
Shadow removal from UAV images based 
on color and texture equalization 
compensation of local homogeneous 
regions 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Liu, X., Yang, F., Wei, H. ORCID: https://orcid.org/0000-0002-
9664-5748 and Gao, M. (2022) Shadow removal from UAV 
images based on color and texture equalization compensation 
of local homogeneous regions. Remote Sensing, 14 (11). 
e2616. ISSN 2072-4292 doi: 10.3390/rs14112616 Available at 
https://centaur.reading.ac.uk/105466/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.3390/rs14112616 

Publisher: MDPI 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


Citation: Liu, X.; Yang, F.; Wei, H.;

Gao, M. Shadow Removal from UAV

Images Based on Color and Texture

Equalization Compensation of Local

Homogeneous Regions. Remote Sens.

2022, 14, 2616. https://doi.org/

10.3390/rs14112616

Academic Editor:

Joaquín Martínez-Sánchez

Received: 14 April 2022

Accepted: 26 May 2022

Published: 30 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Shadow Removal from UAV Images Based on Color and Texture
Equalization Compensation of Local Homogeneous Regions
Xiaoxia Liu 1, Fengbao Yang 1,*, Hong Wei 2 and Min Gao 1

1 School of Information and Communication Engineering, North University of China, Taiyuan 030051, China;
s2005004@st.nuc.edu.cn (X.L.); b200505@st.nuc.edu.cn (M.G.)

2 Department of Computer Science, University of Reading, Reading RG6 6AY, UK; h.wei@reading.ac.uk
* Correspondence: yangfb@nuc.edu.cn

Abstract: Due to imaging and lighting directions, shadows are inevitably formed in unmanned aerial
vehicle (UAV) images. This causes shadowed regions with missed and occluded information, such
as color and texture details. Shadow detection and compensation from remote sensing images is
essential for recovering the missed information contained in these images. Current methods are
mainly aimed at processing shadows with simple scenes. For UAV remote sensing images with
a complex background and multiple shadows, problems inevitably occur, such as color distortion
or texture information loss in the shadow compensation result. In this paper, we propose a novel
shadow removal algorithm from UAV remote sensing images based on color and texture equalization
compensation of local homogeneous regions. Firstly, the UAV imagery is split into blocks by selecting
the size of the sliding window. The shadow was enhanced by a new shadow detection index (SDI) and
threshold segmentation was applied to obtain the shadow mask. Then, the homogeneous regions are
extracted with LiDAR intensity and elevation information. Finally, the information of the non-shadow
objects of the homogeneous regions is used to restore the missed information in the shadow objects of
the regions. The results revealed that the average overall accuracy of shadow detection is 98.23% and
the average F1 score is 95.84%. The average color difference is 1.891, the average shadow standard
deviation index is 15.419, and the average gradient similarity is 0.726. The results have shown that
the proposed method performs well in both subjective and objective evaluations.

Keywords: UAV remote sensing; image segmentation; shadow detection; homogeneous region;
shadow compensation

1. Introduction

Shadow in remote sensing images is a phenomenon of image degradation that results
in the absence of image features or low definition due to light being completely or partially
blocked by objects [1,2]. With the advantages of high resolution, low acquisition cost, and
fast acquisition speed, unmanned aerial vehicle (UAV) images have become popular in
practice for collecting data and mapping [3]. However, due to the compound effect of
solar illumination, ground reflection, and atmospheric disturbance, UAV remote sensing
images widely suffer from the problem of low recognition of color features and texture
features in shadow regions, which seriously reduces the quality of UAV remote sensing
images, and then has serious impact on subsequent image processing tasks such as image
interpretation, image matching, feature extraction, land cover classification, and digital
photogrammetry [4–7]. Although there are ways to automatically balance in the case of
UAV cameras, for example, the DJI GO app has automatic light balance in order to avoid
darkness or high exposure, it can only optimize for uneven lighting, not eliminate shadows.
How to effectively extract shadows and compensate the color and texture information in
the shadowed regions is especially important. However, the current shadow detection and
compensation methods [8–11] are still a challenging task in dealing with the shadows of
UAV images with complex surface features and a wide variety of objects.
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In order to effectively reduce the effects of shadows on remote sensing images, many
researchers have been devoted to developing techniques for shadow detection and compen-
sation from remote sensing images. Accurate shadow detection is an important prerequisite
for shadow compensation. Shadow detection methods can be divided into two main cate-
gories: model-based and feature-based methods [12–18]. The model-based methods require
a lot of prior information. For example, the sensor’s position, digital elevation model
(DEM), and solar azimuth. Such information is difficult to obtain in the research process,
which greatly limits the application scope of this method [19–22]. At present, feature-based
methods are mainly used to study the color features of the image, and shadow extraction
is carried out by using the color characteristics of the pixel gray scale of the shadow area
in RGB, HSV, YCbCr, and other color spaces [23,24]. Tasi et al. [25] calculate the global
threshold of ratio image by the ratio of hue-equivalent components to intensity-equivalent
components. This threshold is applied to segment the image to obtain the shadow regions.
However, the shadow detection effect is weakened when the influence of objects is complex.
Based on the work of Tsai, Zhou et al. [26] defined the shadow index (SI) based on the
YCbCr space to extract shadow. However, the SI is susceptible to high-reflectance objects
such as white vehicles in the shadow region, and requires NIR bands to improve SI. The
shadow regions have the maximum value of the saturation component and the minimum
value of the value component in the HSV color space. Based on this particular property
of shadows, a normalized saturation-value difference index (NSVDI) is constructed by
Ma et al. [27] to identify shadows. However, due to the similarity of spectrum, some
dark objects still cannot be distinguished from shadows. In conclusion, existing shadow
detection methods have limited application conditions, and the accurate shadow detection
of UAV RGB remote sensing images needs further research.

