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a b s t r a c t 

The thalamus is a brain region formed from functionally distinct nuclei, which contribute in important ways 

to various cognitive processes. Yet, much of the human neuroscience literature treats the thalamus as one ho- 

mogeneous region, and consequently the unique contribution of specific nuclei to behaviour remains under- 

appreciated. This is likely due in part to the technical challenge of dissociating nuclei using conventional structural 

imaging approaches. Yet, multiple algorithms exist in the neuroimaging literature for the automated segmentation 

of thalamic nuclei. One recent approach developed by Iglesias and colleagues (2018) generates segmentations 

by applying a probabilistic atlas to subject-space anatomical images using the FreeSurfer software. Here, we 

systematically validate the efficacy of this segmentation approach in delineating thalamic nuclei using Human 

Connectome Project data. We provide several metrics quantifying the quality of segmentations relative to the 

Morel stereotaxic atlas, a widely accepted anatomical atlas based on cyto- and myeloarchitecture. The automated 

segmentation approach generated boundaries between the anterior, lateral, posterior, and medial divisions of 

the thalamus. Segmentation efficacy, as measured by metrics of dissimilarity (Average Hausdorff Distance) and 

overlap (DICE coefficient) within groups was mixed. Regions were better delineated in anterior, lateral and me- 

dial thalamus than the posterior thalamus, however all the volumes for all segmented nuclei were significantly 

different to the corresponding region of the Morel atlas. These mixed results suggest users should exercise care 

when using this approach to study the structural or functional relevance of a given thalamic nucleus. 
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. Introduction 

The study of how the brain contributes to cognitive processes in hu-

an neuroimaging research often focuses on studying the cerebrum,

hile subcortical processes – and in particular the role of the thala-

us – are typically understudied. However, an increased appreciation

or the contribution of the thalamus in cognition is emerging in the

euroscientific literature ( Wolff & Vann, 2019 ), echoing historic lesion

ased work (e.g. Bogousslavsky et al., 1988 ; Cheek & Taveras, 1966 ;

artlow et al., 1992 ; Schmahmann (2003) ; Van der Werf et al., 2000 ,

003 ), and more recent functional work (e.g. Liebermann et al., 2013 ;

onchi et al., 2001 ; Schepers et al., 2017 ; Yang et al., 2020 ) that details

he influence of the thalamus on cognition, and challenges the notion

hat the thalamus acts simply as a sensory-motor relay. Nevertheless,

art of the challenge in studying the activity of the thalamus is due

o the small size of its nuclei, relative to the spatial resolution typi-

al of even high-field (3 Tesla) functional magnetic resonance imag-
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ng (MRI). A related issue is the delineation of functional and anatom-

cal subdivisions of the thalamus. The appearance of the thalamus is

argely homogenous when imaged using standard T1-weighted and T2-

eighted contrast, requiring a high level of anatomical knowledge for

anual segmentation. To define boundaries between different nuclei

ore accurately, image contrast in the thalamus can be enhanced by

sing specially developed sequences such as cortex attenuated inversion

ecovery and white-matter-nulled magnetization prepared rapid gradi-

nt echo (WMn MP-RAGE), or by combining 3D GRE phase data with

ptimised MPRAGE images ( Bender et al., 2017 ; Magnotta et al., 2000 ;

ourdias et al., 2014 ). However, without automated segmentation al-

orithms for these enhanced contrast sequences (such as THOMAS for

Mn MPRAGE data, see Su et al, (2019) ), specialist expertise in neu-

oanatomy and neuroradiology are still required to accurately identify

halamic nuclei. Furthermore, the efficacy of these pulse sequences for

ncreasing image contrast are attenuated at high-field (3 Tesla), relative

o ultra-high field (7 + Tesla) strength MRI ( Saranathan et al., 2015 ). 
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Figure 1. Hierarchical structure of thalamic nuclei as defined by the Morel 

stereotaxic atlas based on cytoarchitecture, myeloarchitecture, and functional 

relevance. Abbreviations: A – Anterior Group: AM – Anteromedial, AV – An- 

teroventral, AD – Anterodorsal, LD – Lateral Dorsal. L – Lateral Group: VA –

Ventral Anterior, VM – Ventral Medial, VL – Ventral Lateral, VP – Ventral Pos- 

terior. P – Posterior Group: MGN – Medial geniculate nucleus, LGN – Lateral 

geniculate nucleus, Po – Posterior nucleus, SG – Suprageniculate/limitans, LP –

Lateral Posterior. M – Medial Group: MD – Mediodorsal, CeM – Central Medial, 

Pv – Paraventricular, MV – Medioventral, Hb – Habenula, IL – Intralaminar, CL 

– Central Lateral, PF – Parafascicular, sPF – Subparafascicular, CM – Central 

Median. Figure reproduced from ( Lambert et al., 2017 ) under a CC BY-NC-ND 

4.0 license. 
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Recent studies have used MNI space parcellations ( Krauth et al.,

010 ) to study the functional roles of thalamic nuclei. For instance,

eier et al., (2020) describe how the mediodorsal and anterior tha-

amic nuclei contribute in distinct ways to associative memory pro-

esses, while Huang et al, (2019) show how different cognitive de-

ands produce dissociable modulatory responses in the mediodor-

al nucleus and its functional connectivity with the prefrontal cor-

ex, while also demonstrating that these dissociations are aberrant in

chizophrenia. In both studies, MNI space thalamic parcellations cre-

ted by Krauth et al, (2010) are derived from the Morel stereotaxic atlas

 Morel, 2007 ; Morel et al., 1997 ). The Morel stereotaxic atlas is a widely

sed atlas of the thalamus derived from cytoarchitecture, myeloarchi-

ecture, and functional relevance – using immunohistochemical staining

f the calcium binding proteins parvalbumin, calbindin D-28k, and cal-

etinin – to identify anatomical boundaries from five postmortem brain

pecimens ( Figure 1 ). The Morel atlas thus provides a description of the

natomical structure of the thalamus that is not possible to acquire in

ivo using magnetic resonance. Yet, the existence of this atlas in MNI

pace does not allow neuroscientists to infer subject-specific architec-

ure, as it is based on the average of multiple individuals. 

