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 72 

0. Abstract 73 

 74 

Predicting the impact of land use and climate change on the Earth system hinges on credible 75 

representation of soil hydrological processes (SHP), adequate availability of parameters and 76 

hydrological states and inclusion of key soil properties. There is increasing evidence that 77 

extreme events such as droughts and high intensity precipitation, and land use changes, 78 

affect fundamental hydrological processes such as infiltration and runoff generation. In this 79 

review, we analyse the influence of soil structure on SHP, critically evaluate the 80 

parameterization of soil hydrologic properties and their importance in representing the 81 

terrestrial water cycle and highlight the key role of soil hydrology in the functioning of 82 

carbon-rich soils and in linking the water and carbon cycles. It emerges that linking soil 83 

hydrology and pedology will lead to better understanding critical zone processes, especially 84 

in tropical regions.  Further, we discuss the role of local scale hydrological processes in 85 

understanding root water uptake, vegetation and groundwater dynamics and feedbacks. 86 

These processes control and modulate the impact of extreme events such as droughts, 87 

floods and heatwaves and they are essential to assess drought and flooding. Finally, new 88 

emerging technologies such as wireless and automated sensing approaches, soil moisture 89 

observation through novel synthetic aperture radars satellites, big data analysis and 90 

machine learning approaches offer unique opportunities to advance soil hydrology. 91 



1. Introduction  92 

The terrestrial water cycle is subject to rapid changes, resulting in an increase of extreme 93 

events such as frequent and intense droughts, floods and heat waves that promote 94 

wildfires, cause crop failure and threaten communities in arid regions1-4 . SHP play an 95 

important role in modulating the rates by which the Earth system is pushed towards its 96 

boundaries within which mankind can operate safely5. These processes are confined to a 97 

thin layer of soil which stores only 0.05% of the total freshwater on Earth, yet supports 70% 98 

of the annual terrestrial evaporation and transpiration flux6. This thin skin plays a pivotal 99 

role in supporting life in natural and managed ecosystems. The partitioning of incident 100 

radiation and precipitation on the land surface and into fluxes of energy, water and matter 101 

from terrestrial surfaces is controlled by SHP7,8. The SHP comprise the storage of water in 102 

the subsurface down to the groundwater, also termed vadose zone, evapotranspiration, 103 

infiltration, redistribution, drainage, capillary rise and runoff (Fig.1). 104 

 105 

The partitioning of precipitation at the land surface into water that infiltrates into the soil 106 

and surface runoff is strongly controlled both by soil structure and soil moisture content. 107 

Root water uptake processes that impact the transpiration of water are modulated by the 108 

soil water status and by the properties of soil. The groundwater level is determined by the 109 

fluxes in the water balance and impacts the partitioning of energy at the soil surface7. 110 

Through capillary rise, groundwater provides soil water that can be used by plants, while 111 

deep rooting plants can also access groundwater directly. Soil hydrology controls root water 112 

uptake and thus evapotranspiration9 which constitutes the second largest flux in the soil 113 

water balance.  114 

 115 

The global increase in droughts and floods in the last decade pointed out the need to 116 

improve our understanding and parameterization of SHP at catchment, river basin and 117 

continental scales10,11. Current approaches in hydrological and land surface modeling still 118 

have room to improve SHP description and parameterization including estimation of soil 119 

hydraulic properties using pedotransfer functions (PTF) and describing SHP in carbon rich 120 

soils8,12,13 and tropical soils14. SHP also modulate the impact of climate change on terrestrial 121 

ecosystems and control feedback mechanisms between the water, energy and carbon and 122 

nitrogen cycles7,15,16. However, soils differ in properties such as texture, organic matter, and 123 

structure but also their spatial distribution and the vegetation cover affect SHP, resulting in 124 

differences in the provision of soil moisture supply to crops, infiltration and runoff17. 125 

Regional impacts of climate change on the land surface also challenges soil hydrology to 126 

expand beyond the soil profile or pedon scale (Fig. 1). The critical zone concept (CZC) 127 

addresses this challenge by framing soils in a landscape and regional context and analyzing 128 

SHP from the bottom of the groundwater through the vadose zone, and vegetation up into 129 

the atmosphere18. 130 

 131 

In this review, we highlight the role of soil hydrology in the Earth system. We discuss key soil 132 

properties that influence SHP, the estimation of soil hydraulic parameters and highlight the 133 

links between water and carbon cycles with a focus on carbon-rich soils. We demonstrate 134 



the importance of local scale SHP in understanding root water uptake, vegetation and 135 

groundwater dynamics and feedbacks. We explore the role of SHP in controlling and 136 

modulating the impact of extreme events such as droughts, floods and heatwaves and how 137 

soil hydrology contributes to assessing drought and floods. Finally, we explore the potential 138 

of new emerging technologies for advancing the field of soil hydrology. 139 

140 



1. Soil properties and hydrology 141 

All water fluxes depicted in Fig. 1 are strongly controlled by physical, chemical and biological 142 

properties of soils. Primarily, physical properties such as soil texture and bulk density have 143 

widely been used to parametrize soil hydraulic properties in land surface models (LSM) by 144 

using PTF8,19. There is, however, increasing awareness that other pedological properties and 145 

processes also affect soil hydraulic properties and thus soil water dynamics (Text box 1).  146 

 147 

Based on this awareness, hydropedology was introduced20 two decades ago with the aim of 148 

integrating hydrological and pedological knowledge to better understand and predict SHP at 149 

the landscape scale. Later on, hydropedology21 was embedded in the CZC, which allowed 150 

addressing SHP at and beyond the pedon scale and to frame local processes such as bypass 151 

flow, water accessibility and hydrophobicity in a landscape context. It also allows to 152 

consider effects of soil structure, spatially varying soil horizons and anisotropy on local and 153 

non-local water flow. Remarkably, soil structure and related hydraulic properties, which 154 

have evolved slowly over decades to millenia, are sensitive to changes in land management 155 

and global change and can therefore rapidly change22 (Fig.2).  156 

 157 

2.1 Soil structure  158 

Soil structure is a key property that is lacking in current hydrological, land surface and Earth 159 

system models. Soil structure describes the spatial arrangement of particles in soil, which 160 

determines pore size distribution, connectivity and tortuosity. At the microscale, soil water 161 

flux is controlled by aggregation processes: organic gluing agents such as extracellular 162 

polymeric substances and microbial gums, and inorganic cementing agents like carbonate 163 

precipitates and oxy-hydroxides bind primary particles to form clay- and silt-sized organo-164 

mineral complexes (< 20 µm diameter). With adherence to fungal hyphae and fine roots, soil 165 

further clusters into micro- and macroaggregates (20-250 µm and > 250 µm respectively) 166 

and finally peds23,24. The voids or pores existing within and in-between the aggregates are 167 

usually small (up to a few µm in diameter) and of high tortuosity25. These pores mainly 168 

contribute to capillary water flow in the soil matrix and thus to its hydraulic conductivity and 169 

water retention within the soil profile24. They generally indirectly affect infiltration, as it 170 

depends on the initial soil water content at the onset of infiltration processes8, but they can 171 

dominate near-surface water flow processes in older, structured soils. 172 

Soil structure formation differs among different soil groups (Text box 1). In Phaeozems, 173 

