
The Research Software Encyclopedia: a
community framework to define research
software
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Sochat, V., May, N., Cosden, I., Martinez-Ortiz, C. and
Bartholomew, S. ORCID: https://orcid.org/0000-0002-6180-
3603 (2022) The Research Software Encyclopedia: a
community framework to define research software. Journal of
Open Research Software. ISSN 2049-9647 doi:
10.5334/jors.359 Available at
https://centaur.reading.ac.uk/105313/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: https://doi.org/10.5334/jors.359
To link to this article DOI: http://dx.doi.org/10.5334/jors.359

Publisher: Ubiquity Press

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

SOFTWARE METAPAPER

ABSTRACT

The Research Software
Encyclopedia: A Community
Framework to Define
Research Software

VANESSA SOCHAT

NICHOLAS MAY

IAN COSDEN

CARLOS MARTINEZ-ORTIZ

SADIE BARTHOLOMEW

The Research Software Encyclopedia is a community driven, open source strategy
to define the term “research software” in different contexts. It consists of several
elements: a base library to manage a database of software, criteria and taxonomy
items that can be used to answer questions about the software in the database, and
several ways for an interested party to interact. A community database is stored in
version control (GitHub), and by way of providing and updating this database, the
Research Software Encyclopedia takes a strategy of small contributions over time to
grow a valuable resource. Using a community-driven open source approach offers
a number of advantages over attempting to derive a single, holistic definition for
research software. First, it takes into account the context under which the definition
is considered. Second, community and scoped contributions to specific components
of the task are easy. Third, it provides a resource that can be extended to other use
cases. Finally, this initiative creates a solution that requires no grants or other funding
to maintain, increasing its ability to grow, adapt, and evolve over time.

CORRESPONDING AUTHOR:

Vanessa Sochat

Computer Scientist, Lawrence
Livermore National Lab, US

sochat1@llnl.gov

KEYWORDS:
research software engineering;
research software definition;
research software community

TO CITE THIS ARTICLE:
Sochat V, May N,
Cosden I, Martinez-Ortiz C,
Bartholomew S 2022
The Research Software
Encyclopedia: A Community
Framework to Define Research
Software. Journal of Open
Research Software, 10: 2.
DOI: https://doi.org/10.5334/
jors.359

*Author affiliations can be found in the back matter of this article

mailto:sochat1@llnl.gov
https://doi.org/10.5334/jors.359
https://doi.org/10.5334/jors.359
https://orcid.org/0000-0002-4387-3819
https://orcid.org/0000-0002-1298-1622
https://orcid.org/0000-0003-3780-9172
https://orcid.org/0000-0001-5565-7577
https://orcid.org/0000-0002-6180-3603

2Sochat et al. Journal of Open Research DOI: 10.5334/jors.359

(1) OVERVIEW
INTRODUCTION
When you encounter a bear in the woods, you can be
pretty sure that it’s a bear. You might recognize features
from childhood stories, the Discovery channel, or maybe
even previous encounters. But then, what if someone asks
you to sit down, and write a definition for a bear? How
might you start? Well, you might be somewhat confident
that it’s a mammal, so you start with those features:
having hair or fur, teeth, and being large. We don’t need
to work very hard because a lot of work has already gone
into defining the features of a mammal. Without listing
them all, the creature in question also needs to have
sweat and mammary glands, three middle ear bones,
a neocortex, and a four chambered heart. Now, even if
we could make our bear friend transparent and see into
him to answer these questions, we are again left with the
same conundrum when we step up to the next level of
evaluation – what makes a bear different from any other
animal? What features are especially “beary”?

The same conundrum exists for research software.
We have a strong sense of what constitutes software
– it is some kind of compiled or interpreted program
that is run by a computer. But then, what distinguishes
“research software” from all other software? And further,
do we really care about a set of exact attributes, or are
we interested in amassing some significant number of
general features? To return to our previous example with
bears, I might step back and decide that I care less about
identifying the bear, but rather, identifying a creature that
might present some danger to me. This changes our way
of thinking entirely because instead of thinking about ear
bones and mammary glands, we start to consider size,
aggression, presence of teeth, and arguably much more
useful features in the context of our use case. This brings
us to the idea that context is important. If I care about
finding an animal to train for a honey commercial, my
criteria will be very different than if I care about identifying
a beast that might eat me for dinner.

