reduced MSE and has shown promise in two-stage trials 

(Bowden, Brannath and Glimm, 2014).   

Investigations of bias in MAMS(R) trials explored in this thesis, suggest that bias of 

estimated treatment effects may be less of an issue in designs which incorporate only the 

dropping of treatments which do not meet an interim efficacy threshold. Bias was evaluated 
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in MAMS(R) trials with binary outcomes parameterised as ‘difference in proportions’ 

(Bratton, Phillips and Parmar, 2013) and also in two-arm three-stage trials with survival 

outcomes (Choodari-Oskooei, et al., 2013). In both studies, for the designs investigated, it 

is shown that bias in treatment effect estimates is negligible for arms which progress to the 

end of the trial. Bias is more substantial for arms which are dropped at an interim analysis, 

but can be reduced if all recruited patients are followed up and included in the estimate of 

treatment effect. It is argued that since dropped treatments are by definition unlikely to 

progress any further in drug development, issues of bias in estimates of treatment effects 

are less important for these arms anyway. The authors of both papers conclude that bias is 

therefore of little practical importance in these trials and that correction is therefore usually 

unnecessary. Features which are suggested to reduce bias include selection being based on 

an intermediate outcome (𝐼 ≠ 𝐷) and a choice of a moderately low interim significance 

level between 0.2 and 0.3. In view of these findings, the MAMS(R) designs explored in 

the following chapters conform to the recommended first stage significance level 

recommendations. Furthermore, an emphasis is placed on 𝐼 ≠ 𝐷 designs throughout this 

work although 𝐼 = 𝐷 designs are also considered.  
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Chapter 3.  The log odds ratio parameterisation in MAMS(R) 

methodology  

  

  

3.1 Introduction  

As discussed in Chapter 1, there is a pressing need for the development of innovative and 

efficient clinical trials to address current healthcare needs.  Different agencies have specifically 

highlighted the importance of developing and exploring multi-arm adaptive trial methodology 

and have identified features of particular interest including treatment selection and the use of 

intermediate outcomes. In Chapter 2, a number of different methodologies used in adaptive 

trials were described.  In this chapter, attention is directed to the MAMS(R) method (outlined 

in Section 2.6). There are two main reasons why this method has been chosen for further 

investigation. Firstly, the MAMS(R) method is currently a popular framework in which to 

conduct multi-arm adaptive trials, shown by the fact that it is being used in a number of high-

profile trials such as STAMPEDE (Sydes et al., 2012) and RAMPART (Renal adjuvant multiple 

arm randomised trial) (for details of trial design see https://www.rampart-trial.org/). The 

acceptance and uptake of the MAMS(R) method might be explained by the fact that it is 

relatively easy for clinicians to understand and implement.  The second reason for focussing on 

MAMS(R) is that there have been some important recent advances in MAMS(R) methodology 

which warrant careful consideration and evaluation. In the past, the MAMS(R) method has been 

criticised for its restriction to survival outcomes, the implementation of PWER rather than 

FWER control and for the somewhat arbitrary manner in which trial designs are obtained.  

However, the recently extended methodology (as highlighted in Section 2.5.2) now 

accommodates binary as well as survival outcomes and new software has been developed to 

automatically generate designs which meet specified Type I error and power requirements 

(Bratton, Phillips and Parmar, 2013; Bratton, 2015). Furthermore, recently developed methods 

offer the facility to obtain designs in which the FWER rather than the PWER is controlled.  

These new developments are of interest as they have the potential to further increase the scope 

and uptake of the MAMS(R) approach.  

  

The aim of this chapter is to examine these new developments and to suggest ways in which the 

methods may be further extended and improved.  In Section 3.2, the recent advances in 
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MAMS(R) methodology for binary outcomes are described.  In Section 3.3, a proposal for 

adapting the MAMS(R) approach for the log odds ratio (LOR) parameterisation is introduced.  

In Section 3.4, an enhanced procedure for obtaining recommended sample sizes under the LOR 

is described. The work in this chapter forms the first part of a paper by Abery and Todd (2019), 

published in Statistical Methods in Medical Research (see Appendix).   

 

  

3.2 MAMS(R) methodology for binary outcomes  

The MAMS(R) method was originally formulated for time to event outcomes. Recently, Bratton 

et al. extended the methodology so that binary outcomes may also be accommodated (Bratton, 

Phillips and Parmar, 2013). This development substantially increases the range of trials in which 

MAMS(R) may be implemented, and is of particular relevance in the context of evaluating 

treatments for chronic diseases where binary endpoints are commonly encountered. As 

explained in Section 2.1, binary endpoints record a success or failure for an individual patient, 

and the proportion of patients in a given group who have a positive response regarding a chosen 

outcome may then be denoted 𝑝𝐸 under an experimental treatment and 𝑝𝐶 under the control 

treatment.  When developing the MAMS(R) methodology, Bratton et al. chose to parameterise 

the treatment effect as the ‘difference in proportions’ between the experimental and control 

groups, given by  

𝜃 = 𝑝𝐸 − 𝑝𝐶.  

The choice of parameterisation has implications for the specification of between-stage treatment 

effects, as explained in the following section.  

  

3.2.1 Correlation between stage-wise treatment effects  

Recall from Section 2.5.1 that when stage-wise critical values are chosen for a MAMS(R) 

design, the overall PWER and pair-wise power for a treatment control comparison may be 

calculated by consideration of the joint distribution of the stage-wise test statistics; this requires 

the specification of the correlation matrices 𝑅0(𝐽) and 𝑅𝑅(𝐽) whose (𝑗, 𝑗′)th entries (𝑗 = 1, … 𝐽) 

are the correlations between the treatment effects in stages 𝑗 and 𝑗′ under 𝐻0 and 𝐻𝑅 respectively 

(see Section 2.5.1). A necessary step in adapting MAMS(R) methodology for binary outcomes 

is the derivation of these correlations. Parameterising the treatment difference as ‘difference in 

proportions’, Bratton (2015) derived an expression for the between-stage correlation as  
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𝜌𝑗,𝑗′
ℎ =

(𝑝𝐸(𝑗,𝑗′)
ℎ − 𝑝𝐸(𝑗)

ℎ 𝑝𝐸(𝑗′)
ℎ ) + 𝑟(𝑝𝐶(𝑗,𝑗′) − 𝑝𝐶(𝑗)𝑝𝐶(𝑗′))

𝑟𝑛𝐶(𝑗′)𝜎𝑗
ℎ𝜎𝑗′

ℎ ,                 (3.1) 

 

where the superscript ℎ refers to the assumed hypothesis (𝐻0 or 𝐻𝑅), 𝑟 is the allocation ratio 

between the control and experimental arms, 𝑛𝐶(𝑗′) is the control-arm sample size at stage 𝑗′(𝑗′ > 

𝑗), 𝜎𝑗ℎ is the standard deviation of the treatment effect at stage 𝑗 under hypothesis ℎ, and 𝑝𝐶(𝑗) 

and 𝑝𝐸ℎ(𝑗) refer to the success rate at stage 𝑗 in the control group and in the experimental group 

under hypothesis ℎ, respectively. The terms 𝑝𝐶(𝑗,𝑗′) and 𝑝𝐸ℎ(𝑗,𝑗′) are the probabilities of an 

individual patient recording a success for both  𝑰 and 𝑫 outcomes under the stated hypothesis, 

and these are usually determined at the planning stage of the trial, by referring to expert 

opinion or by the analysis of data from previous trials. For trials where 𝐼 = 𝐷, Bratton showed 

that the expression above simplifies to a formula based on the ratio of the stage-wise sample 

sizes which is  

𝜌𝑗,𝑗′
ℎ = √𝑛𝐶(𝑗) 𝑛𝐶(𝑗′)⁄ . 

 

The specification of between-stage correlations is necessary for the identification of MAMS(R) 

designs which meet a specified Type I error and pairwise power requirement, as explained in 

the next section.  

  

3.2.2 Generating feasible and admissible MAMS(R) designs with PWER control   

As explained in Section 2.5, a design for a MAMS(R) trial is specified by stage-wise critical 

values which govern whether a treatment is dropped or is taken through to the next stage.   One 

approach to finding a design is for the investigator to initially propose a set of stage-wise critical 

values which may be suitable. Then, assuming the asymptotic normality and known correlation 

structure of the test statistics, it is possible to calculate the PWER and pair-wise power from the 

suggested set of critical values using standard software.  If these quantities are considered 

unacceptable, then the critical values may be adjusted until a design with the required PWER 

and power is found.  This approach may be time consuming and will not necessarily produce 

designs which are efficient in terms of the total number of patients recruited to the trial.  This 

issue was addressed by Bratton (2015), who developed a systematic way of identifying suitable 

trial designs using a search procedure similar to that proposed by Simon (1989) and then 

developed by Jung et al. (2004) and Mander et al. (2012).  Bratton developed software which 
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automates the process of searching over different sets of critical values and calculating PWER 

and power for each set. MAMS(R) designs which meet specified PWER and power 

requirements are identified and are termed ‘feasible’. Further routines are then used to identify 

those feasible designs which minimise expected sample size. Firstly, the maximum sample size 

of the trial, assuming no treatments are dropped, is calculated. Secondly, the expected sample 

size under 𝐻0(G), termed 𝐸(𝑁|𝐻0(𝐺)), is obtained, which requires calculation of the probability 

of a treatment arm passing each stage of the trial. Designs which minimise a weighted sum of 

these two measures are designated ‘feasible and admissible.’  

 

3.2.3 Generating feasible and admissible MAMS(R) designs with FWER control  

The approach described above identifies feasible and admissible designs based on PWER and 

pair-wise power. This method is suitable for two-arm trials and may be used in some multi-arm 

trials when control of the PWER for each treatment control comparison is considered to be 

acceptable. However, FWER control is generally accepted as the standard requirement for 

confirmatory multi-arm trials. Bratton (2015) extended the systematic search procedure 

described in Section 3.2.2 to generate a set of feasible designs which achieve a specified FWER 

and pair-wise power.  For a trial with 𝐾 experimental treatment arms with a target FWER of α, 

the PWER for each treatment arm is first set to 𝛼∗, where 𝛼∗ satisfies the Dunnett probability,   

𝛼 = 𝜙𝐾(𝑧𝛼∗, … , 𝑧𝛼∗; 𝐶), where 𝜙𝐾 is the K-dimensional multivariate normal distribution function 

and  𝐶 is the between-arm correlation matrix.  The search procedure is then carried out over 

many possible combinations of critical values, and designs where the PWER is suitably close 

to 𝛼∗and where pair-wise power is close to a pre-specified target are designated feasible.  From 

this set, admissible designs are then identified as follows: The overall expected sample size of 

each feasible trial, denoted 𝑁, is calculated under two scenarios, firstly under the global null 

hypothesis and secondly under the situation where all arms have treatment effects on 𝐼 and 𝐷 

equal to some reference values, denoted 𝜃𝐼
𝑅 and  𝜃𝐷

𝑅, which are specified by the user. We denote 

these two scenarios using the terms 𝐻0(𝐺) and 𝐻𝑅(𝐺) respectively.  The expected sample sizes 

under these two conditions are termed 𝐸(𝑁|𝐻0(𝐺)) and 𝐸(𝑁|𝐻𝑅(𝐺)) respectively, and designs 

which minimise a weighted sum of these two measures are identified as admissible.  To obtain 

the expected sample sizes, calculation of the per-treatment stage-wise sample sizes and the 

numerical evaluation of the probability that 𝑘 out of 𝐾 treatments will reach the next stage of 

the trial under each hypothesis are required.  This probability may be obtained using a 
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simulation approach somewhat similar to the method described by Wason and Jaki (2012), but 

adapted to accommodate asymptotically normally distributed test statistics and, where 

necessary, a change of outcome. Test statistics (𝑆𝑖𝑗) with the appropriate correlation structure 

are generated for each treatment at each stage of a MAMS(R) trial in the manner described by 

Bratton (2015).  In the notation of this thesis and for equal allocation to experimental and control 

treatment, the test statistics are obtained under 𝐻0(𝐺) using   

𝑆𝑖𝑗  = √0.5 𝑥0𝑗 + √0.5𝑥𝑖𝑗  , 

and under 𝐻𝑅(𝐺) using 

𝑆𝑖𝑗  = √0.5 𝑥0𝑗 + √0.5𝑥𝑖𝑗  +
𝜃𝑖𝑗 − 𝜃𝑗

0 

𝜎𝑖𝑗
, 

where 𝑥𝑖𝑗 are standard normally distributed random variables generated for treatment 𝑖 at stage 

𝑗, (𝑖 = 0,1. . 𝐾,  𝑗 = 1, . . 𝐽) and having appropriate between stage correlation of treatment effects, 

𝜃𝑖𝑗 is the true treatment effect for treatment 𝑖 on the outcome of interest at stage 𝑗, 𝜃𝑗0 is the 

treatment effect at stage 𝑗 under the null hypothesis and 𝜎𝑖𝑗 is the standard deviation of the 

observed treatment effects under 𝜃𝑖𝑗. The estimation of expected sample size requires that test 

statistics are simulated under 𝐻0(𝐺) and also under 𝐻𝑅(𝐺).  For the proposed design, the 

proportion of trials in which 𝑘 treatments pass stage 𝑗 under each hypothesis may then be 

obtained using simulation. Here, this quantity is denoted 𝑝𝑖𝑗ℎ , where ℎ denotes the hypothesis 

of interest. The following expression may then be used in order to determine the total sample 

size under each hypothesis, first for 𝐸(𝑁|𝐻0(𝐺)) and then for 𝐸(𝑁|𝐻𝑅(𝐺)), 

(1 + 𝐾)𝑛1 +∑∑𝑝𝑖𝑗
ℎ

𝐾

𝑖=1

𝐽−1

𝑗=1

(1 + 𝑖)(𝑛𝑗+1 − 𝑛𝑗). 

A loss function, denoted 𝐿, similar to that proposed by Mander et al. (2012) is then specified.  

The quantity 𝐿 is a weighted sum of 𝐸(𝑁|𝐻0(𝐺)) and 𝐸(𝑁|𝐻𝑅(𝐺)) and admissible designs are 

defined as those which minimise the loss function for a chosen weight (𝑞), given by   

𝐿(𝑞) = 𝑞𝐸(𝑁|𝐻0(𝐺)) + (1 − 𝑞)𝐸(𝑁 𝐻𝑅(𝐺)),                                (3.2)   

where 0 < 𝑞 < 1.  Note that an estimate of the FWER may be obtained by considering test 

statistics simulated under 𝐻0(𝐺) for a large number of trials and observing the proportion of 

simulated trials where one or more treatments pass all stages of the trial.  Using this extended 

methodology, MAMS(R) designs which control the FWER and which minimise some function 

of expected sample size can be readily produced for both 𝐼 ≠ 𝐷 and 𝐼 = 𝐷 trials. 
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3.3 A proposal for adapting MAMS(R) for the LOR parameterisation  

When developing the new MAMS(R) methodology for binary outcomes, Bratton (2015) used 

the ‘difference in proportions’, 𝑝𝐸 − 𝑝𝐶, as a measure of the treatment effect. An alternative 

measure of treatment difference for binary outcomes, is the log odds ratio (LOR) defined as 𝜃 

= log{𝑝𝐸(1 − 𝑝𝐶)⁄𝑝𝐶(1 − 𝑝𝐸)}. Both parameterisations are commonly used in clinical trials, 

the choice depending largely on the preference of the investigator.  The ‘difference in 

proportions’ option is the most intuitive parameterisation to use and is simpler than the LOR 

for clinicians and investigators to understand. Estimates obtained under either parameterisation 

may be assumed to be normally distributed such that significance tests based on normality 

assumptions may be conducted, although it should be noted that the LOR can take any value, 

whereas the ‘difference in proportions’ in bounded by -1 and 1. Similarly, either measure may 

be used in a modelling framework in which relevant covariates are included. This is arguably 

most straightforward when using the LOR, which is closely linked to the logit, the natural 

parameter used in logistic modelling, although it should be noted that differences in proportions 

may also be obtained from a logistic regression. The research for this thesis begins with the 

development of modified versions of Bratton’s routines, so that feasible and admissible 

MAMS(R) designs may be obtained for the LOR parameterisation, as well as for ‘difference 

in proportions’, giving investigators the option to choose the parameterisation they prefer. In 

Section 3.3.1, consideration is given to the correlation between stagewise treatment effects 

under the LOR, since this is a key feature in MAMS(R) methodology.  Then, in Section 3.3.2, 

the adapted routines which generate feasible and admissible designs under the LOR are 

described.   

  

3.3.1 Correlation between stage-wise treatment effects  

As explained in Section 3.2.1, the calculation of pairwise power and Type I error requires 

specification of the correlation matrices 𝑅0(𝐽) and 𝑅𝑅(𝐽) whose (𝑗, 𝑗′)th entries are the correlations 

between the treatment effects in stages 𝑗 and 𝑗′ under 𝐻0 and 𝐻𝑅 respectively. To determine 

how, if at all, the matrix R is affected by the change in parameterisation to the LOR, between 

stage correlations based on LOR were considered first for the case when 𝐼 = 𝐷 and then for 𝐼 ≠ 

𝐷.  
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𝑰 = 𝑫 

Let 𝜃𝑗  and 𝜃𝑗′  be treatment effects, based on the LOR, derived from the data at stages 𝑗 and 𝑗′ 

of a trial respectively (𝑗 < 𝑗′). Furthermore, define the correlation between stage-wise treatment 

effects as 

𝜌(𝑗,𝑗′) =
ℎ

𝐶𝑜𝑣(𝜃𝑗 , 𝜃𝑗′)

√𝑉𝑎𝑟(𝜃𝑗)𝑉𝑎𝑟(𝜃𝑗′)

 . 

The treatment effect, 𝜃𝑗
′ can be expressed as a weighted average of the treatment effects across 

stages. For 𝑤𝑗 , 𝑤∗ > 0, let the weights at each stage be defined as  

 

𝑤𝑡 =
1

𝑉𝑎𝑟(𝜃𝑡)
 for  𝑡 = 𝑗,∗. 

Let 𝜃∗ be the treatment effect which arises from the new observations included at stage 𝑗′. Then, 

 

𝜃𝑗′   =   
𝑤𝑗𝜃𝑗 + 𝑤∗𝜃∗

𝑤𝑗 + 𝑤∗
 , 

 

              =   
𝑤𝑗
−1𝜃∗ + 𝑤∗

−1𝜃𝑗

𝑤𝑗
−1 + 𝑤∗−1

.  

 

Hence, 

                                             𝐶𝑜𝑣(𝜃𝑗 , 𝜃𝑗′) = 𝐶𝑜𝑣(𝜃𝑗 ,   
𝑤𝑗
−1𝜃∗+𝑤∗

−1𝜃𝑗

𝑤𝑗
−1+ 𝑤∗

−1  )   

 

                                                                  =  
1

𝑤𝑗
−1 + 𝑤∗−1

{𝐶𝑜𝑣(𝜃𝑗 , 𝑤∗
−1𝜃𝑗  ) + 𝐶𝑜𝑣(𝜃𝑗 , 𝑤𝑗

−1𝜃∗)} 

 

Since 𝜃𝑗  and 𝜃∗ are independent, 𝐶𝑜𝑣(𝜃𝑗 , 𝑤𝑗
−1𝜃∗) = 0, and so 

 

𝐶𝑜𝑣(𝜃𝑗 , 𝜃𝑗′)  =
𝑤𝑗
−1. 𝑤∗

−1

𝑤𝑗
−1 + 𝑤∗−1
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                 =   
𝑤𝑗
−1

1 +
𝑤𝑗
−1

𝑤∗−1

 

                  =   
1

𝑤𝑗 + 𝑤∗
 . 

 

Now assuming equal allocation to control and treatment groups such that 𝑛𝑐(𝑗) = 𝑛𝐸(𝑗) , the 

variance of 𝜃 at stage 𝑗 is  

                                   𝑉𝑎𝑟(𝜃𝑗) =  
1

𝑛𝐶(𝑗)𝑝𝐶(𝑗)
+

1

𝑛𝐶(𝑗)(1 − 𝑝𝐶(𝑗))
+

1

𝑛𝐶(𝑗)𝑝𝐸(𝑗)
+

1

𝑛𝐶(𝑗)(1 − 𝑝𝐸(𝑗))
. 

Defining  

𝐴𝑗  =   (
𝑝𝐶(𝑗)(1 − 𝑝𝐶(𝑗)) + 𝑝𝐸(𝑗)(1 − 𝑝𝐸(𝑗))

𝑝𝐶(𝑗)𝑝𝐸(𝑗)(1 − 𝑝𝐶(𝑗))(1 − 𝑝𝐸(𝑗))
), 

 

𝑉𝑎𝑟(𝜃𝑗)  =   
𝐴𝑗

𝑛𝐶(𝑗)
 

and  

                𝑉𝑎𝑟(𝜃∗)  =   
𝐴𝑗

𝑛𝐶(𝑗′) − 𝑛𝐶(𝑗)
. 

 

Thus, 

𝐶𝑜𝑣(𝜃𝑗 , 𝜃𝑗′) =     
1

𝑤𝑗 + 𝑤∗
 

                                                  =       
1

𝑛𝐶(𝑗)
𝐴𝑗

+
𝑛𝐶(𝑗′) − 𝑛𝐶(𝑗)

𝐴𝑗

 

                      =     
𝐴𝑗

𝑛𝐶(𝑗′)
.  

 

Then, since   

   𝜌(𝑗,𝑗′)              =
ℎ  

𝐶𝑜𝑣(𝜃𝑗 , 𝜃𝑗′)

√𝑉𝑎𝑟(𝜃𝑗)𝑉𝑎𝑟(𝜃𝑗′)

 , 

it follows, 
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        𝜌(𝑗,𝑗′) 
ℎ        =     

𝐴𝑗 .
𝑛𝑐(𝑗′)

√
𝐴𝑗
𝑛𝐶(𝑗)

.
𝐴𝑗 .
𝑛𝑐(𝑗′)

 . 

 

                      =     

1
𝑛𝑐(𝑗′)

√
1

𝑛𝐶(𝑗)
.
1

𝑛𝐶(𝑗′)

 

 

 

              =     √
𝑛𝐶(𝑗)

𝑛𝐶(𝑗′)
. 

 

Therefore, if the intermediate and final endpoints are the same (𝐼 = 𝐷), the expression for the 

between stage correlations of treatment effects is the same whether treatment effects are 

parameterised as ‘difference in proportions’ or as the LOR.  

  

 𝑰 ≠ 𝑫  

As discussed in Section 3.2.1, Bratton (2015) derived an expression for the between stage 

correlation of treatment effects when the intermediate and definitive outcomes differ (𝐼 ≠ 𝐷), 

based on the ‘difference in proportions’ parameterisation.  Note that this expression requires an 

estimate of the probability that an individual will have a positive outcome on both the 

intermediate and the definitive outcome; this quantity is usually obtained by reference to 

previous trials.  However, under the LOR parameterisation, an analytical expression could 

not be obtained for the case when 𝑰 ≠ 𝑫.  Interestingly, a similar finding was reported by 

Royston et al. (2011) who explored between stage correlations in the context of survival 

outcomes. Royston showed that when 𝐼 = 𝐷, between-stage correlations for the log hazard ratio 

(LHR) parameterisation can be expressed analytically as √(𝑒𝐶(𝑗)⁄𝑒𝐶(𝑗′)), where 𝑒𝐶(𝑗)  and  𝑒𝐶(𝑗′) 

are the number of control arm events observed on the outcome of interest at stage one and stage 

two respectively.  However, he found that the correlations appeared to be intractable when 𝐼 ≠ 

𝐷.  Bratton, Choodari-Oskooei and Royston (2015) suggest that in this context the correlation 

may be approximated using 𝑐 .√(𝑒𝐶(𝑗)⁄𝑒𝐶(𝑗′)), where 𝑐 is an attenuating constant, which is an 
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estimate of the correlation between LHRs for 𝐼 and 𝐷 for a particular context, such as could be 

obtained from a previous full set of data where both outcomes are known for all patients. This 

constant may be obtained from expert opinion or may be based on the analysis of previous 

similar trials.  Royston et al. (2011) suggest a default value for 𝑐 of 0.6, which they argue is, 

from their experience, a generally reasonable estimate in the context of cancer trials where 𝐼 is 

on the causal pathway to 𝐷. However, this value cannot be assumed to be suitable in all 

situations.  Bratton, Choodari-Oskooei and Royston propose an alternative approach in which 

individual patient data are simulated based on a proposed trial design and an assumed 

correlation between the survival times on 𝐼 and 𝐷 at the individual patient level, as obtained 

from previous trials. Using the simulated data, the correlations between the stage-wise LHRs 

can then be estimated and implemented in the routines for calculating Type I error and power.   

In this thesis, a modified version of the approach suggested by Bratton, Choodari-Oskooei and 

Royston (2015) was investigated as a possible method for estimating the correlation between 

stage-wise treatment effects when 𝐼 ≠ 𝐷 for binary outcomes, with a view to implementing 

this method when the LOR is used to parameterise treatment effects, where no analytical 

expression is currently available. The proposal was made that between-stage correlations of the 

intermediate and definitive treatment effects based on binary outcomes may be approximated 

using  

 𝑐ℎ .  √(𝑛𝐶(𝑗)⁄𝑛𝐶(𝑗′)),  

where 𝑐ℎ is the estimated correlation between treatment effects for 𝐼 and 𝐷 outcomes under 

hypothesis ℎ. Following the procedure used by Bratton, Choodari-Oskooei and Royston, 

individual patient data are simulated under each hypothesis based on a proposed trial design 

and an assumed correlation between the binary outcomes on 𝐼 and 𝐷 at the individual patient 

level (obtained from previous trials). Using the simulated data, the correlations between the 

treatment effects are then estimated to give an estimate of 𝑐ℎ, and this can be used to produce 

stage-wise correlations using the expression above.  

 

First, steps were taken to verify this approach by exploring the simulation method for the  

‘difference in proportions’ parameterisation where the correlations obtained using the proposed 

simulation method can be compared directly with those obtained using an analytical expression 

derived by Bratton (2015) and shown in this thesis as Eqn 3.1.  Based on the two-arm two-stage 

𝐼 ≠ 𝐷 trial, described by Bratton, 𝐼 and 𝐷 outcomes for individual patients in each group were 



 

55  

  

generated, first under 𝐻0 and then under 𝐻A. By simulating many trials, the correlation between 

the difference in proportions for 𝐼 and 𝐷 was obtained under each hypothesis, to give an estimate 

of 𝑐ℎ under each hypothesis. Stage-wise correlations were then calculated using 𝑐ℎ. 

√(𝑛𝐶(𝑗)⁄𝑛𝐶(𝑗′)) and these were compared with the correlations obtained using the analytical 

expression derived by Bratton (2015) in order to examine whether there was good agreement 

between the correlations obtained using the different approaches.  

 

Table 3-1 shows the between-stage correlations obtained using these two methods across a 

range of stage one sample sizes.  Note first that the correlations under 𝐻0 are slightly larger than 

those obtained under 𝐻A.  This may be explained by consideration of the terms contained in the 

first bracket in the analytical expression for between-stage correlations, given in Equation 3.1. 

The balance between the two terms, 𝑝𝐸(𝑗,𝑗′)
ℎ  and 𝑝𝐸(𝑗)

ℎ 𝑝𝐸(𝑗′)
ℎ ,will be slightly different under each 

hypothesis because the probabilities of a success on the 𝐼 and 𝐷 outcomes are not perfectly 

correlated. Secondly, it can be seen by comparing Column 4 with Column 5 of Table 3-1 that 

for all designs and under both hypotheses, there is good agreement between the two methods, 

with stage-wise correlations agreeing to two decimal places.  This provides some evidence for 

the validity of the simulation approach. Since stage-wise correlations based on the LOR cannot 

be calculated using an analytical expression when 𝐼 ≠ 𝐷, the simulation approach would seem 

to provide a reasonable procedure to adopt for this context and is therefore used in the 

development of adapted routines, described in Sections 3.3.2.   

 

Feasible and admissible designs for trials with binary outcomes, where the treatment difference 

is parameterised as ‘difference in proportions’, can be readily generated according to the 

approach described in Sections 3.2.2 and 3.2.3. FWER control may be implemented as 

described in Section3.2.3. This methodology is implemented in two MAMS(R) programs which 

have been developed for Stata, nstagebin (Bratton 2014a) and nstagebinopt (Bratton 2014b). 

The following modifications to the routines were made in order to produce new versions which 

generate designs for two-stage MAMS(R) trials of binary outcome in which treatment effects 

are parameterised as a LOR.    
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Table 3-1 Comparing between-stage correlations in a two-stage 𝐼 ≠ 𝐷 MAMS(R) design. The 

correlations are obtained using simulation (column 4) and using an analytical formula (see eqn 

3.1).  Results are shown under both 𝐻0 and 𝐻A. The two methods for obtaining the corelation 

show good agreement under either hypothesis. 

  

𝑛𝐶(1)  𝑛𝐶(2)  Hypothesis  𝜌1,2  (simulation)     𝜌1,2  (formula)  

100  100  𝐻0  0.4143  0.4137  

    𝐻𝐴  0.3539  0.3548  

50  100  𝐻0  0.2929  0.2925  

    𝐻𝐴  0.2502  0.2509  

30  100  𝐻0  0.2269  0.2266  

    𝐻𝐴  0.1938  0.1944  

  

 

3.3.2 Generating feasible and admissible designs with FWER control under the 

LOR  

Success rate in the experimental group  

In the Stata programmes, the user specifies the anticipated control group success rate (𝑝𝐶), and 

the treatment difference under 𝐻0 and 𝐻𝑅, for both 𝐼 and 𝐷 outcomes (𝜃𝐼
0, 𝜃𝐼

𝑅 , 𝜃𝐷
0  , 𝜃𝐷

𝑅).  Under 

the ‘difference in proportions’ parameterisation, the quantities representing the experimental 

success rate under the stated hypothesis at stage 𝑗 are then calculated in the program using  

𝑝𝐸(𝑗)
ℎ = 𝑝𝐶(𝑗) + 𝜃𝑗

ℎ, 

where h indicates the hypothesis of interest; 𝐻0 or 𝐻𝑅. For example, the success rate for the 

definitive outcome at stage two in the experimental group under 𝐻𝑅 would be calculated using   

𝑝𝐸(2)
𝑅 = 𝑝𝐶(2) + 𝜃𝐷

𝑅 . 

It was necessary to change expressions for calculating 𝑝𝐸 to reflect the new parameterisation. 

Under the LOR, where the treatment effect is given by 𝜃 = log{𝑝𝐸(1 − 𝑝𝐶) 𝑝𝐶(1 − 𝑝𝐸)⁄ }, the 

success rate in the experimental group is given using  

𝑝𝐸(𝑗)
ℎ =

𝑒𝜃𝑗
ℎ

. 𝑝𝐶(𝑗)

(1 − 𝑝𝐶(𝑗) + 𝑝𝐶(𝑗). 𝑒
𝜃𝑗
ℎ

)
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so that, for example, the success rate for the definitive outcome at stage two in the experimental 

group under 𝐻𝑅 would be calculated using 

𝑝𝐸(2)
𝑅 =

𝑒𝜃𝐷
𝑅
. 𝑝𝐶(2)

(1 − 𝑝𝐶(2) + 𝑝𝐶(2). 𝑒
𝜃𝐷
𝑅
)
. 