Chernozems or Luvisols with silty texture, the biological formation of macropores by plants 174 

is stabilized by, e.g., earthworms26,27 and other burying animals. In Vertisols, elevated clay 175 

contents promote crack formation, especially in dry conditions, enabling rapid bypass flow 176 

of precipitation until these cracks close again during soil rewetting. Preferential flow can 177 

significantly change groundwater recharge28; but in Planosols, Stagnosols or Plinthosols 178 



root-restricting layers can induce anisotropies and impair vertical water flow. In Leptosols, 179 

high stone contents funnel infiltrating water into smaller volumes29, and crusts build up 180 

following particle dispersion after heavy rain and/or due to high salt contents. Further, 181 

specific SHP prevail in organic soils, such as bogs and fens and folic Histosols, which have a 182 

high capacity to store plant-available water but have a different connection to groundwater 183 

(section 2.3). 184 

 185 

Natural soil structure forming processes create larger scale pores in between 186 

macroaggregates and peds. These macropores include cracks formed by shrinkage in clayey 187 

soils due to soil drying, but in many terrestrial systems, vegetation and soil fauna are two of 188 

the main factors in macropore formation. Both root systems and burrowing activity of the 189 

soil fauna (Fig. 2) create such biopores, which in contrast to the above-described inter- and 190 

intra-aggregate pores, are wider in diameter (up to several mm or even cm), have low 191 

tortuosity and often connect the soil surface with the subsoil to a depth of several 192 

metres30,31 (Fig. 1). In loamy and silty soils, in particular, the accumulation and persistence of 193 

macropores alters SHP and gas exchange significantly. Under most soil conditions, 194 

macropores are drained and contribute to enhanced gas exchange pathways in the soil. 195 

During intense precipitation events, however, water-filled macropores can contribute to 196 

rapid infiltration and transmission of water through the soil profile via preferential flow 197 

pathways31-33.  198 

Natural soil structure formation takes decades to centuries, yet it may be disrupted by a 199 

single tillage or erosion event with significant ramifications for soil functioning and carbon 200 

storage. Agronomic management of soil structure, for example, has been practiced since the 201 

dawn of civilization producing short lived and fragile seedbed for crops34. Tillage induces 202 

loss of macroporosity, interrupts pore continuity, and potentially forms compacted plough 203 

pans that impede root growth and vertical water fluxes. Tilled soil surfaces are prone to 204 

aggregate slaking during heavy rain, causing the clogging of fine pores and formation of 205 

surface crusts35. The degree to which these processes occur varies with tillage and land-use 206 

practices36,37. However, the largely unknown time scales of aggregates and macro-porosity 207 

turnover challenge assumptions of stable pore-size distributions used in SHP modelling.  208 

 209 

2.2 Soil hydrological parameterization 210 

A reliable parameterization of soil hydraulic properties is critical for SHP representation in 211 

soil water balance models, hydrological models, land surface models (LSM), and climate 212 

models and ESM8,38. In these models, the fluxes and states of soil water are mostly 213 

described by Richards Equation (Eq.1) which  links Darcy-Buckingham flux law with 214 

conservation of mass: 215 

 216 



𝜕𝜃

𝜕𝑡
= −𝑑𝑖𝑣. �⃗� − 𝑆           (1) 217 

 218 

where �⃗� = −𝑲(ℎ, 𝜃)𝛻 (ℎ + 𝑧)  with �⃗�  the Darcy flux, div is the divergence operator 219 

describing the local sinks of �⃗�, h is the soil matric potential, z the vertical coordinate and 220 

𝑲(ℎ, 𝜃) the soil hydraulic conductivity tensor which becomes a scalar quantity, 𝐾(ℎ, 𝜃 ≡ 𝐾) 221 

for isotropic one-dimensional domains, and S describes a general external sink-source term 222 

such as root water uptake. Frequently used numerical model codes to solve Richards 223 

equation have been extensively reviewed39. The use of Richards’ equation requires explicit 224 

knowledge of key soil hydraulic functions: the soil moisture retention 𝜃(ℎ) and 𝐾. These 225 

characteristic functions describe the volumetric water content or K as functions of soil water 226 

tension (matric potential). The choice of hydraulic functions and associated parameters 227 

have a significant impact on model performance in terms of water fluxes in the soil water 228 

balance, and model numerical stability40. Moreover, spatial variability of soil hydraulic 229 

parameters has to be accounted for to correctly describe SHP. The determination of these 230 

functions for larger scale approaches remains an ongoing challenge. 231 

 232 

Direct measurements of soil hydraulic properties are often difficult and time-consuming41,42, 233 

and impossible at larger spatial scales. PTF were therefore developed to estimate soil 234 

hydraulic parameters, as well as parameters in equations related to soil heat flow, and 235 

biogeochemical parameters from readily available soil properties such as soil texture, bulk 236 

density, and organic carbon content19. Text box 1 shows how PTF based on simple soil 237 

properties translate this information in soil hydraulic parameters that can be used to 238 

estimate SHP such as soil water storage, infiltration and evapotranspiration.  In several 239 

cases, however, the use of PTF can lead to inaccurate or even false parametrizations of the 240 

functions used to describe the soil hydraulic properties. Several reasons account for such 241 

failure. The determination of basic and hydraulic soil properties is frequently conducted 242 

with different measurement methods19,43, thus producing systematic biases, and 243 

inconsistent results43,44. Therefore, it is critical to standardize and unify measurement 244 

methods and protocols. Soil structure is not explicitly represented in soil hydraulic functions 245 

and related PTF development45. Such limitations have prompted efforts to revise the soil-246 

centered framework by considering environmental covariates that modify soil structure and 247 

properties such as vegetation cover and type33,46, and climatic soil forming processes that 248 

alter clay type47,48. These local variations not encapsulated in the standard texture-based 249 

PTF offer a means to improve soil hydraulic parameterization and potentially improve the 250 

representation of hydrologic processes in LSM.  Further options to account for soil structure 251 

in PTF include the incorporation of geometrical properties of structured soils derived from 252 

non-invasive techniques such as Micro-Computed Tomography or Magnetic Resonance 253 

Imaging49,  and applying machine learning methods to adapt to soil-class-specific 254 

information within continuous PTF50,51. Also, a poor representation of specific soil properties 255 

such as the distribution of soil organic matter significantly affect modeling of hydraulic 256 

functions, in particular in peatlands and carbon-rich permafrost soils. 257 



But further efforts are needed to improve the description of SHP processes in models using 258 

PTF. While dual-modal and multi-modal hydraulic functions have already been 259 

developed52,53, they are currently not used in LSM and reliable PTF for these functions are 260 

not yet available. Moreover, it is important to take into account the effect of rock or gravel 261 

content on soil hydraulic properties54 as this is generally overlooked in most PTF. In 262 

addition, there is a need for unifying theoretical soil physical approaches, which requires 263 

fully coupling soil hydraulic, thermal and gas flow properties 55,56. This would allow for a 264 

more consistent description of interactions and feedbacks between the soil water balance, 265 

the thermal regime, and the carbon fluxes in LSM. Ideally, multi-scale PTF should be 266 

developed that can be used seamlessly from the soil profile to the global scale, building for 267 

example on the development57,58 of multiscale Bayesian neural network based PTF, which 268 

allow upscaling and downscaling of soil hydraulic parameters.  269 

Most models rely on a single set of PTF to estimate soil hydraulic properties19,59. This often 270 

results in statistical bias, underestimation PTF uncertainty, and overconfidence in the 271 

predictive ability of PTF. To alleviate such bias, ensemble PTFs that unify multiple sets of 272 