This kind of context is equally important when we
discuss research software, as the needs of a group or
individual clearly frame any subsequent evaluation.
Although efforts such as FAIR [1] exist to ensure that
software in the research domain is findable, accessible,
interoperable, and reusable (FAIR), and there is work to
define the life-cycle [2] or measuring of such software
[7], these efforts focus on quality or best practices, which
is a different task than definition. There is also often an
implied bias that the definition is self explanatory, and
that research software is simply software that is used in
research [3, 6]. However, the missing component to these
efforts is that definition depends on context. Definitions of
research software for a specific purpose like applying for
a grant or submitting to a journal are typically interested
in a subset of software. As an example, we can look at
definitions of research software in our research software

engineering community to understand why context-
specific definitions are important. The Journal of Open Source

Software (JoSS), for example, defines research software as

software that: solves complex modeling problems
in a scientific context (physics, mathematics,
biology, medicine, social science, neuroscience,
engineering); supports the functioning of
research instruments or the execution of research
experiments; extracts knowledge from large data
sets; offers a mathematical library, or similar.

This domain-oriented definition would have a hard time
including more general software such as application
programming interfaces (APIs), supporting code for
machine learning models, or databases. We can further
look at a sample of rejected papers from JoSS to
understand what was not considered research software.
As of the writing of this paper, there are 319 rejected
papers out of 3,584, and reviewing the first sample of 25
papers, 18 are rejected due to “Not substantial scholarly
effort,” 5 for “Does not meet definition of research
software,” and 1 for each of a “Desk rejection” and “Minor
utility category.” While this is a small sample, the fact
that papers can be rejected for these reasons suggests
that the authors did not fully understand the submission
criteria, or perhaps that the definition can be vague or
subjective, or too narrow. If we look across all rejected
papers, a total of 83 of the software reviews on GitHub
(issues) have some mention of “research software”
suggesting that it came up as part of the discussion. If
we inspect a crowd-sourced definition [8] of research
software engineering, we find that research software
engineers work on a set of tools for

reproducibility, reusability, and accuracy of data
analysis and applications created for research.

This suggests a different kind of focus on the goals of the
software than criteria such as lines of code or domain.
Finally, an even more generic definition comes from IGI

Global, stating that research software is

A computer-based application that converts inputs
into outputs to support the user in one or more
research tasks.

The issue arises when we need to define research software
in the context of a specific goal. There are several contexts
under which we might find ourselves in a position of
needing to define a piece of software as research software
(or not):

•	 Funding bodies: If a funding body is evaluating
software to determine who receives a grant, they
would clearly need to have a definition. There cannot

https://doi.org/10.5334/jors.359
https://joss.readthedocs.io/en/latest/submitting.html#what-we-mean-by-research-software
https://joss.readthedocs.io/en/latest/submitting.html#what-we-mean-by-research-software
https://www.igi-global.com/dictionary/knowledge-visualization-for-research-design/69111
https://www.igi-global.com/dictionary/knowledge-visualization-for-research-design/69111

3Sochat et al. Journal of Open Research DOI: 10.5334/jors.359

be any gray area about what constitutes research
software, and what does not.

•	 Journals: Journals have traditionally been the means
to share academic progress, and as software has
been more acknowledged as an important part of
research, we now see journals or sections of journals
explicitly for research software. However, whether
it’s conscious or not, most journals likely have some
non-trivial or (externally appearing) subjective way
to classify something as research software. Journals
need to have transparency in these criteria, and the
scope of research software they consider.

•	 People: In that developing research software is a
core part of many individuals’ identities, having a
definition is important to them.

•	 Universities and National Labs: In that these
institutions conduct research that is empowered by
research software, and need to employ and provide
career perspectives for research software engineers
and make funding and policy decisions for research,
it’s essential that they be able to define it.

•	 Technology companies & startups: Firms commonly
conduct software-based research towards their own
business goals, often using tools developed in an
academic environment and potentially feeding back
to the wider community for example with insights
and new, or improved, tools. These businesses would
benefit from a definition for research software for
instance to distinguish from other software they use
or are responsible for, e.g. as a product.