Numerous methods are described in the neuroimaging literature for

efining the anatomical structure of thalamic nuclei using diffusion

eighted, resting state, and anatomical data. Automated segmentation

echniques first appear just after the turn of the century and include

nitial reports relying on anatomical ( Amini et al., 2004 ; Deoni et al.,

007 ), diffusion data ( Behrens et al., 2003 ; Johansen-Berg et al., 2005 ;

iegell et al., 2003 ), and resting state functional data ( Kim et al., 2013 ;

hang et al., 2008 ). Parcellation methods have used prior knowledge of

istinct cortico-thalamic connectivity to estimate structural boundaries

ithin the thalamus using tractography ( Behrens et al., 2003 ; Johansen-

erg et al., 2005 ), functional connectivity ( Zhang et al., 2008 ), and ma-

hine learning approaches such as clustering algorithms ( Amini et al.,

004 ; Deoni et al., 2007 ; Wiegell et al., 2003 ) or independent compo-

ent analysis ( Kim et al., 2013 ; Kumar et al., 2017 ). More recent ap-
2 
roaches using anatomical, diffusion, and resting state data have been

eviewed by Iglehart et al. (2020) . 

A recent, and alternative approach for using anatomical data was

eveloped by Iglesias et al. (2018) , and uses FreeSurfer to provide au-

omated segmentations of thalamic nuclei. This approach involves the

pplication of a probabilistic atlas to the anatomical image in subject

pace, using Bayesian inference to refine predicted locations: In this

odelling framework prior knowledge of brain anatomy is combined

ith the likelihood of a given voxel intensity conditioned on the proba-

ility assignment to a given label. This model is used to estimate labels,

hich are progressively refined until a stable segmentation is obtained.

his probabilistic atlas is in the form of a tetrahedral mesh that can

dapt to changes in subject-specific differences in anatomy. The mesh

as formed from a combination of ex-vivo MR images, histological stain-

ng, blockface photography, and in-vivo MRI. This approach may be

referable relative to techniques using resting state and diffusion data

ecause it is able to delineate more nuclei with the thalamus, and is eas-

er to apply. Additionally, this approach does not require the acquisition

f data using specialist sequences, such as WMn MP-RAGE, meaning it

s applicable to a wide range of existing and future datasets. 

Having good subject-specific parcellation techniques for thalamic

uclei is important for both clinical practice and empirical research.

or instance, these techniques could be used to guide surgeons when im-

lanting deep brain stimulation electrodes to treat Parkinson’s disease

 Whiting et al., 2018 ). These techniques can also be used by researchers

ho may be interested in the role of different thalamic nuclei in func-

ional processes, or the role of anatomical differences in health, develop-

ent, and disease. Nevertheless, the effectiveness of segmentation ap-

roaches must first be validated before inferences can be made based on

heir output. In their original publication, Iglesias et al. (2018) provide

olumetric comparisons between six segmented nuclei and their cor-

esponding regions in the Morel atlas for 66 participants, yet these vol-

mes are not statistically compared to each other, nor is the spatial speci-

city of segmentations quantified. Here, we aim to systematically com-

are the segmentation approach described by Iglesias et al. (2018) with

egions in the Morel atlas. We provide volumetric, overlap, and iso-

etric comparisons between all segmented regions and portions of

he Morel atlas. These insights will allow clinicians and researchers to

ake informed decisions about the applicability of this segmentation

pproach for identifying specific thalamic nuclei in individuals. 

. Methods 

.1. Data acquisition 

Anatomical data were sourced from the publicly available dataset

f the Human Connectome Project (HCP) 1200 Subjects Data Re-

ease under the HCP Open Access Data Use terms ( https://www.

umanconnectome.org/study/hcp-young-adult/document/1200- 

ubjects-data-release ; Van Essen et al., 2013 ). The following description

f data acquisition and preprocessing steps from the HCP project follow

eporting guidelines from Horien et al. (2021) on the use of secondary

euroimaging datasets. 

HCP data were acquired using a custom Siemens 3T Connectome

kyra scanner with a 32 channel receiver head coil and custom body

ransmission coil. Data were acquired over four separate scanning ses-

ions; each session was approximately one hour in length. The struc-

ural data were acquired during one of those sessions. Two T1 weighted

natomical images were acquired using a 3D magnetization-prepared

apid gradient-echo (MP-RAGE) sequence with GeneRalized Autocali-

rating Partially Parallel Acquisitions (GRAPPA) (R = 2) [TR = 2400ms;

E = 2.14ms; TI = 1000ms; slices = 256; voxel volume = 0.7mm 

3 ; slice

hickness = 0.7mm; distance factor = 50%; slice oversampling = 0.0%;

OV = 224 × 224mm; matrix = 320 × 320; flip angle = 8°; phase encod-

ng direction = A → P; interleaved acquisition; echo spacing = 7.6ms]. 