 

Sample size calculations  

Formulae used in the routines for calculating stage-wise suggested sample sizes were modified 

to reflect the LOR parameterisation. The expression for calculating the control arm sample size 

for stage 𝑗, denoted 𝑛𝐶(𝑗), was changed to the formula based on the LOR, which is given by  

𝑛𝐶(𝑗) = (
1

𝑝𝐶(𝑗)(1 − 𝑝𝐶(𝑗))
+

1

𝑝𝐸(𝑗)
𝑅 (1 − 𝑝𝐸(𝑗)

𝑅 )
) (

𝑧1−𝛼𝑗 + 𝑧𝛽𝑗

𝜃𝑗
𝑅 − 𝜃𝑗

0 )

2

, 

where 𝑧1−𝛼𝑗 and 𝑧𝛽𝑗 are the 1 − 𝛼𝑗 and 𝛽𝑗 percentiles of the standard normal distribution, 𝑝𝐶(𝑗) 

and 𝑝𝐸𝑅(𝑗) are the control success rate and experimental success rate under 𝐻𝑅, at stage 𝑗 

respectively, 𝜃𝑗
0 and 𝜃𝑗

𝑅 are the specified treatment effect for the outcome of interest at stage 𝑗 

under 𝐻0 and 𝐻𝑅 respectively, and 𝛼𝑗 and 𝛽𝑗 relate to the stage-wise alpha and power of the 

given design. For a 1:1 allocation ratio, the suggested sample size at stage 𝑗 for each 

experimental arm, denoted 𝑛𝐸(𝑗), is equal to 𝑛𝐶(𝑗).  Note that the formula provides an approximate 

sample size but due to the discrete nature of binary data, target stage-wise alpha and power may 

not be achieved exactly. Furthermore, it has been suggested that under the LOR, sample sizes 

obtained using the Wald formula tend to be over-estimated and this may result in over-powering 

(Siqueira, Todd and Whitehead, 2015).  We incorporated a new routine to refine stage-wise 

sample sizes to ensure that the Type I error and pairwise power is as close to the target values 

as possible. This procedure is described more fully in Section 3.4.  

  

Calculating pairwise power and Type I error  

The calculation of PWER and pair-wise power, integral to the procedure for generating feasible 

and admissible designs, requires specification of the joint distribution of the stage-wise test 

statistics including the between stage correlation of treatment effects. It is shown in Section 

3.3.1 that when 𝑰 = 𝑫, the expression for the correlation between stage-wise treatment effects 

for a treatment control comparison under the LOR is 𝜌𝑗,𝑗′
ℎ = √𝑛𝐶(𝑗) 𝑛𝐶(𝑗′)⁄  , which is the same  
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as for ‘difference in proportions’ and so the expressions for the (𝑗, 𝑗′)th entries to the 𝑅0(𝐽) and 

𝑅𝑅(𝐽) correlation matrices which are specified in the Stata programmes do not need to be altered 

when the parameterisation is changed. Note that when 𝐼 = 𝐷 the correlations are the same under 

𝐻0 and 𝐻𝑅.  However, when 𝑰 ≠ 𝑫, since no analytical expression could be obtained under the 

LOR, a simulation based estimate for 𝑐ℎ was obtained in the manner described in Section 3.3.1 

and 𝜌𝑗,𝑗′
ℎ  then estimated using 𝑐ℎ .√(𝑛𝐶(𝑗)⁄𝑛𝐶(𝑗′)). The (𝑗, 𝑗′)th entries to the 𝑅0(𝐽) and 𝑅𝑅(𝐽) 

correlation matrices for 𝐼 ≠ 𝐷, specified in the Stata programmes, were modified to incorporate 

this change.  Note that when 𝐼 ≠ 𝐷, in contrast to the case when 𝐼 = 𝐷, the estimate for 𝑐ℎ, and 

hence the stage-wise correlations, are different under 𝐻0 and 𝐻𝑅. 

Generating Test statistics for accessing Feasible and Admissible designs  

The methodology for producing feasible and admissible MAMS(R) designs which control the 

FWER is based on simulation of test statistics representing a large number of trials, as explained 

in Section 3.2.3.  Generating standard normal random variables with an appropriate between-

stage correlation structure is the first step in producing the required test statistics. This step is 

the same under either parameterisation providing the correct between-stage correlation matrices 

have been specified. These random variables are then used to produce the appropriate test 

statistics using the method proposed by Bratton and described in Section 3.2.3. Generating test 

statistics appropriate under the LOR parameterisation requires that the variance formula is 

changed; the variance of the LOR at stage 𝑗 being as stated in Eqn (3.3) in Section 3.3.1. 

 

𝑉𝑎𝑟(𝜃𝑗) =
1

𝑛𝐶(𝑗)𝑝𝐶(𝑗)
+

1

𝑛𝐶(𝑗)(1 − 𝑝𝐶(𝑗))
+

1

𝑛𝐸(𝑗)𝑝𝐸(𝑗)
+

1

𝑛𝐸(𝑗)(1 − 𝑝𝐸(𝑗))
. 

 

 

3.3.3 Effect of parameterisation change on output of feasible and admissible  

MAMS(R) designs   

The Stata program nstagebinopt (Bratton, 2014b) outputs a list of feasible and admissible 

designs, each of which minimises the loss function (given by Eqn 3.2) for some values of 𝑞 

(where 0 < 𝑞 < 1), as described in Section 3.2.3.  In order to illustrate this process and to then 

compare designs when the parameterisation is changed to the LOR, consider the following 

example. Suppose an investigator wishes to obtain a MAMS(R) design for a two-stage trial 

where the primary outcome is binary and where treatment effects are parameterised as a 
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difference in proportions. Suppose also that two experimental arms are available for testing 

against a common control group and that the anticipated success rate for the control group is 

0.5. Assume that strong control of the FWER is required at a one-sided level of 0.025 and that 

the aim is to detect a treatment difference of 0.2 with pairwise power of 0.9. If these details are 

supplied to the original nstagebinopt program, the output shown in Figure 3-1 is produced.  

For each design listed, the first column shows the range of 𝑞 over which the design is admissible.  

In columns three and four the significance level and power at each stage are given. Columns 

six and seven give the expected overall sample size under 𝐻0(𝐺) and 𝐻𝑅(𝐺) respectively. An 

estimate of the FWER for each design is included as a final column if the user has specified this 

option.  An investigator may then select the design from the list which is considered to be the 

most suitable for the trial in question. For example, the design which is admissible across the 

widest range of 𝑞 may be chosen; in the example shown in Figure 3-3 this would be the second 

design listed.  The stage-wise operating characteristics of the chosen design may then be entered 

into the nstagebin program to obtain further details of the design including the suggested stage-

wise sample sizes for the control and experimental arms. Figure 3-2 shows the output obtained 

from nstagebin for this example. The upper table in Figure 3-2 shows the stage-wise and overall 

operating characteristics and the lower table shows the overall and cumulative sample sizes 

required for this design.  

 

 

  
  

Figure 3-1 Output of feasible and admissible designs from first run of Stata nstagebinopt 

program for a two-stage MAMS(R) trial with two experimental treatment arms, with common 

binary outcome parameterised as difference in proportions.  
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The procedure for generating admissible designs depends on simulation, as explained in Section 

3.2.3. As a result, for a given input specified by the user, repeated runs of the nstagebinopt 

program will not necessarily produce exactly the same list of admissible designs. For example, 

on some occasions a different design may be included in the list, or the range of 𝑞 over which 

a particular design is admissible may vary slightly. This can be seen by comparing Figure 3-3 

with Figure 3-1. Identical input entered into the nstagebinopt program has resulted in a slightly 

different design in row two, with a first stage alpha of 0.27 rather than 0.29. There are also small 

differences in the range of q over which the designs in rows two and three are admissible.  

  

  

 

Figure 3-2 Output from Stata nstagebin program showing operating characteristics and sample 

sizes relating to chosen design for a two-stage MAMS(R) trial with two experimental treatment 

arms, with common binary outcome parameterised as difference in proportions.  

Note that similar discrepancies occur with repeated runs of nstagebinopt for designs 

incorporating an intermediate outcome.  
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A similar degree of variation is also obtained when using the modified versions of 

nstagebinopt and nstagebin developed in this thesis, in which treatment effects are 

parameterised as the LOR. Again, successive runs of the modified nstagebinopt program may 

not generate identical lists of admissible designs.  Reassuringly, under the LOR 

parameterisation the lists of admissible designs are very similar to those obtained using the 

original programs and this was the case across the range of treatment effects, control event rates 

and numbers of treatment arms investigated.  Figure 3-4 shows the output obtained for the 

example described above, but when the modified programs, based on the LOR, are used. Other 

than the change of parameterisation, all details passed to the programs are identical to those 

used to produce the designs illustrated in Figures 3-1 and 3-3. It can be seen that the output 

obtained from the modified programs under the LOR is very similar to that obtained under the 

‘difference in proportions’ parameterisation. Where differences do occur, they are small and   

 

 

Figure 3-3 Output from second run of Stata nstagebinopt program of feasible and admissible 

designs for a two-stage MAMS(R) trial, with two experimental treatment arms, with common 

binary outcome parameterised as difference in proportions.  

represent changes in the range of q over which a design is admissible or in the first stage alpha, 

similar to the degree of variation which occurs in successive runs of the original program. The 

main difference which is consistently observed when the parameterisation is changed to the 

LOR, is that the expected and maximum overall sample sizes of the trial are larger than those 

obtained for the same design under difference in proportions.  The larger overall sample sizes 

reflect differences in recommended stage-wise sample sizes and therefore the effect is larger 

for designs with more experimental treatment arms. Consider the following example in which 

feasible and admissible designs are generated for a trial with five experimental arms and a 
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control arm, in which the FWER is specified as 0.025. Other features of the design including 

the target pair-wise power, anticipated treatment effect and control success rate are as specified 

in the example used to produce Figure 3-4.  

 

 

Figure 3-4 Output of feasible and admissible designs from modified nstagebinopt program for a 

two-stage MAMS(R) trial with two experimental treatment arms, with common binary outcome 

parameterised as LOR.  

 

Figure 3-5 shows the designs obtained using the original nstagebinopt program and the 

modified LOR version.  In this case, the suggested designs are identical with respect to 

stagewise alpha and power, but the expected sample sizes, shown in columns six and seven, are 

much larger under the LOR parameterisation.  Similarly, if the design listed in the first row is 

selected and details are entered into the original and modified nstagebin programs, the output 

shown in Figure 3-6 is obtained, showing that the suggested cumulative stage-wise sample sizes 

are larger under the LOR (71,189) than under difference in proportions (67,178).  

 

Recall that the suggested sample sizes in the Stata software for MAMS(R) methodology are 

obtained using standard Wald-type formulae.  For a given control event rate, size of treatment 

effect, stage-wise alpha and stage-wise power requirement, the Wald formula gives a larger 

recommended sample size under the LOR than under difference in proportions.  It has been 

suggested that under the LOR the Wald formula may be inaccurate and often 

overestimates required sample sizes (Siqueira, Todd and Whitehead, 2015). These authors 

conducted an extensive investigation of various methods used to obtain required sample sizes 
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in single-stage trials with binary outcomes, where treatment effects are parameterised using the 

LOR.  By comparing sample sizes obtained using the Wald formula with those obtained using 

a ‘gold standard’ likelihood ratio test simulation, they showed that the Wald formula 

overestimates sample sizes, both in superiority trials and in non-inferiority trials provided the 

inferiority margin is reasonably small. The authors also note that this effect increases as 𝜃𝑅 

increases. Note that the authors did not conduct a similar investigation under the difference in 

proportions parameterisation where sample size recommendations based on the Wald formula 

are somewhat smaller. Therefore, a brief simulation study was carried out in the context of a 

two-stage MAMS(R) design to explore the effect of sample size on stage-wise alpha and power 

and to determine how the sample sizes obtained under the two parameterisations compare with 

regard to meeting the target stage-wise and overall alpha and power requirements.  

 

 

Figure 3-5 Output of feasible and admissible designs for a two-stage MAMS(R) trial with common 

binary outcome, with five experimental treatment arms. Upper table obtained under difference in 

proportions. Lower table obtained under the LOR 
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Figure 3-6 Output from Stata nstagebin programs comparing sample sizes for a two-stage 

MAMS(R) trial with common binary outcome with five experimental treatment arms under 

‘difference in proportions’ (upper table), and LOR (lower table).  

 

3.4 Exploring sample size in MAMS(R) designs   

The simulation study was based on the two-stage MAMS(R) trial introduced in the previous 

section, in which five experimental arms are compared to a single control arm. The user 

specified details passed to the original and modified nstagebinopt program were as used to 

produce the output shown in Figure 3-5, described in Section 3.3. The first feasible and 

admissible design listed, which is admissible over the q-range (0.0 – 0.8) under both 

parameterisations, was selected.  The suggested stage-wise sample sizes for this design were 

then obtained from the nstagebin programs, as (67,111) for difference in proportions and 

(71,118) for LOR respectively. Under each parameterisation, 250 000 trials were first simulated 

under both 𝐻0 and 𝐻𝑅 at the suggested sample size, and the stage-wise alpha and power were 

estimated by identifying the proportion of trials in which 𝐻0 was rejected incorrectly or 𝐻𝑅   

rejected correctly. This process was then repeated across a range of sample sizes in the 
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neighbourhood of the suggested value.  Graphs showing how the stage-wise power changes 

with sample size, under each parameterisation, are presented in Figure 3-7, while in Figure 38, 

the change in stage-wise alpha is shown. In both figures, horizontal lines indicate the target 

power or alpha values specified in the design. Black circles represent estimates calculated under 

the difference in proportions parameterisation and the recommended sample size is shown as a 

black dotted line. Blue circles show estimates under the LOR and the blue dotted line shows the 

suggested sample size under this parameterisation.   

  

Firstly, in Figures 3-7 and 3-8 it can be seen that stage-wise alpha and power are not 

monotonically increasing functions of sample size. The non-monotonicity is illustrated 

particularly clearly in Figure 3-8 in which stage-wise alpha is shown as a function of sample 

size.  Functions show a zigzag effect where these quantities initially rise as sample size increases 

and then fall back before rising again. This is due to the discrete nature of the binomial data as 

described, for example, by Julious and Campbell (2012).    

 

In Figure 3-7 it can be seen that under the ‘difference in proportions’ parameterisation, power 

at the recommended sample size is slightly below the target at both stages. The overall pairwise 

power for this design is 0.89 which is slightly below the target of 0.9.  Under the LOR, power 

at the suggested sample size is above the target value at both stages and the overall pairwise 

power is above the target at 0.91. Figure 3-8 shows that stage-wise alpha is close to or below 

the target value at both stages under difference in proportions. The overall FWER is 0.023, 

below the target of 0.025. In contrast, the stage-wise alpha is above the target at both stages 

under the LOR resulting in an overall FWER of 0.029 which is clearly well above the target of  

0.025.     

  

Overall, the findings here are consistent with the conclusions of Siqueria, Todd and Whitehead 

(2015) that Wald-based sample sizes suggested under the LOR may be rather higher than 

necessary, potentially leading to overpowering of a trial.   Also, in the example shown in Figure 

3-8, the target stage-wise alpha was breached at both stages at the recommended sample size 

under the LOR, leading to inflation of the overall PWER.  It is possible that the deviation from 

stage-wise alpha is exaggerated under the LOR where sample sizes are less accurate, although 

note that the zigzag effect shown in Figure 3-7 and Figure 3-8 occurs under both 
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parameterisations and therefore the stage-wise alpha could fall above or below the target value 

at either stage whichever parametrization is used.    

  

3.4.1. A proposal for refining suggested sample sizes for MAMS(R) designs  

In response to the fact that the sample sizes suggested under the LOR appears to be 

overestimated and that there is potential for the PWER and FWER to be breached, a new routine 

was developed which can be incorporated into the modified nstagebinopt and nstagebin 

programs which are based on the LOR. The aim of the routine is to refine the process of 

selecting stage-wise sample sizes to ensure the target stage-wise alpha is achieved as closely as 

possible whilst also facilitating some reduction in sample size to reduce overpowering. In this 

routine, the sample size suggested from the Wald formula is taken as a first proposal and used 

in a simulation step, based on the parameters provided by the user, to obtain an estimate of 

stage-wise alpha. The procedure is then repeated for successively smaller sample sizes in the 

near neighbourhood with the stage-wise alpha being retained for each sample size tested. The 

sample size which most closely achieves the target stage-wise alpha is then retained and used  

in the remaining steps of the programs.  When using this routine to generate designs for the 

purposes of this thesis, the search was carried out for sample sizes within ten units of the size 

proposed by the Wald formula. This was felt to be a reasonable range which can be searched 

over fairly quickly when the new routine is embedded in the search procedure for generating 

feasible and admissible designs. Also, for the designs explored throughout this chapter, the 

differences in sample sizes suggested under the two parameterisations were of this order and it 

seems reasonable to search a range of sample sizes which spans the two quantities suggested 

by the formulae. However, for trials in other contexts, a different search range may be 

appropriate and this should be considered on an individual basis. For the design considered in 

Figures 3-7 and 3-8, incorporation of the new routine resulted in final recommended stage-wise 

sample sizes of (68,113) which are slightly larger than recommended under difference in 

proportions (67,111) but smaller than recommended under the LOR (71,118).   
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Figure 3-7 Estimated power across a range of sample sizes for each stage of a two-stage 
MAMS(R) trial. Black circles represent power estimates obtained under the difference in 
proportions parameterisation and blue circles those obtained under the LOR. Vertical dotted lines 
indicate recommended per-group sample sizes obtained using Wald formula under difference in 
proportions (black) and under the LOR (blue). Target power is represented by horizontal black 
line. 250 000 simulations conducted under  𝑯𝑨 
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Figure 3-8  Estimated stage-wise alpha across range of sample sizes for each stage of a two-
stage MAMS(R) trial. Black circles are power estimates obtained under the difference in 
proportions parameterisation and blue circles those obtained under the LOR. Vertical dotted lines 
indicate recommended sample sizes obtained using Wald formula under difference in 
proportions (black) and under the LOR (blue). Stage-wise alpha is represented by horizontal red 
line. 250 000 simulations conducted under 𝑯𝟎. 
 

 

 



 

69  

  

3.5 Discussion  

Recent advances in generating MAMS(R) designs for trials with binary outcomes have used 

‘difference in proportions’ to parameterise treatment effects.  In this chapter, the LOR was 

considered as an alternative parameterisation which may offer certain advantages.  For trials 

when 𝐼 ≠ 𝐷, it was not possible to express the between stage correlation of treatment effects 

analytically under the LOR and so it could be argued that the change to LOR parameterisation 

does not represent an improvement.  However, the LOR parameterisation has some advantages 

and so to facilitate its use in MAMS(R) methodology, a procedure based on simulation was 

developed to estimate between-stage correlations under the LOR when 𝐼 ≠ 𝐷. This routine was 

incorporated into modified versions of existing Stata programs to allow the generation of 

feasible and admissible MAMS(R) designs based on the LOR. The resulting designs generated 

under the modified programs are very similar to those obtained using the original 

parameterisation except that the recommended stage-wise sample sizes tend to be larger under 

the LOR which could result in a trial being over-powered.  A new search procedure was 

incorporated to ensure suggested stage-wise sample sizes under the LOR match the required 

alpha and power requirements as closely as possible. In the following chapter, the modified 

programs are used to generate designs for a variety of MAMS(R) trials in which treatment 

effects are parametrised as the LOR. These designs are then used as the basis for the next 

research investigation.   
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Chapter 4. Comparing the MAMS(R) framework with the 

combination test in trials with binary outcomes  

4.1 Introduction  

As discussed in Chapter 2, there are a number of different frameworks in which adaptive trials 

may be conducted. These frameworks differ from one another in various ways such as in the 

type of test statistic used and the level of adaptivity which can be achieved.  Studies which 

compare the operating characteristics of the various methods are a useful way of determining 

the relative merits of different approaches for particular scenarios. The findings of these 

comparison studies may then help an investigator choose the most appropriate framework to 

use when planning an adaptive trial.  In Chapter 3, the approach denoted in this thesis by 

MAMS(R) was identified as a methodology for adaptive trials which is currently being used in 

a number of high-profile trials and which offers a number of advantages over other methods. 

However, there are few, if any, studies which formally compare MAMS(R) with other adaptive 

trial methodologies.  Comparison studies to date have generally not incorporated the MAMS(R) 

framework, largely because control of the FWER is considered to be a key requisite for multi-

arm adaptive trials and the original MAMS(R) methodology was developed to control only the 

PWER.  Furthermore, the MAMS(R) framework was developed specifically for trials with 

survival outcomes and until recently its use has been largely restricted to this context, whereas 

other methods accommodate a wider range of outcome types. However, as described in Section 

3.2, MAMS(R) methodology has now been extended so that strong control of the FWER can 

be guaranteed and binary outcomes can be accommodated (Bratton 2015).  Furthermore, as a 

result of the research carried out in this thesis and described in Section 3.3, it is now possible 

to obtain feasible and admissible MAMS(R) designs in which treatment effects for binary 

outcomes are based not on difference in proportions but on the LOR, another desirable 

parameterisation. In view of these advances, there is now scope to formally compare the 

MAMS(R) method with other approaches.  The aim of this chapter is to conduct a simulation-

based comparison study which explores the operating characteristics of MAMS(R) and 

compares them with another well-established method, in the context of multi-arm adaptive trials 

when the outcomes are binary and where treatment effects are parameterised as the LOR. These 
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results are presented in the latter part of a paper by Abery and Todd (2019), published in 

Statistical Methods in Medical Research (see Appendix).  

 

First, in Section 4.2, the main findings of previous comparison studies which did not include 

the MAMS(R) method are briefly summarised.  Then, in Section 4.3, a proposal for a new 

comparison study which does incorporate the MAMS(R) method is outlined. Section 4.4 

describes in detail the methods used for the new comparison study. The results of the study are 

presented in Sections 4.5 and Section 4.6. The chapter concludes with a discussion of the main 

findings of the study and some suggestions for practical application in Section 4.7.  

  

4.2 Literature review of comparison studies  

Many of the studies which compare different approaches in adaptive trial methodology have 

focussed on comparing the operating characteristics of the group sequential method (see Section 

2.4), in which cumulative test statistics are monitored against pre-defined boundaries, with the 

combination test (see Section 2.7), which is based on obtaining stage-wise test statistics and 

then combining p-values at the end of the trial.  More recently, boundary-based methods which 

incorporate the conditional error adjustment (see Section 2.8) have also been included in some 

studies. In a comparison of the group sequential and combination methods in the two-treatment 

arm setting, Jennison and Turnbull (2003) describe how using the combination test allows 

greater flexibility regarding stage-wise sample sizes, but that mid-trial design changes reduce 

efficiency because the final test for the treatment difference is not based on a sufficient statistic. 

Mehta and Tsiatis (2003) show that for trials where such mid-trial design changes are made, it 

is always possible to find a group sequential design which has the same sample size and is more 

powerful.  Kelly et al. (2005) investigated two-stage and five-stage designs in a practical setting 

and found the group sequential approach yielded similar or slightly greater power compared 

with the combination test.  However, they confirm the greater flexibility of the combination test 

by showing that changes to sample sizes made on the basis of interim data analysis result in a 

breach of the Type I error in the group sequential approach, but not in the combination test.  

Comparisons have also been drawn between different approaches in the multi-arm setting where 

interim data analysis is used to inform treatment selection (Stallard and Todd, 2011). Koenig et 

al. (2008) proposed a modified version of the step down Dunnett test described in Section 2.2.1. 

This procedure was compared to the original step down Dunnett test and also to the combination 

test. The authors found that the modified Dunnett test was more powerful than the original 
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Dunnett test in multi-arm trials in which some treatments are dropped partway through the trial. 

In general, the superiority of one method over another depends on the selection rule chosen and 

the effectiveness of the different experimental treatments, although the authors conclude that 

for most scenarios the modified Dunnett test was more powerful than the combination test. A 

study by Bretz et al. (2009) compared the power of seamless trials (see Section 1.2) when 

implemented using the combination test and original step-down Dunnett test, with separately 

conducted Phase II and Phase III trials. They illustrated the substantial power advantage of 

seamless trials and also concluded that the combination test is more powerful than the step-

down Dunnett test if some treatments are dropped partway through the trial but that the step 

down Dunnett is more powerful when all treatments continue, particularly for smaller treatment 

effects.  Friede and Stallard (2008) compared a number of adaptive trial designs including the 

group sequential approach and the combination test.  Again, they highlighted the superiority of 

the modified Dunnett test over the original Dunnett test, but otherwise did not find any method 

to be consistently more powerful than another, citing factors such as the size of the treatment 

effect and the process chosen for selecting treatments as determining which approach performed 

best.  A comparison study, by Magirr, Stallard and Jaki (2014) explored the properties of multi-

arm group sequential versions of the conditional error adjustment and once more showed these 

to be more powerful than the original multi-arm group procedure and, in some scenarios, 

superior to the combination test. Ghosh et al. (2017) conducted a comparison of the combination 

test with the group sequential method for three stage trials with 3,4 and 5 treatment arms with 

early stopping for both efficacy and futility. The authors explored different measures of power 

and found the group sequential method consistently out-performed the combination test.      

  

Kunz et al. (2015) investigated multi-arm trials in which an intermediate outcome is used to 

select the single best performing treatment at an interim analysis. The authors compared the 

characteristics of the combination test in which selection is based entirely on the intermediate 

outcome, with a method based on the group sequential approach proposed by Stallard (2010), 

in which the best performing treatment is identified by combining information on both the 

definitive outcome and an intermediate outcome measure (see Section 2.4).  They conducted a 

comparison study and found that there was no overall advantage for the Stallard method or the 

combination test, but that the preferred method depended on treatment effects and correlations 

between intermediate and definitive outcomes. Following this study, an improved version of  
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Stallard’s method, offering better protection of the Type I error rate was proposed by Stallard 

et al. (2015). The authors show this method to be marginally more powerful than the 

combination test in a three-arm simulation study in which the best treatment is selected, 

although they acknowledge that the combination test offers the additional facility to take 

forward more than one treatment. Carreras, Gutjahr and Brannath (2015) conducted a 

comparison study in the specific context of oncology trials with a survival outcome. The authors 

investigated the use of an intermediate outcome to determine treatment selection and compared 

three adaptive methods; the step-down Dunnett test, a conditional error based method proposed 

by Müller and Schäfer (2001), and the combination test implemented for survival outcomes as 

recommended by Jenkins, Stone and Jennison (2011). The authors found that the three methods 

resulted in similar power across the range of scenarios tested but that the method of Schäfer and 

Müller did not ensure FWER protection when an intermediate outcome was used for treatment 

selection.   

  

4.3 Proposal for a comparison study including MAMS(R)  

4.3.1 Choice of methodologies considered in the comparison study  

In this chapter, the MAMS(R) framework is compared with the well-established combination 

test. A comparison of these two frameworks is useful for several reasons. The two approaches 

differ methodologically, MAMS(R) being based on comparing cumulative test statistics to 

predefined boundaries and the combination test being based on stage-wise test statistics and the 

combination of stage-wise p-values (see Chapter 2). However, there are a number of ways in 

which they are similar from a practical viewpoint and in terms of the range of trials in which 

they can be implemented, making a comparison clearly useful. For example, each of the 

approaches can be used in trials where treatment selection is based on the definitive outcome 

or on an intermediate outcome measure only, without the restriction to carry forward only one 

treatment or for information on the definitive outcome also to be available.  Furthermore, neither 

method requires the number of treatments selected at an interim analysis to be specified in 

advance as some multi-arm group sequential methods do (see Section 2.4). Furthermore, both 

methods are relatively easy for clinicians to understand and implement in the multi-arm context 

and are currently being used in real trials.   
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4.3.2 Choice of trial types considered in the comparison study: 𝑰 ≠ 𝑫 and 𝑰 = 𝑫 
trials  

The need to investigate the use of intermediate outcomes in clinical trials is a key issue which 

has been identified as meriting further research as discussed in Chapter 1. Note that relatively 

few of the comparison studies discussed in Section 4.2 included trials where an intermediate 

outcome is used. The first comparison study proposed here explores multi-arm trials when 𝐼 ≠ 

𝐷, representing scenarios where data regarding the definitive outcome would not be available 

at an early stage in the trial.  The second comparison study examines 𝐼 = 𝐷 trials, where the 

same outcome is used throughout the trial.  

  

4.3.3 Choice of selection rules considered in the comparison study  

As discussed in Section 2.7.2, an integral part of any multi-arm adaptive trial is the selection 

rule used to determine which treatments continue in the trial after an interim analysis. The 

MAMS(R) method selects a given treatment to continue in the trial if the treatment control 

comparison meets the pre-specified threshold. The combination test on the other hand can 

accommodate a variety of selection rules and the user may choose a rule which facilitates the 

aims of the particular trial, for example, if the aim is for a more comparative approach such that 

only the best performing treatments are selected, then an epsilon rule may be implemented.  In 

this study, comparisons are first conducted using a simple threshold rule for both MAMS(R) 

and the combination test. Then, the use of an epsilon rule is considered and a further series of 

simulations are conducted to examine the properties of the two methods under this selection 

rule. For MAMS(R) trials when 𝐼 = 𝐷, an epsilon rule cannot be implemented without causing 

potential inflation of the Type I error rate. Consequently, in Section 4.4.2 a new hybrid rule is 

proposed which can be used in place of the epsilon rule for trials when 𝐼 = 𝐷.   

  

4.3.4 Choice of trials used as the basis for the comparison study  

As discussed in Chapter 1, chronic disease is increasingly prevalent and there is an urgent need 

to facilitate the timely and efficient evaluation of suitable treatments for these conditions. In 

line with these directives, the comparison study in this chapter is conducted in the context of 

the evaluation of treatments for tuberculosis (TB). TB is a chronic disease which remains one 

of the top ten causes of death worldwide (WHO Global Tuberculosis Report, 2019). A recent 

initiative, the WHO End TB strategy, aims to achieve a 90% reduction in TB incidence and a 

95% reduction in TB deaths by 2030. The WHO End TB Strategy report (2014) highlights the 
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fact that these objectives require ‘aggressive pursuit of research and innovation to promote 

development and use of new tools for tuberculosis care and prevention’. The report also states 

that ‘new safer, affordable and more effective medicines allowing treatment regimens that are 

shorter in duration and easier to administer’ are key to improving treatment outcomes. Multi-

arm adaptive trials have obvious application here, enabling the efficient and timely evaluation 

of several competing treatments or regimens in one trial (Jaki and Wason, 2018).  The first part 

of the comparison study, which addresses trials when 𝐼 ≠ 𝐷, is based on a Phase II/III seamless 

non-inferiority trial described by Bratton, Phillips and Parmar (2013) in which several treatment 

regimens for TB are evaluated. The intermediate binary outcome is whether or not conversion 

to negative culture status has occurred after eight weeks of treatments and the definitive binary 

outcome is whether a patient has relapsed or not during an 18-month period.  The second part 

of the comparison study, which addresses trials when 𝐼 = 𝐷, is based on a two-stage version of 

a Phase II superiority trial in TB also described by Bratton, Phillips and Parmar (2013), where 

the outcome related to culture status is used for both stages of the trial. The inclusion of non-

inferiority as well as superiority trials in this work reflects the fact that both types of trial are 

commonly used in today’s healthcare climate.  