While any particular context-driven definition is not
inherently wrong, given the diversity of these different
contexts and categories we suggest that the approach
to define a single definition of research software is
challenging if not impossible. Groups, organizations, or
journals that need to more clearly communicate about a
definition for research software need a different approach,
as with the current approach authors might spend
unnecessary time preparing a submission that is deemed
to not fit the hard-to-understand definition. While
there are currently efforts that eventually will discuss a
definition for research software (e.g., The RD Research
Alliance [1]), arguably an effort that is fully community
driven, open, and has international asynchronous
participation on GitHub would help to guarantee that a
diversity of opinions across domains of science (e.g., life
sciences, social sciences, digital humanities) are taken
into account. This is the rationale behind this work for the
Research Software Encyclopedia.

A Community-driven Approach
The Research Software Encyclopedia is a community
driven, open source strategy that takes a different
approach. Instead of trying to provide a single
definition for research software, it provides a method

and framework to go about evaluating software in the
context relevant to a particular need. By providing lists
of criteria and a taxonomy of domains, a user can make
a context-specific choice about a definition of research
software. While this choice might be subjective, the
criteria and categorization provided by this framework
are not, making it easy for an individual to evaluate
their software on the different categorizations, and then
easily map to a context of interest. The remainder of this
document will discuss the design and implementation
of the software.

IMPLEMENTATION AND ARCHITECTURE
The Research Software Encyclopedia has several different
tools and databases with core tools implemented in
Python, with data storage in JSON, and web interfaces
that use JavaScript, HTML, and CSS styling. These
languages and technologies were chosen as they are
well known in scientific programming, and would be easy
for research software engineers to contribute to. The
components include an explicit framework or algorithm
to assess a piece of research software, a means to filter
criteria points or categories (a taxonomy) for a given use
case, and automation and web interfaces for interaction
with a community database.

Criteria for Research Software
The creation of criteria to define research software was a
community effort that took several iterations, and took an
approach to iterate over simple questions to ask any piece
of software such as defining creators, goals, licensing,
citation, and intended users. While the details are out
of scope for this meta-paper, the document is available
for the interested reader [9]. The final set of questions or
criteria for the Research Software Encyclopedia were:

•	 Is it software (all research software must be
software) (yes/no)

•	 Is it used by at least one researcher? (yes/no)
•	 Has it been cited in a research context? (yes/no)
•	 Is it intended for a particular scientific domain? (yes/no)
•	 Would taking it away be a detriment to research?

(yes/no)
•	 Was it created with the intention to be used for

research? (yes/no)

Any specific individual or group could use these questions
to derive a meaningful definition of research software
for their needs, and the questions would need to be
answered only once for any piece of software to be useful
in many different contexts.

A Taxonomy of Research Software
If it’s the case that we have a general definition for
research software that is based on its intention, users,
and impact on the research space (the criteria described

https://doi.org/10.5334/jors.359

4Sochat et al. Journal of Open Research DOI: 10.5334/jors.359

in the previous section), we need to allow for a user of the
definition to scope his or her definition to some subset.
We need to be able to further break research software
into sub-groups, and thus empower people to refer
to some subset. This calls for a taxonomy of research
software, which was also developed via a community
effort in the document previously linked.

•	 Software to directly conduct research
–– Domain specific software
	 * �Domain-specific hardware (e.g., software

for physics to control lab equipment, or
embedded hardware)

	 * �Domain-specific optimized software (e.g.,
neuroscience software optimized for GPU)

	 * �Domain-specific analysis software (e.g., SPM,
fsl, afni for neuroscience)

–– General software
	 * �Numerical libraries (includes optimization,

statistics, simulation, e.g., numpy)
	 * �Data collection (e.g., web-based experiments

or portals)
	 * �Visualization (interfaces to interact with,

understand, and see data, plotting tools)
•	 Software to support research

–– Explicitly for research
	 * �Interactive development environments for

research (e.g., Matlab, Jupyter)
	 * Workflow managers
	 * �Provenance and metadata collection tools

–– Used for research, but not explicitly for it
	 * Databases
	 * �Application programming interfaces
	 * �Frameworks (to generate documentation,

content management systems, etc.)
–– Incidentally used for research
	 * Operating Systems
	 * Package Managers
	 * Virtualization technologies
	 * �Formatting, indexing, or other small helper

libraries
	 * Scheduling and task management (for people)
	 * Version Control
	 * �Text Editors and Integrated Development

Environments (IDEs)
	 * �Communication tools or platforms (e.g., email,

video-conferencing, etc.)
	 * �Infrastructure (e.g., on-prem or cloud servers

used for services or research needs)
	 * Testing or software libraries

Note that a piece of software that ultimately might not
be considered research software (e.g., the operating
system Linux or version control software git) can still be
classified here, as it is incidentally used for research.