PTFs are recommended59,60.  273 

In addition, most of the measurements for PTF parameterization originate from arable land 274 

and have been developed for temperate regions. These PTF frequently fail in fine-textured 275 

soils of the tropics and subtropics14,61. Due to absence of glaciation, these soils are highly 276 

weathered, and in Ferralsols and Acrisols low-activity clays dominate the mineral 277 

composition (Text box 1). These clays react with oxides and form pseudo-silt and pseudo-278 

sand, i.e., a micro-aggregated structure that the hydrology of silty or sandy sites. With some 279 

additional macroaggregates formed with inputs of soil organic matter as found in Cambisols, 280 

the parameters used to describe the soil hydraulic properties of tropical soils generally differ 281 

from those of respective soils in temperate climates14,62. Therefore, there is an urgent need 282 

for PTF development for soils that formed below natural vegetation and consider different 283 

regions63,64. 284 

Finally, PTF assume that estimated properties are constant in time. Yet we know that 285 

properties like saturated K and porosity vary not only in space but also in time, due to land 286 

management43. The next generation of PTFs should therefore account for this temporal 287 

dependence.   288 

 289 

2.3 Carbon-rich soils  290 

The SHP of carbon-rich soils feature specific properties, which are of fundamental 291 

importance for their carbon sink function but challenging to be represented in LSM. Across 292 

the globe, carbon-rich soils are unevenly distributed.  Particularly, many permafrost soils are 293 

rich in organic carbon and store an estimated 1700 Pg of carbon, twice as much as carbon 294 

storage in the atmosphere65,66. Large areas on terrestrial Earth are covered by permafrost, 295 

accounting for 13.9 x 106 km2 in the Northern hemisphere alone67. Part of the carbon-rich 296 



soils (mainly in permafrost regions but also elsewhere) are classified as peatlands. These 297 

cover 3 % of the global land surface only, but store approximately 644 Pg C68, and a 298 

significant portion of near-surface freshwater with intimate atmospheric exchange.  299 

A key controlling factor on soil moisture dynamics in carbon-rich soils is exerted by the 300 

shallow groundwater level in peat and permafrost soils. Because of their high content of 301 

organic matter, carbon-rich soils have frequently total pore volumes of 70 to > 90%, and 302 

pore sizes reaching 5 mm69. This high macroporosity dampens groundwater level 303 

fluctuations and thus importantly stabilizes the wet conditions that are critical to inhibit 304 

aerobic soil organic matter decomposition. The shallow groundwater conditions are further 305 

supported by the low K of deeper organic soil layers or the flow barrier of the permafrost 306 

layer that limit the drainage losses and causes trapping of rain, snow melt or run-on water70. 307 

The factors leading to shallow groundwater levels are currently significantly altered either 308 

directly or indirectly by humans.  In dry conditions, the structure of the soil organic matter 309 

of carbon-rich soils substantially changes due to microbial decomposition and irreversible 310 

compaction69. The soils lose their high water storage capacity and thus groundwater level 311 

fluctuations are amplified which eventually further enhances decomposition. In its 312 

extremes, these alterations in structure of organic soils can be observed in peatlands that 313 

were directly drained by humans and in which the enhanced decomposition causes 314 

peatlands to be global hotspots of greenhouse gas emissions68. Another threat to the 315 

shallow groundwater levels of carbon-rich soils is exerted by ongoing permafrost thaw that 316 

may increase drainage losses and also initiate a negative feedback loop between soil 317 

moisture and decomposition71.  318 

Despite the critical role of SHP for the carbon cycle of carbon-rich soils, specific SHP for such 319 

soils are currently only beginning to be implemented in a sophisticated manner in LSM and 320 

climate models13,72. It has been noted that conventional hydrological concepts for 321 

groundwater that are based on the TOPMODEL73 and that relate subgrid-scale topography 322 

to groundwater table (GW) and soil moisture variability, fail in the extensive flat terrains 323 

typical of most peat and carbon-rich permafrost soils and miss critical small-scale processes 324 

relevant to shallow GW conditions70,74. In response, modules to simulate the shallow GW 325 

and other specific features of peat and carbon-rich permafrost soils were added to a 326 

number of LSM70,74,75. To advance their reliability, the community currently faces two major 327 

challenges. 328 

First, there is a lack of spatial input data for peatlands and carbon-rich permafrost soils that 329 

could be used to parameterize spatially variable soil hydraulic properties and lateral water 330 

fluxes. About half of the carbon-soils classified as peatlands are bogs and in contrast to fens, 331 

by definition are solely fed by rainwater and do not depend on water inputs from surface 332 

water or the aquifer underlying the peat layer. Given the lack of spatial input on the 333 

distribution of bogs and fens, current peat-specific global land model implementations 334 

either assume all peatlands to be either bogs74 or fens76.  335 



Second, the hydraulic properties of peat and carbon-rich permafrost soils are dynamic at 336 

different timescales, which critically control their resilience to short- and long-term changes 337 

in boundary conditions69,71. In addition, the thermal soil properties affect freeze-thaw cycles 338 

with strong implications for soil water flow dynamics77. Soil moisture fluctuations can cause 339 

reversible changes in soil properties due to swelling and shrinking, but there are also 340 

irreversible changes to hydraulic properties caused by cryoturbation, permafrost thawing or 341 

enhanced peat degradation in response to climate change or direct anthropogenic 342 

disturbance. These changes are typically accompanied by a change in vegetation that is the 343 

main substrate provider for the future organic layers. The implementation of these key 344 

ecohydrological feedbacks will be critical in simulating trends over multiple decades78,79. 345 

We recommend that future research on the hydrology of carbon-rich soils should put 346 

specifically emphasize conducting detailed field studies in data scarce regions, such as large 347 

parts of tropical80 and permafrost peatlands71, to understand and quantify the variability of 348 

local feedback mechanisms. Besides there is the need to combine remote sensing data on 349 

hydrology81 , vegetation and peatland type82,83 with soil hydrological models to eventually 350 

constrain the spatial variability of parameters. Finally, this approach will contribute to 351 

adequately simulating the feedback loops between water, energy, and biogeochemical 352 

cycles on Earth. 353 

 354 

3. Local scale hydrology 355 

Soils play an important role in buffering the precipitation (P) signal and storing incoming 356 

water. How water is transferred to deeper soil layers or kept in the upper soil layers 357 

depends on soil hydraulic properties. At the scale of soil pedon, a field, or a forest stand, the 358 

moisture status of soils, the vegetation and the GW dynamics impact each other.  In respect 359 

to vegetation growth, the uptake of water by plant roots, described by the sink term S in 360 

Eq.(1) controls transpiration (T) fluxes. The proportion of S with respect to P varies with 361 

climate, vegetation type, and the soil properties. Global averages of the ratio of 362 

evapotranspiration (ET) to P, ET/P, on land vary between 0.6 and 0.784,85. The partitioning of  363 

ET into evaporation (E) and T are much more uncertain, and estimates of global terrestrial 364 