  

4.4 Methods   

This section describes the methods used to conduct the comparison study proposed in Section 

4.3, which aims to evaluate the performance of the MAMS(R) framework and the combination 

test in two-stage trials with a binary outcome, under the LOR parameterisation, investigating 

both 𝐼 ≠ 𝐷 and 𝐼 = 𝐷 trials and a variety of selection rules.  Note that in this chapter, both of 

the methods being examined are implemented in their original form. This means that it is 

assumed that the critical values which specify the MAMS(R) design at the outset are adhered 

to throughout the trial, irrespective of the process used to determine which treatments are 

continued in the trial. This is the form of the MAMS(R) method as currently used. In Chapter 

5, a proposal is made to incorporate the conditional error adjustment into MAMS(R) 

methodology to facilitate mid-trial design changes such as the dropping of treatments for safety 

reasons.  

  

Two simulation studies are described in the following sections: Section 4.4.1 describes the first 

simulation study, representing trials when 𝐼 ≠ 𝐷 and Section 4.4.2 describes the second study, 

representing 𝐼 = 𝐷 trials.  In both sections, general features of the study are detailed first and 
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then the two parts of the study, utilizing first a threshold and then an epsilon selection rule, are 

described.  

  

4.4.1 Trials when 𝑰 ≠ 𝑫   

As discussed in Section 4.3.4, the trial which motivates this part of the simulation study is a 

Phase II/III trial described by Bratton, Phillips and Parmar (2013) in which a Phase II superiority 

trial and a Phase III non-inferiority trial are combined to create a seamless trial.  A one-sided 

FWER of 0.025 (to match a conventional two-sided error rate of 0.05) and a pairwise power of 

0.8 are specified for the trial as a whole. Equal allocation of patients to experimental and control 

groups is assumed, such that all treatment groups are of the same size Large imbalances between 

treatment arms can potentially decrease the efficiency of a treatment effect estimate and 

consequently the power. Equal allocation has been shown to be a reasonable approach in the 

context of multi-arm adaptive trials where treatments may be dropped at an interim analysis, 

although note that deviating from a 1:1 ratio may result in a slight increase in efficiency in some 

scenarios, (Wason and Jaki, 2016).  For the 𝐼 outcome, where a success indicates conversion to 

a negative culture status, the control arm success rate is set at 0.75.  Under 𝐻0, the success rate 

for an experimental arm is the same as the control arm success rate such that 𝜃𝐼
0  = 0. The 

reference alternative treatment effect corresponds to a success rate of 0.88 so that 𝜃𝐼
𝑅  = 0.894.  

For the 𝐷 outcome, where a success indicates absence of relapse over an 18-month period, the 

control arm success rate is set at 0.9.  Since this represents a non-inferiority test, under 𝐻0 the 

success rate for an experimental arm is lower, in this case it is set at 0.84 so that 𝜃𝐷
0  = −0.539. 

The reference alternative treatment effect corresponds to a success rate of 0.9 equal to the 

control rate, so that 𝜃𝐷
𝑅  = 0.  The assumed probability of a success on 𝐷 given a success on 𝐼, at 

an individual level, is specified as 0.95 based on a previous trial by Horne et al. (2010).  

 

The revised routines (including the modifications for sample size calculation) based on the LOR 

are used to produce feasible and admissible MAMS(R) designs for two-stage three-arm (𝐾 = 

2) and six-arm (𝐾 = 5) trials where 𝐼 ≠ 𝐷. Exploring trials with different numbers of 

experimental treatment arms is useful firstly because it allows greater representation of real 

trials and secondly because differences between methodologies may vary according to the 

number of treatment arms in the trial. The design which was admissible across the widest range 

of 𝑞 is then selected (see Section 2.2) and the modified nstagebin program used to obtain further 
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details of the design as shown in Section 3.5.3. The chosen MAMS(R) designs are shown in 

Table 4-1.   

  
Table 4-1 Summary of two-stage 𝑰 ≠ 𝑫 designs used in simulation study  

  

Two experimental treatment arms (𝐾 = 2)    

   𝛼𝑗   

(critical value)  

stage-wise 

power  

Cumulative perarm 

sample size  

Stage 1  0.0700  

(1.476)  

0.97  207  

Stage 2  0.0135  

(2.212)  

0.82  743  

Five experimental treatment arms (𝐾 = 5)    

  𝛼𝑗   

(critical value)  

stage-wise 

power  

Cumulative perarm 

sample size  

Stage 1  0.0400  

(1.751)  

0.97  244  

Stage 2  0.0060  

(2.511)  

0.82  895  

  

The upper half of the table shows the design for the three-arm (𝐾 = 2) trial and the lower half 

shows the six-arm (𝐾 = 5) design. The stage-wise alpha values (𝛼𝑗) for each treatment control 

comparison are shown in the second column while the corresponding critical value obtained 

from the standard normal distribution is given in brackets. Note that the second stage alpha 

value is much smaller for the six-arm (𝐾 = 5) than for the three-arm (𝐾 = 2) design. This 

reflects the larger multiplicity adjustment which has been made to ensure that the FWER is 

controlled.   

  

These designs are used as the basis for the comparison study, in which the simulation of 

individual patient data is used to represent real trials. To illustrate the procedure, first consider 

a single trial based on the six arm (𝐾 = 5) design listed in Table 4-1 and assume that in this 

case the data for all experimental treatments, here denoted 𝑇1, … 𝑇5, are generated under the 

reference alternative hypotheses for both outcomes, such that 𝜃𝐼
𝑅  = 0.894 and 𝜃𝐷

𝑅  = 0.  Using 
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the R package bindata (v 0.9-19: Leisch, Weingessel and Homik, 2015), correlated 𝐼 and 𝐷 

binary outcomes based on these treatment effects and the specified correlation are generated for 

244 patients in each of the experimental treatment groups, representing the first stage of the 

trial. Similarly, data on both outcomes are generated for the 244 patients in the control group.  

Wald test statistics based on the LOR are then obtained based on the intermediate outcome 

for each treatment control comparison. Suppose the critical value of 1.751 is exceeded for the 

first two treatment groups but not for the other groups. The first two treatment groups and the 

control group then continue in the trial in stage two while the other treatments are dropped.  

Binary 𝐷 outcomes are then generated for 651 patients in each of the first two treatment groups 

and in the control group, representing stage two of the trial. Under the MAMS framework, final 

cumulative test statistics on the 𝐷 outcome are calculated at the end of the trial for the first two 

treatment groups by combining data from patients in both stages of the trial. These are then 

compared to the second stage critical value of 2.212 and a final decision regarding efficacy is 

made.   

  

The same simulated patient data is then processed using the combination test. A threshold 

selection rule is chosen and the threshold specified as 1.751 which will ensure the selection 

process, which is based on the intermediate outcome, is the same as for MAMS(R).  Assume 

again that the first two treatment groups and the control group continue in the trial in stage two 

while the other treatments are dropped. In the combination test, data from stage one and stage 

two regarding the 𝐷 outcome for patients in the selected groups are processed separately. 

Stagewise test statistics are calculated for the treatment groups present at that stage and these 

are used to determine stage-wise p values of all intersection hypotheses within the closed testing 

procedure (CTP) as described in Section 2.2.1 and Section 2.7.2.  P-values are then combined 

using the inverse normal combination function (see Section 2.7.1), resulting in a final statement 

of efficacy for each selected treatment at the 0.025 significance level. To implement the 

combination test, a number of routines from the R package ‘asd’ (v 2.2:  Parsons, 2016) were 

used.  

  

The procedure described for a single trial can easily be replicated to simulate a large number of 

trials, under any set of treatment effects which is of interest. Then, the proportion of trials in 

which any non-null treatment is declared beneficial at the end of the trial can be identified to 

give an estimate of overall power for that scenario. In a similar manner, by simulating trials 
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under the global null hypothesis, an estimate of the FWER may also be obtained. The operating 

characteristics of MAMS(R) and the combination test may be compared by considering the 

results obtained from each method.  The simulation study was designed to achieve a wide-

ranging comparison and so the evaluation was conducted across a broad spectrum of possible 

sets of treatment effects corresponding to those which may plausibly be encountered in real 

trials. For each set of treatment effects evaluated, individual patient data representing 100 000 

trials were simulated to produce the estimates of power or FWER.   

  

Threshold rule  

In the first part of the simulation study, a threshold rule is implemented for both the MAMS(R) 

framework and the combination test. Take first the three-arm (𝐾 = 2) design, shown in Table 

4-1, in which experimental treatments 𝑇1 and 𝑇2 are compared to a control treatment. The 

performance of each approach is evaluated across a range of values for the underlying treatment 

effect of 𝑇1 on the definitive outcome, denoted 𝜃1𝐷. The effect of 𝑇1 on the intermediate 

outcome is held constant at 𝜃𝐼
𝑅 .  For each value of 𝜃1𝐷, the percentage of trials where any 

nonnull treatment is declared beneficial at the end of the trial is determined.  Two different 

scenarios are investigated. In the first scenario, only 𝑇1 is effective, the treatment effect relating 

to 𝑇2 is equal to the null value for both intermediate and definitive outcomes.  In the second 

scenario, 𝑇2 is partially effective, with treatment effect equal to 𝜃1𝐷/4 for the definitive outcome 

and held constant at 𝜃𝐼
𝑅  /4 for the intermediate outcome.  The same procedure is then carried 

out for the six-arm (𝐾 = 5) design shown in Table 4-1. Again, performance is evaluated across 

a range of values for the underlying treatment effect of 𝑇1 on the definitive outcome, denoted 

𝜃1𝐷 while the effect of 𝑇1 on the intermediate outcome is held constant at 𝜃𝐼
𝑅.  In this case, in 

the first scenario, only 𝑇1 is effective and the treatment effects relating to 𝑇2, … 𝑇5 are all equal 

to the null value for both intermediate and definitive outcomes.  In the second scenario, 

treatments 𝑇2, … 𝑇5 are partially effective, with treatment effects equal to 𝜃1𝐷/4 for the 

definitive outcome and held constant at 𝜃𝐼
𝑅/4 for the intermediate outcome.    

  

Epsilon rule  

The original MAMS(R) framework uses thresholds to govern the dropping of poorly performing 

treatments at the end of stage one, as well as in the final analysis of treatment efficacy.  For 

trials when 𝐼 ≠ 𝐷 an epsilon rule can be implemented without inflation of the FWER, as the 
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boundaries are not strictly binding (see Section 2.5.1), although it could be argued that ignoring 

the interim threshold removes one of the central features of the original MAMS(R) design and 

is therefore not desirable. In the second part of the simulation study, an epsilon rule is 

implemented for both the MAMS(R) framework and the combination test.  In line with Parsons 

et al. (2012), and in order to emulate a moderately stringent rule, 𝜀 = 1 was chosen, partway 

between selecting one treatment and selecting all treatments. Under this rule, at the end of stage 

one the treatment with the largest test statistic and any further treatments with a test statistic 

within one unit of the best are selected to continue.  Again, for both the three and the six arm 

designs, the performance of the MAMS(R) framework and the combination test were compared 

across a range of values for the underlying treatment effect of 𝑇1 on the definitive outcome and 

for the two scenarios described in the previous section.  

  

4.4.2 Trials when 𝑰 = 𝑫   

The simulation study described in this section is conducted along the same lines as those 

described in Section 4.4.1 for 𝐼 ≠ 𝐷 trials. Therefore, this section gives a somewhat briefer 

account of the methods, focusing on those details which differ from the first study. As outlined 

in Section 4.3.4, the trial motivating the second part of the simulation study is a two-stage Phase 

II superiority trial described by Bratton, Phillips and Parmar (2013). A one-sided FWER of 

0.025, a pair-wise power of 0.9 and a 1:1 allocation ratio are specified.  For both stages of the 

trial, the control arm success rate is set at 0.75 and the treatment effects are set at 𝜃𝐼
0 = 0 and 

𝜃𝐼
𝑅  = 0.894 respectively, as described for the 𝐷 outcome in Section 4.4.1.  Using the approach 

described for 𝐼 ≠ 𝐷, MAMS(R) designs based on the LOR were obtained for two-stage three 

arm (𝐾 = 2) and six-arm (𝐾 = 5) trials where 𝐼 = 𝐷. The MAMS(R) designs which were 

admissible over the widest range of 𝑞 were then selected and these are given in Table 4-2.  

  

Threshold rule  

The performance of the MAMS(R) framework and the combination test were then compared 

for the case when a threshold rule is implemented, using the approach described in Section 

4.4.1. Note that in this simulation study, since for 𝐼 = 𝐷 trials the intermediate and definitive 

outcome are the same, the subscript 𝐷 is omitted for 𝜃, the underlying treatment effect for 𝑇1 

being simply denoted 𝜃1.  Again, individual patient data were simulated for 100 000 trials for 

each value of 𝜃1 under two different scenarios such that in the first, all other experimental 
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treatments other than 𝑇1 were ineffective and in the second, other experimental treatments were 

partially effective, with treatment effects equal to 𝜃1/4.   

 

Table 4-2.  Summary of two-stage 𝑰 = 𝑫 designs used in simulation study  

  

Two experimental treatment arms (𝐾 = 2)    

  𝛼𝑗   

(critical value)  

stage-wise power  Cumulative per-arm 

sample size  

Stage 1  0.2300  

(0.739)  

0.94  92  

Stage 2  0.0160  

(2.144)  

0.94  250  

Five experimental treatment arms (𝐾 = 5)    

  𝛼𝑗    

(critical value)  

stage-wise power  Cumulative per-arm 

sample size  

Stage 1  0.1900  

(0.878)  

0.95  113  

Stage 2  0.0070  

(2.457)  

0.93  286  

  

  
Epsilon rule  

As discussed in Section 4.4.1, for trials when 𝐼 ≠ 𝐷, the MAMS(R) threshold for the 

intermediate outcome is not strictly binding and therefore an epsilon rule may be used in place 

of the threshold without inflating the Type I error rate.  However, when 𝐼 = 𝐷, all thresholds, 

including those which determine which treatments are selected to continue, are binding and 

therefore control of the FWER is not guaranteed if an epsilon rule is used.  For 𝐼 = 𝐷 trials 

where a more comparative selection rule is required, use of a new ‘hybrid’ rule is proposed as 

part of the work in this thesis for use in the MAMS(R) framework, such that the selection 

process occurs in two steps.  Firstly, the interim test statistics associated with each treatment 

group are compared to the threshold and only those meeting this standard are retained.  Then, 

an epsilon selection rule is implemented, so that the best performing of the retained treatments 

is selected along with any other treatment where the test statistic is within epsilon of the largest. 
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Since for 𝐼 = 𝐷 trials, it is not possible to use an epsilon rule in the MAMS(R) framework, to 

facilitate this comparison study, an epsilon rule (𝜀 = 1) was implemented for the combination 

test and the new hybrid rule was implemented for the MAMS(R) framework. Once again, for 

both the three and the six arm designs, the MAMS(R) framework and the combination test were 

then compared across a range of values for the underlying treatment effect of 𝑇1 on the definitive 

outcome and for the two scenarios described in the previous section.  

  

4.5 Results for 𝑰 ≠ 𝑫 trials.  

In this section, two sets of results are presented relating to the case where 𝑰 ≠ 𝑫.  The first 

gives a direct comparison of performance between the MAMS(R) framework and the 

combination test when both implement a threshold selection rule, this reflects the usual 

mode of operation for the MAMS(R) framework.  The second set gives a further 

comparison of performance to show the effect of using an epsilon selection rule.    

  

  

4.5.1 Comparison of the MAMS framework and the combination test using a  

threshold selection rule  

Table 4-3 presents estimated probabilities to declare effectiveness on the definitive outcome 

across a range of values for 𝜃1𝐷, firstly for any non-null treatments and secondly for null or 

partially effective treatments only.  Note that the definitive outcome is tested in accordance with 

a non-inferiority trial, and so the values for 𝜃1𝐷, which are listed in the first column, range from 

-0.539 to 0.077, where -0.539 represents the treatment effect under 𝐻0(𝐺) and 0 represents the 

treatment effect under the anticipated alternative, 𝐻𝑅. Results for the three-arm design (𝐾 = 2) 

are presented in the upper section of the table and for the six-arm design (𝐾 = 5) in the lower 

section.  On the left-hand side of the table results are presented for scenarios where treatments 

other than 𝑇1 are ineffective on both the intermediate and the definitive outcome (𝜃𝑖𝐼 = 𝜃𝐼0, 𝜃𝑖𝐷 

= 𝜃𝐷
0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 1) while results for scenarios where treatments other than 𝑇1 are partially 

effective on both the intermediate and definitive outcome (𝜃𝑖𝐼 = 𝜃𝐼𝑅/4 , 𝜃𝑖𝐷 = 𝜃1𝐷/ 4  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

≠ 1)   are given on the right-hand side.  The rows of the table refer to the different values of 

𝜃1𝐷 investigated.  Results in bold show the percentage of trials in which any non-null treatment 

is declared beneficial, for different values of 𝜃1𝐷 (the effect of 𝑇1 on the intermediate outcome 

being held constant at 𝜃𝐼
𝑅).  The results in parentheses give the percentage of trials in which at 
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least one of the null or partially effective treatments is declared beneficial, the FWERs being 

shown (in parentheses) in the final row, where 𝜃1𝐷 = -0.539. 



 

 

Table 4-3 Comparison of power for MAMS(R) framework and the combination test under a threshold selection rule for trials where 𝑰 ≠ 𝑫.  

  

  % trials Treatment 1 declared beneficial  

(% trials where one or more null treatment(s) declared 

beneficial)  

% trials any non-null treatment declared beneficial  

(% trials where one or more partially effective 

treatment(s) declared beneficial)  

𝜽𝟏𝑫  

  

0.077  

𝑲 = 𝟐 (𝜽𝟐𝑫 = 𝜽𝟎𝑫)  𝑲 = 𝟐 (𝜽𝟐𝑫 = 𝜽𝟏𝑫/𝟒)  

Combination  MAMS(R)  Combination  MAMS(R)  

88.84  (0.40)  87.97  (0.25)  88.15  (6.42)  87.93  (4.5)  

0  80.95  (0.40)  79.59  (0.25)  80.12  (5.45)  79.74  (3.73)  

-0.077  69.61  (0.37)  67.50  (0.21)  68.52  (4.59)  67.71  (3.18)  

-0.154  54.66  (0.36)  52.11  (0.22)  53.34  (3.67)  52.25  (2.58)  

-0.231  38.21  (0.39)  35.57  (0.24)  37.54  (2.88)  35.95  (1.99)  

-0.308  23.24  (0.34)  21.01  (0.23)  22.82  (2.18)  21.61  (1.57)  

-0.385  12.07  (0.28)  10.37  (0.23)  11.93  (1.49)  11.1  (1.20)  

-0.462  5.08  (0.22)  4.19  (0.23)  5.37  (1.04)  5.01  (0.97)  

-0.539  1.82  (1.97)  1.43  (1.63)  2.08  ---  1.97  ---  

  

  

0.077  

𝑲 = 𝟓  (𝜽𝟐𝑫 = 𝜽𝟑𝑫 = 𝜽𝟒𝑫 = 𝜽𝟓𝑫 = 𝜽𝟎𝑫)  𝑲 = 𝟓  (𝜽𝟐𝑫 = 𝜽𝟑𝑫 = 𝜽𝟒𝑫 = 𝜽𝟓𝑫 = 𝜽𝟏𝑫/𝟒)  

Combination  MAMS(R)  Combination  MAMS(R)  

90.71  (0.36)  88.87  (0.25)  89.24  (9.06)  88.88  (7.52)  

0  83.13  (0.33)  79.99  (0.22)  80.89  (7.48)  80.19  (6.21)  

-0.077  70.85  (0.35)  66.46  (0.24)  68.04  (5.94)  66.71  (4.94)  

-0.154  54.57  (0.36)  49.22  (0.24)  51.55  (4.79)  49.8  (3.95)  

-0.231  36.91  (0.34)  31.56  (0.23)  33.98  (3.52)  31.93  (3.00)  

-0.308  20.97  (0.33)  16.73  (0.25)  19.33  (2.57)  17.47  (2.31)  

-0.385  9.92  (0.31)  7.26  (0.24)  9.47  (1.77)  8.21  (1.69)  

-0.462  3.88  (0.26)  2.51  (0.24)  3.82  (1.19)  3.36  (1.29)  

-0.539  1.11  (1.25)  0.65  (0.81)  1.44  ---  1.38  ---  

(--- denotes scenarios where no treatments which are partially effective on the final outcome are present)   



 

 

   
Figure 4-1 Comparison of the MAMS(R) framework and combination test under threshold and epsilon selection rules for trials where 𝑰 ≠ 𝑫.   Upper 

lines are estimated power to declare any non-null treatment beneficial and lower lines show the percentage of trials where at least one null or partially 

effective treatment is declared beneficial.     Note that the values for 𝜃1𝐷 range from -0.539  to 0.077, in accordance with a non-inferiority trial, where 

-0.539 represents the treatment effect under 𝑯𝟎(𝑮) and 0 represents the treatment effect under the anticipated alternative, 𝑯𝑹  
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In Table 4-3, the results in bold show that under a threshold selection rule the combination test 

results in marginally greater power than the MAMS(R) framework.  This general finding is 

observed for the three-arm (𝐾 = 2) and the six-arm design (𝐾 = 5) and across all scenarios 

and treatment effects investigated.  The slight power advantage of the combination test over 

the MAMS(R) framework is larger for the six-arm design (𝐾 = 5) than for the three-arm design 

(𝐾 = 2).  However, the advantage is somewhat less for scenarios where partially effective 

treatments are present compared with scenarios where all treatments other than 𝑇1 are 

ineffective.  The results in parentheses on the left-hand side of Table 4-3 show that when 

treatments other than 𝑇1 are ineffective, the percentage of trials in which null treatments are 

wrongly declared effective is very low for both methods, as expected.  As 𝜃1𝐷 increases, this 

percentage increases slightly for the combination test because for any given trial, the presence 

of the more effective treatment makes rejection of any intersection hypothesis which 

encompasses the null hypothesis for this treatment more likely.  This increase does not occur 

for the MAMS(R) framework where the progress of individual treatment arms is not affected 

by the performance of other treatments.  The observed FWER is lower than 2.5% because the 

trials are designed such that the target FWER is 2.5% when all treatments are fully effective 

on the intermediate outcome but ineffective on the definitive outcome (see Section 2.5.1).  As 

𝜃1𝐷 increases, there is a sharp increase in the percentage of trials in which partially effective 

treatments are declared effective, shown by the results in parentheses on the right-hand side of 

Table 4-3.  This is an expected finding when selection is determined by a threshold.  The rate 

tends to be slightly lower for MAMS(R) than for the combination test.   

  

4.5.2. Performance of the MAMS(R) framework and the combination test under  

different selection rules  

In Figure 4-1, power curves are presented showing the performance of the MAMS(R) 

framework and the combination test under both the threshold and the epsilon selection rule.  

The upper sets of four lines are obtained by plotting the percentage of trials where any non-

null treatment is declared effective on the definitive outcome, for different values of 𝜃1𝐷.  Note 

that the definitive outcome is tested in accordance with a non-inferiority trial, and so the values 

for 𝜃1𝐷, range from -0.539 to 0.077, where -0.539 represents the treatment effect under 𝐻0(𝐺) 

and 0 represents the treatment effect under the anticipated alternative, 𝐻𝑅 . The lower sets of 

four lines show the percentage of trials where at least one null or partially-effective treatment 
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is declared beneficial on the definitive outcome.  Panels i) and ii) show results for the three-

arm (𝐾 = 2) design and panels iii) and iv) for the six-arm (𝐾 = 5) design.  In panels i) and iii), 

results are presented for scenarios where treatments other than 𝑇1 are ineffective on both the 

intermediate and the definitive outcome (𝜃𝑖𝐼 = 𝜃𝐼
0, 𝜃𝑖𝐷 = 𝜃𝐷0 for all 𝑖 ≠ 1).  Results for scenarios 

where treatments other than 𝑇1 are partially effective on both the intermediate and definitive 

outcome (𝜃𝑖𝐼 =𝜃𝐼
𝑅 /4, 𝜃𝑖𝐷 = 𝜃1𝐷/4 for all 𝑖 ≠ 1) are shown in panels ii) and iv).  

  

Considering the upper sets of lines in Figure 4-1, the percentage of trials where a non-null 

treatment is declared effective is consistently greater when an epsilon rule is used in place of 

the threshold rule.  This is true for both the MAMS(R) framework and the combination test 

and reflects the operation of the epsilon selection rule at the interim analysis, allowing the most 

effective treatment through to the second stage even when the threshold required by the other 

methods has not been met.  The separation resulting from the change in selection rules is larger 

in the context of the combination test than in the MAMS(R) framework, this is most obvious 

at the higher values of 𝜃1𝐷 investigated and for the scenarios where partially effective 

treatments are present (panels ii) and iv)).  As discussed in Section 4.5.1, under a threshold rule 

the combination test is marginally more powerful than the MAMS(R) framework across all the 

scenarios investigated, although there is less difference between the two methods when 

partially effective treatments are present.  Under an epsilon rule the combination test is again 

more powerful than the MAMS(R) framework, but the advantage tends to be larger, and is not 

reduced when partially effective treatments are present.  For the six-arm design where partially 

effective treatments are present (panel iv)) the combination test with the epsilon rule clearly 

provides the greatest power across all treatment effects.  

  

Considering the lower sets of lines in Figure 4-1, it is clear that, compared with the threshold 

rule, implementing an epsilon selection rule substantially reduces the rate at which partially 

effective treatments are declared effective at the final analysis.  In some settings this may be 

viewed as desirable.  The use of a threshold rule facilitates the objective of declaring any 

nonnull treatment(s) effective whereas moving away from the threshold towards an epsilon 

selection rule results in a more directed result, with greater power to select the best treatment 

and a reduced probability of declaring inferior treatments beneficial.  
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4.6 Results for 𝑰 = 𝑫 trials.  

In this section, results for the case where 𝐼 = 𝐷 are considered.  As before, two sets of results 

are presented, the first set relating to a direct comparison under a threshold selection rule and 

the second set showing the effect of implementing different selection rules. In the second set, 

results are given for the combination test under the threshold and the epsilon rules and for the 

MAMS(R) framework under the threshold and the hybrid rules (see Section 4.4.2).   

  

4.6.1 Comparison of the MAMS(R) framework and the combination test using a  

threshold selection rule  

Table 4-4 presents estimated probabilities to declare efficacy, firstly for any non-null treatment 

and secondly for any null or partially effective treatment(s).  The structure of the table is as 

described for Table 4-3.  Note that on the left-hand side of the table results are presented for 

scenarios where treatments other than 𝑇1 are ineffective (𝜃𝑖 = 𝜃0 = 0 for all 𝑖 ≠ 1) while results 

for scenarios where treatments other than 𝑇1 are partially effective (𝜃𝑖 = 𝜃1/4  for all  𝑖 ≠ 1) 

are given on the right-hand side.  In contrast to the 𝐼 ≠ 𝐷 case, the results in Table 4-4 show 

that under a threshold rule the MAMS(R) framework results in slightly greater power, 

compared with the combination test.  This opposite finding may be due to the fact that when 𝐼 

= 𝐷, there is a binding threshold at stage one and this allows for a more liberal critical value at 

stage two compared with the 𝐼 ≠ 𝐷 case.  This general finding is observed for both the three-

arm (𝐾 = 2) and the six-arm design (𝐾 = 5) and across all scenarios and treatment effects 

investigated.  The power advantage of the MAMS(R) framework over the combination test is 

marginal, but is greater for the scenarios where a large number of partially effective treatments 

are present.  The results in parentheses on the left-hand side of Table 4-4 show the percentage 

of trials in which null treatments are declared effective.  Under the global null hypothesis (𝜃𝑖 

= 𝜃0 = 0 for all  𝑖) the estimated FWER is larger for the MAMS(R) framework than for the 

combination test.  However, at most of the other treatment effects investigated, null treatments 

are declared beneficial at a similar or lower rate for the MAMS(R) framework compared with 

the combination test.  For the reasons described in the context of Table 4-3, as 𝜃1 increases this 

rate rises slightly for the combination test, but not for the MAMS(R) framework.  As 𝜃1 

increases, there is a substantial increase in the percentage of trials in which partially effective 

treatments are declared effective, shown by the results in parentheses on the right-hand side of 

Table 4-4.  For the three-arm design (𝐾 = 2), the rate tends to be lower for MAMS(R) than for



 

 

Table 4-4. Comparison of power for MAMS(R) framework and the combination test under a threshold selection rule for trials where 𝑰 = 𝑫 
 

 
 % trials Treatment 1 declared beneficial 

 
(% trials where one or more null treatment(s) declared 

beneficial) 

% trials any non-null treatment declared beneficial 

 
(% trials where one or more partially effective 

treatment(s) declared beneficial) 

𝜽𝟏 𝑲 = 𝟐 (𝜽𝟐  = 𝟎) 𝑲 = 𝟐 (𝜽𝟐 = 𝜽𝟏/𝟒) 
 Combination MAMS(R) Combination MAMS(R) 

0.894 90.83 (1.94) 91.10 (1.29) 90.58 (14.58) 91.20 (11.43) 

0.782 83.18 (1.93) 83.77 (1.29) 82.98 (11.87) 84.10 (9.16) 

0.67 71.46 (1.94) 72.48 (1.31) 71.27 (9.48) 72.92 (7.31) 

0.558 55.82 (1.86) 57.23 (1.29) 55.7 (7.31) 57.75 (5.70) 

0.447 38.26 (1.80) 39.85 (1.31) 38.63 (5.47) 40.74 (4.39) 

0.335 22.18 (1.65) 23.57 (1.31) 23.08 (3.93) 24.83 (3.36) 

0.224 10.64 (1.48) 11.51 (1.30) 11.68 (2.67) 12.84 (2.47) 

0.112 4.06 (1.32) 4.43 (1.30) 5.11 (1.78) 5.73 (1.81) 

0 1.20 (2.13) 1.304 (2.42) 2.13 --- 2.43 --- 
 𝑲 = 𝟓 (𝜽𝟐 = 𝜽𝟑 = 𝜽𝟒 = 𝜽𝟓 = 𝟎) 𝑲 = 𝟓 (𝜽𝟐 = 𝜽𝟑 = 𝜽𝟒 = 𝜽𝟓 = 𝜽𝟏/𝟒) 
 Combination MAMS(R) Combination MAMS(R) 

0.894 91.36 (2.08) 91.43 (2.09) 90.55 (20.93) 91.66 (21.43) 

0.782 82.99 (2.06) 83.35 (2.06) 81.75 (16.71) 83.38 (17.21) 

0.67 69.44 (2.05) 70.40 (2.06) 68.23 (13.17) 71.21 (13.65) 

0.558 51.54 (2.06) 53.25 (2.07) 50.8 (10.00) 54.48 (10.51) 

0.447 32.56 (1.99) 34.63 (2.10) 32.89 (7.31) 36.52 (7.94) 

0.335 16.73 (1.89) 18.54 (2.08) 18.16 (5.19) 20.97 (5.87) 

0.224 6.81 (1.73) 7.90 (2.06) 8.7 (3.58) 10.50 (4.26) 

0.112 2.08 (1.66) 2.53 (2.07) 3.92 (2.41) 4.95 (3.01) 

0 0.49 (1.94) 0.59 (2.52) 1.93 --- 2.47 --- 

(--- denotes scenarios where no treatments which are partially effective on the final outcome are present) 

 

  



 

 

  
Figure 4-2 Comparison of the MAMS(R) framework and combination test under threshold and epsilon selection rules for trials where 𝐼 = 𝐷.  Upper lines are 

estimated power to declare any non-null treatment beneficial and lower lines show the percentage of trials where at least one null or partially effective 

treatment is declared beneficial. 
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the combination test whereas for the six-arm design (𝐾 = 5) it is slightly greater for MAMS(R) 

across all values of 𝜃1.  