Shadow compensation is a restoring process to improve image quality and enhance
image visual effects. Although information in shadowed regions is obscured, some ef-
fective information is still contained in shadow images. This provides the possibility of
restoring surface feature information of the shadowed regions [28]. However, shadow
compensation cannot fully restore the occluded information, as shadows are formed by
a complex composite function of solar illumination, ground reflection, and atmospheric
disturbances. Hence, many shadow compensation methods are dedicated to restoring
surface feature information in the shadow area to some extent, rather than fully restoring
it [29,30]. The key of shadow compensation is to restore the maximum amount of color and
texture detail information in the shadow regions without disturbing the feature information
in the non-shadow regions of the image.

The existing shadow compensation strategies [31–37] can be broadly classified into
two types, namely, local and global strategies. The global strategy takes the whole image
into consideration directly, and compensates the information of the shadow regions by
global optimization [38]. It can remove the shadows in whole directly, but it is not good at
restoring color and texture details in images, especially for high-resolution UAV remote
sensing images with a complex background and multiple shadows. Comparatively, the local
strategy restores overs information of a shadow pixel or region based on the information of
adjacent non-shadow features. For example, Zhou et al. [26] used the mean-shift algorithm
to segment the image and compensated the shadow illumination by matching adjacent
objects. Based on Markov random field theory, Song et al. [39] constructed a matching
relation between shadow region and non-shadow region to improve the accuracy of shadow
compensation. Silva et al. [40] proposed an algorithm based on the spatial distribution
of adjacent pixels, which effectively improves the sharpness of the shadow region of the
original image. Overall, the global strategy can produce better shadow compensation
results, but still has some shortcomings in dealing with the shadows of UAV images
with complex surface features and a wide variety of objects. For example, a local color
transfer algorithm is proposed by Gilberto et al. [41] which can accurately correct the color
without losing texture information, but the restored image has obvious shadow boundaries.
Therefore, how to accurately compensate for shadows remains to be studied in more depth.
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Recently, some researchers have taken advantage of the LiDAR to solve the segmenta-
tion and detection problems in image processing. For example, Awad [42] demonstrated
that the combination of LiDAR data with optical images helps improve the accuracy of im-
age segmentation by reducing over-segmentation and confusion between similar materials.
Han et al. [43] proposed a road detection method based on the fusion of LiDAR and image
data, and the results proved that the fused features can improve the performance of road
detection. Based on the above inspiration, we propose a novel shadow removal algorithm
for UAV remote sensing images, which is based on color and texture equalization com-
pensation of locally homogeneous regions to solve the problem of obvious heterogeneity
between shadow and non-shadow regions compensated by existing methods.

The main contributions and advantages of the proposed approach are as follows: (1) A
novel algorithm is proposed to remove shadows from UAV remote sensing images based on
color and texture equalization compensation of local homogeneous regions, which can not
only effectively recover color and texture details of shadowed objects, but also well preserve
the surface feature information in non-shadow regions; (2) The new shadow detection
index is defined based on the R, G, and B bands of a UAV image, which can effectively
enhance the shadow; (3) A homogeneous region segmentation method is proposed based
on LiDAR data, using the LiDAR intensity and elevation range of typical objects as the basis
for homogeneous regions extraction to achieve accurate extraction of homogeneous regions.

The rest of paper is organized as below. Section 2 explains in detail the methodology
of the proposed method. Section 3 presents the experimental design and the experimental
results. Discussion and conclusions are shown in Sections 4 and 5, respectively.