T/ET ratios range between 0.25 and 0.6, but local ratios vary almost across the entire range 365 

between 0 and 186. Accurate estimation of T is, however, important to assess the impact of 366 

land use or land cover changes on the soil water and to determine how the soil water 367 

balance may change with changing climate. Since T is related to carbon assimilation, 368 

accurate predictions of T fluxes are also of relevance for the terrestrial carbon cycle and the 369 

water-use efficiency of terrestrial vegetation. In the following, we discuss how climate, soil, 370 

and vegetation properties, with a focus on root properties, influence each other and the soil 371 

water balance components. Fig. 3 illustrates the different processes and interactions 372 

between soil, vegetation and groundwater. 373 

 374 

3.1 Root water uptake in soils 375 



T is driven by the available energy that can be used for evaporating water, that is T demand, 376 

and is downregulated by stomatal closure that responds to the energy required to extract 377 

water from the soil, that is T supply. The simplest models of T supply from root water 378 

uptake (RWU) use a stress function that express how the ratio of T supply to T demand 379 

declines with decreasing fraction of total available water in the root zone, that is the water 380 

stored in the root zone at water potentials between -10 kPa for sandy soils or -30 kPa for 381 

silty soils (field capacity) and -1500 kPa (permanent wilting point). However, since they only 382 

consider soil water content, they lack a direct sensitivity to T demand which is 383 

overcompensated by oversensitivity to soil moisture, making predictions of the impact of 384 

globally increasing T demand on T and vegetation stress uncertain87. The inclusion of plant 385 

hydraulics in the soil-plant atmosphere systems allows estimating the leaf water potential 386 

needed to sustain a given transpiration rate for a given soil water distribution. Since 387 

stomatal regulation depends on leaf water status, soil-plant-hydraulic models 388 

mechanistically link stomatal regulation to soil drying88.  389 

Typically, soil moisture is non-uniformly in the root zone and the distribution of roots and 390 

water in the root zone affects the total RWU. The extent to which roots can shift water 391 

extraction to wetter zones (RWU compensation) and can redistribute water from wet to dry 392 

soil zones bypassing the soil (root water redistribution and hydraulic lift) is a hydraulic 393 

process that is driven by water potential gradients and depends on soil and root hydraulic 394 

properties89,90. Text box 2 gives more details about soil-root hydraulic properties and how 395 

they can be represented and simplified in soil-plant hydraulic models. Reported magnitudes 396 

of these water transfers91 range from 0.04 to 3 mm d-1 and they  can delay stomatal closure 397 

by several weeks and maintain T by vegetation that accesses deeper groundwater during 398 

drought spells. In addition, it plays an important role in soil biogeochemical cycles, as it 399 

prevents surface layers from drying out causing a strong reduction in microbial activity92.  400 

  401 

3.2 Soil, climate and vegetation properties 402 

In order to adapt to the dynamics of available soil water and T demand, vegetation 403 

properties are strongly interlinked with soil properties, climate, and management. 404 

Ecohydrological models that solve a stochastic root-zone soil water balance93, use two 405 

dimensionless numbers to characterize its dependence on soil, vegetation, and climate 406 

properties. These are the number of average daily rainfall events required to fill the plant 407 

accessible soil water reservoir and either the Budyko94 dryness index (long term potential ET 408 

to precipitation rate) or the ratio of the time to deplete the plant accessible water reservoir 409 

by potential ET to the characteristic time between rainfall events. Such models can predict 410 

the change in vegetation properties as a function of soil and climate and assess the 411 

development of vegetation in the course of climate change. When coupled to an 412 

optimization of the carbon cost for root development, stochastic eco-hydrological 413 

models95,96, could reproduce the relation between root zone depth, climate and soil type, 414 

with deeper roots in seasonally dry, semiarid to humid tropical regions and less likely in 415 

medium textured soils97.  416 

 417 

Infiltration of surface runoff (run-on), and capillary rise from groundwater also contribute to 418 

root zone soil moisture. In addition to climate, soil type and depth, and topography, GW 419 



table depth is important to predict and produce global maps of root distributions98. Runoff-420 

run-on processes as well as groundwater recharge and flow are scale-dependent lateral flow 421 

processes that both determine and are influenced by vegetation growth, composition, and 422 

patterning99,100. Soil E, infiltration, and runoff from non-vegetated surfaces play a crucial 423 

role in the ecohydrology, vegetation patterning and water balances of catchments in arid 424 

and semi-arid regions. These processes are controlled by soil surface hydraulic properties 425 

that depend on soil structure. Aggregate destruction and crust building by rain splash on 426 

barely vegetated soil surfaces reduces the infiltration capacity leading to increased surface 427 

runoff. In contrast infiltration capacity, run-on, and preferential flow reducing water losses 428 

through E from the soil surface, are larger in vegetated patches with macropores created by 429 

roots and soil fauna and water repellency due to increased organic matter input22. 430 

Manipulation of these processes by changing soil surface hydraulic properties is the basis of 431 

water harvesting and water saving methods in dryland agriculture that focus on the 432 

reduction of soil E from bare soil and increasing run-on and infiltration. However, near 433 

surface soil structure and soil hydraulic properties vary strongly with depth and time which 434 

complicates accurate prediction and simulation of soil E101 and rapid infiltration. 435 

 436 

Data on root distributions are scarce and models often underestimate the rooting depth. 437 

This is especially true in stony soils and (weathered) bedrocks, from which plants can also 438 

extract water102,103. In addition to root distributions, plants can also adapt root hydraulic 439 

traits such as xylem cavitation resistance to adapt to environmental conditions. To access 440 

strongly bound soil water, desert shrub species develop higher cavitation resistances in 441 

loamy than in sandy soils104. The differentiation of root systems of different species to 442 

access specific subsurface niches105 and interactions from deep rooting species facilitating 443 

water uptake from wet deep soil layers to shallower, drier layers with subsequent water 444 

uptake by species with shallow root systems 91are used to explain the higher resilience and 445 

productivity of mixed ecosystems106. But the mechanisms and conditions under which mixed 446 

species perform better than homogeneous systems are context-dependent and not fully 447 

understood107,108. Higher productivity can lead to an ‘overcrowding effect’ which reduces 448 

resilience to drought. Mechanistic modelling of RWU in these complex ecosystems is 449 

important for a better understanding of the belowground competition for and facilitating 450 

water uptake109. Yet, upscaled relations between soil moisture distribution and RWU of 451 

different species or individuals sharing the same land surface and soil volume and that are 452 

derived in a bottom-up approach based on canopy and root hydraulic traits are still lacking.  453 

 454 

3.3 Vegetation and groundwater feedbacks 455 

Changes in vegetation and land cover impact water, energy and carbon exchanges between 456 

the land surface and the atmosphere. Vegetation cover reduction leads to an increase of soil 457 

E. Since the travel distance of water to the surface where E takes place is much larger than 458 

to the absorbing root surfaces in the root zone, the water storage that can be depleted by 459 

soil E is much smaller than what can be extracted by plant roots. As a consequence, a 460 

decrease in vegetation cover generally leads to a decrease in ET losses, an increase in 461 

groundwater recharge and runoff, larger warming of the land surface, and higher air 462 

temperatures near the surface.  463 



Soil surface and root zone drying are mitigated by upward capillary flow from the 464 

subsurface. It sustains ET during dry spells and decreases groundwater recharge on a longer 465 

time scale and it depends on the wetness of the subsurface and ultimately on the GW 466 

depth. The non-linear dependence of soil hydraulic properties on soil water content is 467 

propagated into a non-linear relation between GW depth, subsurface moisture content, and 468 

upward capillary flow. For GW depths above roughly 1 m, the root zone stays wet and ET is 469 

controlled by the available energy whereas GWs deeper than 10 m have no influence on 470 

root zone wetness and land surface-atmosphere interactions110. The depth range over 471 

which GW depth influences land surface atmosphere interactions depends on the soil 472 

hydraulic properties and the rooting depth. Steady upward capillary flow at typical potential 473 