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
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.2. Probabilistic atlas generation 

The probabilistic atlas of Iglesias et al. (2018) was generated us-

ng data from 6 older adults post mortem who had no history of dis-

ase affecting brain morphology, and in vivo data from 39 younger

dults. Post mortem brains were fixed by perfusing tissue in situ with 4%

araformaldehyde in phosphate buffer (pH 7.4); brains were then ex-

racted and stored in 4% paraformaldehyde until ex vivo MRI scanning.

hole brain ex vivo images were acquired using a spatial resolution of

.25mm isotropic using a 3D multi-slab balanced steady-state free pre-

ession sequence ( McNab et al., 2009 ; see Iglesias et al., 2018 for all

cquisition parameters). Following ex vivo imaging, post mortem tissue

or the left and right hemispheres were separately sectioned into blocks,

nd blocks containing thalamic tissue were immersed in cryoprotectant.

issue was cryosectioned into 50 𝜇m thick slices using a sliding micro-

ome and blockface photos were taken for each section. Every tenth slice

as Nissl stained for histological analysis, with individual nuclei delin-

ated following the approach of Jones (2012) . 

Blockface photos were co-registered to oneanother, segmented from

he block holder and microtome, and stacked to form a 3D volume. The

D stack of blockface photos were used as an intermediary for regis-

ering ex vivo MRI and histologial data. Nuclear segmentations iden-

ified using Nissl staining were transformed into MRI space and re-

ned to account for gaps between blocks. The probablistic atlas, based

n a tetrahedral mesh, was built following the approach described by

glesias et al. (2015) . The generated tetrahedral mesh is locally adaptive

o the shape of the thalamus, with each vertex of the mesh having an

ssociated vector of probabilities for thalamic nuclei. The topology and

esolution of the mesh varies based on anatomy, with finer detail in less

niform regions. 

Segmentation using the probabilistic atlas is posed as a Bayesian in-

erence problem, and is modelled with the following assumptions 1. The

tlas is spatially warped following a deformation model 2. The segmen-

ation of each voxel is drawn independently, based on the categorical

istribution of the deformed atlas at that location 3. each nucleus in the

tlas has a set of Gaussian parameters describing the image intensity

f its voxels, which are drawn independently for each voxel. To seg-

ent the thalamus using the atlas, point estimates for Gaussian param-

ters and the atlas deformation model are computed. Point estimates are

hen updated using a coordinate ascent strategy, where Gaussian param-

ters and the atlas deformation model are updated alternately while the

ther parameter is fixed. The Gaussian parameters are estimated with

he Expectation Maximization algorithm, while the atlas deformation

odel is updated with a conjugate gradient algorithm. The deformation

odel is initialised by fitting the atlas to the automated segmentation

f the whole thalamus generated by recon-all in FreeSurfer. The pos-

erior probability of a segmentation is calculated by the Expectation

aximization algorithm. 

.3. Preprocessing 

Data were preprocessed using the HCP minimal preprocessing

ipelines ( Glasser et al., 2013 ; Smith et al., 2013 ; Sotiropoulos et al.,

013 ). Firstly, T1w images were corrected for gradient distortions us-

ng a customised version of gradient_nonlin_unwarp in FreeSurfer, then

ach subject’s two T1w scans were aligned using FSL FLIRT and aver-

ged. The averaged T1w image was then registered to MNI space using a

2 DOF affine registration with FLIRT, and a subset of 6 DOF transforms

ere used to align the anterior commissure, the anterior commissure –

osterior commissure line, and the inter-hemispheric plane, while pre-

erving the size and shape of the brain in native space. The skull was

emoved by inverting linear (FLIRT) and non-linear (FNIRT) warps from

natomical to MNI space, applying the warp to the MNI space brain

ask, and then applying the mask to the averaged T1w image. Finally,

he image was corrected for readout distortion and biases in B 1 and B 1 +
elds. 
3 
.4. Participants 

One hundred participants were pseudo-randomly selected for inclu-

ion in analysis. First, participants were filtered on the HCP database to

nclude only subjects with complete anatomical, diffusion, and resting

tate acquisitions. Then subject IDs were sorted in ascending order and

huffled in MATLAB (2017b) using the seed 03112020 (the date of shuf-

ing). The first one hundred subject IDs were chosen from this list for

nclusion in analysis (Supplementary material 1). 

.5. Analysis 

Data were processed following the method previously described by

glesias et al., 2018 . Data processing was run using a Nipype pipeline in-

egrating FSL (version 6.0.4) and FreeSurfer (version 7.1.1) on Ubuntu

8.04.2. Output files from Nipype nodes were used as analytic check-

oints to confirm each step in the analysis ran as expected. Anatom-

cal T1 images were first processed and parcellated using recon-all in

reeSurfer; the output of recon-all was used to initialise the parcellation

f thalamic nuclei for anatomical data using the algorithm described

y Iglesias et al. (2018) . The parcellated thalamus was converted from

reeSurfer space to native anatomical space and changed from mgz to

ifti file format using mri_label2vol and mri_convert in FreeSurfer, re-

pectively. Volumetric calculations for nuclei from the Morel atlas, and

or segmented nuclei in subject space were performed using fslstats in

SL. 