2. Methodology

The flowchart of the proposed methodology is shown in Figure 1. Firstly, the UAV imagery
is split into blocks by selecting the size of the sliding window. Secondly, based on the red,
green, and blue bands of UAV RGB image, a new shadow detection index (SDI) was defined to
enhance the shadows. For the obtained SDI results, the shadow binary mask is obtained by using
Otsu threshold segmentation and morphological optimization. Then, calculate the statistical
characteristics of the LiDAR intensity and elevation for each image region, set segmentation
threshold to extract homogeneous region. Finally, a shading compensation algorithm based
on homogeneous region information is proposed, which can accurately recover the missing
information in the shaded region by calculating the illumination ratio and grayscale difference
between the shadow and non-shadow regions and using the homogeneous region entropy
value to balance the color compensation and texture compensation.
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2.1. UAV Image Blocking

UAV images are split into small blocks, which are used as the smallest processing
unit in detecting shadow regions. In this process, an overlap area with an optimal size
needs to be predetermined. A sliding window of size S × S is used to block the original
remote sensing image, and S should be slightly larger than the length (L) or width (W) of
the largest target on the study site. In this study, we suggest S = max(L,W) because it is
common sense that the spectral information tends to be uniform in a small region. By using
this way, inconsistency of restored objects and the objects without shadowing can be largely
mitigated after shadow removal in an image. Meanwhile, in order to prevent unnaturally
stitching objects which cover two adjacent blocks after shadow removal, an overlap region
N is defined between these blocks, N = k × S (0 < k < 1), where k is the overlap rate of two
adjacent blocks, and the value of parameter k can be flexibly selected based on the size of
the block. A blocked image and the overlap regions are shown in Figure 2.
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2.2. Shadow Detection

According to the analysis of color characteristics of UAV RGB remote sensing im-
age [44], the red (R), green (G), and blue (B) components of the RGB color space are highly
correlated (B-R: 0.78, R-G: 0.98, G-B: 0.94). Specifically, the reflectance of ground objects
in the green band is slightly lower than that in the red band, and the red band of remote
sensing images has high correlation with the green band; similarly, the reflectance of ground
objects in the blue band is slightly lower than that in the green band, and the blue band of
remote sensing images has high correlation with the green band. Subtraction operation
can be used to increase the spectral reflectance between different ground objects and the
contrast when the trend of change in the two bands is opposite. Woebbecke [45] analyzed
R − G, G − B, (G− B)/|R− G| and 2G − B − R optical characteristics, and found that
2G− B− R has the best optical contrast between the target and the background. According
to the optical principle, the absorption band of a vegetation area is located in the blue band
and red band, and the reflection peak is located in the green band. Light in non-shadow
regions mainly comes from reflected light, ambient light, and atmospheric scattering. Light
intensity perceived by sensors is mainly reflected light. Vegetation areas can strongly
reflect green light. Therefore, the value of G component of the pixel corresponding to the
vegetation area is larger than the value of the R and B components. By increasing the
weight of the green component, the error detection of green vegetation can be eliminated.

Based on the above analysis, we propose a new shadow detection index (SDI) based
on the red, green, and blue bands of a UAV RGB image, which is defined as follows:

SDI = ω× |2G− B− R|+ ε× G (1)
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where, R, G, and B represent the red, green, and blue bands of the original UAV RGB image;
ω, ε are parameters, andω + ε = 1.

The Otsu method, also known as the maximum inter-class variance method, deter-
mines the threshold of binary image segmentation [46]. It divides the image into two parts,
background and foreground. By calculating the inter-class variance of the foreground and
background of each segmentation result, the gray value with the maximum inter-class
variance is selected as the segmentation threshold. For the SDI, the Otsu method is used
to extract the threshold of shadow segmentation automatically, and then the grayscale
image was binarized to obtain the shadow mask. Then, the shadow mask is optimized by
morphological operation.

2.3. Homogeneous Region Segmentation

Shadow regions in an image may cover a variety of feature types, and the light
reflectance of different surface materials varies. In developing the algorithm to restore
color and texture details of shadowed regions, we take the difference into account. A
homogeneous region is defined as a large connected region that is spatially adjacent and
has the same or similar spectral properties, so that image pixels within it have strong
spatial and spectral correlation [47]. In this process, we exploit high-resolution LiDAR
point cloud and intensity data, acquired by a LiDAR device equipped with the UAV. LiDAR
provides accurate elevation and intensity information that can be effectively associated in
segmentation of homogeneous regions [48,49]. The algorithm can be described as follows:

(1) Enhance the contrast of the intensity data using a histogram equalization method.
(2) Calculate the statistical characteristics of the LiDAR intensity and elevation for each

image region (each block).
(3) A homogeneous region is selected using thresholding segmentation.