ET rates can be maintained over a few cm in sandy and heavy clays soils up to roughly 1 m in 474 

loamy soils111. Rooting depth can adapt to the specific site conditions and to changes in GW 475 

depth that are not too fast or too strong and do not exceed adaption rate (root growth rate) 476 

and the cost-benefit ratio of this adaptation112.  477 

 478 

4. Large scale impact of soil hydrology 479 

 480 

Soil hydrology plays a central role in shaping the impacts of climate change on terrestrial 481 

ecosystems, not only at the local scale but also at much larger scales due to the close 482 

interaction between the land surface and the atmosphere at all scales. In addition, SHP are 483 

central to the feedback effects of the land surface on the Earth's climate system113. In the 484 

following section, we will explore these feedback processes in more detail, as well as the 485 

effects of extreme climate events. Finally, we will address the importance of terrestrial 486 

water storage (TWS) in deeper soil layers and its more precise quantification for the 487 

response of the terrestrial system to climate change. 488 

 489 

4.1 Climate system feedbacks 490 

An important aspect of changes in SHP as well as whole ecosystem processes caused by land 491 

use, land-use change and climate change is their feedback to the climate system via direct 492 

and tele-connected processes, leading to large uncertainty in regional climate 493 

predictability114. For example, increased soil moisture can trigger precipitation events, 494 

especially under spatially heterogeneous soil moisture conditions, with precipitation 495 

preferentially falling on dry patches of land115. Following the same observed trend, 496 

increased deforestation has led to large changes in precipitation patterns in Rondônia, 497 

Brazil, in the range of ±25% between the upwind and downwind parts of the deforested 498 

area relative to the mean precipitation of the entire area 116. Agricultural intensification, 499 

especially in combination with irrigation, may lead to cooling at the subcontinental scale 500 

due to increased ET and persistent changes in atmospheric circulation and moisture 501 

transport, as observed, for example, for the U.S. Midwest117. In contrast, drought at the 502 

regional, continental and global scale is exacerbated by the feedbacks of decreasing soil 503 

moisture on land surface temperature and relative humidity, leading to a decrease in P, 504 

which in turn exacerbates this feedback loop118.  505 



Long-term simulations with fully-coupled land–atmosphere–climate models revealed a 506 

strong positive relationship between heatwave intensity and drought severity for water-507 

limited regions, such as the southwestern U.S.A.119 and the Mediterranean120. However, a 508 

strong link and feedback loop between precipitation and soil moisture has also been 509 

identified for wetter regions such as the tropics121. It is important to note that major soil 510 

moisture perturbations can last much longer than the cause of the perturbations and 511 

therefore also represent a long-term feedback on the climate system122. Ultimately, these 512 

multiple interactions and feedbacks between soil, land surface, and atmosphere can be 513 

summarized as a negative soil feedback loop between soil moisture and temperature, that 514 

is, a decrease in soil moisture leads to an increase in temperature, and a positive feedback 515 

loop between soil moisture and precipitation, that is, an increase in soil moisture leads to an 516 

increase in precipitation7. 517 

 518 

Local SHP play an important role in controlling and modulating the impact of extreme 519 

events, such as high intensity rainfall as well as prolonged droughts and heat waves, on the 520 

land surface but also the consequences caused by sea level rise on soils in coastal areas, 521 

such as saltwater intrusion and inundation. Changes in infiltration capacity at the land 522 

surface, loss of soil porosity and a decrease in soil organic matter caused, for example, by 523 

changes in land use (such as deforestation due to agricultural intensification) and land cover 524 

(for example by surface sealing due to urbanization) may lead to an increased likelihood of 525 

large-scale flooding and soil erosion123. 526 

 527 

To project the behavior of floods, as well as extreme low flow conditions, into the future, it 528 

is essential to attribute such changes to their driving processes. The predominant 529 

mechanism of runoff generation is overland flow when rainfall intensity exceeds the 530 

infiltration capacity at the soil surface124. In this context, infiltration capacity is highly 531 

susceptible to land-use changes, such as those associated with more intensive agriculture125. 532 

On the other hand, flooding in larger watersheds is usually caused by storms of lower 533 

intensity and longer duration126, which generate surface runoff through the mechanism of 534 

saturation excess when the water table reaches the soil surface. This mechanism is 535 

controlled more by soil depth and less by land-use change, which explains the decreasing 536 

importance of land-use change with increasing scale. 537 

 538 

Extreme events may also alter intrinsic soil properties that control SHP. Prolonged droughts 539 

can promote macropore formation, primarily through the formation of cracks in clay-rich 540 

soils127. Changes in effective porosity due to climate change would result in changes in 541 

saturated soil K ranging from -55 to +34 percent in five different physiographic regions in 542 

the USA, depending on whether climate change results in an increase or decrease in 543 

precipitation at the regional scale128. High intensity rainfalls may lead to sealing of the soil 544 

surface, a reduction of soil porosity and thus a reduction in infiltration capacity of soils. This 545 

reduction in infiltration capacity may cause increased overland flow and soil erosion. 546 

 547 

 548 



4.2 Terrestrial water storage 549 

The dynamics of subsurface and groundwater storage are important not only for the 550 

impacts of climate change on terrestrial systems and their feedback to the climate system, 551 

but also for the conservation and sustainable use of the world’s freshwater resources129, 552 

and for the coupling of water and carbon cycles130. However, these dynamics are currently 553 

not well understood131, and cannot be well constrained by observations except in the 554 

regions with shallow soils. To infer the terrestrial water budget, information is needed on 555 

water storage and residence time also at depths below the vadose zone. While surface soil 556 

moisture, temperature and Pion can be measured at the land surface with sensors or from 557 

satellite-based systems, the major obstacle to understanding water availability dynamics at 558 

depth has been the lack of observational capabilities. As a result, long-term changes in TWS 559 

were often simply assumed to be zero, for example in water balance models132. Since 2002, 560 

the gravity satellite missions GRACE and GRACE-FO have provided global observations of 561 

TWS anomalies. Because of the measurement principle, TWS refers to water storage in all 562 

compartments, including rivers, lakes and reservoirs, canopy water, and atmospheric 563 

moisture (the latter removed in data analysis). Only temporal anomalies are observed and 564 

referenced to a long-term average, and due to sensor limitations, the data products provide 565 

monthly averages and an effective resolution of about 300 km133. Water balance can be 566 

inferred with GRACE/GRACE-FO data134 for catchments down to 100.000 km2. Extreme 567 

events are recorded130,135, but are difficult to interpret due to coarse data resolution. 568 

 569 

In general, soil moisture dynamics exhibits an increasing phase shift and decreasing 570 

amplitudes with depth. Combining soil water and soil temperature measurements with 571 

GRACE data in the central U.S., over 40% of the variability in water storage of the 572 

unsaturated zone was found to occur below 75 cm, while groundwater storage calculated as 573 

the residual had a variability that was well correlated and comparable in magnitude to soil 574 

moisture variability in the uppermost 4 m136. Combining GRACE data with observed and 575 

gridded Fluxnet ET data improved the simulation of soil E in the Community Land model 576 

(CLM) by replacing an empirical parameterization of soil resistivity with a mechanistic 577 

formulation in which soil E is controlled by the diffusion rate of water vapor through a dry 578 

surface layer137. 579 

 580 

Significant improvements in simulating soil water availability in the root zone of grasslands 581 

and croplands were also reported by jointly assimilating satellite soil moisture products and 582 

GRACE data into an ecohydrological model138. This assimilation resulted in a better 583 

agreement between vegetation response and soil water availability in the root zone, 584 

suggesting the potential for model tuning and better prediction of vegetation conditions. 585 