To make these criteria and taxonomy programmatically
accessible, a library rseng is provided that defines both
criteria and the taxonomy in YAML, and makes them
easily loadable into Python dictionaries for interested
researchers to develop with, and provides functions to
export to JSON or csv, or generate markdown to render
into a web interface. The web interface with markdown
files for the current criteria and taxonomy is provided
by the GitHub Pages branch of the same repository, and
available at https://rseng.github.io/rseng/. This pairing is
done so that documentation and code live alongside
one another. A researcher could easily use or extend this
work to create, visualize, and programatically provide
their own set of taxonomy and criteria items. The
library is available on Pypi. Along with providing human-
friendly user interfaces, the taxonomy and criteria site also
provides an application programming interface (API) that
always makes available the most recent taxonomy and
criteria for other services such as the Research Software
Encyclopedia to use, discussed next.

The Research Software Encyclopedia
The Research Software Encyclopedia is Python software
that provides a command line tool to create and manage
a custom database of research software. It is also
available on Pypi, has documentation rendered on GitHub
pages alongside the source code and published at https://

rseng.github.io/rse/, and has source code on GitHub at
https://github.com/rseng/rse. More specifically, the software
includes:

•	 Commands to add or remove or list software
•	 Parsers for remote software repositories (e.g., GitHub,

GitLab)
•	 Scrapers to discover new software repositories via

resource APIs
•	 A criteria and taxonomy annotation interface for a

software database
•	 Containers for pre-built environments to use the

software
•	 An application programming interface for the

database
•	 Annotation via the command line or a web interface

A quick example of installing the software and creating
a database of research software with two entries from
GitHub might look like the following:

$ pip install rse[all]
$ rse init
$ rse add https://github.com/singularityhub/singularity-hpc

$ rse ls
1 github/singularityhub/singularity-hpc
$ rse add https://github.com/dask/dask

$ rse ls

https://doi.org/10.5334/jors.359
https://github.com/rseng/rseng
https://github.com/rseng/rseng/tree/gh-pages
https://rseng.github.io/rseng/
https://pypi.org/project/rseng/
https://rseng.github.io/rseng/api/taxonomy/
https://rseng.github.io/rseng/api/criteria/
https://pypi.org/project/rse/
https://rseng.github.io/rse/
https://rseng.github.io/rse/
https://github.com/rseng/rse
https://github.com/singularityhub/singularity-hpc
https://github.com/dask/dask

5Sochat et al. Journal of Open Research DOI: 10.5334/jors.359

1 github/dask/dask
2 github/singularityhub/singularity-hpc
$ tree database
database
	 github
	 dask
	 dask
	 metadata.json
	 github
	 singularityhub
	 singularity-hpc
	 metadata.json

The repository above is an example of a flat file database,
which can be pushed to GitHub to work on collaboratively.
An interested user that wants a more production (e.g.,
relational) database can simply configure their Research
Software Encyclopedia to use one. After creating the
database, the user might then be interested in annotation,
or more general sharing of the software. This is made
possible by way of the export command and automation,
discussed next.

The Community Software Database
Given an easy means to manage a flat file database on
GitHub, the Research Software Encyclopedia combines
its relevant components into a community software
database available at https://github.com/rseng/software,
which is generated with an export command that
considers the configuration file, host, and other relevant
parameters:

#!/bin/bash
export RSE_HOST=https://rseng.github.io

export RSE_URL_PREFIX=/software/
export RSE_CONFIG_FILE=rse.ini
rse export --type repos-txt repos.txt --force
rse export --type static-web docs/

The commands above can generate an entire static
interface for a database, and via automation the
Research Software Encyclopedia can discover new
software and update itself weekly. This update is done
via a scheduled GitHub workflow that uses the rse
software “scraper” functionality to look for new software
from the Journal of Open Source Software, bio.tools, the
Hal Research Software Database [3], the Research Software

Directory [4], and ROpenSci [5]. Other scrapers can easily
be added on request. By itself, this single repository will
provide a single source of data for a researcher interested
in studying research software, as defined by the different
journals and groups that are scraped.