In the experiments of this study, ten types of homogeneous regions are defined and
involved in the test images. They are asphalt road, concrete road, grassland, soil, tree, water,
dark vehicle, white vehicle, roof, and rock. Region segmentation is performed by manually
selecting the thresholding values based on a priori knowledge. For example, different
intensity values (IN) and elevation values (EL) corresponding to different homogeneous
regions in the image are shown in Figure 3. In Equation (2), and IN ∩ EL is a homogeneous
region. An example result is shown in Figure 3d.

IN =



0 ≤ IN ≤ 10 Black metal
30 ≤ IN ≤ 60 Asphalt
45 ≤ IN ≤ 125 Vegetation
120 ≤ IN ≤ 200 Roo f
180 ≤ IN ≤ 195 Concrete
250 ≤ IN ≤ 255 White metal

EL =


0 ≤ EL ≤ 0.3 Road
1.3 ≤ EL ≤ 2.2 Vehicle
0.7 ≤ EL ≤ 6.2 Tree
4 ≤ EL ≤ 18.8 Building

(2)
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2.4. Shadow Compensation

According to the image formation theory [50], the RGB values of image pixels conform
to Equation (3).

Ii = Li × Ri (3)

where Ii is the RGB value at pixel point i, and Li and Ri are the light intensity and surface
reflectance of point i, respectively.

The imaging lighting effect can be regarded as a combination of direct light and
ambient light, where direct light is the light that is shone directly from the light source to
the object, and ambient light is the light that is obtained by reflection from other objects.
Thus, for any pixel i, its intensity can be expressed as:

Ii =
(

Le
i + αLd

i

)
Ri, α ∈ [0, 1] (4)

where, for pixel i, Le
i is the ambient light component, Ld

i is the direct light component, and
α is the shadow coefficient of the point. α = 1 means the pixel is not shaded; α = 0 refers to
an object being fully shaded. In the transition region between fully shaded and unshaded
regions, α is a continuous value and α ∈ (0,1).

The ratio of direct light to ambient light, r, can be expressed as:

r =
Ins
i − Is

i
Is
i

=

(
Le

i + Ld
i

)
−
(

Le
i + αLd

i

)
(

Le
i + αLd

i
) (5)

In Equation (5), Ins
i represents pixel intensity at position i of a non-shadow image, and

Is
i represents pixel intensity at position i of a shadow image.

Based on the above analysis, the intensity of a non-shadow pixel i can be expressed as:

Ins
i =

(r + 1)
(αr + 1)

Ii (6)

As the light in the imaging area is completely or partially blocked by other obstacle
objects, the brightness and contrast of the objects in the shadowed regions are reduced,
which denotes the difference between the pixel values in the shadow or non-shadow
regions. This difference is converted into a basis for effective enhancement of the shadow
regions. For any shadow pixel i, the pixels after shadow compensation can be expressed as:

Is_ f ree
i = Is

i + d (7)

In Equation (7), Is_ f ree
i is the shade-free pixel value and d is the difference between the

average pixel value of the non-shadow and shadow regions.

d =
1
M

M

∑
i=1

Ins
i −

1
N

N

∑
i=1

Is
i (8)

Illumination ratio-based shadow compensation methods are good at restoring texture
information, but are prone to overcompensation and color distortion. Grayscale difference-
based shadow compensation methods are good at restoring color information, but not
suitable for shadow regions with complex textures. Combining the advantages and appli-
cability conditions of the above two methods, the entropy value (ent) is used as the basis
for judging which of the two methods is used for shadow compensation based on the
complexity of the texture of the shadow regions.

ent = −
n

∑
i=0

p(i) log2[p(i)] (9)
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where n is all possible values of grayscale differential values and p(i) is the probability of
each grayscale differential value.

The Algorithm 1 of shadow compensation is described as follows.

Algorithm 1. Shadow compensation algorithm

Input: UAV RGB image Ij (j ∈ [1, m]); The number of homogeneous regions, n; t.
Output: The result of shadow compensation, Uremoval ,
1. All shadow regions are represented by S and all non-shadow regions are represented by U;
2. Find the non-shadow region Ui corresponding to the homogeneous shadow region Si,
i ∈ {1, 2, · · ·, n};
3. for (j = 1; j ≤m; j++) do
4. for (i = 1; i ≤ n; i ++) do
5. compute the average value of Si in the q-band, Savg

i,q (q ∈ {R, G, B});
6. compute the average value of Ui in the q-band, Uavg

i,q (q ∈ {R, G, B});

7. ent = −
N
∑

k=0
p(k) log2[p(k)]; //the entropy value

8. if (ent ≥ t) then

9. rq =
Uavg

i,q −Savg
i,q

Savg
i,q

; //the ratio of direct light to ambient light.