Recently, it was demonstrated that merging GRACE and satellite soil moisture data with LSM 586 

can improve the estimation of moisture profiles in mountainous areas and can be 587 

successfully used as a predictor in global landslide models139. 588 

 589 

It is known from GRACE/GRACE-FO that TWS is not in equilibrium at decadal time scales for 590 

natural and anthropogenic reasons129,140. On the global scale, the variability of water stored 591 



on continents responds strongly to the El Niño Southern Oscillation (ENSO), resulting in 592 

pronounced sea-level declines. For example, the exceptional sea-level drop in 2011 was 593 

explained by Australia’s endorheic hydrology responding to intense rainfall141. The GRACE 594 

data have shown that hydrology models underestimate decadal trends, while better 595 

representing seasonal dynamics, and they have helped identify the need for better 596 

representation of soil column depth and layers, snow storage, and groundwater storage 597 

changes in coupled climate models142.   598 

 599 

5. Emerging technologies 600 

To adequately inform soil hydrological and land surface models and to better use existing 601 

observational capabilities, there is a need for improved data acquisition, data curation and 602 

analytical tools. Here we present an overview of the status of modern sensing technologies, 603 

citizen science approaches, cyber infrastructures and global data cubes to advance our 604 

understanding of SHP at all scales. 605 

 606 
5.1 Sensing soil hydrology 607 

Information on soil water content, temperature, matric potential and other states requires a 608 

variety of established and novel technologies that capture their high degree of variability in 609 

time and space143 . Established in-situ point methods include electromagnetic approaches to 610 

measure in situ water content, for example time domain reflectometry (TDR)144, time 611 

domain transmission (TDT)145, and capacitance146 and impedance sensors147, while other 612 

point-based approaches use thermal soil properties (thermal pulse sensors)148. In-situ 613 

sensed soil moisture has been coupled with the remote sensing data to acquire large scale 614 

soil profile moisture variation using physically based methods149, data assimilation 615 

methods150, (semi-) empirical methods151, data-driven methods152, and statistical 616 

methods153. 617 

 618 

Field-scale soil moisture measurements can be obtained by non-invasive methods, such as 619 

cosmic-ray neutron sensing (CRNS), Global Navigation Satellite System Reflectometry (GNSS-620 

R), gamma-ray monitoring, and ground penetrating radar (GPR)154. Regional to global 621 

coverage of near-surface soil moisture content is usually achieved with satellite-based 622 

sensors such as the Soil Moisture and Ocean Salinity (SMOS), Soil Moisture Active Passive 623 

(SMAP), Advanced Scatterometer (ASCAT)155, Advanced Microwave Scanning Radiometer 624 

(AMSR-E/AMSR-2) with a resolution of tens of kilometers156-158. Through multi-sensor 625 

integration higher resolutions159 or global long-term (1978-now) products160 are generated. 626 

Native finer resolution data (tens of meters) involve synthetic aperture radars (SAR) such as 627 

ESA´s Sentinel-1161 and JAXA´s ALOS-2162.  The upcoming SAR missions NISAR (NASA ISRO 628 

Synthetic Aperture Radar)163, and ROSE-L (Radar Observing System for Europe at L-band)164 629 

operate at longer wavelengths than previous SAR sensors which monitor soil moisture over 630 

a depth of about 5 cm. Soil moisture information down to a depth of about 25 cm will be 631 

provided by P-band sensors used by BIOMASS mission165 and the SigNals Of Opportunity: P-632 

band Investigation (SNOOPI). The latter exploits transmissions from telecommunications 633 



satellites reflected at the Earth’s surface to retrieve soil moisture166. Similarly, the Global 634 

Navigation Satellite Systems-Reflectometry (GNSS-R) concepts use navigation signals of 635 

opportunity to perform scatterometry with ground-based167 or space-borne receivers168. 636 

The relatively lower cost of sensors that take advantage of such existing ‘signals of 637 

opportunity’ theoretically enables more frequent observations by making it cost-effective to 638 

fly a large number of sensors.  639 

 640 

5.2 Monitoring networks and citizen science 641 

Understanding the impact of anthropogenic change on SHP and designing adaptation 642 

strategies requires long-term observations169,170. The concept of soil hydrologic in-situ 643 

monitoring networks is increasingly relevant for a range of environmental issues171, leading 644 

to an increasingly multi-disciplinary focus of long-term observatories170, often coordinated 645 

as networks172,173. Ongoing national and international observatory networks that include soil 646 

hydrological observations are Critical Zone Observatories (CZO)172,174, NEON (National 647 

Ecological Observatory Network)175, TERENO (Terrestrial Environmental Observatories)176, 648 

TERN (Terrestrial Ecosystem Research Network)177, and ISMN (International Soil Moisture 649 

Network)178providing in-situ soil moisture data from 2842 stations worldwide.  These 650 

networks can be supported by public participation of non-scientists known as Citizen 651 

Science (CS)179. CS ranges from community-based data collection to Internet-based 652 

execution of various scientific tasks, with the help of large numbers of volunteers and 653 

crowd-sourcing180,181. Recent sensor development, data processing and visualization have 654 

opened new opportunities for engaging the public in scientific research182. For example, 655 

low-cost, low-maintenance soil moisture sensors have enabled the development of large-656 

scale public sensor networks183. Another recent CS project used human perception to 657 

evaluate similarity and dissimilarity between spatial patterns in the simulation results of a 658 

hydrologic model184.  It was shown that human perception in distinguishing between 659 

similarity and dissimilarity provides additional information that is valuable for model 660 

diagnosis. CS is typically staff intensive and requires proper training and education of those 661 

involved181 as well as openness to data sharing185. Techniques are being developed to assess 662 

and increase the accuracy of crowdsourced environmental data186. 663 

 664 

5.3 Cyber infrastructure and big data  665 

Cyber-physical infrastructures provide solutions for the integrated management of 666 

heterogeneous data resources such as live sensors, sensor models, simulation systems; 667 

collaborative observation systems based on multiple platforms such as wireless sensing 668 

networks, remote sensing, and methods for scalable processing and fusion of multi-sourced 669 

environmental data (Fig. 4). Cyber-physical infrastructures improve environmental research 670 

by combining different types of data such as real-time wireless sensor network data with 671 

global remote sensing data. They also become important in the framework of the Internet 672 

of Things (IoT)187, which provides real-time environmental data, enabling large-scale 673 

networks and possibly continental coverage in the near future188. Global internet access is 674 



being pursued via high altitude balloons, solar planes, and hundreds of planned satellite 675 

launches, providing a means to exploit the IoT189. Such global access will enable real-time 676 

collection of data from billions of smartphones or from remote research platforms and 677 

adequate cyber-physical infrastructures are essential to manage the petabytes of data that 678 

could be produced in the future by such systems. This presents a unique opportunity to gain 679 

new insights that advance fundamental aspects of soil science. However, given the discrete 680 

and irregular nature of the associated data, this will require a radical rethinking of how we 681 

deploy and use these new observing systems189, and the cyber tools needed to harmonize 682 

and synthesize these unstructured data into a comprehensive picture of Earth system 683 

processes and properties. 684 

For decades, a huge amount of data related to soil hydrology has been recorded by 685 

satellites, monitoring networks, and governments. However, these data is often 686 

underutilized due a lack of availability, discoverability, accessibility, storage capacities, 687 

processing methods, visualization and dissemination tools, or high performance computing 688 

facilities with low usability levels. Here, public Analysis Ready Data (ARD) repositories with 689 

the possibility to apply new processing and analysis methods ideally with affordable 690 

processing power are needed190. Both public and private entities invest in this field of big 691 

data accessibility and cloud computing, for example DIAS (Data and Information Access 692 

Service) the European Commission, Theia in France, BDAP (Big Data Analytics Platform) of 693 

the Joint Research Center, (Copernicus Data and Exploitation Platform – DE) of the German 694 

Aerospace Center, Google Earth Engine, and Open Data on Amazon Web Services, just to 695 

name a few. Furthermore, there is a growing recognition that data storage principles are 696 

needed to enable reuse and repurposing of data; for example, the FAIR principles 697 