 

4.6.2 Performance of the MAMS(R) framework and the combination test under  

different selection rules  

In Figure 4-2, power curves are presented for four different schemes: the MAMS(R) framework 

and the combination test under the threshold rule, the combination test under the epsilon rule 

and the MAMS(R) framework under the hybrid rule.  The layout of the figure is as described 

for Figure 4-1.  Note that in panels i) and iii) results are presented for scenarios where treatments 

other than 𝑇1 are ineffective (𝜃𝑖 = 𝜃0 = 0 for  𝑖 ≠ 1), while results for scenarios where treatments 

other than 𝑇1 are partially effective (𝜃𝑖 = 𝜃1/4 for  𝑖 ≠ 1) are shown in panels ii) and iv).  

  

Looking at the upper sets of lines, power for the combination test is consistently greater when 

an epsilon rule rather than a threshold rule is implemented.  The differences become larger as 

𝜃1 increases, reflecting the operation of the epsilon selection rule as discussed in Section 4.5.2.   

The separation resulting from the change in selection rule is most obvious for higher values of 

𝜃1, because at lower values of 𝜃1 even if 𝑇1 is selected at an interim it would be unlikely to be 

declared effective on the definitive outcome at the end of stage two.  However, in the MAMS(R) 

framework, when the hybrid selection rule replaces the threshold rule the percentage of trials 

where 𝑇1 is declared effective is slightly reduced because the hybrid rule is more stringent than 

the threshold rule.  As discussed in Section 4.6.1, under the threshold rule the MAMS(R) 

framework is more powerful than the combination test across all the scenarios investigated, 

particularly when a large number of partially effective treatments are present.  Moving away 

from using a threshold rule to implementing the epsilon rule for the combination test or the 

hybrid rule for MAMS(R), this advantage reverses, at least for the majority of scenarios.  For 

the three-arm trial (𝐾 = 2) the combination test under the epsilon rule gives greater power than 

the other schemes, particularly at larger treatment effects.  However, for the six-arm trial when 

partially effective treatments are present, there is no clear advantage.  The MAMS(R) 

framework under the threshold or hybrid rule results in similar power at higher treatment effects 

and better power at lower treatment effects compared with the combination test under the 

epsilon rule (see panel iv)).  
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Looking at the lower sets of lines, implementing the epsilon or hybrid rule substantially reduces 

the rate at which null and partially effective treatments are declared beneficial at the final 

analysis.  It can be clearly seen in Figure 4-2 that as 𝜃1 increases, there is no steep rise in the 

proportion of partially effective treatments which are declared beneficial, such as is observed 

under the threshold rule, (see panels ii) and iv)).  This is because as 𝜃1 increases the numerical 

distance between 𝜃1 and the treatment effect of the partially effective treatments increases and 

this will tend to reduce the number of trials where these arms are selected to progress, even 

though the absolute value of the effect in these arms is increasing.  Across all the scenarios we 

investigated, the MAMS(R) framework under the hybrid selection rule achieved consistently 

lower rates for recommending null or partially effective treatments compared to any other 

scheme.  This result can be seen clearly by noting the relative position of the lines in the lower 

section of each panel in Figure 4-2.  The black dashed line showing the results for the MAMS(R) 

framework under the hybrid rule consistently occupies a lower position than the other lines.  

  

4.7 Discussion  

In this chapter, recent developments in MAMS(R) methodology were adapted and implemented 

in order to obtain efficient boundary-based trial designs for multi-stage adaptive trials where 

the outcomes are binary and where treatment effects are parameterised as the LOR.  Since 

methodology now allows the FWER to be controlled in MAMS(R) trials, it was possible to 

carry out a simulation study to make an in-depth comparison of MAMS(R) trials with the well-

established combination test in multi-arm multi-stage trials incorporating treatment selection, 

both for trials when 𝐼 ≠ 𝐷 and for trials when 𝐼 = 𝐷.  

  

For trials when 𝐼 ≠ 𝐷, the combination test achieves greater power than the MAMS(R) 

framework across all scenarios investigated.  This was the case both under a threshold selection 

rule and an epsilon rule.  The advantage of the combination test over MAMS(R) is most clearly 

seen for the six-arm (𝐾 = 5) design and when an epsilon rule is implemented.  The reason why 

the combination test is more powerful may be that MAMS(R) designs for trials where 𝐼 ≠ 𝐷 

tend to be inherently conservative.  The conservatism occurs because, to ensure the FWER is 

strongly controlled, the critical value for the final stage is determined assuming that treatments 

are fully effective on the 𝐼 outcome, as explained in Section 2.5.1.  For both the MAMS(R) 
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framework and the combination test, power is greater if an epsilon rule rather than a threshold 

rule is used.  

  

In contrast however, for 𝐼 = 𝐷 trials where this conservative approach is not required, the 

MAMS(R) framework achieves slightly greater power than the combination test when a 

threshold selection rule is used.  This finding is observed across all scenarios, irrespective of 

the size of the treatment effect or whether partially effective treatments are present.  Generally, 

the differences are slightly greater for the six-arm (𝐾 = 5) design and when partially effective 

treatments are present.  One possible reason for the combination test having less power is that 

the combining of evidence from the two stages of the trial means that final comparisons of 

treatments may not be based on a sufficient statistic for the treatment difference; this has been 

suggested for the single arm setting by authors such as Jennison and Turnbull (2003) and Kelly 

et al. (2005). In this chapter it was also shown that a hybrid selection rule may be implemented 

in the MAMS(R) framework to facilitate a more comparative selection procedure.  However, 

when comparing the combination test under the epsilon rule with the MAMS(R) framework 

under the hybrid rule, the results suggest that MAMS(R) no longer has a consistent advantage, 

the combination test achieving similar or greater power in some scenarios.  The rate at which 

partially effective treatments are recommended is lower for MAMS(R) under the hybrid rule 

than for any other scheme we investigated including the combination test under the epsilon rule.  

This may be a useful facility in some scenarios.  

  

In this chapter the MAMS(R) framework was used to obtain boundary-based trial designs.  This 

approach has the advantage of being relatively simple to understand and implement and of 

accommodating treatment selection based either on the definitive outcome or purely on an 

intermediate outcome measure.  Based on the findings in this chapter, for multi-arm two-stage 

trials with binary outcomes where 𝐼 ≠ 𝐷, the combination test may be a more suitable choice 

than MAMS(R), particularly for trials with many treatment arms.  For either method, the 

selection rule which best meets the objectives of the trial may be chosen.  Since the stage one 

critical value is not binding, an epsilon rule may be implemented in the MAMS(R) context 

without inflating the FWER.  This rule was shown to increase power compared with the 

threshold rule.  By contrast, for trials where 𝐼 = 𝐷, if the objectives of the trial are best met by 

using a threshold selection rule, the MAMS(R) framework may be a more suitable option than 

the combination test, particularly for trials with a substantial number of experimental arms and 
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where partially effective treatments are likely to be present.  The results also suggest that by 

implementing the hybrid rule, the MAMS(R) framework may also be successfully used for trials 

where the aim is to recommend the best treatments and that this may provide an effective way 

to minimise the probability of inferior but partially effective treatments being declared effective 

at the end of the trial.  However, the more stringent hybrid rule does mean that some of the 

power advantage of MAMS(R) over the combination test seen under the threshold rule is lost.  

Where the main treatment effect is likely to be large and other treatments likely to be ineffective, 

the combination test under the epsilon rule may be a better choice since we found it achieves 

greater power in these scenarios.  However, for a proposed trial with many treatment arms 

where some are likely to be partially effective and it is desirable to minimise the rate at which 

these are recommended, it is suggested that MAMS(R) under the hybrid rule should be 

considered since it provides comparable power to the combination test whilst keeping the rate 

for inferior treatments substantially lower.  In common with previous simulation studies 

discussed in Section 4.2, since no method consistently out-performs the others, the choice of 

which method to adopt for a given trial is best considered on an individual trial basis.  
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Chapter 5. Using the conditional error approach in the 

MAMS(R) framework   

5.1 Introduction  

In Chapter 4, consideration is given to multi-arm multi-stage trials in which a design is 

prespecified at the start of the trial and is adhered to throughout the course of the trial.  

Features of the design such as per-group sample sizes and critical values are set for each stage 

before the trial begins, and treatments are dropped or retained according to an agreed selection 

rule. Following this approach, which may be termed ‘pre-planned adaptivity’, has many 

advantages from a practical and regulatory standpoint. However, as discussed in Section 2.3, 

there may be times when additional flexibility is needed. There may be acknowledged 

uncertainties at the outset regarding elements of the trial such as how many treatments are to be 

continued in the later stages of the trial or how many patients should be included. New 

information regarding a safety concern may emerge, requiring one or more of the experimental 

treatments to be withdrawn unexpectedly from a multi-arm trial. There may even be occasions 

when it is anticipated that a new experimental treatment may become available during the 

course of a trial and the facility to add the arm while the trial is ongoing is required.  It has 

therefore been recognised that there is a need for methods which offer a more flexible kind of 

adaptivity, allowing a trial design to be modified in response to emerging data whilst still 

ensuring strong control of the FWER.   

A key issue in implementing mid-trial design changes is that if the design for the remainder of 

the trial is determined by interim data in some way, a conventional test statistic applied at the 

end of the trial cannot be assumed to be independent of the interim data and the design change, 

and this may impact error rates (Proschan and Hunsberger, 1995).  In order to perform design 

changes and also maintain Type I error rate control, it is necessary to use methods in which data 

from different stages are handled separately, yielding stage-wise p-values which conform to the 

principle of conditional invariance (See Section 2.6 for a fuller discussion of this principle). 

The two methods which are able to facilitate mid-trial design changes in this way are the 

combination test and the conditional error approach. Both methods are based on the 
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principle of conditional invariance and both ensure the Type I error is controlled despite design 

changes implemented at an interim analysis.   

 

The methodology for the combination test is described fully in Section 2.7. It is important to 

note that the combination test in its original form readily accommodates both pre-planned 

adaptivity and flexible adaptivity where mid-trial design changes are made. In the 

simulation study described in Chapter 4 of this thesis, the combination test was evaluated and 

compared with the MAMS(R) method in multi-arm multi-stage trials in which the original 

design is adhered to throughout the trial. However, the combination test may equally be 

implemented in trials in which design changes take place, such as when a promising treatment 

is dropped due to safety concerns or the sample size is re-calculated at the interim analysis.  

In their original form, boundary-based methods such as the group sequential and MAMS(R) 

accommodate pre-planned adaptivity effectively. However, when mid-trial design changes take 

place, use of these methods may result in loss of power or Type I error inflation. The conditional 

error approach offers a solution to this issue, providing a way to adapt boundary-based designs 

following mid-trial design changes in a way which protects Type I error and maintains good 

power.  Although some group sequential designs which incorporate conditional error 

adjustments have been developed (see Magirr, Stallard and Jaki, 2014), trials which are 

conducted in the MAMS(R) framework have not, so far, incorporated this methodology. The 

application of the conditional error approach to MAMS(R) trials is the main focus of the 

research in this chapter.  

In Section 5.2, a description of conditional error methodology is given. Section 5.2.1 describes 

use of the conditional error approach in two arm trials, drawing on the background material 

introduced in Section 2.8.  Section 5.2.2 then describes how the conditional error approach may 

be applied in multi-arm multi-stage trials with treatment selection, with two such procedures 

being outlined in detail. In Section 5.3, a proposal is made for incorporating the conditional 

error procedure into the MAMS(R) framework. In Section 5.4, the methods used to implement 

this proposal are described. A simulation study, designed to evaluate the properties of the 

procedure when promising treatments are dropped at an interim analysis because of a safety 

concern, is then outlined. The results of the simulation study are presented in Section 5.5.  In 
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Section 5.6, the main findings of the study are discussed and some suggestions for practical 

application are made.  

 

5.2 Conditional error methodology  

In multi-stage clinical trials, conditional error methodology provides a facility for making 

midtrial design changes in response to emerging information, by considering the null 

distribution of the data arising from the remaining stages of the trial, conditional on the interim 

efficacy data. At an interim analysis, a calculation is performed to obtain a quantity termed the 

conditional error of the test, which is the probability that the null hypothesis will be rejected, 

conditional on the interim data and assuming that the original design is adhered to. The design 

of the remaining stages of a trial may then be modified as desired, provided that the probability 

of rejecting the null hypothesis, conditional on the interim data, does not exceed the conditional 

error as calculated at the interim analysis. Conditional error methodology may be implemented 

in both two arm and multi-arm trials as outlined below.   

5.2.1 Conditional error approach in two-arm trials  

As described in Section 2.8, in a two-stage, two-arm trial, the conditional error function 𝐴(𝑧1) 

is based on the value of the first stage test statistic, 𝑧1, and is a function chosen such that its 

expected value under 𝐻0 is no greater than 𝛼, the significance level of the trial. The Type I error 

of the test procedure will be controlled at level 𝛼 if the second stage sample size and final critical 

value are chosen such that under 𝐻0, the probability of a final rejection of the null hypothesis, 

conditional on 𝑧1, is no greater than 𝐴(𝑧1).  Müller and Schäfer (2001 and 2004) proposed that 

this principle could be applied to a two-arm group sequential trial with any number of stages, 

where the conditional error function, 𝐴(𝑧1), gives the probability, under 𝐻0, that the null 

hypothesis would be rejected at any future stage of the original design, given the interim test 

statistic. They proposed that following an interim analysis, the design of the trial may be altered 

in response to information internal or external to the trial without compromising the Type I 

error rate specified for the trial. This is possible provided the probability of rejecting the null 

hypothesis under the new design, conditional on the interim data, is no greater than the 

conditional error calculated at the interim analysis, 𝑞 ≤ 𝐴(𝑧1). Design changes may include 

altered sample sizes for subsequent stages or differences in the number or timing of interim 

analyses.  In fact, these adaptations can be performed at any time during the trial and, if desired, 
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iterative adaptive changes to the design can be made by applying the method again as the trial 

progresses.  Note that at the outset, the investigator must specify an initial design for all stages 

of the trial, and also the form of the conditional error function which would be implemented in 

the event of a change to the initial design being made.  Since the design may be modified after 

the first interim analysis without inflation of the Type I error, this procedure offers a similar 

level of flexibility to a combination test, in which a design for stage one and a combination 

function are specified at the outset (see Section 2.8.1). 

 

5.2.2 Conditional error approach in multi-arm trials  

Conditional error methodology has also been applied to adaptive multi-arm trials in which 

multiple experimental treatments are compared to a common control group, the specific area of 

interest of this thesis. Koenig et al. (2008) proposed a trial design based on the step-down 

Dunnett test and the CTP (see Section 2.2.1). The classical Dunnett test becomes conservative 

if some experimental treatments are dropped before the final analysis of treatment efficacy 

because the test statistics for missing treatments are set to −∞ before the conventional Dunnett 

test is carried out for each intersection hypothesis in the closed system. To address this issue 

whilst still ensuring control of the FWER, Koenig et al. proposed implementing a procedure 

known as the ‘adaptive Dunnett test’ which is based on conditional error calculations as follows: 

Suppose that some experimental treatments are dropped partway through a one stage multi-arm 

trial. At the end of the trial, all intersection hypotheses unaffected by treatment selection are 

tested according to the originally planned Dunnett test. However, for each intersection 

hypothesis containing a dropped treatment, a new test is used. The conditional error rate of each 

intersection hypothesis is first obtained; this is defined as the probability of rejection given 

the first stage data and the critical values specified in the original test, which are the 

Dunnett critical values for the full set of treatments contained in the intersection null hypothesis.  

The conditional error for the test of intersection null hypothesis 𝐻𝒮, is given by Koenig et al. as  

1 − ∫ [∏Ф(𝑑𝑠√
2𝑛

𝑛 − 𝑛1
−√

2𝑛1
𝑛 − 𝑛1

𝑧𝑖
(1) + 𝑥)

𝑖⋲𝒮

]

∞

−∞

𝜙(𝑥)𝑑𝑥, 

where 𝜙 and Ф are the density and cumulative distribution function of the standard normal 

distribution, 𝓢 denotes the experimental treatments contained in the intersection hypothesis 𝐻𝒮,  

𝑧𝑖(1) is the test statistic for treatment 𝑖 based on first stage data for 𝑛1 patients, 𝑠 the number of 

treatments in the intersection hypothesis and 𝑑𝑠 the corresponding Dunnett critical value.  A p 
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value for the final test of each intersection null hypothesis is calculated using a Dunnett test but 

with reference to the subset of selected treatments only. This quantity is given by Koenig et 

al. as  

1 − ∫ [ ∏ Ф(𝑧𝒮∩𝑇2
𝑚𝑎𝑥√

2𝑛

𝑛 − 𝑛1
−√

2𝑛1
𝑛 − 𝑛1

𝑧𝑖
(1) + 𝑥)

𝑖⋲𝒮∩𝒮2

]

∞

−∞

𝜙(𝑥)𝑑𝑥, 

where 𝒮 ∩ 𝒮2 denotes the subset of treatments which remain in the intersection hypothesis after 

the interim analysis (when some treatments may be dropped) and 𝑧𝒮∩𝑇2
𝑚𝑎𝑥  denotes the observed 

value of the largest test statistic of all remaining treatments. The authors obtain both of these 

quantities using numerical integration. If the p value obtained at the final analysis is smaller 

than the conditional error rate calculated at the interim analysis, then the intersection null 

hypothesis is rejected. The usual principles of closed testing are then applied, such that an 

experimental treatment may be declared beneficial only if the primary null hypothesis and all 

intersection hypotheses which contain 𝐻0(𝑖) are rejected at local significance level 𝛼 (see Section 

2.2.1). When one or more experimental treatments are dropped, this adaptive procedure has 

been shown to be consistently more powerful than the classical Dunnett test (Koenig et al. 2008; 

Friede and Stallard, 2008).  

A related approach was used by Magirr, Stallard and Jaki (2014), who developed a multi-arm 

group sequential design, which facilitates mid-trial design changes for trials comparing many 

experimental treatments with a common control. The objective of the procedure is to increase 

the power of remaining treatment control comparisons test in the event that some treatments are 

dropped. The method again ensures control of the FWER and is based on conditional error 

calculations. At the outset, a suitable multi-arm group sequential design is chosen based on the 

objectives of the study and available knowledge; the methods for obtaining these designs are 

described in Section 2.4.2 (and in Magirr, Jaki and Whitehead, 2012). If the trial continues as 

planned and the selection of treatments occurs according to the planned boundaries, the original 

sufficient test statistics are monitored and good power is achieved. However, if information 

internal or external to the trial indicates that mid-trial design adaptations are required, Magirr, 

Stallard and Jaki (2014) showed that the conditional error principle may be applied, resulting 

in a procedure which both achieves good power and ensures the FWER is maintained at a 

specified level despite the data dependent changes. Their approach may be summarised as 

follows:  
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Firstly, the whole group sequential design must be re-written as a closed testing system of null 

hypotheses. (see Section 2.2.1 for a full description of the CTP). Then, considering each 

intersection hypothesis in turn, suitable group sequential boundaries can be obtained, subject to 

certain constraints. The general method for calculating the boundaries whilst controlling the 

FWER is based on the known joint null distribution of the test statistics and uses numerical 

integration. The procedure is described in detail in Magirr, Jaki and Whitehead (2012) for the 

global null hypothesis only, but exactly the same principle may be applied to find suitable 

boundaries relating to all of the other intersection hypotheses in the closed system (Magirr, 

Stallard and Jaki, 2014).  At the interim analysis, based on the efficacy data regarding all 

experimental treatments, which is denoted here as 𝑋, and any additional information internal or 

external to the trial, it may be decided that some treatments should be dropped even though they 

achieved adequate efficacy. In this instance, if the boundaries specified in the original design 

were adhered to, the overall procedure would be conservative. Instead, the conditional error, 

𝐴(𝑋), is calculated for each intersection hypothesis separately. 𝐴(𝑋) is defined as the 

conditional probability of rejecting the intersection null hypothesis given the interim data and 

the original trial design, assuming the null hypothesis is true. Again, taking each intersection 

null hypothesis in turn, the boundaries for the remainder of the trial can then be updated using 

numerical methods.  Where dropping of promising treatments has occurred, the updated 

boundaries become more lenient due to the reduced requirement for multiplicity adjustments. 

If, for each intersection hypothesis in the CTP, the conditional rejection probability for the 

updated design is no greater than 𝐴(𝑋), the FWER for the whole trial will be controlled at level  

𝛼.   

The method is illustrated by the following example, adapted from Magirr, Stallard and Jaki 

(2014). Suppose that three experimental treatments, 𝑇1, 𝑇2 and 𝑇3 are to be compared to a 

control in a three-stage group sequential trial with overall one-sided significance level 𝛼.  An 

alpha spending function is proposed such that 𝛼𝑗∗ = 0.025𝑗/3 (𝑗 = 1, . .3), and a sample size of 

34 patients per group per stage is specified. The procedure is first written as a closed testing 

system of seven null hypotheses as shown in Figure 5-1, comprising the global null hypothesis, 

three further intersection hypotheses and three elementary null hypotheses.   

At the outset of the trial, each of the seven intersection hypotheses, represented by the boxes 

shown in Figure 5-1, is regarded as representing a separate group sequential trial at significance 
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level 𝛼. For each intersection hypothesis, critical values may be obtained for each stage using 

usual group sequential methodology (Magirr, Jaki and Whitehead, 2012); note that in this 

example stopping for efficacy is accommodated, but there is no binding futility boundary. The 

upper boundary critical values for the three stages are shown in bold in Figure 5-2.   

 

 

Figure 5-1 Closed testing procedure for three elementary hypotheses 

 

 

Suppose that at the first interim analysis, the test statistics relating to the three treatment control 

comparisons are 𝑆1,1 = 2.0, 𝑆2,1 = 1.1= and 𝑆3,1 = 1.0 and a Dunnett test is used to test each 

intersection hypothesis. None of the test statistics meet the first stage critical value for rejection 

of the global null hypothesis and so no early stopping for efficacy is called for. Now suppose 

that at this first analysis, the investigator decides to drop 𝑇1 from the trial due to safety concerns. 

The critical values for the remaining analyses may then be updated to account for the reduced 

multiplicity as follows: First, for each intersection hypothesis, the probability of rejection at 

each remaining stage, conditional on the first stage test statistics and assuming the efficacy 

boundaries of the original design are adhered to, is obtained using numerical integration. This 

quantity is the conditional rejection probability. Then, new critical values are found for each 

intersection hypothesis, such that the conditional probability of rejection in stage two or stage 
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three, assuming only 𝑇2 and 𝑇3 remain in the trial, is no greater than this quantity. Figure 5-3 

shows conditional probabilities and updated critical values for each intersection hypothesis in 

the system.   

 

 

Figure 5-2 Closed testing system showing initial three stage group sequential design. For each 

intersection hypothesis in the system, critical values which determine early stopping for efficacy 

are specified for each stage.  

 

 

It can be seen in Figure 5-3 that the stage two and stage three critical values have been relaxed 

for all intersection hypotheses which contain 𝐻0(1).  Note that the elementary null hypotheses  

𝐻0(2) and 𝐻0(3) and the intersection 𝐻0(2) ∩ 𝐻0(3) remain unchanged and are tested using the 

critical values specified in the original design. Also, since 𝑇1 has been dropped from the trial, 

𝐻0(1) is not tested at stages two and three. Full details regarding the numerical computation of 

the conditional error for an intersection hypothesis and the updated boundaries, following 

dropping of promising treatments, are given in the Appendix of Magirr, Stallard and Jaki 

(2014).  

 

 

 

𝐻 0 ( 1 )   

𝟐 . 𝟑𝟗 ,       𝟐 . 𝟐𝟗 ,       𝟐 . 𝟐𝟎   

𝐻 0 ( 2 )   

𝟐 . 𝟑𝟗 ,       𝟐 . 𝟐𝟗 ,       𝟐 . 𝟐𝟎   

𝐻 0 ( 3 )   

𝟐 . 𝟑𝟗 ,       𝟐 . 𝟐𝟗 ,       𝟐 . 𝟐𝟎   

  𝐇 𝟎 ( 𝟏 ) ∩ 𝐇 𝟎 ( 𝟐 ) ∩ 𝐇 𝟎 ( 𝟑 ) 

  𝟐 . 𝟕𝟓 ,       𝟐 . 𝟔𝟏 ,       𝟐 . 𝟒𝟖   

𝐻 0 ( 1 ) ∩ 𝐻 0 ( 3 )   

𝟐 . 𝟔𝟐 ,       𝟐 . 𝟓𝟎 ,       𝟐 . 𝟑𝟖   

𝐻 0 ( 2 ) ∩ 𝐻 0 ( 3 )   

𝟐 . 𝟔𝟐 ,       𝟐 . 𝟓𝟎 ,       𝟐 . 𝟑𝟖   

𝐻 0 ( 1 ) ∩ 𝐻 0 ( 2 )   

𝟐 . 𝟔 𝟐 ,       𝟐 . 𝟓𝟎 ,       𝟐 . 𝟑𝟖   
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Figure 5-3 Closed testing system for three stage design. For each intersection, the first row gives 
critical values for the initial design, the second row shows the conditional probabilities of 
rejection at stage two and stage three, as calculated at the first interim analysis (red italic font) 
and the third row shows the updated critical values for stages two and three following the 
dropping of one experimental treatment. 

 

 

5.3 Proposal for incorporating the conditional error approach into 

the MAMS(R) framework  

Chapter 3 describes how feasible and admissible MAMS(R) designs may be obtained for 

adaptive multi-arm trials with binary outcomes. Stage-wise critical values and sample sizes are 

specified at the outset and cumulative test statistics are then monitored against the critical values 

as the trial progresses, with treatments being dropped at an interim analysis if they fail to meet 

the required threshold. Test statistics for any treatments which continue to the end of the trial 

  𝐻0(1) ∩ 𝐻0(2) ∩ 𝐻0(3)

  𝟐. 𝟕𝟓,   𝟐. 𝟔𝟔,   𝟐. 𝟓𝟗 

            0.043, 0.075 

            2.15,    2.18 

 

𝐻0(1) ∩ 𝐻0(3) 

𝟐. 𝟔𝟐,   𝟐. 𝟓𝟑,   𝟐. 𝟒𝟓 

             0.060, 0.098 

             1.81,    1.82 

𝐻0(2) ∩ 𝐻0(3) 

𝟐. 𝟔𝟐,   𝟐. 𝟓𝟑,   𝟐. 𝟒𝟓 

            0.011, 0.029 

              2.53,   2.45 

𝐻0(1) ∩ 𝐻0(2) 

𝟐. 𝟔𝟐,   𝟐. 𝟓𝟑,   𝟐. 𝟒𝟓 

            0.061, 0.100 

             1.87,   1.87 

𝐻0(1) 

𝟐. 𝟑𝟗,   𝟐. 𝟐𝟗,   𝟐. 𝟐𝟎 

            0.108, 0.158 

            …     … 

𝐻0(2) 

𝟐. 𝟑𝟗,   𝟐. 𝟐𝟗,   𝟐. 𝟐𝟎 

           0.016, 0.037 

             2.29,    2.20 

𝐻0(3) 

𝟐. 𝟑𝟗,   𝟐. 𝟐𝟗,   𝟐. 𝟐𝟎 

           0.013, 0.031 

            2.29,   2.20 
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are compared to the final critical value specified by the MAMS(R) design in order to make a 

final statement about which treatments are beneficial. Recall again that for trials where 𝐼 = 𝐷, 

the critical values at each interim analysis are binding whereas for trials where 𝐼 ≠ 𝐷 they are 

non-binding.  

  

However, as already discussed, there may be occasions when it is necessary to drop a treatment 

from a trial at an interim analysis, despite the fact that the treatment demonstrates good efficacy; 

for example, there may be concerns about the safety profile of a drug following the reporting 

of a large number of adverse events in a particular treatment group. If the original critical values 

specified by the MAMS(R) design are adhered to in this case, the overall power of the procedure 

will be reduced; a similar effect to that discussed in Section 5.2.2 for the classical Dunnett test 

or multi-arm group sequential method of Magirr, Jaki and Whitehead (2012). In this chapter the 

principles outlined in Section 5.2 are applied to a MAMS(R) trial: Conditional error calculations 

performed at an interim analysis are used to buy back some of the power which is lost when a 

promising treatment is dropped, by relaxing the critical values of some intersection null 

hypotheses and therefore increasing the power for the remaining treatment control comparisons. 

By expressing a MAMS(R) design as a closed testing system of null hypotheses and obtaining 

the conditional error of each intersection hypothesis in the system, the boundaries relating to 

the remaining treatments can be updated to account for the reduced requirement for multiplicity 

adjustment in the second stage. A possible further extension of this concept would be to use 

some of the recovered power to add a further treatment arm to a study; this subject is explored 

in Chapter 6.   

  

In this chapter, the application of the conditional error principle to MAMS(R) methodology 

differs from the approach described by Magirr, Stallard and Jaki (2014) in three ways. Firstly, 

calculation of the conditional error of each intersection hypothesis will be carried out using 

simulation, thus avoiding the need for complex numerical integration which may be challenging 

for investigators to understand. This is consistent with the simulation-based approach which is 

used to generate MAMS(R) feasible and admissible designs. Note that obtaining the updated 

boundaries for the new design will also use simulation. Secondly, the focus here will be on 

adopting and evaluating the procedure in trials with a large number of experimental treatment 

arms, in which unpromising treatments are dropped at an interim analysis. This is in contrast to 

group sequential trials where trials with a smaller number of experimental treatment arms are 
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more common and where stopping for efficacy is the main focus. Thirdly, use of the conditional 

error approach will be considered here for both 𝐼 ≠ 𝐷 and 𝐼 = 𝐷 trials.   

The two-stage six-arm MAMS(R) designs introduced in Chapter 4 are used to demonstrate the 

procedure; these designs are based on the TB trials described in Section 4.3.4. A simulation 

study is then conducted in order to show the gain in power which the procedure achieves when 

promising treatments are dropped for safety concerns, compared with adhering to the initial 

design. The procedure is evaluated for both 𝐼 ≠ 𝐷 and 𝐼 = 𝐷 trials, both under a threshold and 

an epsilon selection rule.   

5.4 Methods  

This section describes the specific details of the procedure proposed in Section 5.3, in which 

the conditional error approach is used in MAMS(R) trials in order to increase the power for 

remaining treatment control comparisons when promising treatments are dropped at an interim 

analysis for safety concerns. In Section 5.4.1, the principles of the method are illustrated by 

considering a single trial, first taking the case when 𝐼 ≠ 𝐷 where the threshold at the interim 

analysis is non-binding, followed by the case when 𝐼 = 𝐷 where the threshold is binding. Then, 

in Section 5.4.2 a simulation study is conducted in order to explore the gain in overall power 

which this procedure may achieve.   