10. Uremoval
i,q =

(
rq + 1

)
Si; //shadow compensation in the q-band.

11. else
12. dq = Uavg

i,q − Savg
i,q ;//the difference between the non-shadow and shadow regions.

13. Uremoval
i,q = Si + dq;//shadow compensation in the q-band.

14. end if
15. Uremoval

i = ∪
q=R,G,B

Uremoval
i,q ;//the shadow compensation result of Si

16. end for
17. end for
18. return Uremoval ;

3. Experiments
3.1. Experiment Data

Experiments were conducted with UAV images obtained by our team from aerial
photography in Xinzhou City, Shanxi Province, China, with the longitude and latitude of
112◦43′E and 38◦27′N, and the UAV flight altitude was 85 m. The DJI “PHANTOM 4 RTK”
drone is equipped with a CMOS camera of 20 effective megapixels and a maximum photo
resolution of 5472 pixels × 3648 pixels (3:2). UAV images with complex surface features
and a wide variety of objects were selected as experimental data, which contain multiple
colors, textures, and a large amount of vegetation, asphalt roads, and concrete floors, as
shown in Figure 4. The size of the image is 370 × 330 pixels in study case 4 (the fourth
column in Figure 4), and the size of the other three images is 1500 × 1100 pixels. LiDAR
data are obtained by DJI M600pro UAV with Genius LiDAR. The maximum range of this
Genius Micro UAV-borne LiDAR is beyond 250 m, the maximum measurement speed is
640,000 points/second, and the actual operating point cloud density is better than 200
points/m2. The system has a ranging accuracy of 2 cm and an absolute accuracy of better
than 10 cm, which can satisfy topographic mapping work at a maximum scale of 1:500.
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3.2. Experiment Design
3.2.1. Experiment Design of Shadow Detection

To evaluate the proposed shadow detection algorithm, the experimental results are
compared with the most commonly used shadow indexes, which are Tasi’s method in the
YCbCr space (TYCbCr) [25], Tasi’s method in the HSV space (THSV) [25], the normalized
saturation-value difference index (NSVDI) [27], and the shadow index (SI) [26]. For objec-
tive evaluation, the producer’s accuracy (Ps and Pn), the user’s accuracy (Us and Un), the
overall accuracy (OA), and F1 score are used.{

Ps =
TP

TP+FN × 100%
Pn = TN

TN+FP × 100%
(10)

{
Us =

TP
TP+FP × 100%

Un = TN
TN+FN × 100%

(11)

OA =
TP + TN

TP + TN + FP + FN
× 100% (12)

F 1 = 2× Ps ×Us

Ps + Us
× 100% (13)

where TP (true positive) is the number of shadow pixels correctly identified, TN (true
negative) is the number of non-shadow pixels correctly identified, FP (false positive) is the
number of non-shadow pixels incorrectly identified and FN (false negative) is the number
of shadow pixels incorrectly identified. The closer the F1 score is to 1, the better is the
performance of the shadow detection method.

3.2.2. Experiment Design of Shadow Compensation

To evaluate the proposed shadow compensation algorithm, the experimental results
are compared with the most commonly used shadow compensation algorithms, which
are the illumination correction method proposed by Silva [40], the color transfer method
proposed by Murali [37], and the shadow synthesis method proposed by Inoue [11]. For
objective evaluation, three metrics are used: (1) color difference (CD) for color consistency,
(2) shadow standard deviation index (SSDI) proposed in [32] for texture detail consistency,
and (3) gradient similarity (GS) for shadow boundary consistency.

(1) Color difference (CD)

Convert images to the CIE L*a*b* color system with coordinates of a, b, L, using the
CIE 1976L*a*b* color difference calculation Equation (14):

∆Elab =
[
(∆L)2 + (∆a)2 + (∆b)2

] 1/2
(14)

The relationship between color difference value and visual perception is:
When ∆E < 1, the chromatic aberration is barely perceived.
When 1 < ∆E ≤ 2, there is little perception of color difference.
When 2 < ∆E ≤ 3.5, the feeling of color difference is moderate.
When 3.5< ∆E ≤ 6, the feeling of color difference is obvious.
When ∆E > 6, the feeling of color difference is strong.

(2) Shadow standard deviation index (SSDI)

The SSDI calculation is performed for each channel (R, G, and B) of the output image
T, defined by σs−ns, as shown in Equation (15).

σs−ns =
1
B

B

∑
b=1

√√√√ 1
N

N

∑
i=1

(
Fs

b,i − Fns
b

)2
(15)
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where b is the current band of the image and B is the total number of image bands. i is
the current pixel in the shadow regions and N is the total number of pixels in the shadow
regions. Fs is the compensated shadow sample set, and Fns is the mean of the corresponding
non-shadow sample set.