(findability, accessibility, interoperability, reusability) are now being adopted in many 698 

venues. 699 

Basic land surface data is typically available on cloud platforms, and sometimes also soil 700 

moisture information, but more detailed soil hydrology data need to be processed with new 701 

approaches. Here, portable and efficient software container solutions like Docker and 702 

kubernetes191 can be implemented, as well as interactions with scripts of common 703 

languages such as python and R via application programing interfaces (API) performed. 704 

These solutions open also the potential to apply deep learning methods, to perform 705 

advanced analytics approaches similar to those used for the SoilGrids250m soil information 706 

data such as random forest, gradient boosting or multinomial logistic regression 707 

techniques192. For example, training environmental monitoring data to point-scale in situ 708 

soil measurements could provide spatial maps at sufficient accuracy for further 709 

implementation in regional or global soil hydrological simulations. Moreover, methods for 710 

generating new soil hydrological understanding may benefit from a combination of both 711 

process and empirical modelling193. The wealth of data being generated provides news 712 

opportunities to explore novel data analysis methods. Machine learning approaches (MLA) 713 

such as artificial neural networks and support vector machines have been widely used in the 714 

past decades to simulate various hydrological processes, including soil water dynamics194,195. 715 

In addition, MLA have been successfully applied to the prediction of soil moisture using 716 

remote sensing data196,197. It is important that such models are first trained on a training 717 



data set, which should contain as much data and conditions as possible, so that they can 718 

also take unusual events into account and achieve good prediction accuracy. Given suitable 719 

input data, machine learning approaches can also be used for irrigation planning and 720 

agricultural water resource management198. 721 

 722 

 723 

6. Outlook 724 

 725 

In the last two decades, the field of soil hydrology has evolved to a research field that not 726 

only studies local scale SHP but also embraces the challenge of quantifying and 727 

understanding the influence of SHP at catchment, regional and continental scale. This 728 

increase in scale requires a better understanding of a broad variety of processes and 729 

phenomena ranging from biogeochemical and hydrological processes to extreme events 730 

such as drought, heat waves and floods amplified by climate change. These advances have 731 

been made possible by an unprecedented increase in measuring capabilities empowered by 732 

novel remote sensing technologies and new ground-based technologies to measure key soil 733 

hydrological properties such as soil moisture. Daily, and even sub-daily, global observations 734 

such as soil moisture and ET (evapotranspiration), are now a reality. Research activities in 735 

the near future should comprise a better use of observational capabilities to inform soil 736 

hydrological and LSM predicting SHP. A combination of CS approaches, cyberinfrastructures 737 

and global data cubes will advance our understanding of SHP at all scales, if leveraged 738 

appropriately. To this end, big SHP data need to be integrated to continuously improve the 739 

accuracy of the derived information, which is of key importance to reduce the significant 740 

uncertainties that are still present in soil hydrology models used to predict effects of global 741 

environmental change on terrestrial systems. Machine learning tools are expected to be 742 

pivotal in this integration 743 

In the future, soil hydrologists will increasingly need to address challenges related to 744 

adapting land management in the frame of the ongoing climate and land use change. The 745 

warming of our planet also strongly affects large permafrost regions in the Northern 746 

Hemisphere. More than ever a better understanding and description of key SHP such as 747 

infiltration, evapotranspiration and its separation in E and T as well as the accurate 748 

estimation and forecasting of soil moisture dynamics is needed to assess the future release 749 

potential of CO2 and other greenhouse gases and the complex feedbacks this invokes 750 

between the various biochemical cycles and the water- and energy cycles. The predictions of 751 

hydrological and biogeochemical processes using LSM as part of global climate models 752 

strongly depends on how soils and SHP are being characterized and parameterized. Despite 753 

its importance, the role of soil structure and its dynamic impact on SHP and soil 754 

biogeochemical processes have been almost completely neglected, and a closer cooperation 755 

between soil scientists and global land surface and climate modelers is urgently needed.  756 

 757 

 758 

  759 
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 1401 

Key points:  1402 

 1403 

• Local scale soil hydrological processes regulate climatic effects on the global terrestrial water 1404 

cycle 1405 

• Regional scale soil hydrology is modulated by land-use and climate change effects on soil 1406 

structure 1407 

• Global scale soil hydrology benefits from emerging technologies and big data analysis but 1408 

still faces parametrization challenges from specific soil processes 1409 

• Specific soil hydrological processes prevail in distinct soil groups like permafrost and peat 1410 

soils 1411 

 1412 

Figures legends and boxes: 1413 

 1414 

Fig. 1: The soil hydrological system from the pore to global scale. At the pore scale, capillary and 1415 

molecular forces act on the pore soil water. At the soil profile or pedon scale, hydrological processes 1416 

include drainage, evapotranspiration, soil water storage, capillary rise, and runoff generation. 1417 

Typically, water flows either through the matrix or through preferential flow paths such as 1418 

macropores and cracks. At the regional scale, similar processes occur but in addition water is now 1419 

routed through the landscape. At the global scale, SHP can influence larger scale atmospheric 1420 

processes such as droughts and convective rainfall events caused by feedbacks and teleconnections 1421 

but they also modulate the impact of extreme events. 1422 

 1423 

Fig. 2: Time scales and soil structure forming processes. (a) soil genesis that can be different in 1424 

different climates and soil forming processes; (b) natural soil structure at hydrologic time scales; (c) 1425 

managed soil structure at agronomic time scales. 1426 

 1427 

Fig. 3: Effect of soil properties and moisture status on water fluxes in the soil-plant system. Fig. 3a 1428 

sketches the water fluxes during a dry period and Fig. 4b for a precipitation event in sandy soils (left) 1429 

and loamy soils (right) with and without vegetation. During dry periods (fig. 3a), more water is lost 1430 

by transpiration from vegetated areas than by evaporation from the soil surface in non-vegetated 1431 

areas since vegetation can extract water from deeper soil layers. This leads to larger groundwater 1432 

recharge in non-vegetated areas. In sandy soils, evaporation losses are lower than in loamy soils due 1433 

to smaller capillary forces in sandy soils. Capillarity sustains larger upward flows from the 1434 

groundwater to the root zone in loamy than in sandy soils and deep root systems act as hydraulic 1435 

lifts that take up water from deeper and wetter soil layers and release it into shallower and drier 1436 

layers. Loss of soil structure in non-vegetated areas leads to less infiltration and more run-off from 1437 

non-vegetated surfaces during precipitation events. Biopores and soil structure that is stabilized by 1438 

organic matter input in vegetated areas increase the infiltration capacity of vegetated areas where 1439 

water can be transferred rapidly by preferential flow to deeper soil layers. After a precipitation event 1440 

(Fig. 3b), water is redistributed faster and to deeper soil layers by matrix flow in sandy than in loamy 1441 

soils. To access this redistributed water, vegetation develops deeper roots in sand than in loamy 1442 

soils. 1443 



 1444 

Fig. 4: The four key elements for cyber-physical infrastructures. It shows the role of wireless sensor 1445 

networks (adapted from199) in providing soil hydrological information that can be injected into 1446 

models using data assimilation methods or data-driven approaches. 1447 

 1448 

Text box 1: The diversity of soils and PTF 1449 

Soils strongly differ in their formation factors, land cover and composition that greatly affect their 1450 

hydraulic properties. Currently, we employ easy-to-measure soil physical properties such as texture, 1451 

bulk density and organic matter in PTF used to estimate soil hydraulic properties (fig. 3). This 1452 

approach tacitly assumes dominance of these attributes in determining soil hydraulic properties and 1453 

applies auxiliary simplifying assumptions of homogeneity, unimodality of pore size distribution, while 1454 

ignoring differences in rock fragments, mineralogy, chemical and biological properties. We thus 1455 

expect improvements in PTF-based soil hydraulic properties with future inclusion on nuanced 1456 

differences in soils and their specific properties47. Examples for soil groups200 with pronounced 1457 

properties not yet accounted for in PTF are:  1458 

• Formation and persistence of preferential flow paths due to animal burrows common in 1459 

silty soils such as Phaeozems, Chermozems, or Luvisols; persistent unless disturbed by 1460 

management; 1461 

• Temporal formation of preferential flow paths due to swelling and shrinking processes in 1462 