.6. Comparison to Morel thalamic atlas 

Linear rigid and affine transformations and non-linear warps be-

ween native anatomical space and MNI space were generated us-

ng the Advanced Normalization Tools (ANTs) package (Version 2.3.5,

cphorella) script antsRegistrationSyN.sh ( Avants et al., 2008 ). The

NTs package was selected due to its superior performance in regis-

ering skull-stripped images compared to other algorithms ( Ou et al.,

014 ). Linear transformations and non-linear warps were then used to

onvert subject-level parcellations into MNI space. Parcellations in MNI

pace were re-binarised using a threshold of > 0.5. 

Group-level probabilistic atlases were created by calculating a mean

robability map for each parcellation in MNI space (described previ-

usly by Najdenovska et al. (2018) ). Group-level segmentations were

hen compared to the Morel probabilistic atlas, which was used as

round truth ( Krauth et al., 2010 ). Parcellations of thalamic nuclei in

ubject space generated by FreeSurfer, group-level mean probability

aps in MNI space, plus linear transformations and non-linear warps

rom subject space to MNI_T1_1mm_brain space are available publicly

t https://doi.org/10.17864/1947.000339 . 

Each parcellation was compared separately to individual nuclei in

he Morel atlas using the EvaluateSegmentation toolbox ( Taha & Han-

ury, 2015 ), a threshold of > 0.25 was set for specificity metrics that do

ot accept non-binary input. The following metrics from the Evaluate-

egmentation toolbox were used to assess each parcellation approach. 

The DICE coefficient was used as a measure of overlap between seg-

entations and ground truth; it is a widely used measure in imaging

rocessing for assessing the overlap between segmentation approaches.

he DICE coefficient is defined as: 

ICE 
(
𝑆 𝑥 , 𝑆 𝑦 

)
= 

2 |||𝑆 𝑥 ∩ 𝑆 𝑦 
|||

||𝑆 𝑥 
|| + 

|||𝑆 𝑦 
|||

Where |𝑆 𝑥 ∩ 𝑆 𝑦 |is the cardinality of the intersection between the seg-

entation and ground truth (this is equal to the number of true posi-

ives, or overlapping voxels), divided by the sum of the cardinality of the

round truth |𝑆 𝑥 | and the segmentation |𝑆 𝑦 | (equal to the sum of true

ositives, false positives, and false negatives). Because the DICE coeffi-

ient is a measure of overlap, it is expressed in terms of the relationship

https://doi.org/10.17864/1947.000339
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etween true positives, false positives, and false negatives, but not the

umber of true negatives. Efficacious segmentations would have high

verlap with their reference space of interest, yet overlap is not suffi-

ient for determining the suitability of a segmentation approach as it

annot account for isometry. 

The Average Hausdorff Distance is used as a measure of dissimilar-

ty and can account for differences in isometry. Distance based met-

ics are advantageous – relative to overlap metrics in situations where

egmentations are small – because overlap-based metrics disproportion-

tely penalise errors in smaller than larger segmentations ( Taha & Han-

ury, 2015 ) as is the case with thalamic nuclei. Importantly, the Aver-

ge Hausdorff Distance is sensitive to the position of false positives in a

egmentation relative to ground truth, and therefore is a useful metric

hen considering the boundary of a segmentation, accounting for isom-

try. In relation to image segmentation, the Hausdorff Distance can be

efined as the minimum number of voxels between a point in segmenta-

ion X and a point in segmentation Y. Therefore, the Average Hausdorff

istance is the average minimum distance between all points in segmen-

ation A and segmentation B in voxels. The Average Hausdorff Distance

s defined as: 

verage Hausdorff Distance ( 𝐴, 𝐵 ) = max ( 𝑑 ( 𝐴, 𝐵 ) , 𝑑 ( 𝐵, 𝐴 ) ) 

𝑑 ( 𝐴, 𝐵 ) = 

1 
𝑁 

∑
𝑎 ∈𝐴 

min 
𝑏 ∈𝐵 

𝑎 − 𝑏 

Where 𝑑( 𝐴, 𝐵 ) is the average minimum distance ( min 𝑎 − 𝑏 ) from vox-

ls in the ground truth ( 𝐴 ) to the segmentation ( 𝐵), and 𝑑( 𝐵, 𝐴 ) is the

verage minimum distance ( min 𝑎 − 𝑏 ) from voxels in the segmentation

 𝐵) to the ground truth ( 𝐴 ). The Average Hausdorff Distance is then the

aximum of either of these two average distance measures in voxels. 

As part of the volumetric comparison in Table 2 , and Figures 4 &

 the following nuclei from the Morel atlas were combined to make

hem comparable with the segmentations: LGN = (LGNmc + LGNpc),

A = (VAmc + VApc), VLp = (VLpd + VLpv), VPL = (VPLa + VPLp) (see

able 1 for an overview of abbreviations). 

. Results 

.1. Segmentation overlap 

DICE coefficients between the Morel atlas and the group-level seg-

entations of the left and right thalamus are summarised in Figure 2 and

igure 3 , respectively. On the x-axis are the thalamic nuclei from the

orel atlas; the segmented regions are displayed along the y-axis. A list

f abbreviations used to refer to nuclei in text and in Figures 2 , 3 , 5 , and

 is presented in Table 1 ; the dendrograms presented above and adja-

ent to each heatmap show the hierarchical structure of the thalamus as

efined by ( Morel et al., 1997 ) and the relative position of each nucleus

ithin that hierarchy, as presented in Table 1 . Cells where groups of

uclei are equivalent between the Morel atlas and the segmentation are

ound by a box. Here, when interpreting DICE coefficients, we use the

ollowing terminology, DICE = 0 no agreement, 0 < DICE < 0.2 slight

greement, 0.2 ≤ DICE < 0.4 fair agreement, 0.4 ≤ DICE < 0.6 moder-

te agreement, 0.6 ≤ DICE < 0.8 substantial agreement, 0.8 ≤ DICE ≤

 almost perfect agreement; these values have been used previously by

 Pajula et al., 2012 ) for comparing Nifti images, and are a widely used

onvention for interpretating DICE coefficients. 