The SSDI reflects the variation of the shadow regions after shadow compensation
with regard to homogeneous non-shadow regions. When the SSDI value is low, it means
the shadow regions are consistent with the non-shadow regions in terms of texture detail;
when the SSDI value is high, it means the shadow regions are significantly different from
the non-shadow regions in terms of texture detail.

(3) Gradient similarity (GS)

g(x, y) =
2gxgy + C

gx2 + gy2 + C
(16)

where gx and gy represent the central gradient values of image blocks x and y, respectively,
and C is a smaller positive constant, in order to prevent the instability of the algorithm
caused by too-small a denominator. g(x, y) represents the x and y gradient similarity values,
which ranges from 0 to 1.

3.3. Experimental Result
3.3.1. Experiment Result of Shadow Detection

Shadow detection results from the proposed method of the study cases 1 and 2 are
shown in Figures 5 and 6, in comparison with the other four aforementioned methods.
Study case 1 contains large and regular building shadows. Study case 2 contains a lot of
irregular and fragmented tree shadows. The results of all five methods in terms of detection
accuracy in study cases 1 and 2 are shown in Tables 1 and 2, respectively.
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Figure 6. The detection results of different methods applied to study case 2: (a) original image shown
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Table 1. Objective evaluation results of shadow detection in study case 1.

Index Ps (%) Pn (%) Us (%) Un (%) OA (%) F1 (%)

SDI 98.09 99.50 99.22 98.75 98.94 98.65
TYCbCr 81.40 99.60 99.40 87.00 91.51 89.50
THSV 99.69 79.28 79.38 99.68 88.35 88.38

NSVDI 80.33 98.54 97.77 86.23 90.45 88.20
SI 86.84 99.47 99.24 90.43 93.85 92.62

Table 2. Objective evaluation results of shadow detection in study case 2.

Index Ps (%) Pn (%) Us (%) Un (%) OA (%) F1 (%)

SDI 94.00 98.27 92.08 98.71 97.51 93.03
TYCbCr 75.51 98.45 90.16 95.53 94.82 82.19
THSV 98.13 84.62 54.56 99.59 86.76 70.13

NSVDI 63.13 93.82 65.28 93.12 88.96 64.43
SI 90.55 95.73 79.98 98.18 94.91 84.94

3.3.2. Experiment Result of Shadow Detection

Shadow compensation results from the proposed method of the four study cases
are shown in Figure 7, in comparison with the other three aforementioned methods. In
addition, the compensation results of each method are locally enlarged to observe the
details of feature information recovery under shadows, as shown in Figure 8. The results
of all four methods in terms of compensation accuracy in each study case are shown in
Tables 3–5, respectively.
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Table 3. Objective evaluation results of color difference (CD).

Case Illumination
Correction Color Transfer Shadow

Synthesis Proposed Work

1 4.863 4.352 2.936 1.792
2 4.340 4.053 3.902 1.943
3 5.654 4.924 4.761 1.831
4 5.207 3.896 3.632 1.998

AVG 5.016 4.306 3.807 1.891

Table 4. Objective evaluation results of shadow standard deviation index (SSDI).

Case Illumination
Correction Color Transfer Shadow

Synthesis Proposed Work

1 23.326 22.013 16.877 16.509
2 19.872 20.362 19.843 17.182
3 18.439 19.394 18.160 13.731
4 18.310 19.212 15.485 14.253

AVG 19.896 20.245 17.591 15.419

Table 5. Objective evaluation results of gradient similarity (GS).

Case Illumination
Correction Color Transfer Shadow

Synthesis Proposed Work

1 0.491 0.574 0.718 0.769
2 0.503 0.519 0.582 0.673
3 0.464 0.483 0.603 0.721
4 0.510 0.521 0.596 0.740

AVG 0.492 0.524 0.625 0.726

4. Discussion
4.1. Sensitivity of Parameter Settings

In Section 2.1, we introduced a parameter k in image blocking. In Section 2.2, we
introduced parametersω and ε in shadow detection. Due to the sensitivity of the parameter
setting, we analyze the influence of overlap rate k on the consistency of feature information
recovery at the stage of image stitching by adjusting the value of parameter k. Furthermore,
we analyze the effect of the parameters includingω and ε (ω + ε = 1) on the performance
of the shadow detection algorithm.