Along with providing the software in an community

software interface, an interested researcher can select any
piece of software to annotate in the browser directly,
which will then open a pre-populated GitHub issue. The

GitHub issue will then be automatically labeled, and the
labeling triggers a workflow to save the annotation to
the database, and close the issue when it is complete.
Thus, all the annotations live as flat csv files alongside
the software data. Interesting pieces of software that
are added are written about in the Software Showcase and
shared on social media.

QUALITY CONTROL
For the Research Software Encyclopedia, along with the
taxonomy and criteria repository, and software database,
tests are run via continuous integration for each pull request
or merge into the main branch. For the Research Software
Encyclopedia command line software, tests include testing
the functionality and output of parsers (e.g., GitHub, GitLab),
along with ensuring that all commands produce expected
output. The criteria and taxonomy repository and tool
also tests the functionality of the main commands, and
output contents. For the software database, the quality
control comes from the sources. For example, papers and
associated software that goes into JoSS goes under a
formal review process, and the other software databases
are curated by teams of research software engineers.

(2) AVAILABILITY
OPERATING SYSTEM
The Research Software Encyclopedia should work on
most Unix and Linux flavored distributions, or those that
can run Docker. The software was developed on Ubuntu
18.04 and 20.04.

PROGRAMMING LANGUAGE
The Research Software Encyclopedia set of tools supports
Python 3.5 and higher. Python 2.x is not supported.

ADDITIONAL SYSTEM REQUIREMENTS
To interact with a relational database (e.g., MySQL or
Postgres) the system would need to install the database
software natively, or run via a Docker container.

DEPENDENCIES
The Research Software Encyclopedia requires the Python
requests library for basic function, several Flask libraries
for advanced use of the interface, and pytest for testing.
See the repository version.py file for details.

LIST OF CONTRIBUTORS
All authors contributed to the development of criteria
and taxonomy items. Vanessa Sochat is the primary
author of the software, documentation, and interfaces.

SOFTWARE LOCATION
Name: rse-0.0.34.tar.gz
�Persistent identifier: https://zenodo.org/record/5546046#.

YVi-uXtMFH4

https://doi.org/10.5334/jors.359
https://rseng.github.io/rse/getting-started/configure/
https://rseng.github.io/rse/getting-started/annotation/
https://github.com/rseng/software
https://rseng.github.io
https://joss.readthedocs.io/en/latest/submitting.html#what-we-mean-by-research-software
https://bio.tools/
https://hal.archives-ouvertes.fr/
https://research-software.nl/
https://research-software.nl/
https://ropensci.org/packages/
https://rseng.github.io/software/
https://rseng.github.io/software/
https://rseng.github.io/rseng/blog/
https://zenodo.org/record/5546046#.YVi-uXtMFH4
https://zenodo.org/record/5546046#.YVi-uXtMFH4

6Sochat et al. Journal of Open Research DOI: 10.5334/jors.359

Package manager: https://pypi.org/project/rse/0.0.34/

License: MPL 2.0
Publisher: Vanessa Sochat
Version published: 0.0.34
Date published: January 28, 2022

Criteria and Taxonomy Archive pypi is used as a package
manager for releases.

Name: rseng-0.0.18.tar.gz
�Persistent identifier: https://zenodo.org/record/5546052#.

YVi-43tMFH4

�Package manager: https://pypi.org/project/rseng/0.0.18/

License: MPL 2.0
Publisher: Vanessa Sochat
Version published: 0.0.18
Date published: December 6, 2020

Research Software Encyclopedia Code repository GitHub
Name: https://github.com/rseng/rse

�Persistent identifier: https://zenodo.org/record/5546054#.