DICE coefficients were similar between the left and right thalamus

Wilcoxon Signed-Ranks Test, Z = 9536, p = 0.531). Figure 2 and

igure 3 show that for the anterior nuclei, the AV had higher overlap

han the LD. Overlap for anterior, lateral, medial, and posterolateral

ivisions of the lateral thalamus generally showed moderate to substan-

ial overlap with nuclei from the same subregion, and mostly only slight

verlap between subregions. Posterior thalamic nuclei had overlap val-

es that were generally higher between subregions of the posterior tha-

amus than for other nuclear groups and were the only set of nuclei
4 
o show greater than slight agreement with nuclei from other nuclear

roups. Of the midline nuclei in the medial thalamus, only the CeM was

egmented, showing fair and moderate overlap in left and right hemi-

pheres, respectively. For the intralaminar nuclei (CL, CM, Pf) the CM

nd Pf had higher overlap than the CL, which showed overlap with an-

erior and posterior at the upper end of slight agreement. Subregions of

he mediodorsal thalamus (MDm and MDl) showed slight to moderate

verlap with corresponding regions in the Morel atlas, and fair overlap

ith the CL in the left hemisphere. 

.2. Segmentation volume 

Although nuclei volumes in the segmentation and the atlas were cor-

elated ( t (42) = 5.869, r = 0.671, p < 0.001; Figure 4 ), one sample t-

ests showed that the volumes were significantly different for all nuclei

 Table 2 ). Most volumes were smaller in the segmentation, except LGN,

Dm, PuA, PuI, VLa, and VPL which bilaterally were larger in the seg-

entation than the equivalent volumes in the Morel atlas. 

Bilaterally, the Average Hausdorff Distance (measured in voxels) be-

ween segmentations and the Morel atlas was lower along the diagonal

part of the same nuclear subgroup), and larger for nuclei off the diag-

nal, particularly for nuclei that were part of different nuclear groups

 Figure 5 , Figure 6 ). The lowest Average Hausdorff Distance between

ach segmented nuclei and a nucleus from the Morel atlas are sum-

arised in Table 3 ; the lowest Average Hausdorff Distance between each

uclei in the Morel atlas and a segmented nucleus are summarised in

able 4 . 

Lastly, we calculated the Spearman’s correlation coefficient between

he volume of nuclei in the Morel atlas and the Average Hausdorff Dis-

ance of the group-level segmentation to determine whether nucleus size

ffected dissimilarity and found they were significantly anticorrelated

 (42) = -2.396, r = -0.347, p = 0.021 ( Figure 7 ). This trend was also sig-

ificant when we correlated Average Hausdorff Distance of the group-

evel segmentation with the average segmentation volume ( t (42) = -

.458, r = -0.471, p = 0.001). Visually, this trend looked like it was

riven by segmentations with volumes at the tail end of the plot. These

uclei may have had particularly small volumes because they were not

roperly segmented by the algorithm. Therefore, we performed an ex-

loratory analysis to test what effect removing these values had on the

elationship. To do this we removed the five smallest nuclei bilaterally

CL, LD, L-Sg, VAmc, VM) which all had volumes lower than 21mm 

3 ,

nd used this as a threshold to re-run the correlation between the Aver-

ge Hausdorff Distance of the group-level segmentation and the average

egmentation volume. Removing these values reduced the strength of

he relationship, and meant the correlation was non-significant t (32) = -

.602, r = -0.273, p = 0.119. 

. Discussion 

The thalamus is known to be important for a wide range of cogni-

ive processes, yet delineating and studying the roles of specific nuclei

n aspects of cognition is a non-trivial problem in human neuroimag-

ng. Here, we systematically compare the segmentation approach de-

eloped by Iglesias et al. (2018) to the Morel atlas of the thalamus

 Krauth et al., 2010 ; Morel et al., 1997 ) using data from the Human Con-

ectome project. We use DICE coefficients to measure volume overlap,

nd the Average Hausdorff Distance to compare the dissimilarity and

sometry of segmentations relative to nuclei in the Morel atlas. Firstly,

e found mixed levels of overlap across anterior, lateral, posterior, and

edial portions of the thalamus, and at the group level we found the

olumes for all nuclei were significantly different to the defined regions

ithin the Morel atlas. Nuclei had lower Average Hausdorff Distances

ithin groups than across groups, showing segmentations clearly dis-

riminated between anterior, lateral, medial, and posterior portions of

he thalamus. 
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Table 1 

Definitions of thalamic nuclei as in the Morel atlas. Nuclei are ordered into their relevant anatomical groups and 

sub-groups. Abbreviations used in text and in figures for segmented regions and volumes in Morel atlas are given. 