5.4.1 Conditional error implemented for a single MAMS(R) trial   

𝑰 ≠ 𝑫  

To illustrate the procedure for an 𝐼 ≠ 𝐷 MAMS(R) trial, consider the trial introduced in Section 

4.4.1. In this two-stage trial, five experimental treatment regimens, 𝑇1, … 𝑇5 , are compared to 

the current standard of care in a population of patients with TB. The endpoints are binary and 

the treatment effect is assessed by means of a log odds ratio.  In this trial, the primary endpoint 

is whether or not a patient has relapsed during an 18-month period of treatment, but at the 

interim analysis, decisions about which treatments continue into the next stage of the trial are 

made on the basis of a more rapidly observed endpoint, the presence or absence of a positive 

culture status after eight weeks of treatment. The parameters of the trial are as specified in 

Section 4.4.1 and the feasible and admissible MAMS(R) design shown in the lower part of 

Table 4-1 is used as the initial design.  



 

106  

  

Note that the original MAMS(R) design does not implement a CTP. Rather, the test statistics 

relating to each treatment control comparison at each stage are analysed independently and are 

simply compared to a common critical value.  In the trial design used here, a treatment is 

selected to continue provided the stage one test statistic exceeds the stage one critical value of 

1.751. Similarly, a remaining treatment is declared effective at the end of the trial if the stage 

two test statistic exceeds the stage two critical value of 2.511. Suppose that at the interim 

analysis, the test statistics obtained on the intermediate outcome relating to the five treatments 

are 𝑆1,1 = 1.77, 𝑆2,1 = 1.89, 𝑆3,1 = 0.96, 𝑆4,1 = 2.11, 𝑆5,1 = 2.03. According to the initial design 

of the trial, regimen 𝑇3 is dropped from the trial since the test statistic falls below the stage one 

critical value of 1.751. In addition, suppose that a safety concern emerges regarding one of the 

drugs included in regimens 𝑇4 and 𝑇5 and so a decision is made to discontinue recruitment to 

these treatment arms despite the fact that these regimens demonstrated good efficacy at the 

interim analysis. Therefore, only treatment regimens 𝑇1 and 𝑇2 will continue in the second stage 

of the trial. If the original design is adhered to in this instance, the overall power of the test will 

be lower than anticipated because the design incorporated multiplicity adjustments on the basis 

that all promising treatments would continue in the second stage of the trial.   

An alternative approach is to implement the conditional error method to recover some of the 

power which has been lost, reducing multiplicity adjustments for the second stage of the test 

such that the adjustment occurs on the basis of the number of treatments which actually remain, 

rather than for the number of treatments present at the start of the trial.  The objective is then to 

increase the power of the remaining treatment control comparisons to counteract the potential 

fall in overall power resulting from dropped but promising treatments.  First, the trial is 

considered as a CTP in which each intersection hypothesis is tested using the Dunnett test. This 

is illustrated in Figure 5-4. In this framework, the stage one critical value and the stage two 

critical value for the global null hypothesis are as specified in the initial design but the stage 

two critical values for the remaining intersections may be relaxed following the principles of 

the step down Dunnett test (see Section 2.5). Note that here the stage one critical value is 

nonbinding so that the stage two critical values of the CTP are simply those that would be used 

in a single stage Dunnett test.   

 

Next, the conditional probability of rejecting each null intersection hypothesis at the end of the 

trial, given the interim data and assuming the original design is adhered to, is obtained. In 



 

107  

  

keeping with the MAMS(R) trial design framework and in contrast to approach of Koenig et 

al. (2008) and Magirr, Stallard and Jaki (2014), this step is carried out using simulation. Taking 

each treatment in turn, 10 000 sets of second stage binary outcomes on the definitive outcome 

are simulated under 𝐻0(𝐺). For each set, the outcomes are combined with the observed data for 

the definitive outcome from stage one to produce cumulative test statistics on the definitive 

outcome for each treatment control comparison. Based on these test statistics, each intersection 

hypothesis of interest is then tested using a Dunnett test, and the proportion of trials in which 

rejection occurs is recorded. In this way, the conditional probability of rejection can be 

estimated for each intersection hypothesis of interest. Figure 5-5 presents a worked example of 

the procedure, based on the initial design shown in Figure 5-4. For each intersection hypothesis 

in the CTP, critical values of the initial design are given in bold in the first row of each box 

while the conditional rejection probability as calculated at the interim analysis is shown in red 

italic font. Note that since only treatments 𝑇1 and 𝑇2 remain in the trial, only intersections which 

contain at least one of 𝐻01 or 𝐻02 need to be considered since these are the intersections which 

determine whether the remaining treatments are declared effective at the final analysis. Boxes 

representing other intersections made up of subsets containing 𝑇3, 𝑇4 and 𝑇5 only, are of no 

further interest and are shaded in grey.  

  

Finally, adjusted second stage boundaries are obtained for each intersection hypothesis 

assuming that only treatments 𝑇1 and 𝑇2 continue in the second stage of the trial and ensuring 

that the probability of rejection is no greater than the conditional probability calculated for the 

original design. Taking each intersection hypothesis in turn, and using the stage two cumulative 

test statistics for treatments 𝑇1 and 𝑇2 only, a search procedure is implemented to find the critical 

value at which the proportion of trials in which rejection occurs matches the conditional 

probability obtained for the original design. In Figure 5-5, the updated second stage critical 

values are shown in the third row of each box. For intersection hypotheses which contain 

dropped treatments, the updated critical values are more lenient than for the initial design due 

to the reduced multiplicity; for example, the critical value for intersection 𝐻01 ∩ 𝐻03 ∩ 𝐻04 

changes from 2.35 to 1.53. Critical values for intersection hypotheses in which all promising 

treatments are selected for the second stage will remain unchanged; for example, it can be seen 

that the critical value relating to intersection 𝐻01 ∩ 𝐻02 remains unchanged at 2.21.  At the end 

of the trial, the usual principles of closed testing can then be applied to determine whether 𝑇1 or 
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𝑇2 or both treatments are finally declared effective. In the example, this requires consideration 

of three updated critical values arising from the procedure; 2.25 is the largest of any intersection 

which contains both 𝑇1 and 𝑇2, 2.00 is the largest for any intersection that contains 𝑇1 but not 

𝑇2  and 2.08 the largest for any intersection that contains 𝑇2 but not 𝑇1 .  Suppose that in this trial 

the observed stage two test statistics relating to 𝑇1 and 𝑇2 are 𝑆1,2 = 2.40 and 𝑆2,2 = 2.10.  Both 

treatments may be declared effective because all intersection hypotheses containing these 

treatments have been rejected at level 𝛼.  Note that if the critical values had not been updated 

by implementing the procedure, neither treatment would have been declared effective because 

neither of the stage two test statistics are greater than or equal to 2.511, the critical value for the 

original design.   

Here, the selection of treatments for stage two is based on stage one data regarding the 

intermediate outcome whereas the calculation of the conditional rejection probabilities for the 

definitive outcome must be based on stage one data on the definitive outcome. This may be 

approached by using the intermediate outcome purely for the purposes of treatment selection, 

and delaying the procedure for calculating conditional rejection probabilities and updated 

boundaries until outcomes on the definitive outcome are available for all stage one patients, 

which is likely to occur sometime during the second stage of the trial.  Although updated critical 

values used in the final test of treatment efficacy should always be based on the observed stage 

one data regarding definitive outcomes, it may sometimes be useful to conduct a similar 

procedure at the interim analysis in order to obtain an estimate of anticipated updated 

boundaries, at an earlier point in the trial. By using the stage one data on the intermediate 

outcome in combination with the specified correlation between intermediate and definitive 

outcomes, anticipated definitive outcome data for stage one patients may be simulated and used 

to obtain anticipated conditional rejection probabilities and updated boundaries. This approach 

could provide useful information to inform planning of the remainder of the trial.   

 

  

  



 

 

 

Figure 5-4 Closed testing system for six-arm two-stage MAMS(R) design when 𝐼 ≠ 𝐷, showing non-binding stage one futility threshold and stage two 

 critical value of initial design for each intersection. For clarity, only a selection of the arrows which show the construction of the CTP are displayed.
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Figure 5-5 Closed testing system for six-arm two-stage MAMS(R) design when , For each intersection, the initial design is shown in the first 

row, the conditional rejection probability of the test conditional on the interim data is shown in the second row (red italic font) and updated stage 

two critical values in the third row.
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𝑰 = 𝑫  

The general approach described in the previous section may also be implemented for MAMS(R) 

trials where 𝐼 = 𝐷. There are however several additional points which should be considered 

when applying the methods in this case. Firstly, in trials when 𝐼 = 𝐷, the selection of treatments 

for stage two is based on stage one data regarding the definitive outcome and so a 

straightforward calculation of the conditional rejection probabilities and updated critical values 

for the stage two definitive outcome can be performed at the time of the interim analysis. This 

contrasts with trials where 𝐼 ≠ 𝐷 where this calculation must be delayed until stage one data 

regarding the definitive outcome becomes available. Secondly, in feasible and admissible 

MAMS(R) designs for trials where 𝐼 = 𝐷, the stage one critical values governing the dropping 

of unpromising treatments are binding. This results in the stage two critical values being more 

lenient than they would be if non-binding critical values were specified. As described in the 

previous section, the calculation of conditional rejection probabilities requires that the initial 

design is first expressed as a CTP, with second stage critical values assigned to each intersection 

hypothesis. For trials when 𝐼 ≠ 𝐷 where stage one critical values are non-binding, these critical 

values are simply those that would be used in a single stage step down Dunnett test. Since this 

is not the case for trials when 𝐼 = 𝐷, an extra routine is required in order to obtain the required 

critical values for each intersection hypothesis.  A program was developed to facilitate this step, 

incorporating routines from standard software packages for R, DunnetTests (v 2.0: Fan Xia, 

2015), and mvtnorm (v 1.0-7: Genz, 2015). The details passed to the program comprise the 

number of experimental treatment arms, 𝐾, the FWER specified for the trial, the binding first 

stage critical value and the per-group stage-wise sample sizes of the MAMS(R) design. The 

program returns the second stage critical values for all intersection hypotheses for a two-stage 

MAMS(R) trial. Once these have been obtained the calculation of conditional rejection 

probabilities and updated second stage critical values can proceed in the manner described in 

the previous section.   

An example of the procedure for trials when 𝐼 = 𝐷 is presented in Figure 5-6. The initial design 

is the feasible and admissible six-arm (𝐾 = 5) MAMS(R) design introduced in Section 4.4.2 

and detailed in the lower section of Table 4-2, in which five experimental treatment regimens, 

𝑇1, … 𝑇5 , are compared to the current standard of care in a population of patients with TB.  The 

binary endpoint used at both stages of the trial is whether or not a patient has relapsed during 

an 18-month period of treatment and again the treatment effect is measured using a log odds 

ratio. A treatment is selected provided the stage one test statistic exceeds the stage one critical 
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value of 0.878. Similarly, a remaining treatment is declared effective at the end of the trial if 

the stage two test statistic exceeds the stage two critical value of 2.26.  

Suppose that at the interim analysis, the stage one test statistics are as follows; 𝑆1,1 = 2.25,  𝑆2,1 

= 1.70, 𝑆3,1 = 1.16, 𝑆4,1 = 0.65, 𝑆5,1 = 2.25. According to the initial design, treatment 𝑇4 must 

be dropped for futility but all other treatments remain in the trial. However, in line with the 

example in the previous section, it is assumed that at the interim analysis, a safety concerns 

emerges regarding one of the drugs included in regimens 𝑇3 and 𝑇5 and so treatments 𝑇3 and 𝑇5 

are also dropped, despite meeting efficacy requirements.  Again, adhering to the original design 

will result in a loss of overall power unless adjustments are made. As described for the previous 

example, the initial design is formulated as a CTP. For each intersection hypothesis in the 

system, the initial design comprising a binding stage one futility threshold and a stage two 

critical value, obtained using the program described above, is given in the first row.   

 

Given the interim data, and assuming the initial design is adhered to, the conditional rejection 

probabilities are estimated using simulation as described previously. These quantities are given 

in Figure 5-6 in the second row in red font. The updated second stage critical values are then 

obtained, again using simulation as described previously; these are shown in the third row. Note 

again that for intersections containing dropped treatments, the critical values are more lenient 

because the reduced multiplicity in the second stage has been accounted for.  

  

5.4.2 Simulation study   

This section describes a simulation study conducted to investigate the performance of the 

MAMS(R) framework in trials where some promising treatments are dropped due to safety 

concerns at an interim analysis despite meeting the efficacy requirements set out at the start of 

the trial. The aim of the study is to demonstrate the fall in overall power of the original design 

which occurs when promising treatments are dropped and then to show the increase in overall 

power which may be achieved by implementing the conditional error approach. Again, two-

stage trials with a binary outcome are considered, and treatment effects are measured using the 

LOR parameterisation. The procedure is evaluated for both 𝐼 ≠ 𝐷 and 𝐼 = 𝐷 trials and a variety 

of selection rules are implemented.   



 

 

 
Figure 5-6 Closed testing system for six-arm two-stage MAMS(R) design when 𝐼 = 𝐷, For each intersection, the initial design comprising a binding 

futility boundary at stage one and a critical value at stage two, is shown in the first row, the conditional rejection probability of the test conditional 

on the interim data is shown in the second row (red italic font) and updated stage two critical values in the third row 
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Trials when 𝑰 ≠ 𝑫  

In order to conduct the simulation study, a feasible and admissible MAMS(R) design is specified 

as the original design of the trial. The design should be chosen to best match the objectives of 

the trial, and should reflect the anticipated performance of the experimental treatments.  The 

initial design used in this study is the six-arm (𝐾 = 5) MAMS(R) design which was first 

introduced in Section 4.4.1 and which is presented in Section 5.4.1 to illustrate the conditional 

error procedure for a single MAMS(R) trial. Based on this design, individual patient data 

representing 10 000 trials are generated across a range of true treatment effects. This is carried 

out in the manner described in Section 4.4.1, using the R package bindata (v 09-19: Leisch, 

Weingessel and Homik, 2015). Correlated 𝐼 and 𝐷 binary outcomes are first generated for 244 

patients in each of the experimental treatment groups and the control group. Wald test statistics 

based on the intermediate outcome are obtained for each treatment control comparison.  Three 

different scenarios are explored for each simulated trial.  

  

1. The trial proceeds as initially planned so that a treatment continues to the second stage 

providing the corresponding test statistic does not fall below the required threshold.  

2. A serious safety concern emerges regarding treatments 𝑇3, 𝑇4 and 𝑇5. These treatments 

must be discontinued from the trial. Treatments 𝑇1 and 𝑇2 continue to the second stage 

of the trial providing the corresponding test statistics do not fall below the required 

threshold. The initial design is adhered to so that the second stage sample size and critical 

values remain unchanged.  

3. A serious safety concern emerges regarding treatments 𝑇3, 𝑇4 and 𝑇5. These treatments 

must be discontinued from the trial. Treatments 𝑇1 and 𝑇2 continue to the second stage 

of the trial providing the corresponding test statistics do not fall below the required 

threshold. However, the approach described in Section 5.4.1 is applied so that the second 

stage critical values for the remaining treatment control comparisons are updated to 

account for the dropped treatments in the second stage. Note that this step is performed 

using observed stage one data regarding the definitive outcome, but that estimates may 

be obtained at an earlier stage for the purposes of planning using simulated stage one 

definitive outcomes.  

  

Taking each of the three scenarios in turn, data on the definitive outcome are then generated for 

each simulated trial, based on the stage two group size of 651 patients for each selected treatment 
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and the control group. Final cumulative test statistics for each remaining experimental treatment 

on the 𝐷 outcome are calculated at the end of the trial by combining data from patients in both 

stages of the trial. These are then compared to second stage critical values and a final decision 

regarding efficacy is made. Note that in this simulation study, for scenarios 1 and 2, the second 

stage critical value for all simulated trials and for all remaining treatment control comparisons 

is 2.511 as specified in the initial design. This is not the case for scenario 3. Firstly, the updated 

critical values will be different for each simulated trial because they are calculated based on 

the observed first stage data which will vary from trial to trial. Secondly, as explained in Section 

5.4.1, updated critical values are obtained for each intersection hypothesis, and therefore, within 

each simulated trial, updated critical values will be specific to each intersection hypothesis.  

  

For each of the three scenarios, the proportion of simulated trials in which any non-null 

treatment is declared beneficial at the end of the trial is then identified to give an estimate of the 

overall power for that scenario. In line with the approach used in the simulation study described 

in Chapter 4, the procedure is evaluated first using a threshold rule to govern treatment selection 

and then using an epsilon selection rule where 𝜀 = 1.  Two different scenarios are investigated 

in this study. In the first scenario, power is evaluated across a range of values for the underlying 

treatment effect of treatments, 𝑇1,…𝑇5,  on the definitive outcome, denoted  𝜃𝐷  while the effect 

on the intermediate outcome held constant at 𝜃𝐼𝑅.  In the second scenario, treatments 𝑇1 and 𝑇3 

have treatment effect on definitive and intermediate outcome equal to 𝜃𝐷 and 𝜃𝐼𝑅 respectively 

and treatments 𝑇2, 𝑇4, 𝑇5 are partially effective, with treatment effect equal to 𝜃𝐷/4 for the 

definitive outcome and held constant at 𝜃𝐼𝑅/4 for the intermediate outcome.    

  

Trials when 𝑰 = 𝑫   

The simulation study described in this section was carried out using the general approach 

described for 𝐼 ≠ 𝐷 trials but incorporating some modifications as referenced in Section 5.4.1. 

Firstly, there is no change of endpoint and so treatment selection is based on the stage one data 

regarding the definitive outcome.  Secondly, the stage one critical values governing the dropping 

of unpromising treatments are binding and so in order to express the initial MAMS(R) design 

as a CTP, second stage critical values for each intersection hypothesis must first be obtained. 

Thirdly, as discussed in Section 4.4.2, the binding stage one critical values requires that a hybrid 

rule be used in place of the epsilon rule in order to avoid inflation of the Type I error rate.    

  



 

116  

  

In this study, the initial design is the six-arm (𝐾 = 5) MAMS(R) design introduced in Section 

4.4.2 and also discussed in Section 5.4.1, in which five experimental treatment regimens, 𝑇1, … 

𝑇5, are compared to the current standard of care in a population of patients with TB.  The 

endpoint used at both stage of the trial is whether or not a patient has relapsed during an 18month 

period of treatment. The program described in Section 5.4.1 is used to obtain the second stage 

critical values for the intersection hypotheses when this design is expressed as a CTP. Then, as 

described for trials when 𝐼 ≠ 𝐷, data representing 10 000 trials are generated and processed 

according to the three scenarios. The proportion of simulated trials in which any nonnull 

treatment is declared beneficial at the end of the trial is then identified to give an estimate of the 

overall power for that scenario. In line with the simulation study described for 𝐼 ≠ 𝐷, the study 

is conducted first using a threshold rule and then under a hybrid selection rule where 𝜀 = 1, and 

two different scenarios are investigated, firstly where all experimental treatments have treatment 

effect equal to 𝜃𝐷 and secondly where treatments 𝑇1 and 𝑇3 have treatment effect equal to 𝜃𝐷 

and treatments 𝑇2, 𝑇4, 𝑇5 are partially effective, with treatment effect equal to 𝜃𝐷/4.  

  

5.5 Results  

In this section, the results of the simulation study are presented in order to illustrate the 

performance of a MAMS(R) trial when experimental treatments are dropped at an interim 

analysis for safety reasons. Figures 5-7 and 5-8 relate to trials where 𝐼 ≠ 𝐷 while Figures 5-9 

and 5-10 show results for trials where 𝐼 = 𝐷. Figure 5-7 and Figure 5-9 show results obtained 

when a threshold rule has been used, while in Figures 5-8 and 5-10 an epsilon rule has been 

implemented. In each figure, the lines show the estimated power to declare any non-null 

treatment beneficial. In each figure, a blue dotted line shows power for the original MAMS(R) 

design. In the second column of each figure, a dashed red line represents power when three 

treatments are dropped for safety reasons but the critical values of the original design are 

adhered to. In the final column, a black solid line shows the estimated power when the design 

is updated using the conditional error approach outlined in Section 5.4.1.  

  

5.5.1 Effect of conditional error adjustment for trials where 𝑰 ≠ 𝑫   

Figure 5-7 shows how the power of an 𝐼 ≠ 𝐷 MAMS(R) trial, conducted under a threshold 

selection rule, may be affected if some experimental treatments are dropped at an interim 

analysis for safety reasons.  The top row shows results when all experimental treatments are 
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effective on the definitive outcome at 𝜃𝐷. In the top-left panel, the dotted line shows the familiar 

power curve which is obtained using a MAMS(R) design in which treatments are dropped only 

if they fail to meet the threshold on the intermediate outcome, while the dashed line shows the 

drop in power which occurs if some treatments are dropped for safety reasons, despite meeting 

the efficacy threshold, and the original MAMS(R) design is adhered to.  A drop in power of 

approximately 10% or more is seen across all the values of 𝜃𝐷 explored. In the top-right panel, 

the solid black line shows the increase in power which results from implementing the 

conditional error adjustment, where about half of the power lost when promising treatments are 

dropped is regained.  

  

The second row shows results when some experimental treatments are partially effective, as set 

out in the final paragraph of Section 5.4.2.  The overall trends are similar to those observed in 

the top row. Again, the dropping of treatments results in a substantial drop in power and the 

conditional error adjustment, shown by the black line in the bottom-right panel, results in some 

of the lost power being regained. Note that here the power of the updated design becomes closer 

to that of the original design at lower values of 𝜃𝐷 rather than the effect being uniform 

throughout the range. A possible explanation for this observation is given in Section 5.5.2 where 

results obtained for 𝐼 = 𝐷 trials are compared with those for 𝐼 ≠ 𝐷 trials.   

In Figure 5-8, a parallel set of results show how the power of an 𝐼 ≠ 𝐷 trial may be affected if 

some experimental treatments are dropped when an epsilon selection rule is implemented at the 

interim analysis.  Again, the top row shows results when all experimental treatments are 

effective on the definitive outcome at 𝜃𝐷 and results in the bottom row relate to a scenario where 

some treatments are partially effective (see Section 5.4.2). As expected, the general trends are 

similar to those described for Figure 5-7; in both rows, lines in the right-hand panels show the 

clear drop in power when treatments are dropped despite being selected to continue, while the 

updated design shown by the black solid line in panel three recovers some of the power which 

was lost when treatments were dropped. However, it can be seen that using conditional error 

calculations to obtain an updated design has a greater effect on power here than was achieved 

under the threshold rule such that the overall power of the test appears fairly close to that of the 

original design. This difference is present in both of the scenarios investigated, but is most 

apparent in the top row of each figure, representing the scenario where treatments are highly 
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Figure 5-7 Power estimates obtained for the MAMS(R) framework under a threshold selection 

rule, for six-arm trials where 𝐼 ≠ 𝐷 and where treatments are dropped for safety reasons. In the 

left-hand column, three experimental treatments are dropped at an interim analysis but the 

original design is used. In the right-hand column the design is updated. In the top row, all 

treatments are effective at 𝜃𝐷 and in the bottom row some treatments are partially effective (see 

text).  
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Figure 5-8 Power estimates obtained for the MAMS(R) framework under an epsilon selection rule, 

for six-arm trials where 𝐼 ≠ 𝐷 and where treatments are dropped for safety reasons. In the left-

hand column, three experimental treatments are dropped at an interim analysis but the original 

design is used. In the right-hand column, the design is updated. In the top row, all treatments are 

effective at 𝜃𝐷 and in the bottom row some treatments are partially effective (see text)  
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effective at 𝜃𝐷. When there are a number of effective treatments, an epsilon rule is likely to 

result in fewer treatments progressing to the second stage than would occur under a threshold 

rule, resulting in a greater reduction in second stage multiplicity adjustments leading to more 

relaxation of the critical values used in the final analysis and hence greater power for the 

remaining treatment control comparisons.    

  

5.5.2 Effect of conditional error adjustment for trials where 𝑰 = 𝑫   

Following the same presentation framework as described in the previous section, Figures 5-9 

and 5-10 show how the power of an 𝐼 = 𝐷 MAMS(R) trial may be affected if some experimental 

treatments are dropped at an interim analysis for safety reasons.  In Figure 5-9 a threshold rule 

is implemented and in Figure 5-10 an epsilon rule is used. As before, in the top row of each 

figure all experimental treatments are effective on the definitive outcome at 𝜃𝐷, while in the 

bottom row some treatments are only partially effective (see Section 5.4.2). As expected, the 

overall patterns are similar to those seen in the previous section for  𝐼 ≠ 𝐷 trials, so that in each 

row the dropping of treatments results in a loss of power (shown by the red dashed line in the 

left-hand panels) which is compensated for to some extent by implementing the updated design 

obtained using conditional error calculations (as shown by the solid black line in the right-hand 

panels).   

  

It is clear that across all the scenarios investigated, the recuperation of power achieved by 

updating the design is not as great here as for the 𝐼 ≠ 𝐷 trial (for example, compare the bottom-

right panel of Figure 5-10 with that of Figure 5-8). One possible explanation for this difference 

is that in 𝐼 = 𝐷 trials, the calculation of conditional error and updated critical values at the 

interim analysis are serving only the intended purpose – that is to relax critical values for future 

analyses as a result of the dropped but promising treatments, as outlined in Section 5.4.1. 

However, in 𝐼 ≠ 𝐷 trials the same procedure is serving to increasing power in two ways, 

culminating in a larger overall effect. The two aspects can be summarized as follows: Firstly, 

recall from Section 4.5 that in MAMS(R) designs for 𝐼 ≠ 𝐷 trials, the final stage critical values 

are set as those relating to a one stage trial, because the FWER will be greatest when treatments 

are fully effective on the intermediate outcome such that all of them progress to the second stage 

of the trial. This will result in a test which is inherently conservative as discussed in Chapter 4. 

By performing conditional error calculations which are based on observed definitive outcome, 
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Figure 5-9 Power estimates obtained for the MAMS(R) framework under a threshold selection 

rule, for six-arm trials where 𝐼 = 𝐷 and where treatments are dropped for safety reasons. In the 

left-hand column, three experimental treatments are dropped at an interim analysis but the 

original design is used. In the right-hand column the design is updated. In the top row, all 

treatments are effective at 𝜃𝐷 and in the bottom row some treatments are partially effective (see 

text).  
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Figure 5-10 Power estimates obtained for the MAMS(R) framework under an epsilon selection 

rule, for six-arm trials where 𝐼 = 𝐷 and where treatments are dropped for safety reasons. In the 

left-hand column, three experimental treatments are dropped at an interim analysis but the 

original design is used. In the right-hand column the design is updated. In the top row, all 

treatments are effective at 𝜃𝐷 and in the bottom row some treatments are partially effective (see 

text).  
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this conservatism is no longer incorporated. The intermediate outcome has been used as 

intended for the treatment selection stage, but the updated boundaries can be derived without 

reference to it. Secondly, the procedure allows critical values to be relaxed as a result of the 

dropped treatments and reduced second stage multiplicity requirements, in the same way as 

described for 𝐼 = 𝐷 trials. This means that the gain from obtaining the new design on the basis 

of interim data arises from two sources and so is potentially greater than that obtained for 𝐼 = 𝐷 

trials where the inherent conservatism is not present in the initial design.   

In Section 5.5.1, it was noted that for the 𝐼 ≠ 𝐷 trials, the power of the updated design gets closer 

to the power of the original design as 𝜃𝐷 decreases, particularly for scenarios in which partially 

effective treatments are present. A similar effect was not observed in 𝐼 = 𝐷 trials. This may 

again be explained by considering the inherent conservatism of the original 𝐼 ≠ 𝐷 MAMS(R) 

design. The test will be most conservative when experimental treatments are less effective 

(when 𝜃𝐷 is small and when some treatments are only partially effective), and since 

implementing the procedure for dropped treatments removes the inherent conservatism, the gain 

in power is shown most clearly in these settings. In the results shown, the power of the updated 

design becomes similar to that of the original design.     

5.6 Discussion  

In this chapter, the performance of multi-arm two stage MAMS(R) designs has been evaluated 

for the particular setting of a trial in which treatments are dropped for safety reasons at an interim 

analysis despite meeting efficacy requirements. It has been shown that in such trials, conditional 

error calculations previously used in other multi-arm adaptive trial frameworks (Magirr, Stallard 

and Jaki (2014); Koenig et al. (2008)) may be carried out within the MAMS(R) framework for 

both 𝐼 ≠ 𝐷 and 𝐼 = 𝐷 trials. It has been shown that simulation, of the type already used to obtain 

MAMS(R) designs, may be effectively used to obtain both conditional error estimates and 

updated critical values, in place of the numerical integration approach used in the group 

sequential setting.   

   

In both 𝐼 ≠ 𝐷 and 𝐼 = 𝐷 trials, implementation of the conditional error approach to obtain 

updated second stage critical values results in a regaining of some of the power which is lost 

when effective treatments are dropped from a trial.  The effect is seen when both threshold and 

epsilon selection rules are implemented and for scenarios when all treatments are effective as 
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well as those where some treatments are only partially effective. In general, however, the gain 

in power elicited by performing the procedure and updating the design is greater for 𝐼 ≠ 𝐷 trials 

than for 𝐼 = 𝐷 trials, probably because of the inherent conservatism which is incorporated into 

𝐼 ≠ 𝐷 trials, where final stage critical values are calculated on the basis that all treatment arms 

will be effective on the intermediate outcome and so will continue in the trial.  By updating the 

design based on definitive outcome data from stage one, the intermediate outcome is effectively 

used for the purposes of treatment selection only and updated boundaries benefit from the 

removal of this additional conservatism. Note that this feature is reminiscent of the combination 

test where the intermediate outcome is used for treatment selection only with the definitive 

outcome being used for separate stage p-values at the end of the trial.  The approach outlined in 

this chapter may be viewed as a tool which may be used to conserve overall trial power in a 

MAMS(R) trial in the event of a safety concern emerging during the course of a study. 

Following the dropping of treatments which are showing good efficacy, the procedure allows 

power for the remaining treatment control comparisons to be increased.   

  

In 𝐼 ≠ 𝐷 trials, calculation of the conditional error cannot be carried out until stage one data 

regarding the definitive outcome is available, so there may be a delay before the second stage 

critical values are obtained, although there is no need to pause recruitment during this time since 

selection is based on the intermediate outcome. On occasions, it may be useful to obtain 

estimates of the second stage critical values at the interim analysis for the purposes of planning 

or adjusting the second stage sample size, for example if recruitment is slower than expected. 

This could be achieved by using first stage data on the intermediate outcome to simulate 

anticipated first stage responses on the definitive outcome, assuming the same correlation 

between the two outcomes which was used to obtain the initial design. This would allow 

calculation of preliminary second stage critical values for planning purposes. Then, once 

observed data on the definitive outcome is available for all patients recruited in stage one, true 

critical values can be obtained for use in the final analysis.  