Vertisols caused by the presence of three-layer-clay minerals; 1463 

• Good drainage in Ferralsols and Acrisols due to pseudo-aggregate formation from two-1464 

layer clay minerals and oxides, as well as in some Andosols exhibiting low bulk density; 1465 

• Low water storage capacity in Leptosols due to percentages of rock fragments, affecting 1466 

both the soil hydraulic and thermal properties which are therefore frequently not 1467 

effectively parameterized; 1468 

• High water storage capacity in Histosols due to high organic matter contents; 1469 

• Crust formation in, for example, Gypsisols or clayey Solonetzs and clayey Solonchaks, 1470 

distorting infiltration patterns; 1471 

• Dense subsoil layers leading to stagnant water in Planosols, Stagnosols, or Plinthosols  1472 

 1473 

Hence, next generation PTF will be required to integrate specific rock fragments, mineralogical, 1474 

biological and chemical interactions that alter soil hydraulic properties28,33. To facilitate such 1475 

progress current databases used to develop PTF must be expanded to include physical, chemical and 1476 

biological properties of the above-mentioned soil groups, which are typically found in large parts of 1477 

Africa, South America, India, the Middle East, Japan, China and Australia. First attempts have been 1478 

made with a dedicated hydrophysical data base to develop PTF for tropical soils in Brazil61; 1479 

unfortunately, adequate high-resolution data are frequently missing for other parts of the tropical 1480 

and subtropical world, such as in Africa. 1481 



 1482 
Text box 1 figure: The concept of PTF. It shows how  PTF are being used to predict soil hydraulic 1483 

properties from soil properties for Europe as a basis for estimating large scale soil hydrological 1484 

processes, such as water storage, infiltration, evapotranspiration, drainage, and runoff. The 1485 

hydraulic conductivity (bottom middle panel), K, indicates the ease with which water can flow in the 1486 

soil: the value of this parameter will decrease rapidly with decreasing 𝜃. Together with the gradient 1487 

in hydraulic potential ( 𝛻 (ℎ + 𝑧) ), with h being determined by the water retention curve and z the 1488 

vertical coordinate, K determines the flow of water in the soil, thereby affecting the processes of 1489 

infiltration, redistribution and drainage, as well as root water uptake and evaporation. The 1490 

information contained in the water retention curve (top middle panel) also provides the models with 1491 

parameters that determine how much water a certain soil can hold in its pore system (the available 1492 

volumetric water content, AWC) and how easy it is for the roots to take up this water (that is, how 1493 

tightly the water is being held in the pores). 1494 

 1495 

Text box 2: Soil-plant hydraulics  1496 

Parameterizing root hydraulic properties in plant hydraulic models remains challenging. A common 1497 

simplification neglects the resistance to axial flow in the root system. But, for deep roots water 1498 

uptake does not increase with root length since axial conductance becomes limiting201. Approaches 1499 

to simulate RWU which account for the distribution of radial and axial conductance in root system 1500 

networks202 have been developed203. Using upscaling approaches, information about root 1501 

architecture and root hydraulic traits can be ingested directly into larger scale soil-plant hydraulic 1502 

models204,205.  1503 

The resistance to flow from bulk soil to root surfaces through the so-called rhizosphere becomes 1504 

increasingly important when the soil dries out206. Root exudates and mechanical effects of root 1505 

growth influence the hydraulic properties of the rhizosphere and consequently RWU207,208. An 1506 

additional complexity is that the conductivity of the root-soil interface is reduced when roots and 1507 

soil shrink during soil drying and contact to the soil is lost209. How plants engineer the rhizosphere 1508 

and its impact on SHP is a multifaceted problem that includes micro-scale soil and root mechanics 1509 

and hydraulics. These small-scale processes are key to understanding how plants affect soil structure 1510 

and infiltration processes, which are important feedback mechanisms that structure and sustain 1511 

vegetation in water limited ecosystems.  1512 

 1513 



The adaptation of vegetation and its hydraulic properties to environmental conditions referred to as 1514 

plant plasticity can be predicted based by invoking optimisation principles, but it remains unclear 1515 

why they apply when natural selection is not a mechanism for optimisation. Unravelling the 1516 

mechanisms that couple growth and stress physiology and plant hydraulics will be crucial for a 1517 

mechanistic modelling of plant and vegetation plasticity. This coupling entails the coupling of 1518 

phloem carbon transport and xylem water flow, and how they respond to changing environmental 1519 

conditions210 as well as a comprehensive understanding of how changing environmental conditions 1520 

in the soil are sensed by plants211 and signalled between the plant organs or individual plants.  1521 

 1522 

 1523 

Text box 3: The soil data hypercube  1524 

The confluence of rapidly expanding Earth observing platforms at all scales, availability of massive 1525 

computational resources and the urgent need to provide information for increasingly complex and 1526 

highly resolved Earth system models create unprecedented opportunities for individual 1527 

characterization of every grid of the Earth surface212. The hypercube approach stacks gridded 1528 

geospatial data according to standardized global coordinates such as DGSS (DGGSs)213 and adding a 1529 

z-dimension for various information layers that incorporate localized legacy-data, vegetation, 1530 

geomorphic, climate and other environmental attributes, and, of course, soil variables at different 1531 

depths (Fig. 5). This data structure provides unique opportunities for data fusion and temporal 1532 

information assimilation to derive parameters or variables, and enhance the quality of inputs to EMS 1533 

applications especially as novel machine learning approaches can be used to impose physical 1534 

constraints and extract auxiliary information for the representation of SHP. Combined with modern 1535 

data cube geospatial data management and analysis software, such as provided by the Open Data 1536 

Cube (ODC) initiative, and unique indexing of grid cells down to 150 m resolution214. This realizes the 1537 

vision of Digital Earth and populating of every grid cell with soil and hydrologic information unique to 1538 

each grid cell and location on the planet215.  1539 

 1540 
 1541 

Text box 3 Figure Basic principle of a data cube. It links different data layers (e.g. soil moisture, 1542 

geology, vegetation, topography) with a common coordinate system.  1543 



 1544 

For example, we envision the development of the next generation PTF and geomorphic functions in 1545 

their geo-referenced and local attribute-based context to greatly enhance SHP-related information 1546 

and offer a path for continual improvement as more information enters into the local hypercube. 1547 

The richness of information and advanced analytical methods will  supersede our present non-1548 

referenced generic attribute-based PTFs and offer local and updatable  referenced hydrologic and 1549 

surface information at an ever-increasing resolution and expanding temporal record215. For effective 1550 

exploration, management, querying, and updating the massive geospatial information, the 1551 

community will need to embrace hypercube-based visualization216, that extends traditional space-1552 

time cubes into higher dimensions spanned by contemporary soil and environmental information 1553 

(Fig. 5). Recent developments point to the central role of cloud computing in management, 1554 

extraction and direct simulation of spatial data (Google Earth Engine)217. The potential for rich soil 1555 

(and environmental) information unique to a location, where local and extrapolated new 1556 

measurements and observations are harmonized and integrated using ensemble machine learning 1557 

tools to continuously update and improve data quality and derived parameters, holds great promise 1558 

for reducing uncertainties of present Earth system models.  1559 

 1560 