Nucleus Group Sub-group Morel abbreviation Segmentation abbreviation 

Anterodorsal Anterior AD 

Anteromedial AM 

Anteroventral AV AV 

Lateral dorsal LD LD 

Ventral anterior, magnocellular division Lateral Ventral 

anterior 

VAmc VA VAmc 

Ventral anterior, parvocellular division VApc 

Ventral lateral anterior Ventral 

lateral 

VLa VLa 

Ventral lateral posterior, dorsal division VLpd VLp 

Ventral lateral posterior, ventral division VLpv 

Ventral medial VM VM 

Ventral posterior inferior Ventroposterior 

complex 

VPI 

Ventral posterior lateral, anterior division VPLa VPL 

Ventral posterior lateral, posterior division VPLp 

Ventral posterior medial VPM 

Lateral geniculate, magnocellular division Posterior Geniculate LGNmc LGN 

Lateral geniculate, parvocellular division LGNpc 

Medial geniculate MGN MGN 

Posterior Posterior 

complex 

Po 

Suprageniculate SG L-Sg 

Lateral posterior LP LP 

Anterior pulvinar Pulvinar PuA PuA 

Inferior pulvinar PuI PuI 

Lateral pulvinar PuL PuL 

Medial pulvinar PuM PuM 

Habenula Medial Hb 

Central medial Midline CeM CeM 

Medioventral MV 

Paraventricular Pv 

Central lateral Intralaminar CL CL 

Centromedian CM CM 

Parafascicular Pf Pf 

Subparafascicular sPf 

Mediodorsal, magnocellular division Mediodorsal MDmc MDm 

Mediodorsal, parvocellular division MDpc MDl 
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We assessed whether there was a systematic effect of volume on the

sometry of segmented nuclei relative to the atlas. We found a signifi-

ant negative correlation between the volume of nuclei in the Morel at-

as and the Average Hausdorff Distance of segmentations, and between

he size of the segmented volume and its Average Hausdorff Distance;

he latter correlation was no longer significant after the five smallest

uclei (all with a volume < 21mm 

3 ) were removed from the analysis,

uggesting this relationship was driven by an inability to segment these

uclei with smaller values, rather than changes in isometry across nu-

lei size. In particular, the segmentation of smaller nuclei for individual

ubjects may be particularly sensitive to participant-related motion arte-

acts. These include head motion and physiology-related processes such

s pulse, respiration, and swallowing; these motion sources can disturb

he homogeneity of the magnetic field and the spatial localisation of sig-

al, creating artefacts in the data ( Williams & Lindner, 2020 ). Motion

s a major issue during data acquisition, and the most effective way to

inimise its effects is to correct for motion during data acquisition. For

nstance, head motion can be corrected online using techniques such as

rospective motion correction ( Callaghan et al., 2015 ), while correction

or physiological processes could involve time locking data acquisition

ith specific phases of the cardiac or respiratory cycles ( Zaitsev et al.,

015 ). Implementing either of these motion correction methods could

mprove the segmentation efficacy of all nuclei, and particularly smaller

uclei, by improving signal to noise ratio in data. 

The segmentation approach developed by

glesias et al. (2018) showed substantial overlap as indexed using

he DICE coefficient for one nucleus within each of the anterior, lateral,

osterior and medial thalamus (AV, VA, PuM, and CM respectively).

onversely, slight overlap between segmentations and their corre-

ponding region in the Morel atlas was seen for a single segmentation

n the anterior thalamus (VAmc), and four regions in the posterior
5 
halamus (LGN, MGN, L-Sg, and LP). We hypothesise that segmentation

f nuclei within the posterior thalamus may present difficulties that

re not present for the anterior, lateral, and medial thalamus for

he following reason. Adjacent to the pulvinar and protruding from

he exterior surface of posterior thalamus, the geniculate nuclei may

e misidentified as non-thalamic by the recon-all segmentation in

reeSurfer due to poor contrast relative to surrounding white matter

n T1-weighted images ( Fujita et al., 2001 ). This whole thalamus

egmentation from recon-all is then used as a spatial prior for thalamic

arcellation. If this spatial prior were under specified as it did not

nclude the full extent of the geniculate nuclei, then the algorithm

ould have difficulty when segmenting these regions. Indeed, we see

omparable DICE coefficients, particularly for the LGN, between the

egmented LGN region and the inferior and lateral pulvinar regions as

efined by the Morel atlas. Therefore, this misspecification may have

 knock-on effect on the segmentation of the posterior thalamus as a

hole. The posterior region was also the only portion of the thalamus

o show greater than slight overlap with nuclei in other regions of

he thalamus; both the LP and PuA showed fair bilateral overlap with

he LD in the anterior thalamus, and the CL in the medial thalamus.

herefore, this segmentation approach formed clear anatomical bound-

ries between the anterior, lateral, and medial thalamus, but not the

osterior thalamus. Additionally, the delineation of nuclei within each

ub-region of the anterior, lateral, and medial thalamus appeared to

e more distinct than in the posterior thalamus, as indicated by an

ncreased number of nuclei with only slight overlap and being the only

roup of nuclei showing greater than slight overlap with nuclei from

ther groups. Nevertheless, we recommend that investigators studying

he thalamus verify the efficacy of this segmentation approach for

egions of interest using data from their own hardware, in addition to

he results presented here. 
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Figure 2. DICE coefficient between group-level segmented (vertical axis) regions and volumes in the Morel atlas (horizontal axis) in the left thalamus. Higher DICE 

coefficients show there is greater overlap between segmented regions and volumes in the Morel atlas. Dendrograms show the hierarchical structure of nuclei within 

the thalamus. DICE coefficients within BOLD boxes along the diagonal are regions that are part of the same nuclear group or sub-group; nuclei from the Morel atlas 

and segmented volumes are not always equivalent (see Table 1 for an overview of abbreviations). 
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There were significant volumetric differences for all nuclei between