  

In this chapter, the efficiency gains afforded by the proposed procedure have been demonstrated 

for three-arm and five-arm 𝐼 = 𝐷 and 𝐼 ≠ 𝐷 MAMS(R) trials in which treatments are dropped 

for safety reasons. The approach could readily be applied to a range of MAMS(R) trial designs, 

with different numbers of stages, treatment arms and anticipated treatment effects. The 

procedure does involve additional complexity and since the findings in this chapter suggest that 
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the gains are likely to be greater in some scenarios than others, the decision to adopt these 

methods should be made on a case-by-case basis. Generalisability and suggested applications 

are discussed further in section 7.3.   
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Chapter 6. Adding a new treatment arm to an ongoing 

clinical trial  

  

  

6.1 Introduction  

In earlier chapters of this thesis, the focus has been on methodology for multi-arm adaptive trials 

in which treatments may be dropped at an interim analysis, perhaps because interim results 

reveal poor performance or alternatively because there are concerns regarding safety.  Particular 

attention has been directed to the MAMS(R) framework, and key issues such as FWER control 

and power have been investigated.  An issue which has not yet been explored in this work is 

how a new treatment arm might be added to an ongoing MAMS(R) trial, without compromising 

the objectives of strong FWER control and high power. In this chapter, the methods already 

described in Chapter 5 are extended to explore the possibility of adding a new treatment arm to 

an ongoing MAMS(R) trial at an interim analysis. The approach may be regarded as a general 

method for adding a treatment arm to any ongoing multi-arm adaptive trial, but in this thesis 

particular consideration is given to the type of scenario described in Chapter 5, where some 

promising treatments have been dropped because of safety concerns. In this chapter, the 

conditional error procedure is implemented to facilitate the adding of a new treatment arm, 

rather than to simply increase the power for remaining treatment control comparisons.  

  

In Section 6.2.1, the concept of adding an arm to an ongoing trial is discussed in general terms, 

and a brief review of the literature on this subject is presented.  Then, in Section 6.2.2, a proposal 

is made for classifying add-arm trials into two types; namely ‘conventional add-arm trials’ and 

‘adaptive add-arm trials.’  Formalising this distinction increases clarity and aids understanding 

of add-arm trials, and provides a helpful framework in which to consider relevant aspects of 

statistical methodology which arise in such trials. These statistical aspects and related practical 

implications are detailed in Section 6.3. In Section 6.4 a novel method is proposed which 

facilitates the adding of a new treatment arm to a MAMS(R) trial at an interim analysis where 

other design changes may also be taking place. Section 6.5 describes the methodology for this 

new approach for a single trial. A simulation study is then conducted to evaluate the procedure 

in MAMS(R) trials under a number of different scenarios. Results of the study are presented in 

Section 6.6 and a discussion of the findings is given in Section 6.7.  
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6.2 Adding a new treatment arm to an ongoing trial  

It is plausible that when a trial is underway, a novel treatment for the same condition may 

become available for testing, perhaps following completion of early phase tests to establish 

safety and dosage. If it is considered appropriate to test this treatment in the same population 

and against the same control as is being used in the ongoing trial, adding the new treatment as 

an extra arm may be an attractive option. The treatment is likely to be evaluated more quickly 

than would be the case if a new trial was started, which may mean a new effective treatment 

becomes available to patients sooner.  Also, administrative costs may be reduced if a treatment 

is evaluated in a trial which is already ongoing rather than in a separate trial.  Furthermore, if a 

shared control group is used, the total number of patients required is likely to be smaller than 

for separate trials and this may further reduce overall costs.  In this chapter we use the term  

‘add-arm trial’ to denote any trial in which one or more treatment arm(s) are added to a trial in 

which recruitment has already started.  

  

6.2.1 Literature review of add-arm trials  

Despite the potential benefits of adding new treatment arms to ongoing trials, publications which 

discuss in detail the statistical aspects relating to this issue appear to be fairly sparse. Cohen et 

al. (2015) conducted a systematic review to identify articles which discuss frequentist 

methodology relating to add-arm trials or which describe real-life add-arm clinical trials.  Only 

seven articles which explored relevant statistical methodology were identified and eight 

publications which documented real-life add-arm trials were found. These are summarised 

below.  

  

Several methodological articles were identified which describe how the combination test 

(described in Chapter 2) may be implemented in adaptive trials generally and which also include 

some reference to the fact that adding an arm is possible using this framework (Hommel, 2001; 

Bauer, 2008 and Posch, et al., 2005). For example, Hommel remarks that if the combination test 

is used with closed testing, the FWER will be controlled at a specified level for any number of 

sets of hypotheses and that it is therefore possible to include new hypotheses partway through a 

trial, just as it is possible to drop hypotheses in the way that Bauer and Keiser (1999) had 

demonstrated previously.  Posch et al. develop the approach introduced by Hommel and give a 

worked example of a hypothetical trial in which a new treatment arm is added to a two-arm trial 

after an interim analysis.    
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In addition to these articles based on the combination test, Cohen et al. identified four other 

articles. A publication by Phillips and Keene (2006) discusses issues in adaptive designs from 

the Statisticians in the Pharmaceutical Industry (PSI) Adaptive Design Expert Group. It is stated 

that it is possible to add new treatment arms to an ongoing trial, but details of methods are not 

given. Wason et al. (2016) describe a method for adding an arm partway through a group 

sequential trial design.  Critical values may be re-calculated numerically or using simulation 

following the addition of the new treatment arm to preserve FWER control.  It is shown however 

that if the decision to add the new treatment arm is informed by the results of the interim 

analysis, for example if the existing treatments are failing to demonstrate effectiveness, the 

FWER may be inflated, and hence this approach may be unsuitable for some adaptive trials.  

Sydes et al. (2012) contribute a paper which describes some of the methods used in the high-

profile STAMPEDE trial, in which multiple treatments for men with high-risk prostate cancer 

are evaluated. The design is a complex platform trial where arms are dropped and added at 

various points throughout the trial; aspects of this trial are discussed further in Section 6.2.2.  

The most detailed methodological paper identified by Cohen et al. is an article by Elm et al. 

(2012). The authors propose a number of different methods which might be appropriate for 

analysing a standard two-arm (𝐾 = 1) trial, in which an additional experimental treatment arm 

is added while the trial is ongoing. The design of the trial does not incorporate interim analyses, 

and it is assumed that the decision to add a new treatment arm arises purely from external 

evidence, which is a reasonable assumption if the trial data has not been examined. Several 

different methods which might be used to analyse add-arm trials of this kind are explored in a 

simulation study and Type I error rates and power are recorded across a range of true treatment 

effects and for several different scenarios.    

In addition to these articles identified by Cohen et al., there are several papers describing 

frequentist methodological aspects of add-arm trials which have been contributed since their 

review was conducted.  Ventz et al. (2017) consider a platform trial with a ‘rolling arms’ design 

in which a number of new treatment arms are added to an ongoing trial. A simulation study is 

used to evaluate the potential for reduced sample sizes and more timely evaluation of emerging 

treatments, compared with conducting separate studies. These authors contribute a further paper 

investigating randomisation procedures following addition of new treatment arms (Ventz et al., 

2018). Lee, Wason and Stallard (2019) consider the interesting question of when it is 
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advantageous to add an arm to an ongoing study, and a procedure which blends frequentist and 

Bayesian methodology is proposed which may be used to inform decision making at an interim 

analysis.  The authors consider the context of both two and three-arm trials, in which the 

decision to add a new treatment arm is made at an interim analysis.    

  

A further recent article which is of particular relevance to the work in this chapter is the thesis 

by Howard (2018), which extends the work conducted by Elm et al. (2012), again exploring a 

scenario in which a new treatment arm is added during the course of a standard two-arm (𝐾 = 

1) trial, where no interim analyses are conducted and no other modifications to the study design 

are made. Simulation studies are conducted to investigate the properties of different analysis 

methods and to evaluate methods used for multiplicity adjustments. Although the general 

approach taken by Elm et al. and Howard is similar, the two papers consider different endpoints 

and different views are taken on various statistical issues which arise when a new treatment arm 

is added, such as concurrency of controls, modification of the allocation ratio and whether 

multiplicity adjustments are necessary. These statistical matters are discussed more fully in 

Section 6.3. Based on their studies, both Elm et al. and Howard suggest that when adding a new 

treatment arm to a standard two-arm trial, the analysis of treatment effects should be carried out 

by applying a linear model which adjusts for the stage in which a patient was recruited, in case 

there is a time trend in the treatment effect or in the type of patient recruited into the study.  It 

is argued that this approach generally achieves good power and is simpler to conduct than a 

stage-wise analysis, such as p-value combination. Furthermore, it is argued that this approach 

allows estimates and confidence intervals to be obtained easily. Neither author investigated the 

process of adding a treatment arm as part of an interim analysis where other design changes take 

place. However, in their recommendations it is acknowledged that using a stage-wise analysis 

would allow other design changes to occur, such as the re-estimation of sample size, which may 

be desirable for achieving a specified power when a new treatment arm is added.  

  

In addition to the methodological publications described above, the review by Cohen et al. 

(2015) identified eight articles which describe real-life confirmatory add-arm trials (Goldberg 

et al., 2004; van Leth et al., 2004; Lieberman et al., 2005; Marson et al., 2007; Burnett et al., 

2011; Hills and Burnett, 2011; Sydes et al., 2012; Alberts et al., 2012). Since this review was 

published, several further real-life add-arm trials have been documented, for example, the ISPY 

2 trial (Das and Lo, 2017), in which multiple novel chemotherapeutic regimens for breast cancer 
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are screened, and the GBM AGILE trial, which evaluates novel therapies for treating 

Glioblastoma (Alexander et al., 2018). Both of these trials follow a platform design in which 

multiple therapies are evaluated against the current standard of care. Treatments may ‘graduate’ 

from the trial if sufficient efficacy is demonstrated or may be dropped for lack of efficacy. The 

protocol specifies that emerging treatments can be added to the trial once they are ready for 

confirmatory testing, and may replace treatment arms which leave the trial. It would seem 

therefore that the concept of adding a new treatment arm to an ongoing trial is of current interest 

and one that investigators are beginning to put into practice, despite the fact that the literature 

which discusses relevant statistical methodology is rather limited.  

 

6.2.2 Definition of ‘conventional add-arm trials’ and ‘adaptive add-arm trials’  

The real-life add-arm trials which have been conducted to date may be separated into two 

distinct types.  This distinction is not clearly made in the literature but it is helpful to give a 

formal description because different statistical approaches may be required for these two 

categories.   

  

The first category of add-arm trial is referred to in this thesis as a conventional add-arm trial 

(CAAT).  CAATs are initially planned as single stage trials with no interim analyses.  At the 

outset, patients are randomised to receive one of 𝐾 experimental treatments (𝐾 ≥ 1), or a control 

treatment, indeed the initial design may be as simple as a standard two arm trial. An additional 

arm is added whilst recruitment to the original groups is still ongoing and the decision to do this 

is based on external evidence only, no interim analysis is conducted to inform dropping of 

treatments or any other aspect of the design for the remainder of the trial. The recent studies 

carried out by Elm et al. (2012) and Howard (2018), both focus on CAATs.  An example of a 

real-life add-arm trial of this type is the CATIE trial, in which several new treatments for 

Schizophrenia were compared to a first-generation antipsychotic (Lieberman et al., 2005). The 

trial started with three experimental treatment arms and the trial design did not include interim 

analyses or treatment selection. A further treatment arm was added to the trial one year after the 

start of recruitment.    

  

The second category of add-arm trial is referred to in this thesis as an adaptive add-arm trial 

(AAAT).  AAATs are designed from the outset as adaptive trials, with one or more scheduled 

interim analyses which will inform decisions about the future conduct of the trial. For example, 



 

131  

  

the trial may be planned as a MAMS(R) trial such as those described in Chapter 4. AAATs often 

begin with multiple experimental treatments and incorporate the dropping of poorly performing 

treatments.  The addition of a new treatment arm may occur at an interim analysis when some 

treatments may be dropped or when other amendments to the trial design are being made. A 

real-life example of this type of trial is the AML 16 trial (Hills and Burnett, 2011), in which 

several novel treatments for Acute Myeloid Leukaemia were evaluated. The trial used a 

MAMS(R) design in which interim analyses were conducted and inferior treatments were 

dropped. The trial started with three experimental treatments and a control and an additional 

treatment arm was added to the trial while recruitment was still ongoing.   

  

It is important to understand that some real-life add-arm trials follow a protracted and complex 

design. For example, the high-profile STAMPEDE platform trial (Sydes et al., 2012), 

introduced in Section 6.2.1, may be viewed as an extended version of an AAAT in which 

experimental treatments enter and leave the trial at different stages, and results of different 

treatment control comparisons become available at different times in the schedule.  At the start 

of the STAMPEDE trial, patients were recruited to one of five experimental treatments or a 

control group. At the time of writing, a further five treatment arms have been added to 

STAMPEDE and two research arms have been closed for lack of benefit. Furthermore, there 

has been a change in the control treatment against which experimental treatments are evaluated 

(Hague, D. et al., 2019).  Long-running platform trials which incorporate many design changes 

over time offer certain advantages and are gaining in popularity; however, they may give rise to 

particular statistical issues, some of which are not well understood. These topics are discussed 

further in Section 6.3. Although it is important to be aware of the elaborate add-arm trial designs 

which some investigators are currently using, the research in this chapter focusses on simpler 

AAATs, where statistical properties are less complex.    

  

The documented real-life add-arm trials which are cited above provide evidence that the facility 

to add a treatment arm to an ongoing trial is of current interest in both conventional and adaptive 

trials.  However, although there are a number of methodological papers which address some 

aspects of AAATs (Sydes et al., 2012, Wason et al., 2016), the recent in-depth investigations 

by Elm et al. (2012) and Howard (2018), which explore the statistical issues arising in add-arm 

trials relate mainly to CAATs.  There is little comparable research which investigates these 

issues in the context of AAATs.  The studies of Elm et al. and Howard helpfully identify and 
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discuss the statistical implications of adding a treatment arm to an ongoing trial and provide 

useful recommendations for implementing the process in CAATs.  However, the authors of 

these studies state clearly that some of their recommendations may not be appropriate for 

AAATs.  Since the subject of this thesis is the investigation of multi-arm multi-stage adaptive 

trial methodology, the main focus of the research in this chapter is to investigate the process of 

adding an arm in the adaptive framework, where information both internal and external to the 

trial may inform various mid-trial design changes made at the interim analysis. In Section 6.3, 

some general statistical considerations of add-arm trials are discussed, with particular attention 

being given to their application in the context of AAATs.  

  

6.3 Statistical considerations for add-arm trials  

In this section, a number of statistical issues which arise in add-arm trials are addressed. These 

include approaches to control of Type I error, the choice of an appropriate statistical analysis, 

and issues surrounding sample size, allocation ratio and the nature of the control group.  These 

key statistical considerations, and some related practical matters, are discussed in turn in the 

following sections, with particular emphasis given to how they may be addressed in AAATs, 

the main focus of the work in this chapter.  

  

6.3.1 FWER control  

When a new treatment arm is added to an ongoing trial, there will be an additional hypothesis 

being tested within the protocol. It is therefore important to consider whether adjustments need 

to be made to control the FWER so that the overall probability of rejecting one or more true null 

hypotheses is controlled at a specified level.  Of the real-life add-arm trials identified in the 

review by Cohen et al. (2015), FWER control was addressed only in approximately half of them. 

When investigating different ways of analysing a CAAT, Elm et al. (2012) take the approach 

that FWER control is necessary.  By contrast, Howard (2018) argues that multiplicity 

adjustments may not be required if the decision to add an arm arises purely from evidence 

external to the trial, and if applied, may result in unnecessarily conservative tests. Therefore, 

Howard (2018) conducts investigations of trial power and Type I error rates both with and 

without multiplicity adjustments. Consideration of FWER control is an issue generally for all 

multi-arm trials which consider multiple hypotheses, whether this arises because a new arm is 

added or because multiple treatments are present from the outset. As discussed in Section 2.2.1, 

the usual requirement for confirmatory trials which incorporate multiple treatments and/or 
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stages is that the FWER should be controlled at a specified level, and so this is the approach 

taken throughout this thesis. Therefore, in line with the approach taken by Elm et al., it is 

assumed in this chapter, that FWER control is implemented in the original MAMS(R) designs 

proposed and that if a new arm is added, the FWER should be adjusted to account for the extra 

hypothesis which is being tested within the trial. Note that this issue may be viewed as a 

disadvantage of adding a new treatment arm as the critical values for existing treatment control 

comparisons will be increased by the multiplicity adjustment. Lee, Wason and Stallard (2019) 

discuss the issue of when it is advantageous to add an arm to a trial. They suggest a Bayesian 

procedure based on stage one efficacy data which may be carried out at an interim analysis to 

decide whether the objectives of the trial are best met by adhering to the original scheme or by 

adding a new treatment arm.  In the research presented in this chapter, it is assumed that strong 

preliminary evidence for the efficacy of the new treatment has been demonstrated, and that a 

new treatment arm is added at the interim analysis.  

  

6.3.2 Control arm   

There are three issues relating to the control arm which must be considered in add-arm trials, 

these are sharing of the control arm, concurrency of controls and potential changes to the control 

treatment. These issues are considered in turn below.  

  

In this chapter, it is assumed that a shared control arm is used. This approach is in line with 

earlier work in this thesis and also in common with the approach taken by both Elm et al. (2012) 

and Howard (2018). A shared control arm reduces the overall number of patients required for 

the trial and may also increase recruitment rates because the probability of a participant being 

allocated to receive an experimental treatment is greater. Although outside the immediate scope 

of the present discussion, Howard et al. (2018) present an instructive paper considering the 

statistical issues relating to use of a shared control arm generally.  

  

If a treatment arm is added partway through a trial, there will be a period of time when patients 

are randomised to the control arm, and to the experimental arms which are present at the start 

of the trial, but not to the new treatment. The question arises as to whether the comparison of 

the new treatment with the control should include the full control group or only patients from 

the control group who are recruited concurrently, after the new treatment arm enters the trial. 

If, for any reason, the patient population changes with regard to the outcome being measured 
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over time, then inclusion of non-concurrent controls may result in bias when evaluating the 

effect of the new treatment. Some investigators perform statistical tests to check for stage effects 

and then justify inclusion of non-concurrent control patients on this basis, although these tests 

may sometimes lack sufficient statistical power (Cohen et al., 2015).  It is preferable, 

particularly in confirmatory trials, that only concurrently randomised patients are included in 

any treatment control comparisons.  In practice, this approach has sometimes been applied, 

although one of the eight real-life add-arm trials identified by Cohen et al. (2015) included 

nonconcurrent controls. In the simulation studies conducted in the CAAT framework and 

discussed in Section 6.2.1, Howard (2018) uses only concurrent controls whereas Elm et al. 

(2012) use the full control group. Howard criticises the fact that Elm et al. include non-

concurrent controls in the analysis of the new treatment arm, pointing out that this goes against 

standard practice and may result in bias. The general method described in this chapter may be 

applied to either approach, leaving the investigator free to decide whether use of non-concurrent 

controls may or may not be justified in a particular context or, depending on factors such as 

anticipated recruitment rates, available resources and the likely time span of the trial.   

  

A further issue regarding the control group is that the agreed standard of care for a particular 

condition may change over time and there may be reason to change the treatment given to the 

control group against which experimental treatments are compared. This matter could arise 

during any clinical trial, but is more likely to occur in long running platform type trials where 

treatment arms are added and dropped over an extended time period.  It is clear that, in practice, 

control therapies are sometimes changed mid-trial (see, for example, the 2NN trial (van Leth et 

al., 2004) and the STAMPEDE trial (Sydes et al., 2012), and that investigators deal with this 

issue in different ways depending on the exact nature of the trial and amendment.  However, 

there is little research exploring the statistical implications of making a change of this kind and 

this lack of clarity highlights one of the disadvantages of choosing long running platform trials 

over shorter, more circumscribed trials. In this chapter, only trials with a single interim analysis, 

conducted at an early stage of the trial, are evaluated.  The opportunity for adding and dropping 

treatment arms is therefore constrained. In such cases it is less likely that a change in standard 

of care will occur during the course of the trial. For the work in this chapter, it therefore seems 

reasonable to assume that the same control treatment is used throughout the trial.  This approach 

is consistent with the view taken by both Elm et al. and Howard and avoids additional 

complexity in analysing and interpreting results.  
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6.3.3 Analysis methods in add-arm trials  

An important issue in add-arm trials is ensuring that an appropriate method is used to analyse 

the trial data.  In the literature, three approaches are discussed. The first approach is to pool the 

results across both stages of the trial and perform a conventional analysis at the end of the trial, 

with or without a multiplicity adjustment.  The second approach is to apply a linear model and 

to include ‘stage’ as a covariate if it is felt that there may be changes to the patient cohort over 

time. The third approach is to conduct a stage-wise analysis, so that data from before and after 

addition of the new treatment arm are analysed separately.  As discussed in the articles cited in 

Section 6.2.1, it has been suggested that stage-wise analysis may be combined with a closed 

testing procedure to incorporate stage-wise multiplicity adjustments, so that p-values for each 

intersection hypothesis are combined across the stages. It is interesting to note that whilst some 

publications which discuss methodological aspects of add-arm trials recommend using the p-

value combination approach, most of the documented real-life trials use a simpler, pooled 

analysis, but tend not offer justification as to why they do so. Both Elm et al. (2012) and Howard 

(2018) argue that if the decision to add a treatment arm occurs in the context of a standard CAAT 

and is based only on external information, then the analysis of treatment effects should be 

carried out by applying a linear model which adjusts for the stage in which patients were 

recruited, but that a stage-wise analysis would allow for flexibility to make other design changes 

such as re-estimation of sample size.  Howard also argues that a stage-wise approach may be 

less powerful in some scenarios. For example, when the initial treatment is very ineffective, 

stage one p-values for the intersection hypothesis containing the new and the existing treatment 

may be large. This will result in a substantial penalty for the rejection of the null hypothesis 

when the p-values are combined.  

  

In this chapter, the focus is on AAATs in which the initial design incorporates an interim 

analysis at which treatments may be dropped as well as added.  As already discussed in Section 

6.3.1, it is assumed that FWER control is deemed necessary and that the addition of the new 

treatment arm necessitates further multiplicity adjustment. In adaptive trials of this kind, it may 

be very difficult to persuade regulators that trial data has no influence on the decision to add a 

new treatment arm.  In this setting, a stage-wise analysis with stage-wise multiplicity 

adjustments is the most appropriate approach for the following reasons. Firstly, the stage-wise 

approach allows decisions about the remainder of the trial to be made on the basis of information 
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both internal and external to the trial, whilst still achieving FWER control. This facilitates great 

flexibility to drop or add treatment arms for a variety of reasons or to make other changes to the 

design of the trial; for example, the sample size could be re-estimated.  Secondly, a stage-wise 

analysis with stage-wise multiplicity adjustments naturally adjusts for dropped treatments, so 

that power is conserved for the treatment control comparisons which remain in the trial.  This 

is in contrast to a conventional analysis in which final critical values are adjusted to account for 

the new treatment arm. The conventional analysis will tend to be conservative because no 

adjustment has been made for the treatments which have been dropped at the interim analysis.  

  

As explained in Chapter 5, the two approaches which may be used to facilitate mid trial design 

changes at an interim analysis, without inflation of the FWER, are the combination test and the 

conditional error procedure. In the literature to date, the stage-wise analysis of add-arm trials is 

generally described using the framework of the combination test. To the best of current 

knowledge, the conditional error procedure has not yet been applied to the design of add-arm 

trials in any adaptive framework. In this chapter, the conditional error approach described in 

Chapter 5 is adapted to ensure statistical independence of the two parts of the trial when a new 

treatment arm is added to an ongoing MAMS(R) trial. This approach may have an advantage 

over the p-value combination test in that sufficient statistics may be monitored against the 

boundaries chosen for the original design when no amendments to the original design are 

implemented at the interim analysis. (see discussions in Section 4.2 and Section 5.2.2).  

  

6.3.4 Power  

At the start of a trial, calculations are usually carried out in order to obtain an appropriate per-

group sample size to enable treatment control comparisons which will achieve a specified power 

at an anticipated treatment effect size for an agreed Type I error rate (whether PWER or FWER). 

Adding an arm to an ongoing trial has the potential to impact power in a number of ways. Firstly, 

if the overall number of patients participating in the trial remains as calculated for the original 

trial, then the per-group sample size will inevitably be reduced leading to diminished pairwise 

power. This approach has been adopted in some real-life trials such as the CATIE trial 

(Lieberman et al., 2005). Furthermore, it is discussed in Lee, Wason and Stallard (2019) as 

another reason why it may not always be beneficial to add treatment arms to ongoing trials. 

Secondly, if FWER control is being implemented and there is a conventional Type I error 

adjustment to account for the addition of a new arm, there may be a fall in pairwise power unless 



 

137  

  

the sample size is increased. None of the surveyed real-life add-arm trials which controlled 

FWER made any adjustment to sample size following addition of a new treatment arm. Thirdly, 

if the originally planned trial schedule and randomisation are maintained after the new arm is 

added, fewer patients will be allocated to the new treatment overall, and the power to declare 

the new treatment arm effective will be smaller than for treatment arms which were present 

from the outset. Similarly, if only concurrent controls are included in the comparison of the new 

treatment with control, power will be further reduced for the newly added treatment arm if no 

adjustment to sample size or allocation is made.   

  

In an influential paper which considers the subject of testing multiple hypotheses within a trial, 

Follmann, Proschan and Geller (1994) argue that ‘…a reasonable additional criterion is to 

require equal amounts of evidence, or critical values, for all hypotheses.’  In the research 

described in this chapter, in common with the methods of Howard (2018), the overall number 

of patients allocated to the new treatment arm is the same as for other experimental treatments 

because it is desirable to preserve equal power for all treatment control comparisons. Depending 

on the approach taken, this may require a change in allocation ratio following addition of the 

new arm, as discussed in the next section.   When only concurrent controls are used, some extra 

patients are randomised to the control group following addition of a new arm so the size of the 

control group is again the same in each treatment control comparison. In this way, there will be 

equal power for testing each primary hypothesis.  

  

6.3.5 Allocation ratio and length of recruitment  

As discussed in the previous section, it is preferable to design a trial so that the power to correctly 

declare that a treatment is superior to control is the same for all experimental treatment arms. 

When a new treatment arm is added to an ongoing trial, some patients will have been recruited 

to existing treatments already, resulting in the potential for uneven group sizes if the original 

allocation ratio is adhered to.  There are two approaches which may be used to ensure constant 

overall sample size for each treatment group.   

  

The first approach is taken by Elm et al. (2012) in their simulation study. The original allocation 

ratio is modified so that the number of patients recruited to the new arm can ‘catch up’, whilst 

still allowing recruitment to all arms to finish at the same time. This approach produces a more 

circumscribed trial design, with a common finishing point where the final analysis for all 
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treatment arms can be conducted at the same time, which may be easier logistically. Another 

advantage is that ‘blinding’ is maintained throughout the trial since there is no scope for 

releasing final efficacy results for treatment arms which entered the trial at an earlier point.  

Furthermore, if an adaptive analysis which uses closed testing is planned (see Section 1.3.3) 

then results of all treatment control comparisons are needed before this procedure can be 

performed. On the other hand, one disadvantage of this method is that the randomisation may 

become substantially unbalanced, especially if the new arm is added later on in the trial. Also, 

it may be argued that it is undesirable (or even unethical) to modify the trial design so that results 

of treatment control comparisons from arms present at the outset become available at a later 

date than they would have otherwise.   

The alternative approach, which is adopted by Howard (2018), is to maintain a balanced 

allocation ratio after addition of the new treatment arm. If the same number of patients is 

allocated to each experimental treatment, recruitment to the new arm and control continues after 

other treatment arms have finished recruiting. Howard considers this section of the trial as a 

third stage and makes adjustment for this in the analysis. This method reduces problems 

associated with both unbalanced randomisation and delayed availability of results. However, 

the notion of releasing some results while the trial is still ongoing raises other issues, particularly 

where results are not independent due to overlap of the control group.  These issues include 

‘breaking the blind’, the possible influence of results on future recruitment and questions 

regarding the validity of the original control treatment if the recommended standard of care 

changes as a consequence of the released findings. Note that if the chosen analysis is based on 

closed testing, final results of treatment control comparisons will not be available until test 

statistics from all treatment groups are available and so the issue of delayed declaration of results 

will stand even if recruitment to some treatment arms finishes much earlier than others.  

In real-life trials, authors and trial investigators have addressed these matters in different ways, 

in part depending on how they have chosen to deal with other aspects of the trial such as the 

analysis method, power and concurrency of controls. For example, in the 2NN trial (van Leth 

et al., 2004), the allocation ratio is altered following the addition of a new treatment arm.  In 

most trials, recruitment to all arms finishes at the same time, even if group sizes are uneven 

following the addition of a treatment arm. In contrast, the STAMPEDE trial (Sydes et al., 2012) 

is less circumscribed with treatment arms being dropped and added at different times throughout 
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the schedule and with some results being made available while recruitment is still ongoing. In 

this chapter, the approach taken by Elm et al. is adopted, where the allocation ratio is modified 

to ensure that recruitment to all arms finishes at the same time. This is advantageous because it 

removes the possibility of declaring some results while recruitment is still ongoing which may 

have negative consequences for the remainder of the trial and also facilitates the stage-wise 

closed testing approach which is necessary in the setting of an adaptive trial. Some degree of 

unbalanced randomisation will be inevitable, but this will be less of an issue if addition of the 

new arm occurs fairly early on in the trial.  

  

6.3.6 Time of amendment  

In the context of a CAAT, Howard (2018) investigated scenarios where the new treatment arm 

was added either 25% 50% or 75% of the way through the original recruitment schedule, and 

found no noticeable effect on power and FWER. The time at which a treatment arm is added 

does, however, influence the overall sample size of the trial, and also the degree to which 

unbalanced randomisation occurs. In this chapter, a new treatment arm will be added at the point 

where the interim analysis occurs and may coincide with one or more of the original treatment 

arms being dropped. This allows a ‘one off’ calculation of second stage boundaries for all 

intersection hypotheses which will be determined by the set of treatments being tested in the 

second stage, that is, the new treatment and any original treatments which were not dropped at 

the interim analysis. Note that the timing of the interim analysis is determined at the outset of 

the trial and is selected to occur fairly early on in the trial, before the larger ‘confirmatory’ 

second stage.    

  

6.4 Proposal for adding an arm to an ongoing trial in the MAMS(R) 

framework  

In this chapter, a framework for conducting AAATs is proposed. For simplicity, two-stage trials 

are considered and it is assumed that design changes, such as the dropping and adding of 

treatment arm(s), occur at the single interim analysis. More complex types of AAATs, such as 

long-running platform trials are not considered although some of the methods and findings may 

also be applicable to trials with more stages.   

  

In the previous chapter, it was shown that when treatment arms are dropped from a trial, 

MAMS(R) designs may lose power if no adjustment is made, particularly in trials with 𝐼 ≠ 𝐷 
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designs and when treatments are dropped despite showing promising efficacy.  By considering 

the full set of intersection null hypotheses and applying the conditional error method, some of 

the power from dropped hypotheses may be reclaimed by relaxing multiplicity adjustments in 

the second stage. In this chapter, the methods presented in Chapter 5 are adapted to provide a 

framework in which a new treatment arm can be added to a 𝐼 ≠ 𝐷 MAMS(R) trial at an interim 

analysis. The procedure facilitates the dropping and adding of treatment arms, permits other 

mid-trial design changes such as changes in sample size, and allows these decisions to be 

informed by information both internal and external to the trial without inflation of the FWER.  

In this chapter, the procedure offers the potential to reclaim some of the power from any dropped 

hypotheses and to use this to add in a new treatment arm rather than simply to relax critical 

values for selected treatments in the second stage.  