The Kappa coefficient is selected as the consistency test and detection accuracy index.
The relationship between the Kappa coefficient and parameters k andω is shown in Figure 9.
The range of k is chosen from 0 to 0.7, the range of ω is chosen from 0.1 to 0.9, and the
step interval is 0.1, which shows that the size of the parameters including k,ω, and ε has a
significant influence on the Kappa coefficient. The four typical study cases as discussed
in Section 3.1 are selected for the analysis. The Kappa coefficient curves in Figure 9a,b
show the same trend in the four study cases. It is found that k has an influence on the
Kappa coefficient, and k = 0.2 might be a good setting for almost all cases. As presented
in Figure 9b, when ω ∈ (0.1, 0.3), relatively higher Kappa coefficient values are acquired
for the four study cases, which shows that better shadow detection results are achieved.
This further demonstrates the robustness and effectiveness of the proposed method under
different various landscapes. Hence, in this study, we develop the shadow compensation
approach over study cases with k = 0.2 andω = 0.2.
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Figure 9. Sensitivity analysis of the proposed method to the parameters including (a) k; (b)ω.

In Section 2.4, we introduced a threshold value t in the shadow compensation algo-
rithm. It was found that the entropy values of homogeneous regions in UAV remote sensing
images range from 3 to 8. When t < 5.3, the texture of the compensated shadow regions is
clear, but the color information is lost. When t > 5.8, the color of the compensated shadow
regions is correctly corrected, but the texture is blurred. When 5.3 < t < 5.8, both texture
and color information in the shadow region are recovered optimally. In the experiment of
this paper, t is taken as 5.5.

4.2. Analysis of Experimental Results of Shadow Detection
4.2.1. Subjective Evaluation and Discussion

As shown in Figure 5, there is a large area of building shadow in study case 1. The
result of the method proposed in this study is shown in Figure 5b. It can be seen that
the method obtained satisfactory results. TYCbCr identifies the high-reflectance ground
object pixels (white vehicles) in the shadow region as non-shadow pixels, which causes
omission errors. THSV is unable to remove the interference of plants and artificially colored
ground objects to the shadow. As shown in Figure 5d, the pixels of some blue roofs, dark
green vegetation, and sporadic ground points are mistakenly detected as shadows pixels.
NSVDI also causes omission errors, as shown in Figure 5e. This is because the HSV space
is restricted by the fact that when the pixel values in R, G, and B bands are equal, the
denominator of the HSV’s definition is 0, generating invalid values. Similarly, SI is also
susceptible to the influence of high-reflectance ground objects and mistakenly identifies
white vehicle pixels in the shadow region as non-shadow pixels, as shown in Figure 5f.

As shown in Figure 6, there are a large number of irregular fragmented tree shadows
in study case 2. The result of the method proposed in this study is shown in Figure 6b,
showing good integrity of shadow detection. The results of TYCbCr, NSVDI, and SI were
similar. It can be seen that the extraction of the tree shadow edge is incomplete, and pixels
of the shadow edge are missed, and a small number of dark green vegetation pixels are
detected as shadow pixels. As the gray value of the region is close to the gray value of
vegetation pixels, as shown in Figure 6d, the tree shadow is not correctly detected, and
THSV mistakenly detects most vegetation pixels as shadow pixels.

4.2.2. Objective Evaluation and Discussion

As shown in Table 1, relatively high values are achieved for shadow detection results
by the SDI method proposed in this study for the study case 1 in terms of the shadow
producer’s accuracy (98.09%), the shadow user’s accuracy (99.22%), the non-shadow pro-
ducer’s accuracy (99.50%), and the non-shadow user’s accuracy (98.75%). The overall
accuracy is up to 98.94% and the F1 score is up to 98.65%, which are higher than the TYCbCr,
THSV, NSVDI, and SI methods. This proves that our method has fewer omissions and
false detections.
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Similarly, as shown in Table 2, relatively high and stable values are also obtained for
shadow detection results by the SDI method proposed in this study for the study case 2 in
terms of the shadow producer’s accuracy (94.00%), the shadow user’s accuracy (92.08%), the
non-shadow producer’s accuracy (98.27%), and the non-shadow user’s accuracy (98.71%).
The overall accuracy is 97.51% and the F1 score is 93.03%, which are higher than the
other four methods. In general, SDI provides relatively ideal and stable shadow detection
accuracy measurements in both experimental sites.

4.3. Analysis of Experimental Results of Shadow Compensation
4.3.1. Subjective Evaluation and Discussion

The first column in Figure 7 is the result of study case 1. It can be seen that the
illumination correction algorithm cannot recover the color information accurately when
large building shadows cover the asphalt road, although the texture details of the shadow
regions are preserved. The color transfer algorithm tends to keep the blue color. In
addition, the vehicles and vegetation areas are blurred. The shadow synthesis method
results in smoother boundaries than the previous two methods, but there is still obvious
difference between shadow and non-shadow regions with regards to color. In contrast, the
method proposed in this study provides better visual consistency in the color of the asphalt
areas after the shadow compensation process, although the boundaries are still visible. In
addition, it is notable that the vegetation areas retain texture information and the vehicles
are clearly restored. However, due to the uneven distribution of illumination on the side
facade of the roof and the influence of image block effect, the proposed method produces a
blocky artifact within the roof. In this regard, the proposed method failed to present a good
recovery effect completely.