he volume as segmented by the automated algorithm and the Morel

tlas. One potential explanation for this is that the Morel atlas, which

as converted into MNI space ( Krauth et al., 2010 ) was not corrected

or the effects of fixation during the preparation of the tissue. Fixation

ith solutions such as formalin or paraformaldehyde is an important

tep when working with biological specimens as it limits the decompo-

ition of biological tissue; yet fixation also causes tissue to shrink. The

tlas derived by Morel from cyto- and myeloarchitecture was not cor-

ected for shrinkage due to fixation ( Bender et al., 2011 ), therefore, the

tlas produced by Krauth et al, (2010) may include slight distortions

f the morphometry of thalamic nuclei in-vivo. Another possible reason

or our observed volumetric differences between the segmentation and

he atlas is that the initial template used to begin segmentation is the

hole thalamus volume estimated by recon-all in FreeSurfer. Recon-all

as previously been shown to over-estimate the volume of the thala-

us relative to manually derived segmentations of the whole thalamus,

nd in particular for participants with volumes at the lower end of the

istribution ( Makowski et al., 2018 ). Nevertheless, these explanations

annot fully describe why we observed volumetric differences for most

uclei as segmentations were generally smaller than those produced by

he Morel atlas, with the exceptions being the LGN, MDm, PuA, PuI, and

La. One reason may be that certain nuclei are overestimated and others

re underestimated, while the general trend for nuclei volume remains

onsistent between segmentations and the Morel atlas. Our correlational

esults between segmented and atlas volumes suggest this may be the

ase, as we see a moderate positive correlation between the two sets

f volumes. Improvements in volumetric estimation may be driven by

ombining diffusion and anatomical data as proposed by ( Iglesias et al.,

019 ), yet there is currently no publicly available implementation for

he approach they describe. 
6 
In their original paper describing their segmentation algorithm, Igle-

ias and colleagues do provide volumetric comparisons for six regions

ithin the thalamus, namely the AV, LP, CM, MD (composite of MDl

nd MDm), VL (composite of VLa and VLp), and the pulvinar (PuA,

uM, PuL, and PuI combined) in 66 subjects. However, their approach

nvolves the transformation of the equivalent Morel nuclei into sub-

ect space before plotting the distributions for each nucleus. Though

his provides a visual overview of the relationship between segmented

olumes and the Morel atlas, no inferential statistics are used to char-

cterise this relationship. Additionally, though the authors state these

egions were chosen based on their functional and structural connectiv-

ty, it is unclear why other nuclei were not also selected. Based on our

etrics we see these regions appear well segmented at the group level,

xcept for the LP. Here, we systematically show that, although there is

 positive relationship between segmented volumes and volumes in the

orel atlas, these volumes are significantly different across all regions.

urthermore, we also extend upon the work of Iglesias et al. (2018) by

escribing differences in the overlap and isometry between segmented

uclei and regions within the Morel atlas and show that not all regions

an be delineated as clearly as those selected in the original paper for

omparison. These insights call for caution regarding the use of this seg-

entation approach to make inferences about the role these nuclei play

n cognitive processes, or how aberrant changes in the thalamus occur

n disease ( Elvsåshagen et al., 2021 ; Park et al., 2020 ). 

Accurate and reliable segmentation is especially important within

he context of disease. Firstly, pathology may impair automated seg-

entations methods and increase variability relative to manual delin-

ations in comparison to normative cases. At the volumetric level, auto-

ated FreeSurfer segmentations appear to delineate the whole thalamus

t a level in-line with multiple manual human raters in cases of thala-

ic atrophy due to juvenile myoclonic epilepsy ( Keller et al., 2012 ).
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Figure 3. DICE coefficient between group-level segmented (vertical axis) regions and volumes in the Morel atlas (horizontal axis) in the right thalamus. Higher DICE 

coefficients show there is greater overlap between segmented regions and volumes in the Morel atlas. Dendrograms show the hierarchical structure of nuclei within 

the thalamus. DICE coefficients within BOLD boxes along the diagonal are regions that are part of the same nuclear group or sub-group; nuclei from the Morel atlas 

and segmented volumes are not always equivalent (see Table 1 for an overview of abbreviations). 

Figure 4. Spearman’s correlation between group-level segmentation volumes 

and volumes from the Morel atlas. A significant moderate correlation was found 

between segmented volumes and volumes in the Morel atlas (r = 0.671, p < 

0.001). The following regions within the Morel atlas are combined for the pur- 

pose of statistical analysis (LGN = (LGNmc + LGNpc), VA = (VAmc + VApc), 

VLp = (VLpd + VLpv), VPL = (VPLa + VPLp) (see Table 1 for an overview 

of abbreviations). The shaded region denotes 95% confidence intervals (boot- 

strapped, 1000 iterations). 
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owever, automated segmentations of the whole thalamus appear to

e less efficacious when compared with manual approaches. In multi-

le sclerosis, for instance, white matter lesion load is inversely corre-

ated with the overlap between automated and manual thalamic delin-

ations, and the difference in overlap between automated and manual

halamic delineations is significantly worse for multiple sclerosis cases
7 
han healthy controls ( de Sitter et al., 2020 ). These effects are espe-

ially pertinent in multiple sclerosis when severe thalamic atrophy and

ognitive impairment are observed ( Burggraaff et al., 2021 ); in these

ases, although FreeSurfer segmentations show good overlap with man-

al delineations, it is unclear how appropriate the spatial prior for the

utomated segmentation of individual thalamic nuclei would be. None

f the participants used in the generation of the probabilistic atlas of

glesias et al. (2018) had disorders that affected brain morphology, and

herefore the atlas may sometimes deform innaccurately. This would

hen impact the identification of specific nuclei in space. Nevertheless,

glesias et al. (2018) do demonstrate that the segmentation approach

or individual thalamic nuclei can be used to classify individuals with

lzheimer’s disease with greater accuracy than when the whole thala-

us is used, suggesting there is some utility of this approach in cases of

eurodegeneration. 