  

The addition of a new treatment arm results in there being an extra primary hypothesis to be 

tested in the trial and consequently there is an expansion of the set of intersection null 

hypotheses which must be considered in the CTP. Extending the approach used in Chapter 5, 

the full expanded set of null hypotheses will be defined at the interim analysis, and the 

conditional error method applied to each member of this set as before, based on the treatments 

present in stage one. This will allow a new final stage critical value to be calculated for each 

member of the expanded set of intersection hypotheses, based on those treatments which are 

present in the trial in stage two.  

  

In the following section, the proposed procedure is described for two different scenarios. For 

both scenarios, the original design chosen is a two-stage three arm 𝐼 ≠ 𝐷 MAMS(R) design, 

based on real trials for evaluating competing treatments for TB. In each case it is anticipated at 

the outset of the trial that a further experimental treatment may become available for testing 

during the course of the trial. In the first scenario, the new treatment is added into the trial as a 

third experimental treatment arm at the interim analysis. In the second scenario, one of the 

existing experimental treatments is dropped due to safety concerns at the interim analysis and 

the new treatment arm is also added to the trial. For both scenarios, the procedure is first 

illustrated for a single trial and is then evaluated using a simulation study in which the FWER 

and power are assessed across a range of underlying treatment effects.    
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6.5 Methods  

In this section, the procedure proposed above is described in detail. In Section 6.5.1, the method 

is illustrated for a single add-arm 𝐼 ≠ 𝐷 MAMS(R) trial, taking each of the two scenarios, that 

is with and without incorporating the dropping of a treatment for safety reasons, in turn. In 

Section 6.5.2, properties of the new procedure are explored in a simulation study.  

  

6.5.1 Adaptive add-arm trial – procedure for a single trial   

Scenario one: No dropping of a treatment for safety reasons  

In order to show the procedure for a single trial, consider a two-stage trial which is planned to 

follow the three-arm 𝐼 ≠ 𝐷 MAMS(R) design described previously in Section 4.4.1 and shown 

again below, in Table 6-1. At the start of this trial, there are two new experimental treatments, 

𝑇1 and 𝑇2, which are available for testing against the current standard of care, in a population of 

patients with TB. The primary endpoint is binary and relates to relapse over an 18-month period, 

but an intermediate binary endpoint relating to culture status is used to inform treatment 

selection at the interim analysis. Treatment effects are measured by means of the LOR. Suppose 

that another treatment in the same disease area is known to be in the developmental pipeline and 

may shortly be available for Phase III testing. Rather than delaying the onset of the trial to wait 

for the further treatment to become available, a decision is taken to proceed with the three-arm 

(𝐾 = 2) trial using the MAMS(R) framework. It is agreed that if the new treatment is ready for 

testing at the time of the interim analysis, this will be added to the trial as a third experimental 

treatment arm. According to the MAMS(R) design chosen, a 1:1:1 allocation ratio is 

implemented and 207 patients are recruited to each of the two experimental treatment groups 

and the control group.   

  

Table 6-1. Summary of two stage 𝑰 ≠ 𝑫 designs used in simulation study  

  

Two experimental treatment arms (𝐾 = 2)   

   𝛼𝑗   

(critical value)  

stage-wise power  Cumulative perarm 

sample size  

Stage 1  0.0700  

(1.476)  

0.97  207  

Stage 2  0.0135  

(2.212)  

0.82  743  
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As shown in Table 6-1, in the initial design a treatment is selected to continue in the trial as long 

as the stage one test statistic exceeds the critical value of 1.476. A remaining treatment is then 

declared effective at the end of the trial if the corresponding stage two test statistic exceeds 

2.212. As discussed in Section 5.4.1, the initial MAMS(R) design does not implement a closed 

testing procedure (CTP), and treatment versus control comparisons are analysed independently.  

Suppose that at the interim analysis, the test statistics obtained on the intermediate outcome are  

𝑆1,1 = 1.83 and 𝑆2,1 = 2.39, so that both treatments meet efficacy requirements for selection.  If 

there were no additional issues to consider, the trial would simply continue according to the 

initial design specified and cumulative test statistics compared to the original critical value of 

2.212 at the end of stage two. Suppose though, that the new experimental treatment, here 

denoted 𝑇3, has passed early testing requirements and is ready for Phase III evaluation at the 

time of the interim analysis. The new treatment arm may be added to the trial by extending the 

procedure described in Chapter 5 as described below.  

  

Recall from Section 5.4.1, that the first step in the procedure outlined in Chapter 5 is to reframe 

the initial trial design as a CTP in which a Dunnett test is used.  In the scenario considered here, 

a new treatment arm is being added and hence a further primary hypothesis is being tested in 

the trial. The CTP must therefore be expanded beyond that of the original design to incorporate 

the additional intersection hypotheses in the new set.  

  

Figure 6-1 shows the expanded CTP and the stage-wise critical values of the original design. In 

this figure, the new intersection null hypotheses which arise as a result of the additional primary 

hypothesis are shown in grey font while those formed from the two original primary null 

hypotheses are shown in black. For each intersection hypothesis in the system, a non-binding 

stage one critical value relating to the intermediate outcome, and a stage two critical value 

relating to the definitive outcome, are shown. Note that the stage two critical values are single 

stage Dunnett critical values because the intermediate outcome is non-binding in 𝐼 ≠ 𝐷 trials. 

Also, note that the critical values reflect the actual number of treatment control comparisons 

used to test each intersection hypothesis. Where the new treatment arm, 𝑇3, is part of the 

intersection but is ‘missing’, being absent in stage one, multiplicity adjustments are reduced just 

as they are for dropped treatments, as explained in Section 5.2. This means that the conditional 

error for the global null hypothesis is evaluated using a second stage critical value of 2.21 

because only two experimental treatments are present in the original design.  
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Figure 6-1 Initial two-stage two-arm MAMS(R) design expressed as a closed testing procedure in 

which an anticipated additional primary null hypothesis is incorporated. The new intersection 

null hypotheses which arise as a result of the additional primary hypothesis are shown in grey 

font while those arising from the two original primary null hypotheses are shown in black. For 

each intersection hypothesis in the system, a non-binding stage one critical value and a stage 

two critical value are shown.  

  

Next, the conditional probability of rejecting an intersection null hypothesis at the end of the 

trial, assuming the initial design is adhered to, is estimated. This step is carried out for all null 

hypotheses in the set and is based on the observed stage one data on the definitive outcome for 

the treatments present at the start of the trial; 𝑇1 and 𝑇2. Again, in keeping with the MAMS(R) 

trial design framework, this step is performed using simulation, as described in Section 5.4.1. 

In Figure 6-2, the conditional rejection probabilities for all primary and intersection hypotheses 

in the CTP are shown in red italic font. Finally, adjusted second stage boundaries are obtained 

for each intersection hypothesis, now assuming that there are three treatments; 𝑻𝟏 , 𝑻𝟐 and 

𝑻𝟑  present in the second stage of the trial, but ensuring that the probabilities of rejection are 

no greater than the conditional probabilities calculated for the original design. Taking each 
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intersection hypothesis in turn, a search procedure is implemented to find the critical value for 

which the proportion of trials in which rejection occurs matches the conditional probability 

obtained for the original design. In Figure 6-2, the updated second stage critical values for the 

example described are shown in the third row of each box.  Note that for intersection hypothesis 

𝐻01 ∩ 𝐻02, which does not contain the new treatment, the second stage critical value remains 

the same as for the original design, as expected. However, for all other intersection hypotheses, 

the second stage critical value is larger than for the original design, due to the addition of the 

new treatment and the need for increased multiplicity adjustment in the second stage. For 

example, the second stage critical value for hypothesis 𝐻01 ∩ 𝐻03 has increased from 1.96 to  

2.00.   

After the interim analysis has taken place, the trial proceeds with patients recruited to receive 

treatment 𝑇1, 𝑇2, 𝑇3 or the control treatment. As discussed in Section 6.3.5, the allocation ratio 

is modified such that recruitment to the new arm can ‘catch up’ ensuring that recruitment to all 

groups finishes at the same time and that there is equal power for all treatment versus control 

comparisons. If only concurrent controls are used in the treatment versus control comparison 

relating to the new treatment arm, then some extra patients must be recruited to the control group 

in the second stage. If the original per-group sample size is maintained, there will be 536 patients 

randomised to receive treatment 𝑇1 and 𝑇2 and 743 randomised to 𝑇3 and control groups. The 

allocation ratio used in the second stage is then approximately 5:5:7:7. At the end of the trial, 

cumulative test statistics relating to treatment versus control comparisons for 𝑇1, 𝑇2 and 𝑇3 are 

calculated.  These are compared to the updated final stage critical values shown in Figure 6-2.   

Suppose the test statistics obtained are 𝑆1,2 = 1.83, 𝑆2,2 = 4.56 and 𝑆3,2 = 2.17.  Treatment 𝑇1 

may not be declared beneficial since the test statistic does not even exceed the critical value for 

the elementary hypothesis 𝐻0(1). Treatment 𝑇2 may clearly be declared effective because the 

test statistic exceeds the critical value for all intersection hypotheses in the set including that of 

the global null hypothesis. Treatment 𝑇3 may also be declared effective because the test statistic 

exceeds the critical value for the elementary hypothesis and the intersection hypotheses 𝐻01 ∩ 

𝐻03 and 𝐻02 ∩ 𝐻03. It does not matter that the test statistic does not exceed that of the global null 

hypothesis since this has already been rejected on the grounds of the efficacy of 𝑇2.   
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Figure 6-2 MAMS(R) design expressed as a closed testing procedure in which an additional 

treatment 𝑻𝟑 is incorporated into the trial, at the interim analysis. For each intersection 

hypothesis in the system, the original non-binding stage one critical value and binding stage two 

critical value are shown in the first row. The estimated conditional rejection probability is shown 

in the second row in red italic font and the updated stage two critical values are given in the third 

row.  

  

Scenario two: Incorporating the dropping of treatments for safety reasons  

A similar approach may be implemented for the kind of scenario described in Chapter 5, in 

which one or more treatment(s) are dropped at an interim analysis, despite meeting efficacy 

requirements due to emerging safety concerns. Suppose that a trial of the type described in the 

previous section is underway but that a serious safety concern regarding treatment 𝑇2 emerges 

during the course of the trial such that recruitment to this treatment arm is stopped.  Suppose 

also that the new experimental treatment, 𝑇3, is ready for Phase III evaluation. In this scenario, 

the conditional error procedure may be implemented enabling some of the recovered power of 

the dropped treatment to be used to add in the new treatment arm, rather than simply to relax 

the stage two critical values for the remaining treatment control comparison.    

  

Figure 6-3 shows the closed testing system which must be considered for this scenario. Note 

that the primary hypothesis relating to treatment 𝑇2 is shaded in grey to show that this dropped 
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hypothesis is of no further interest in the trial. In the same manner as described above, the 

conditional probability of rejecting each intersection null hypothesis in the CTP at the end of 

the trial is estimated. Again, it is assumed that the initial design is adhered to, and the estimates 

are based on the observed stage one data on the definitive outcome for the treatments present at 

the start of the trial, 𝑇1 and 𝑇2. In Figure 6-3, the conditional rejection probabilities for all 

primary and intersection hypotheses in the CTP are shown in red italic font. Adjusted second 

stage boundaries are obtained for each intersection hypothesis, again ensuring that the 

probability of rejection is no greater than the conditional probability calculated for the original 

design. Note that in this scenario, the updated critical values are calculated based on the fact 

that only treatments 𝑇1 and 𝑇3 are present in the second stage of the trial, 𝑇2 having been dropped. 

In Figure 6-3, the updated second stage critical values for the example described are shown in 

the third row of each box.   

  

In Figure 6-3, it can be seen that for the intersection hypothesis, 𝐻01 ∩ 𝐻03, which contains the 

new treatment, the updated second stage critical value is more stringent than in the initial design 

due to the need for an increased multiplicity adjustment in the second stage. On the other hand, 

for the intersection hypothesis 𝐻01 ∩ 𝐻02 where a treatment is dropped for the second stage, the 

critical value is more lenient due to reduced second stage multiplicity adjustment, as expected. 

Critical values for intersection hypotheses which contain both added and dropped treatments 

may increase or decrease depending on the interim results for the dropped treatment(s). In the 

example shown, the dropped treatment is highly efficacious and so, as expected, the updated 

critical values for intersections 𝐻02 ∩ 𝐻03 and 𝐻01 ∩ 𝐻02 ∩ 𝐻03 are more lenient than for the 

initial design.    

  

After the interim analysis has taken place, the trial proceeds with patients recruited to receive 

treatment 𝑇1 or 𝑇3 or the control treatment. At the end of the trial, cumulative test statistics 

relating to treatment versus control comparisons for 𝑇1 and 𝑇3 are calculated.  These are 

compared to the updated boundaries shown in Figure 6-3.   Suppose the test statistics obtained 

are 𝑆1,2 = 2.43 and 𝑆3,2 = 2.14.  Treatment 𝑇1 may be declared effective because all intersection 

hypotheses containing 𝑇1 have been rejected at level 𝛼. The new treatment 𝑇3 may also be 

declared effective because the test statistic exceeds the critical value for the primary hypothesis 

and the intersection hypothesis 𝐻02 ∩ 𝐻03. The remaining intersection null hypotheses 

containing 𝑇3 have already been rejected on account of the efficacy of 𝑇1.  
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Figure 6-3 MAMS(R) design expressed as a closed testing procedure in which treatment 𝑇2 is 

dropped for safety and an additional treatment 𝑇3  is incorporated into the trial, at the interim 
analysis. For each intersection hypothesis in the system, the original non-binding stage one 
critical value and binding stage two critical value are shown in the first row. The estimated 
conditional rejection probability is shown in the second row in red italic font and the updated 
stage two critical values are given in the third row. The critical values are based on the 
assumption that only those treatments present in the second stage (𝑇1 and/or 𝑇3) are used to test 
a given null hypothesis. 

 

  

 

6.5.2 Methodology for the simulation study   

In this section, a simulation study is described in which the properties of the procedure outlined 

in Section 6.5.1 are investigated. The first part of the study considers Scenario 1, investigating 

overall power and the power of individual treatment versus control comparisons when a new 

treatment arm is added to a MAMS(R) trial at an interim analysis.  The second part of the study 

explores these same properties for Scenario 2, in which a treatment is dropped for safety and a 

new treatment arm is added at an interim analysis. As in the previous section, the trials 

considered are two stage 𝐼  𝐷 trials where both the intermediate and definitive outcome are 

binary, and the LOR parameterisation is used to measure treatment effects.    
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Simulation study. Scenario one: No dropping of treatments for safety reasons  

The feasible and admissible three-arm MAMS(R) design introduced in Section 4.4.1 and shown 

in Table 6-1 (Section 6.5.1), is chosen as the original design of the trial. At the start of the trial, 

patients are allocated to either the control treatment or one of the experimental treatments, 𝑇1 

and 𝑇2. Using the R package bindata (v 09-19: Leisch, Weingessel and Homik 2015), individual 

patient data for both 𝐼 and 𝐷 outcomes are generated to represent these three groups of patients 

in the first stage of the trial. In keeping with the design of the trial, treatment selection takes 

place at an interim analysis and is based on a Wald test statistic relating to the 𝐼 outcome. Three 

different schemes are then investigated for the second stage of each simulated trial:    

1. The trial proceeds as planned with treatments 𝑇1 and 𝑇2 continuing in the second stage 

of the trial provided the interim threshold is met.  The second stage critical values remain 

the same as those of the original design.  

2. A new treatment, 𝑇3, is available for confirmatory testing at the time of the interim 

analysis and this new arm is added to the trial so that patients are recruited to treatments 

𝑇1, 𝑇2, 𝑇3 or the control group in the second stage of the trial. A pooled analysis is 

planned and the stage two critical boundaries are adjusted to maintain the target FWER 

for a four arm (𝐾 = 3) trial.   

3. The scheme is similar to that described above (scheme 2) in that a new treatment arm is 

added to the trial at the interim analysis. However, the conditional error procedure 

outlined in Section 6.5.1 is implemented to calculate updated stage two boundaries for 

each intersection hypothesis in the expanded set. Note that conditional error calculations 

are performed using the observed stage one outcomes for the definitive outcome once 

these become available.  

A second stage for each trial is simulated in accordance with each of the schemes outlined above, 

so that data on the definitive outcome is generated for each treatment present in the second stage 

and the control group. Final cumulative test statistics for each remaining experimental treatment 

on the 𝐷 outcome, are calculated at the end of the trial by combining data from patients in both 

stages of the trial. These are then compared to the specified second stage critical values and a 

final decision regarding efficacy is made.   

  

For each of the three schemes outlined above, the proportion of simulated trials in which any 

non-null treatment is declared beneficial at the end of the trial is then identified to give an 
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estimate of the overall power for that scenario. The power for the individual treatment versus 

control comparisons for 𝑇1 is recorded. The power relating to 𝑇1 is of interest because ideally 

the add-arm procedure should not have an adverse effect on the power relating to any treatment 

versus control comparison(s) already included in the trial. In both cases the power of the new 

stage-wise procedure is compared with a conventional pooled analysis which implements 

FWER control adjusted for the addition of the new treatment arm. Two different sets of 

treatment effects are investigated in this study. In the first set, all three experimental treatments 

have the same underlying treatment effect.  Power is evaluated for a range of values for the 

treatment effect on the definitive outcome, denoted 𝜃𝐷, while the effect on the intermediate 

outcome is held constant at 𝜃𝐼
𝑅 .  In the second set, treatments 𝑇1 and 𝑇3 have treatment effects 

on the definitive and intermediate outcomes equal to 𝜃𝐷 and 𝜃𝐼
𝑅 respectively, but treatment 𝑇2 is 

efficacious with respect to the definitive outcome at 𝜃𝐷
𝑅 throughout.     

  

Simulation study. Scenario two: Incorporating the dropping of treatments for safety reasons 

For this part of the study, the choice of trial design and simulation of first stage data is conducted 

exactly as described for scenario one. However, at the interim analysis, treatment 𝑻𝟐 is 

dropped from the trial despite meeting efficacy requirements, because it is supposed that a 

serious safety concern has been identified. Three different schemes are then investigated for the 

second stage of each simulated trial.    

1. The trial proceeds but with only treatment 𝑇1 in the second stage of the trial. The second 

stage critical values remain the same as those of the original design.  

2. A new treatment, 𝑇3, is available for confirmatory testing at the time of the interim 

analysis and this new arm is added to the trial so that patients are recruited to receive 

treatment 𝑇1,𝑇3 or the control treatment in the second stage of the trial. The stage two 

critical boundaries are adjusted to maintain the target FWER for a four arm (𝐾 = 3) to 

ensure the FWER is not inflated by the addition of the extra arm.  

3. As in scheme 2, a new treatment, 𝑇3, is available for confirmatory testing at the time of 

the interim analysis and this new arm is added to the trial so that patients are recruited 

to treatments 𝑇1 and 𝑇3 or the control group in the second stage of the trial. The 

procedure outlined in Section 6.5.1 is implemented so that the conditional error of each 

intersection hypothesis in the expanded set is obtained and second stage critical values 

are adjusted to account for both the dropped treatment and the added treatment 

arm.   
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The second stage for each trial is simulated in accordance with each of the schemes outlined, as 

described above. Again, overall power and the power for some individual treatment versus 

control comparisons are recorded. As before, two different sets of treatment effects are 

investigated in this study, one in which all three experimental treatments have the same 

underlying treatment effect, and the second in which treatments 𝑇1 and 𝑇3 have treatment effects 

on the definitive and intermediate outcomes equal to 𝜃𝐷 and 𝜃𝐼
𝑅 respectively, but the dropped 

treatment, 𝑇2, is efficacious with respect to the definitive outcome at 𝜃𝐷
𝑅 throughout. 

6.6 Results  

In Section 6.6.1, results relating to the simulation study for scenario one, described in Section 

6.5.2, are presented. These illustrate the performance of three-arm 𝐼 ≠ 𝐷 MAMS(R) trials in 

which the procedure outlined in Section 6.5.1 is used to add a new treatment arm to the study at 

an interim analysis. Figure 6-4 shows how implementing the procedure affects the overall power 

of the trial and Figure 6-5 shows how the procedure affects the power to declare treatment 𝑇1 

effective.   

In Section 6.6.2, results of the simulation study relating to scenario two, are presented. These 

illustrate the performance of three-arm 𝐼 ≠ 𝐷 MAMS(R) trials in which an effective 

experimental treatment is dropped at an interim analysis for safety reasons and a new treatment 

arm is added into the study at the same point. Figure 6-6 shows how implementing the procedure 

affects the overall power of the trial and Figure 6-7 shows how the procedure affects the power 

to declare only 𝑇1 effective. The power of the new procedure is compared with that achieved if 

the original design is adhered to when a treatment is dropped for safety reasons, and also with 

the power achieved if a conventional analysis with FWER control is used.  

6.6.1 Performance of MAMS(R) trial when a third treatment arm is added at the 

interim analysis. Scenario one: No dropping of treatments for safety reasons  

Overall power  

In the first panel of Figure 6-4, all treatments evaluated in the trial have the same treatment 

effect.  The overall power of the original MAMS(R) design (𝐾 = 2) is shown as a blue dotted 

line. The green dashed line then shows the change in overall power when a further treatment 

arm is added at the interim analysis and adjustment is made to the final stage critical values to   
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Figure 6-4 Estimated overall power for the MAMS(R) framework under a threshold selection rule, 
for three-arm (𝐾 = 2) trials where 𝐼 ≠ 𝐷 and where a new treatment arm is added to the trial at the 
interim analysis. In the first panel the final treatment effect is the same for all experimental 
treatments and is equal to 𝜃𝐷. In the second panel, the treatment effect for 𝑇2 is held constant at 
𝜃𝐷𝑅. In each panel, the overall power of the original design is compared with that achieved when 
a new treatment arm is added and adjustment for FWER is made, and also with the overall power 
achieved when the conditional error (CE) procedure is used to add in a new treatment arm.  

 

maintain the required FWER. It can be seen that this process results in overall power being 

similar to the original design at low treatment effects as expected, as the effect of the more 

stringent final stage critical values is matched by the increase in power afforded by the 

additional treatment arm. At higher treatment effects the advantage of the extra treatment arm 

appears to slightly outweigh the larger critical values and overall power is slightly higher than 

for the original design. The dot and dash red line shows the gain in overall power which is 

achieved when the addition of the new treatment arm is carried out using the conditional error 

approach described in Section 6.5.1. Overall power is increased across the whole curve 

compared to the conventional approach, particularly for higher treatment effects. The gain 

occurs because this method adopts a stage-wise analysis so that multiplicity adjustments reflect 

the number of treatments actually present at a given stage; in this case two treatments are 

evaluated in stage one and three treatments are evaluated in stage two.   
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The second panel in Figure 6-4 shows a parallel set of results when the treatment effect for one 

treatment, 𝑇2, is held constant at 𝜃𝐷
𝑅. Again, the overall power of the original MAMS(R) design 

(𝐾 = 2) is shown as a blue dotted line. The addition of the extra arm results in a reduction in 

power for the conventional approach (shown by green dashed line) compared with the original 

(𝐾 = 2) design, when the other experimental treatments have lower treatment effects. This 

probably occurs because in this region of the curve, overall power is almost exclusively driven 

by the efficacy of 𝑇2, and therefore the effect of the more stringent critical value is not 

outweighed by the presence of the extra treatment arm. In the section of the graph representing 

large treatment effects for 𝑇1 and 𝑇3, there is a slight gain in overall power compared with the 

original design, as is also seen in panel one. Implementing the conditional error approach to add 

the extra arm results in a gain in power compared with the conventional approach. This can be 

seen across all sections of the curve although the advantage is most evident in the first section 

of the graph.  

Power to declare treatment 𝑻𝟏 effective  

In the first panel of Figure 6-5, results relating to treatment 𝑇1 are presented for an add-arm trial 

where all experimental treatments are equally effective. The black dotted line shows the power 

to declare 𝑇1 effective under the original MAMS(R) design. It is clear that when a new arm is 

added and a conventional approach is used, the power to declare 𝑇1 effective falls across the 

whole curve compared with the original MAMS(R) design. This is expected and is due to the 

increased multiplicity adjustment leading to more stringent final critical values. In the second 

panel, in which the effect for treatment 𝑇2 is held constant at 𝜃𝐷
𝑅, the same pattern is seen, since 

the effectiveness of 𝑇2 does not impact the power for 𝑇1 in the original MAMS(R) design, each 

treatment control comparison being conducted independently.  In the first panel it can be seen 

that implementing the conditional error procedure, shown as a dot and dash red line, results in 

improved power to declare 𝑇1 effective compared with the conventional approach, such that 

power is increased to a level equal to or greater than that achieved in the original design.  The 

improvement is evident at moderate and higher treatment effects and is probably partly due to 

the closed testing approach which tends to increase power for individual treatment control 

comparisons whilst controlling the FWER at the specified level, and also partly due to the 

stagewise nature of the analysis which accounts for the reduced need for multiplicity adjustment 

in stage one.  
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Figure 6-5 Estimated power to declare 𝑇1 effective using the MAMS(R) framework under a 

threshold selection rule, for three-arm (𝐾 = 2) trials where 𝐼 ≠ 𝐷 and where a new treatment arm 

is added to the trial at the interim analysis. In the first panel the final treatment effect is the same 

for all experimental treatments at 𝜃𝐷. In the second panel, the treatment effect for 𝑇2 is held 

constant at 𝜃𝐷𝑅. In each panel, the power of the original design is compared with the power 

achieved when a new treatment arm is added and adjustment for FWER is made, and also with 

the power achieved when the conditional error (CE) procedure is used to add in a new treatment 

arm.  

It is notable that the advantage of the conditional error approach appears to wane at low 

treatment effects. Recall that when adding a new arm, the conditional error procedure requires 

that final stage critical values for intersection hypotheses which include the new treatment are 

determined by interim results for treatments present at stage one. In an add-arm trial, there is 

the potential for power relating to treatments already present in the trial to fall because of the 

penalty which results from having to evaluate the conditional error of the intersection 

hypotheses which contain the new treatment before that treatment is present in the trial. This 

penalty is likely to be evident when one or more of the treatments already in the trial is 

ineffective. For example, if the first stage treatment effect for 𝑇1 is very small, the conditional 

error for the intersection hypothesis 𝐻01 ∩ 𝐻03 will also be small, resulting in a large second 

stage critical value in the updated design. This may explain why improved power to declare 𝑇1 

effective is not evident in the first section of the graph.  Support for this explanation is provided 
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by consideration of the results in panel two of Figure 6-5, in which the gain in power achieved 

by the conditional error procedure is greater than in panel one and extends to the early part of 

the curve. When the treatment effect of 𝑇2 is held high throughout, second stage critical values 

for corresponding intersection hypotheses will tend to be lower, and hence the conditional error 

procedure will confer some advantage even when the treatment effects for the remaining 

treatments are low.    

6.6.2 Performance of MAMS(R) trial when a third treatment arm is added at the 
interim analysis. Scenario two: Incorporating the dropping of treatments for 
safety reasons  

Overall power  

In the top row of Figure 6-6, the dashed blue line in panel one shows the familiar power curve 

which is obtained using the original MAMS(R) design, in which treatments are dropped only if 

they fail to meet the threshold on the intermediate outcome. The dotted black line then shows 

the fall in power which occurs if 𝑇2 is dropped for safety reasons despite meeting the efficacy 

threshold, but when the critical values of the original MAMS(R) design are adhered to.  As 

expected, and in line with the results for the six-arm trial presented in Section 5.5, there is a 

substantial drop across all values of 𝜃𝐷 explored.  In the second panel, the dashed green line 

shows the change in overall power when a new treatment arm is added, so that 𝑻𝟏 and 𝑻𝟑 are 

evaluated in the second stage of the trial, and when final stage critical values are adjusted to 

maintain the target FWER for a trial in which three experimental treatments are evaluated in the 

trial as a whole. The addition of the new treatment arm increases overall power, but not to the 

level achieved in the original design because this method makes no adjustment for the dropped 

treatment 𝑇2. In the third panel, the dash and dot red line shows the improvement in overall 

power when a new treatment arm is added using the approach proposed in Section 6.5.1. It can 

be seen that when an arm is added using the closed testing and conditional error approach, 

overall power increases substantially compared with the other approaches, and that this 

improvement is seen across the full range of 𝜃𝐷 values investigated, although the advantage is 

less apparent at very low treatment effects. The reason for the gain in power is that the stage-

wise approach results in reduced multiplicity adjustment in the second stage because treatment 

𝑇2  has been dropped, and some of the power ‘lost’ when 𝑇2 is dropped, is then harnessed to 
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increase the power for the treatment control comparisons relating to the treatments 𝑇1and 𝑇3 

which are present in stage two.  

 

In the bottom row, which shows results when 𝑇2 is effective at 𝜃𝐷
𝑅, a very similar pattern is seen. 

However, the advantage of the conditional error procedure over the conventional approach is 

more marked, especially at lower treatment effects. As discussed in the previous section, this 

can be explained by the presence of the effective treatment at stage one, leading to reduced final 

stage critical values for some intersection hypotheses, and hence increased overall power.   

  

  
  
Figure 6-6 Estimated overall power using the MAMS(R) framework under a threshold selection 

rule, for three-arm (𝐾 = 2) trials where 𝐼 ≠ 𝐷 and where treatment 𝑇2 is dropped for safety reasons. 

In the first row the treatment effect is the same for all experimental treatments at 𝜃𝐷 In the second 

row, the treatment effect for the dropped treatment, 𝑇2, is held constant at 𝜃𝐷𝑅. In each row, the 

first panel shows the drop in power when a treatment is dropped and the original critical values 

are adhered to. The second panel compares this with the power achieved when a new treatment 

arm is added and adjustment for FWER is made. In the third panel, the power achieved when the 

conditional error (CE) procedure is used to add in a new treatment arm is also shown.  
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Figure 6-7 Estimated power to declare treatment 𝑻𝟏 effective, using the MAMS(R) framework 

under a threshold selection rule, for three-arm (𝑲 = 𝟐) trials where 𝑰 ≠ 𝑫 and where treatment 𝑻𝟐 

is dropped for safety reasons. In the first row the treatment effect is the same for all experimental 

treatments at 𝜽𝑫. In the second row, the treatment effect for the dropped treatment, 𝑻𝟐, is held 

constant at 𝜽𝑹𝑫. In each row, the first panel shows the drop in power when a treatment is dropped 

and the original critical values are adhered to. The second panel compares this with the power 

achieved when a new treatment arm is added and adjustment for FWER is made. In the third 

panel, the power achieved when the conditional error (CE) procedure is used to add in a new 

treatment arm is also shown.  