The second column in Figure 7 is the result of study case 2, when irregular vegetation
shadows cover the asphalt road, the green vegetation area after applying the illumination
correction algorithm is over-illuminated, and there is oversaturation in the transition area
between shadow and non-shadow regions. The asphalt area after compensation by the
color transfer algorithm presents color inconsistency at the shadow boundary, whilst the
shadow region after compensation by the shadow synthesis method becomes green, the
color and texture information are visually inconsistent, and the texture information of the
green vegetation area is blurred. The results obtained using our method show that the color
of the asphalt area is improved after shadow compensation compared with the other three
methods, and the texture and color of the green vegetation are closer to the real scenery.

The third column in Figure 7 is the result of study case 3. When shadow compensation
happens in concrete areas, the illumination correction algorithm and the color transfer
algorithm tend to maintain the blue-like color. The shadow synthesis method provides
a result with color closer to that of the non-shadow regions, but the vegetation after
shadow compensation still has significant difference in texture details, as shown in Figure 8.
The proposed method significantly improves the color inconsistency, and the shadow
boundaries are not as obvious as those from other methods. In addition, the vegetation
after shadow compensation has obvious improvement in texture details.

The fourth column in Figure 7 is the result of study case 4. When compensating the
shadows of sunflower plants in farmland, both the illumination correction algorithm and
the color transfer algorithm leave a clear boundary effect between the shadow and non-
shadow regions after the shadow compensation process. The shadow synthesis method
and the proposed method have both achieved more satisfactory results with regards to the
boundary effect, but the shadow synthesis method did not recover the objects (two cars) in
the shadowed region, as shown in Figure 8.

4.3.2. Objective Evaluation and Discussion

Table 3 shows the results of color difference calculated by Equation (14) for all shadow
compensation methods. The CD values of our method for four experimental images are
1.792, 1.943, 1.831, and 1.998, with an average CD value of 1.891. In contrast, the average CD
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value is 3.125, 2.415, and 1.916 for the illumination correction, the color transfer and shadow
synthesis methods, respectively. This proves that our method has less color distortion after
shadow compensation.

The SSDI results are presented in Table 4, and the SSDI values of our method are 16.509,
17.182, 13.731, and 14.253 for the four experimental images, respectively, with an average
SSDI value of 15.419. Compared with the average SSDI values from the illumination
correction and the color transfer methods, it is 4.477 and 4.826 lower. The average SSDI
value from our method is numerically 2.172 lower than that of the shadow synthesis
method. This means that our method produces good results, in which the compensated
shadow regions and non-shadow regions are consistent in terms of texture details.

Table 5 gives the results of the gradient similarity of all methods for the four test
images. The shaded boundary GS values for our method are 0.769, 0.673, 0.721, and 0.740
for the four test images, respectively, with an average of 0.726. It is 0.234, 0.202, and 0.101
higher than the average shaded boundary GS values of the illumination correction, the
color transfer and shadow synthesis methods, respectively.

Based on the above analysis, the combination of LiDAR information and UAV visible
images in this study leads to a better result. When designing the homogeneous area seg-
mentation method based on the information of LiDAR intensity and elevation, we defined
the intensity range and elevation range of typical features based on a priori knowledge
and rigorous statistical analysis. The threshold range is applicable to most scenes and has
strong universality. In addition, in terms of data acquisition, it is certainly more universal if
only a single device is used for testing, but the accuracy needs to be improved.

5. Conclusions

In this study, we have presented a shadow removal method from UAV images based on
color and texture equalization compensation of local homogeneous regions. The following
conclusions are drawn through comparative analysis of the experimental results.

(1) The new shadow detection index, defined based on the R, G, and B bands of a UAV
image, can effectively enhance the shadow, and is conducive to accurate shadow
extraction of UAV RGB remote sensing images. The average overall accuracy of
shadow detection is 98.23% and the average F1 score is 95.84%.

(2) The proposed method was tested in scenes containing quite complex surface features
and a great variety of objects, and it performed well. In the visual effect, the color and
texture details of the shadow regions are effectively compensated, and the shadow
border is not obvious. The compensated image had high consistency with the real
scenes. Likewise, in the quantitative analysis, the average color difference is 1.891,
the average shadow standard deviation index is 15.419, and the average gradient
similarity is 0.726. It achieved the best results compared with the aforementioned
testing methods and proved the effectiveness of the proposed method.

In the future, the work may extend to optimizing homogeneous region segmentation
and processing shadow boundaries.
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