YVi_FHtMFH4

License: MPL 2.0
Date published: November 27, 2020

Taxonomy and Criteria Code repository GitHub
Name: https://github.com/rseng/rseng

Persistent identifier: https://github.com/rseng/rseng

License: MPL 2.0
Date published: September 28, 2020

LANGUAGE
The software is implemented in Python, with supporting
scripts in bash for testing, and configuration files in yaml.

(3) REUSE POTENTIAL

On a high level, a framework to define research software
allows us to have different definitions of research
software useful for different purposes. This allows us to
treat research software differently depending on what is
our objective, and to have clear guidelines to decide if a
specific piece of software is or is not research software. For
example, we could have a definition of what we consider
research software for short term software preservation
and a different definition of research software for long
term software preservation.

The general nature of the Research Software
Encyclopedia, and the availability in several different
components (the criteria and taxonomy, the database
manager and the database itself) make it reusable for
a wide variety of needs not described here. The shared
community databases can be used to provide an
automatically generated set of research software, as
identified by journals and databases that publish it, either

for further analysis of the software or change over time.
The criteria and taxonomy items alone can be used by
a funding body to easily define criteria or categories for
research software, and the software for these definitions
can be used for a completely different set of criteria or
taxonomy items. A user or specific domain could also
use the command line database manager to create a
domain or topic specific database of their own software,
either as a personal portfolio or for a group such as a
lab. Finally, the annotation interface can provide data
for a more substantial research project to understand
software, or adopted to provide an annotation interface
for something else entirely. All code and interfaces are
open source on GitHub, and contributions and ideas are
welcome.

CONCLUSION

In this paper, we have discussed criteria for research
software, a taxonomy to define it, and a general
framework and tools for creating a definition useful for
a particular context. The biggest insight to this process
is that, like many things, there is not a one-size-fits-all
answer. Despite this quality, we still need to be able to
make classifications that drive life decisions. The definition
of research software is, somewhat ironically, not a clear
definition that you write on a single page, but rather a
gradient of features that can be filtered and viewed based
on the context they are viewed. The definition of research
software is subjective on the level of a use case, but not
subjective in terms of its overall assessment. Although
we might never come to an agreed upon definition, we
can be somewhat confident in our ability to ask a series
of questions about some piece of software, and then
decide which questions and responses are important
for our definition. We can be confident that although we
might not completely understand research software, by
starting a simple taxonomy and criteria, we can further
develop machine learning or other data science projects
to improve our understanding. This kind of work will not
only support researchers that use research software,
but also empower the research software engineers that
create it.

ACKNOWLEDGEMENTS

The authors would like to thank the community for
feedback on the draft, and the software.

COMPETING INTERESTS

The authors have no competing interests to declare.

https://doi.org/10.5334/jors.359
https://pypi.org/project/rse/0.0.34/
https://zenodo.org/record/5546052#.YVi-43tMFH4
https://zenodo.org/record/5546052#.YVi-43tMFH4
https://pypi.org/project/rseng/0.0.18/
https://github.com/rseng/rse
https://zenodo.org/record/5546054#.YVi_FHtMFH4
https://zenodo.org/record/5546054#.YVi_FHtMFH4
https://github.com/rseng/rseng
https://github.com/rseng/rseng

7Sochat et al. Journal of Open Research DOI: 10.5334/jors.359

TO CITE THIS ARTICLE:
Sochat V, May N, Cosden I, Martinez-Ortiz C, Bartholomew S 2022 The Research Software Encyclopedia: A Community Framework to
Define Research Software. Journal of Open Research Software, 10: 2. DOI: https://doi.org/10.5334/jors.359

Submitted: 01 December 2020 Accepted: 25 February 2022 Published: 04 March 2022

COPYRIGHT:
© 2022 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

AUTHOR AFFILIATIONS
Vanessa Sochat orcid.org/0000-0002-4387-3819
Computer Scientist, Lawrence Livermore National Lab, US

Nicholas May orcid.org/0000-0002-1298-1622

Ian Cosden orcid.org/0000-0003-3780-9172
Director Research Software Engineering, Princeton University, US

Carlos Martinez-Ortiz orcid.org/0000-0001-5565-7577
Netherlands eScience Center, NL

Sadie Bartholomew orcid.org/0000-0002-6180-3603
Computational Scientist, National Centre for Atmospheric
Science & University of Reading, GB

REFERENCES

1.	 Daniel SK, Morane G, Tom H. Taking a fresh look at FAIR

for research software; 2021. DOI: https://doi.org/10.1016/j.

patter.2021.100222

2.	 Gomez-Diaz T, Recio T. On the evaluation of research

software: the CDUR procedure. F1000Res. 2019; 8: 1353.