  

Power to declare treatment 𝑻𝟏 effective  

In the top row of Figure 6-7, panel one shows the familiar power curve for 𝑇1, obtained using 

the original MAMS(R) design when all treatment effects are equal, and panel two shows the 

expected drop in power relating to 𝑇1 which occurs when a new arm is added and the design 

updated for a conventional analysis. In panel three, it can be seen that implementing the 

conditional error procedure results in increased power for 𝑇1. As discussed previously, this 

effect is partly due to the closed testing approach which tends to increase power for individual 
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treatment control comparisons, but is also due to the stage-wise nature of the analysis which 

allows multiplicity adjustments to reflect the number of treatments actually present at each 

stage. The gain resulting from implementing the conditional error procedure is not evident at 

low treatment effects, for reasons discussed in Section 6.6.1. In general, the procedure is 

effective in achieving high power relating to 𝑇1 across most of the curve, but there remains some 

penalty for adding a new treatment arm if first stage treatment effects are small.  In the second 

row, where the dropped treatment, 𝑇2, is effective at 𝜃𝐷
𝑅, a similar pattern is seen although the 

improvement in power compared with a conventional analysis is larger, particularly at low 

treatment effects. This is because the dropped treatment is highly effective at stage one, leading 

to reduced final stage critical values for some intersection hypotheses, and hence increased 

overall power   

  

6.7 Discussion  

In this chapter, the methods proposed in Chapter 5 have been extended to allow a new treatment 

arm to be added to a two stage MAMS(R) trial at an interim analysis. The procedure implements 

conditional error calculations, such that design changes may be made without inflation of the 

FWER, even if these design changes are made as a result of interim data.  Design changes may 

include dropping or adding treatment arms or even changing the per-group sample size. The 

proposals made in this chapter provide a framework for conducting adaptive add-arm trials 

(AAATs), and may be viewed as complementary to the proposals made by authors such as Elm 

et al. (2012) and Howard (2018) for conducting conventional add-arm trials (CAATs).  

   

In this chapter, the proposed procedure has been evaluated firstly for a three arm (𝐾 = 2) 

MAMS(R) trial in which a third experimental arm is added at an interim analysis, and secondly 

for the particular setting of a three-arm (𝐾 = 2) trial in which one treatment is dropped for safety 

reasons at an interim analysis in spite of meeting efficacy requirements. In the latter scenario, it 

was shown in Chapter 5 that conditional error calculations may be carried out to recover some 

of the power lost as a result of dropping promising treatment arms, with multiplicity adjustments 

for the remaining treatment versus control comparisons being relaxed.  Here, the same approach 

is used but with the aim of harnessing the recovered power to add in a new treatment arm.   

  

In the first scenario, the results of the simulation study show that the conditional error procedure 

results in a FWER similar to that of the original design as expected. At moderate to high 
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treatment effects, the procedure achieves slightly better power than the conventional approach 

due to the stage-wise nature of the analysis which allows multiplicity adjustments to reflect the 

number of treatments actually present at each stage. The procedure also protects the power to 

declare treatment 𝑇1 effective at a level similar to that of the original design; this is important 

as design changes which reduce the power for treatment control comparisons in the trial from 

the start may be viewed as disadvantageous. The gain in power is evident across both sets of 

treatment effects explored, but is more marked when one treatment is highly effective. The other 

advantages of the stage-wise approach include the facility to make other design changes without 

potential inflation of the FWER, and the fact that there is no requirement to convince regulators 

that the interim data does not inform the decision to add the new arm, since the two stages of 

the trial are statistically independent.  

  

In the second scenario, when a promising treatment arm is dropped at an interim analysis, the 

add-arm procedure results in a significant increase in both the overall power and the power to 

declare 𝑇1 effective, compared with using the original design or the conventional approach. The 

gain achieved by the new procedure is greater than for scenario one because the approach allows 

some of the power of the dropped treatment to be conserved within the trial and used to increase 

the power of the remaining treatments in the trial including the new treatment. Again, the 

advantage is more marked if the dropped treatment is highly effective.   

  

In both of the scenarios investigated, when the treatment effects of the experimental treatments 

present at the start of the trial are very small, the proposed procedure for adding a new treatment 

arm may not increase power. These findings are explained by the fact that at the interim analysis, 

the conditional error of intersection hypotheses which contain 𝑇3 must be calculated when 𝑇3 is 

missing. The conditional error may be very small when 𝑇1 and/or 𝑇2 are ineffective, resulting 

in larger stage two critical values and reduced power. This demonstrates one of the 

disadvantages of the stage-wise approach for add-arm trials. Howard (2018) identifies a similar 

effect when comparing a stage-wise analysis with a conventional analysis in CAATs and cites 

this as a reason for preferring a conventional analysis.  However, in an AAAT where interim 

data may inform a number of design changes, it may be argued that a stage-wise analysis is the 

only option and hence some penalty at low treatment effects may be unavoidable. As always, it 

is important that investigators are fully aware of the potential benefits and disadvantages of an 

add-arm procedure before decisions are made to proceed. Since the stage-wise procedure allows 
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design changes to be informed by interim data, one option would be to consider the efficacy 

data before deciding whether to add an arm or not. The issue of whether or not to add a new 

treatment arm to an ongoing trial is discussed at length by Lee, Wason and Stallard (2019). 

These authors suggest a Bayesian procedure, based on stage one efficacy, which may be 

implemented for formal decision making.   

  

In this chapter, the procedure has been presented for a three-arm 𝐼 ≠ 𝐷 MAMS(R) trial in which 

a new treatment arm is added at an interim analysis where treatment selection occurs, with or 

without the dropping of one treatment for safety reasons. The approach could readily be 

extended to accommodate other types of AAAT, such as 𝐼 = 𝐷 trials, trials with more treatment 

arms or trials where two or more treatment arms are dropped or added. Issues surrounded the 

generalisability of these methods are discussed further in Section 7.3.  

  

A further consideration concerns the particular challenges in the reporting of clinicals trials in 

which multiple treatments are evaluated or in which an adaptive design is used. This issue is 

clearly of relevance to the add-arm trials discussed in this chapter. As discussed in Section 1.4, 

in order to address the suboptimal reporting of these trials and to ensure the benefits of these 

trials are better understood and realised, two extensions of the CONSORT 2010 Statement have 

been produced. The first gives specific guidance for the reporting of multi-arm parallel-group 

trials (Juszczak et al., 2019). The extended guidelines include details on how the adding of new 

treatment groups should be reported in these trials, and are of relevance to the correct reporting 

of trials referred to in this chapter as CAATs. The second extension, called The Adaptive 

CONSORT Extension Statement, comprehensively addresses the reporting of adaptive trials 

(Dimairo et al., 2020). This document includes guidance for reporting trials which incorporate 

the adding and dropping of treatment arms, and applies to the AAATs discussed in this chapter.      
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Chapter 7. Discussion and further work  

  

7.1 Motivation   

In the opening chapter of this thesis, it was explained that there is an urgent need to increase the 

efficiency of the drug development process in order to meet the needs of the current healthcare 

climate. In response to this issue, there has been a growing interest in the subject of multi-arm 

adaptive trials and how these might be further developed to best facilitate the timely evaluation 

of novel treatments in human subjects. In this thesis, a number of methodological aspects 

relating to multi-arm adaptive trials have been explored. The ultimate aim of the research has 

been to extend the range of methods available for conducting these trials and to make practical 

suggestions and recommendations which it is hoped may be of help to investigators and 

clinicians who wish to conduct trials of this type which maintain statistical integrity.   

  

7.2 Summary and discussion of main findings  

The early chapters of this thesis described the two main approaches used in multi-arm adaptive 

designs, the first involving the monitoring of cumulative test statistics against pre-defined 

critical values (boundary-based methods) and the second utilising a stage-wise analysis. For the 

first approach, designs may be obtained using either the group-sequential or the MAMS(R) 

framework. This thesis focussed on boundary-based multi-arm trial designs obtained using the 

MAMS(R) framework, partly because of the simplicity and flexibility of this system, but also 

because one of the objectives of this research was to explore new developments in MAMS(R) 

methodology which have been proposed recently (Bratton, Phillips and Parmar, 2013; Bratton, 

2015). These new developments include the option for FWER control in these designs and also 

the facility to obtain feasible and admissible designs for trials with either binary or survival 

outcomes.   

  

The recent developments in MAMS(R) methodology proposed by Bratton (2015) use 

‘difference in proportions’ to parameterise treatment effects for binary outcomes, and do not 

consider the alternative parameterisation, the log odds ratio (LOR). One of the first steps 

undertaken in this thesis was to extend the methodology and the programmes used to obtain 

feasible and admissible MAMS(R) designs, to offer the option to parameterise treatment effects 

using the LOR. Whilst this was successfully accomplished, it was not possible to obtain an 
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analytical solution to express the correlation of test statistics when an intermediate outcome is 

incorporated under the LOR. A similar finding was reported by Royston et al. (2011) in the 

context of survival trials, where treatment effects are parameterised as log hazard ratios.  It was 

therefore necessary to develop a routine based on simulation to estimate this correlation.  The 

routine uses an approach similar to that proposed by Bratton, Choodari-Oskooei and Royston 

(2015), which the authors implemented in order to estimate correlations between log hazard 

ratios.   

  

A principal aim of this thesis was to compare the boundary-based approach, using the 

MAMS(R) framework, with the combination test which is a well-established stage-wise 

approach, and to explore the performance of the two methods across a number of scenarios. 

Trials incorporating pre-planned adaptivity were considered first. In this context, for 𝐼 = 𝐷 trials 

where a common outcome is monitored throughout and a threshold selection rule is in place, 

the MAMS(R) approach slightly outperformed the stage-wise method across all designs and 

sets of treatment effects investigated. This finding is consistent with previous results which have 

shown the group sequential method tends to be more powerful than stage-wise methods in trials 

with a single experimental treatment arm, with this advantage being attributed to the fact that 

sufficient statistics are monitored throughout (Mehta and Tsiatis, 2003; Jennison and Turnbull 

2003). Furthermore, for trials where the aim is to recommend the best treatments, it was shown 

that the hybrid selection rule proposed in Chapter 4 may provide an effective way to minimise 

the probability of inferior but partially effective treatments being declared effective at the end 

of the trial, although the more stringent hybrid rule does mean that some of the power advantage 

of MAMS(R) over the combination test seen under the threshold rule is lost.  However, for 𝐼 ≠ 

𝐷 trials, where an intermediate outcome informs treatment selection, the results in this thesis 

showed that the combination test was more powerful than the MAMS(R) approach, especially 

for trials which have many experimental treatment arms and when a more stringent selection 

rule is used in place of a threshold rule. This occurs because in MAMS(R) designs, the critical 

value for the final stage is determined assuming that treatments are fully effective on the 𝐼 

outcome (Bratton 2015), making the procedure conservative when any treatments are dropped 

at the interim analysis. It is noteworthy that the MAMS(R) method seems to be less suitable for 

𝐼 ≠ 𝐷 than for 𝐼 = 𝐷 trials, given the fact that it was originally constructed specifically for trials 

which incorporate an intermediate endpoint.   
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The early chapters of this thesis showed that the MAMS(R) framework, as it currently stands, 

is simple for clinicians to understand, protects the FWER, and achieves good power when used 

in the context of 𝐼 = 𝐷 trials which implement a threshold selection rule. However, the method 

loses power in 𝐼 ≠ 𝐷 trials when any treatments are dropped and in 𝐼 = 𝐷 trials if a more stringent 

selection rule is used. A further limitation of the MAMS(R) approach is that it does not readily 

facilitate the more flexible forms of adaptivity which are increasingly requested in the current 

healthcare climate. Flexible adaptivity involves mid-trial design changes, made in response to 

emerging information both internal and external to the trial. For example, a safety concern may 

warrant the dropping of a treatment currently in the trial even though it is demonstrating good 

efficacy, or alternatively there may be a new treatment available for Phase III testing which the 

investigator wishes to add to an ongoing trial. There may even be a desire to change per-group 

sample size partway through a trial if recruitment rates differ from expected or if there is a 

change in the anticipated treatment effect. In the latter chapters of the thesis, a procedure was 

proposed in which the conditional error approach and the closed testing procedure are 

incorporated into the original MAMS(R) framework. This procedure addresses the 

shortcomings discussed earlier, in order to offer a flexible approach which does not lose as much 

power when treatments are dropped, which permits other mid-trial design changes and which 

can be extended to accommodate the adding of a new treatment arm.   

  

The proposed method developed in this thesis builds on the work of Magirr, Stallard and Jaki 

(2014), who incorporate conditional error calculations into group sequential methodology using 

numerical integration, although these authors do not consider 𝐼 ≠ 𝐷 trials and do not explore the 

option to add in new treatment arms. In this thesis, for the reasons outlined in Section 5.3, a 

simulation method, rather than numerical integration, was used to implement the conditional 

error approach and to obtain new final stage critical values. Multiplicity adjustments for the 

second stage of the trial are based on the number of treatments actually present at this point in 

the trial, addressing the inherent conservatism in 𝐼 ≠ 𝐷 trials and in 𝐼 = 𝐷 trials where a more 

stringent selection rule is implemented. Moreover, because the procedure separates out the data 

from the two stages of the trial, mid-trial design changes are facilitated without potential 

inflation of the FWER or a fall in power.   

  

In this research, the procedure is first presented for a single trial in diagrammatic form, using 

the structure of the closed testing procedure introduced in earlier chapters, in order to aid clarity 
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and understanding.  The properties of the procedure were then evaluated across a range of 

scenarios in a simulation study, which illustrated the gain in power afforded by the procedure 

when treatments are dropped for safety concerns, an event which results in a fall in power under 

the original MAMS(R) design. As expected, the procedure reclaims some of the power lost 

when effective treatments are dropped. The method may be applied to both 𝐼 = 𝐷 and 𝐼 ≠ 𝐷 

trials. However, the advantage is more evident when dropped treatments are highly efficacious, 

and in 𝐼 ≠ 𝐷 trials which are inherently more conservative.  

  

Add-arm trials provide a further way of increasing the efficiency of the drug development 

process, by allowing newly available treatments to be evaluated in trials which are already up 

and running. Much of the detailed research in this area has focussed on the issue of adding a 

new treatment arm to an otherwise conventional trial (Elm et al., 2012; Cohen et al., 2015; 

Howard, 2018); adding an arm to a trial which has an adaptive design has been less well 

researched. In this thesis, the different features of conventional add-arm trials (CAATs) and 

adaptive add-arm trials (AAATs) have been identified and clearly set out for the first time. 

Consideration was given to the different statistical issues which arise in each case, and in 

particular how these matters should be addressed in the less familiar context of AAATs. Based 

on these principles, a procedure for conducting AAATs was then proposed, in which the 

conditional error procedure is extended to offer the facility to add a new treatment arm to a 

three-arm (𝐾 = 2) 𝐼 ≠ 𝐷 MAMS(R) trial at an interim analysis, without potential inflation of 

the FWER. Again, details of the method were first presented for a single trial using a clear 

diagrammatic format and the approach was then evaluated across a number of scenarios in a 

simulation study.   

  

One advantage of the procedure is that the increased multiplicity adjustments required on 

account of the new treatment arm are only made for the stage of the trial when the additional 

treatment is present, rather than across the whole trial.  Also, there is no requirement to claim 

that the decision to add a new arm has not been informed by the interim data, since the different 

stages of the trial are statistically independent. This also means that other design changes may 

be made if appropriate, for example the per-group sample size could be altered in response to 

emerging information about recruitment or treatment effects. Finally, the procedure naturally 

accommodates trials in which some treatments are dropped as well as added at the interim 

analysis, aiding efficiency.  In the event of an effective treatment being dropped from a trial, it 
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was shown in the simulation study that the procedure gives a particularly marked improvement 

in power compared with adhering to the original design.   

  

7.3 Strengths and limitations of this research  

One of the strengths of this research as a whole is that it does not focus exclusively on one 

method for multi-arm adaptive trials. Although particular attention has been given to the 

evaluation and extension of the MAMS(R) method, the work also provides a broad overview of 

other methods used in multi-arm adaptive trials, allowing the findings of this work to be 

interpreted in the overall landscape of multi-arm adaptive trial methodology. This approach is 

useful practically as it enables clinicians to assess new developments alongside other methods 

before deciding which best meets the needs of their research. In particular, the investigations 

conducted in Chapter 4 build on the existing body of literature by exploring the less-researched 

MAMS(R) framework and then evaluating performance alongside the well-established 

combination test in a new comparison study. Furthermore, in Chapter 5 consideration is given 

to the conditional error approach, and how features of this methodology may be incorporated to 

enhance the performance of MAMS(R) trial designs.   

  

Another strength of this work is that particular attention has been directed to the incorporation 

of an intermediate endpoint in multi-arm adaptive trials, an area identified as a research priority 

in the FDA critical path initiative (FDA 2004).  In Chapters 3, 4 and 5 of this thesis, the 

extension of MAMS(R) methodology to include the LOR parameterisation, the simulation 

studies conducted to evaluate the performance of the MAMS(R) framework alongside other 

approaches, and the demonstration and evaluation of the conditional error procedure have all 

been carried out for 𝐼 ≠ 𝐷 trials as well as for the more familiar 𝐼 = 𝐷 trials. Since the multi-

arm group sequential framework focusses on 𝐼 = 𝐷 trials, this work has served to extend 

previous research and to provide a fuller evaluation of the methods.  Interestingly, the research 

in this thesis has highlighted the fact that different adaptive trial methodologies may be suitable 

depending on whether or not the trial utilises an intermediate outcome for treatment selection.   

  

A further strength of this work is that the performance of the proposed methods has been 

investigated across a number of scenarios and trial types. For example, in the simulation studies 

presented in Chapters 4, both superiority and non-inferiority trials have been investigated.  

Moreover, in Chapters 4 and 5, smaller three arm (𝐾 = 2) designs and larger six arm (𝐾 = 5) 
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designs were explored in each study, for both 𝐼 = 𝐷 and 𝐼 ≠ 𝐷 trials. Furthermore, for each of 

these designs, two different sets of treatment effects were explored.  Power curves were then 

obtained in order to observe performance across a range of underlying efficacies of the definitive 

outcome. The purpose of exploring a range of scenarios was to identify any consistent trends 

and ultimately to draw conclusions which may be generalisable.   

  

In Chapter 6, a method for adding a new treatment arm to an ongoing three-arm MAMS(R) trial 

was presented. A strength of the work presented in this chapter is that the procedure is illustrated 

for two different contexts, either of which could occur in practice. In the first, a new arm is 

added to the trial at the interim analysis and existing treatments are selected according to the 

MAMS(R) design. In the second, an efficacious treatment is dropped from the trial for safety 

reasons at the same time. Again, for each context, the procedure was evaluated under two sets 

of treatment effects and for a range of underlying treatment effects, with the aim of drawing 

generalisable conclusions.  

  

Throughout this thesis, only trials with binary outcomes have been considered and this may be 

viewed as a limitation of the research. The reason for focussing on binary outcomes was that 

the recent developments in MAMS(R) methodology which allow the generation of feasible and 

admissible MAMS(R) designs which control the FWER, on which this thesis is based, had only 

been fully developed for binary outcomes, although note that MAMS(R) designs with FWER 

control have now been formulated for trials with survival outcomes (Bratton, Choodari-Oskooei 

and Royston, 2015, Blenkinsop and Choodari-Oskooei, 2019). However, the methods for the 

generation of MAMS(R) designs could be applicable to any outcome type provided the 

correlation structure is known. Since throughout these investigations the asymptotic normality 

of test statistics is assumed, it seems reasonable to expect that the findings of the comparison 

studies would be broadly similar for trials in which other outcomes are used.  

  

A further limitation of the work presented in this thesis is that the extended methodology and 

simulation studies have focussed on two-stage trials only. This approach was taken because one 

of the main aims of this work was to explore new concepts in multi-arm adaptive trial 

methodology and two-stage trials provide the simplest framework in which to first explore and 

demonstrate these ideas; however, many of the proposals could be adapted for use in trials in 

which there are more than two stages. When choosing the number of stages to include in an 
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adaptive trial design, the additional administrative burden of incorporating extra stages should 

always be considered alongside the potential gains in efficiency before a decision is made. This 

is particularly important because there tends to be a pattern of diminishing returns regarding 

reductions in expected sample sizes when adding further stages to a trial.  For example, for a 

two-arm group sequential trial with a Pocock efficacy boundary, there is a substantial fall in 

expected sample size (ESS) when moving from one to two stages and a smaller but still notable 

reduction when adding a third stage, but thereafter the efficiency gains of adding further stages 

are much less pronounced, and are almost non-existent beyond five stages (Pocock, 1982). 

Similarly, Bratton (2015) shows that for a variety of 𝐼 = 𝐷 and 𝐼 ≠ 𝐷 two-arm and multi-arm 

MAMS(R) trial designs, the fall in expected sample size in moving beyond three or four stages 

is generally small. It is therefore suggested that in many cases, a three-stage trial may offer a 

good balance between increased efficiency and an acceptable level of administrative 

complexity. Wason et al. (2017) consider the number of stages to incorporate in a drop-the-

losers design where the sample size is fixed at the outset. Again, it is shown that the efficiency 

gains are generally small beyond three stages.  These authors suggest that moving from one to 

two stages offers worthwhile efficiency gains for all multi-arm trials, but that the benefit of 

adding a third stage is only worthwhile for trials in which at least four experimental treatments 

are evaluated.   

  

A limitation of the research described in chapter 6 is that the add arm procedure was developed 

and evaluated only for 𝐼 ≠ 𝐷 trials, although the principles would equally extend to 𝐼 = 𝐷 trials. 

The reason for focussing on 𝐼 ≠ 𝐷 trials was because in Chapter 5 the gain in efficiency afforded 

by the conditional error procedure tended to be greater for 𝐼 ≠ 𝐷 than for 𝐼 = 𝐷 trials, and so it 

was considered that the benefits of the procedure would be most clearly demonstrated in this 

context. Another limitation is that, for the sake of simplicity, the add-arm procedure has been 

illustrated only for a two-stage trial with three-arms (𝐾 = 2) at the outset, and in which one 

additional treatment arm is added at the interim, analysis. However, the same approach could 

be applied to trials with more treatment arms and could be readily adapted to add in more than 

one new treatment arm at the interim analysis, as long as the closed testing system was expanded 

sufficiently to include all of the resulting intersection hypotheses.   
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7.4 Practical implications and recommendations  

In this thesis, the generation of feasible and admissible MAMS(R) designs has been extended 

to incorporate the LOR parameterisation. This development means that an investigator may now 

choose whether to use ‘difference in proportions’ or the LOR parameterisation when obtaining 

designs for multi-arm adaptive trials with binary outcomes. However, whilst the LOR offers 

certain advantages, no analytical solution was found for the correlation of treatment effects in 

trials when 𝐼 ≠ 𝐷. Although the proposed simulation approach performed well in the 

investigations conducted, it may be argued that this feature represents a disadvantage of 

obtaining designs using the LOR parameterisation, since for the original ‘difference in 

proportions’ parameterisation an analytical expression for this correlation has been obtained by 

Bratton (2015).   

  

The comparison studies in Chapter 4 suggest that the current MAMS(R) framework provides a 

simple and efficient framework for conducting multi-arm adaptive trials when 𝐼 = 𝐷, and is 

slightly more powerful than the combination test provided the threshold selection rule is adhered 

to. Furthermore, for a proposed trial with many treatment arms where some are likely to be only 

partially effective, and it is desirable to minimise the probability of these treatments being 

recommended, the MAMS(R) method under the hybrid rule should be considered since it 

provides comparable power to the combination test whilst keeping the rate for inferior 

treatments substantially lower.  However, for 𝐼 ≠ 𝐷 trials, the current MAMS(R) framework 

does not perform as well as the combination test and would not be recommended as the approach 

of choice, despite the merit of its simplicity.  If the current MAMS(R) framework is used for 𝐼 

≠ 𝐷 trials then investigators may consider using an epsilon rule in place of the threshold rule, 

as the results presented here suggest that this may increase power beyond that achieved with a 

threshold rule, whilst not causing inflation of the FWER.   

  

The procedure introduced in Chapter 5 provides an investigator with the facility to conduct a 

multi-arm adaptive trial in the MAMS(R) framework, with the advantages of obtaining feasible 

and admissible designs and of monitoring sufficient statistics, but with the additional option to 

recalculate final stage critical values using conditional error calculations to increase the power 

for treatment control comparisons which are made at the end of the trial. The procedure is 

advantageous when any treatments are dropped in an 𝐼 ≠ 𝐷 trial or if any treatments which meet 

the interim efficacy threshold are dropped in an 𝐼 = 𝐷 trial. In general, the greater the number 



 

168  

  

of treatments dropped, and the more efficacious the dropped treatments are, the greater the 

advantage. The procedure does involve extra complexity compared with the current MAMS(R) 

framework and it is acknowledged this may be unacceptable to some investigators. However, 

for 𝐼 ≠ 𝐷 trials in which treatments are dropped, the procedure appears to offer a worthwhile 

advantage. Since the method conveys statistical independence of the two stages of the trial, it is 

also recommended that investigators consider implementing this approach if there is a need for 

other design changes to occur in a MAMS(R) trial, for example if target sample sizes are 

modified in response to recruitment rates.   

  

An extension of this procedure may also be used in adaptive add-arm trials (AAATs), where a 

new treatment arm is added to an ongoing multi-arm adaptive trial. The proposed method is 

advantageous because it allows an investigator to proceed with a usual MAMS(R) trial, but with 

the flexibility to add a new treatment if one is ready for testing at the time of the interim analysis. 

The method proposed in this thesis protects the FWER of the trial, incorporates multiplicity 

adjustments appropriate to each stage and can buy back power from any dropped but effective 

treatments. Moreover, unlike some other approaches to add-arm trials, power for evaluating 

existing treatments is not adversely affected by the addition of the new arm (Wason et al., 2016). 

Again, there is some additional complexity involved in recalculating critical values, but the 

facility to carry out the evaluation of a newly available treatment without the costs of 

establishing a new trial, and with the increased efficiency afforded by the sharing of some 

control patients, may well be viewed as sufficiently beneficial to make the increased effort 

worthwhile.   

  

While the principles described in Chapters 5 and 6 should be generalisable to any trial for which 

a suitable MAMS(R) design may be obtained, the potential benefits of these procedures in 

increasing power will vary for different scenarios, since the gain in efficiency depends on 

features such as nature of the intermediate outcome, the selection rule, the number of treatments 

being evaluated and the occurrence of unforeseen mid-trial issues such as safety concerns. It is 

therefore recommended that simulations studies should be carried out on a case-by-case basis 

at the outset of the trial, to ascertain whether these adaptations are to be specified in the protocol.    
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7.5 Further work  

Currently, feasible and admissible MAMS(R) designs may be obtained for 𝐼 = 𝐷 and 𝐼 ≠ 𝐷 trials 

with binary outcomes (Bratton 2015).  A useful avenue for further work in this area would be 

to extend the methods so that similar MAMS(R) designs may also be generated for survival and 

normal outcomes. Regarding trials with survival outcomes, note that methods and software for 

obtaining MAMS(R) designs with FWER control have recently been described (Bratton, 

Choodari-Oskooei and Royston, 2015, Blenkinsop and Choodari-Oskooei, 2019), although as 

yet the designs obtained are not guaranteed to be admissible in the sense defined in Section 

3.2.2.  

 

Once feasible and admissible MAMS(R) designs can be obtained for a range of outcomes, 

further work could demonstrate how the novel methods proposed in Chapters 5 and 6 might be 

applied to trials with normal or survival outcomes, to improve efficiency when treatment arms 

are dropped and to facilitate the adding of new treatment arms. The main principles of defining 

a closed testing system, calculating conditional error probabilities based on the original trial 

design, and using these to re-calculate critical values for the treatments present in the remainder 

of the trial, should be applicable to any outcome type where the asymptotic normality of test 

statistics can be assumed. However, for trials with survival outcomes, additional care must be 

taken to ensure protection of the FWER. Jenkins, Stone and Jennison (2011) explore this issue 

in constructing valid combination tests for survival trials and show that the first stage analysis 

must include complete survival data on the final outcome for the whole cohort of patients 

recruited in stage one, and that the length of follow up for these patients must not deviate from 

that specified the start of the trial of the trial. These same principles would need to be followed 

when applying the procedures in Chapters 5 and 6 to survival trials. Calculation of the 

conditional error probabilities must be based on a full set of overall survival data, obtained at 

the specified time and including all patients recruited in the first stage, to avoid potential 

inflation of the FWER. 

 

Another useful extension of this work would be to develop the add arm procedure described in 

Chapter 6 for 𝐼 = 𝐷 trials. This would involve an additional step to obtain critical values for the 

closed testing procedure (CTP) when the stage one critical value is binding; which could be 

approached in the manner described in Section 5.4.1. The method could also be extended to 

add-arm trials in which more than one treatment is added at the interim analysis. This would 
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require additional expansion of the CTP at the interim analysis. It would also be interesting to 

conduct a full evaluation of the procedure when other design changes are made, such as when 

per-group sample sizes are increased or decreased.   

  

The estimation of treatment effects in multi-arm adaptive trials has not been addressed in this 

thesis, but is an area of ongoing research which could be usefully extended to specifically 

consider estimation in the MAMS(R) designs which have been explored in this work. As 

discussed in Section 2.9, the estimation of treatment effects and construction of confidence 

intervals is not straightforward in adaptive trials in which treatment selection and/or early 

stopping at interim analyses is incorporated, although it has been suggested that, in standard 

MAMS(R) trials with binary or survival outcomes, bias is of little practical importance and that 

generally no correction is required (Bratton, Phillips and Parmar, 2013; Choodari-Oskooei, et 

al., 2013). Future work could clarify the extent to which these findings are also true for other 

MAMS(R) trial designs, such as when treatment effects for binary outcomes are parameterised 

using the LOR or when other selection rules are used, and whether, and for what scenarios, 

correction for bias in MAMS(R) trials is needed. Furthermore, it would be useful to consider 

the estimation of treatments effects when mid-trial design changes are made to MAMS(R) trials, 

such as in the methods proposed in Chapters 5 and 6 of this thesis.   

   

In this thesis, the focus has been on developing and evaluating two-stage multi-arm adaptive 

trials which offer the flexible dropping and adding of treatment arms, but where the trial has a 

known finishing point and where the FWER is protected at a specified level. Future work may 

extend the principles outlined here, for example to facilitate multi-arm adaptive trials with three 

stages, in which treatment selection occurs at two interim analyses, with the conditional error 

procedure being applied recursively, in the manner suggested by Müller and Schäfer (2004) in 

the context of two arm (𝐾 = 1) trials.   

  

By extending this principle, future research may apply the methods presented in this thesis to 

more complex designs such as those used in platform trials. Platform trials follow a scheme in 

which the dropping and adding of treatment arms occurs at various times over an extended time 

period, offering great flexibility and efficiency. Whilst the uptake of these designs is increasing, 

some aspects remain poorly understood. For example, there has been limited research 

surrounding the issue of adding treatment arms in this context despite the fact that this feature 



 

171  

  

has already been incorporated in a number of real-life platform trials (Cohen et al., 2015). 

Moreover, there remains controversy over whether and how the FWER should be controlled 

across a platform trial (Howard et al., 2018; Parmar et al., 2017). As they currently stand, these 

designs may be suitable for the exploratory stages of the drug development process but may be 

less appropriate for confirmatory trials on which the licensing of new treatments may depend.  

By incorporating the conditional error procedure proposed in this thesis, whenever design 

changes are made throughout the course of the trial, it may be possible to improve the rigour of 

platform trials and so to increase their use in confirmatory trials.  

  

In conclusion, this thesis has sought to explore, extend and evaluate the methodology of the 

MAMS(R) framework for trials with binary outcomes, with a view to increasing the range of 

trials in which this approach may be implemented and the efficiency with which such trials are 

conducted. The benefits of these extended MAMS(R) methods have been demonstrated and 

suggestions regarding their practical implementation have been made.  Since multi-arm adaptive 

trials have the potential to substantially improve the speed and efficiency with which novel 

therapies may be evaluated, the advancement of methodology for these trials forms a valuable 

contribution in addressing the growing challenges of modern evidence-based healthcare.   
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