DOI: https://doi.org/10.12688/f1000research.19994.1

3.	 Di Cosmo R, Gruenpeter M, Marmol B, Monteil A, Romary

L, Sadowska J. Curated Archiving of Research Software

Artifacts: lessons learned from the French open archive

(HAL); 2019. https://hal.archives-ouvertes.fr/hal-02475835.

DOI: https://doi.org/10.2218/ijdc.v15i1.698

4.	 Spaaks JH, Klaver T, Verhoeven S, Maassen J, Pawar P,

van Hage W, Ridder L, Kulik L, Bakker T, van Hees V,

Bogaardt L, Mendrik A, van Es B, Attema J, Ranguelova E,

van Nieuwpoort R. Research Software Directory (1.2.0).

Zenodo; 2020. DOI: https://doi.org/10.5281/zenodo.3631783

5.	 Boettiger C, et al. Building software, building community:

lessons from the rOpenSci project. Journal of open research

software 3.1; 2015. DOI: https://doi.org/10.5334/jors.bu

6.	 Maimone C. Supporting Research Software and Research

Software Engineers; Oct. 2019. https://sites.northwestern.

edu/researchcomputing/2019/10/07/supporting-research-

software-and-research-software-engineers. Accessed 2

Oct 2021.

7.	 Hong NPC. Why do we need to compare research

software, and how should we do it? 2016. http://ceur-ws.

org/Vol-1686/WSSSPE4_paper_29.pdf.

8.	 Research Software Engineering. Oct. 2021. https://

en.wikipedia.org/wiki/Research_software_engineering.

Accessed 2 Oct 2021.

9.	 The Research Software Encyclopedia. Dec. 2020. https://

docs.google.com/document/d/1wDb0udH9OrFWrMBsAVb8

RrUMCKKRHoyEep7yveJ1d0k/edit. Accessed 2 Oct 2021.

https://doi.org/10.5334/jors.359
https://doi.org/10.5334/jors.359
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4387-3819
https://orcid.org/0000-0002-4387-3819
https://orcid.org/0000-0002-1298-1622
https://orcid.org/0000-0002-1298-1622
https://orcid.org/0000-0003-3780-9172
https://orcid.org/0000-0003-3780-9172
https://orcid.org/0000-0001-5565-7577
https://orcid.org/0000-0001-5565-7577
https://orcid.org/0000-0002-6180-3603
https://orcid.org/0000-0002-6180-3603
https://doi.org/10.1016/j.patter.2021.100222
https://doi.org/10.1016/j.patter.2021.100222
https://doi.org/10.12688/f1000research.19994.1
https://hal.archives-ouvertes.fr/hal-02475835
https://doi.org/10.2218/ijdc.v15i1.698
https://doi.org/10.5281/zenodo.3631783
https://doi.org/10.5334/jors.bu
https://sites.northwestern.edu/researchcomputing/2019/10/07/supporting-research-software-and-research-software-engineers/
https://sites.northwestern.edu/researchcomputing/2019/10/07/supporting-research-software-and-research-software-engineers/
https://sites.northwestern.edu/researchcomputing/2019/10/07/supporting-research-software-and-research-software-engineers/
http://ceur-ws.org/Vol-1686/WSSSPE4_paper_29.pdf
http://ceur-ws.org/Vol-1686/WSSSPE4_paper_29.pdf
https://en.wikipedia.org/wiki/Research_software_engineering
https://en.wikipedia.org/wiki/Research_software_engineering
https://docs.google.com/document/d/1wDb0udH9OrFWrMBsAVb8RrUMCKKRHoyEep7yveJ1d0k/edit
https://docs.google.com/document/d/1wDb0udH9OrFWrMBsAVb8RrUMCKKRHoyEep7yveJ1d0k/edit
https://docs.google.com/document/d/1wDb0udH9OrFWrMBsAVb8RrUMCKKRHoyEep7yveJ1d0k/edit