Future developments to improve segmentation efficacy of

glesias et al.’s (2018) tool could include the continued use of multi-

odal imaging for refining nuclear-level segmetations ( Iglesias et al.,

019 ). As previously mentioned, the lateral geniculate nucleus is

ot well defined by standard T1-weighted contrast; however, proton

ensitiy imaging improves contrast between the lateral geniculate and

urrounding white matter tissue ( Fujita et al., 2001 ). Additionally,

roton density has been used for identifying the medial geniculate

 Devlin et al., 2006 ) and centromedian ( Kanowski et al., 2010 ) nuclei,

hile magnetisation transfer imaging also improves thalamic contrast

 Gringel et al., 2009 ). Therefore, the inclusion of proton density

mages alongside T1-weighted and diffusion images could enhance the

lgorithm’s performance, particuarly within the posterior thalamus,

ince additional imaging contrasts could provide unique anatomical

nformation. Furthermore, proton density and magnetisation transfer

re advantageous for improving imaging contrast over other approaches
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Table 2 

Descriptive statistics for segmented thalamic volumes and regions within the Morel atlas. Mean, standard deviation and range are provided for each segmen- 

tation bilaterally. Additionally, the number of participants where this nuclei was delineated is specified. The following regions within the Morel atlas are 

combined for the purpose of statistical analysis (LGN = (LGNmc + LGNpc), VA = (VAmc + VApc), VLp = (VLpd + VLpv), VPL = (VPLa + VPLp) (see Table 1 

for an overview of abbreviations). 

Nucleus Mean volume (mm 

3 ) Standard deviation Minimum (mm 

3 ) Maximum (mm 

3 ) t -statistic p-value N Morel volume (mm 

3 ) 

Left-AV 124.0254 18.205 84.035 174.93 -91.8059 1.3E-97 100 292 

Left-CeM 72.74344 12.21982 49.735 109.417 -66.1624 9.34E-84 100 154 

Left-CL 13.86406 9.645825 3.43 85.06399 -897.564 2.1E-195 100 884 

Left-CM 255.2572 40.31033 173.558 417.431 -13.0186 3.57E-23 100 308 

Left-LD 20.6143 8.264449 4.459 45.276 -172.627 1.4E-124 100 164 

Left-LGN 285.1942 35.49029 199.969 382.445 6.502605 3.23E-09 100 262 

Left-LP 123.0787 19.20904 89.18 180.075 -168.302 1.7E-123 100 448 

Left-L-Sg 13.16777 9.164186 2.401 51.793 -49.7616 7.24E-72 100 59 

Left-MDl 259.3183 26.47553 213.346 348.831 -291.512 4.6E-147 100 1035 

Left-MDm 809.2776 79.1976 643.811 1083.88 75.66626 2.05E-89 100 207 

Left-MGN 61.21521 17.20899 22.295 114.562 -87.7587 1.07E-95 100 213 

Left-Pf 51.42599 12.4969 28.469 99.46999 -107.942 1.7E-104 100 187 

Left-PuA 214.5877 24.80664 169.785 299.096 19.08727 5.98E-35 100 167 

Left-PuI 246.9909 41.16957 170.814 355.691 45.43368 4.07E-68 100 59 

Left-PuL 180.394 32.57992 125.881 320.019 -63.4027 5.76E-82 100 388 

Left-PuM 1158.129 124.1217 906.892 1485.876 -54.019 2.85E-75 100 1832 

Left-VA 394.7553 44.87643 293.951 497.693 -54.1532 2.25E-75 100 639 

Left-VAmc 7.56658 2.362381 2.401 14.063 -279.804 2.6E-145 100 74 

Left-VLa 561.9369 66.39361 411.943 770.0349 36.40699 3.95E-59 100 319 

Left-VLp 891.0797 106.9382 662.3329 1262.24 -56.935 1.84E-77 100 1503 

Left-VM 1.615819 1.311282 0.343 7.546 -1066.14 1.3E-171 83 156 

Left-VPL 926.8751 123.0254 703.4929 1350.734 20.77518 7.15E-38 100 670 

Right-AV 134.823 21.67799 82.32 182.476 -69.847 4.88E-86 100 287 

Right-CeM 70.77805 11.77168 43.561 102.214 -86.4019 4.91E-95 100 173 

Right-CL 11.92611 6.871285 3.087 61.74 -1222.25 1.1E-208 100 856 

Right-CM 256.931 41.84041 184.534 423.262 -11.1933 2.79E-19 100 304 

Right-LD 20.16154 7.981011 5.488 44.59 -179.322 3.2E-126 100 164 

Right-LGN 275.8269 32.54821 202.37 360.493 5.449611 3.7E-07 100 258 

Right-LP 117.0282 18.69873 74.088 163.611 -294.777 1.5E-147 100 671 

Right-L-Sg 9.85782 6.783707 0.686 45.276 -70.6116 1.7E-86 100 58 

Right-MDl 258.207 26.152 196.882 336.483 -295.541 1.2E-147 100 1035 

Right-MDm 821.7388 79.12425 615.685 1072.561 77.0519 3.49E-90 100 209 

Right-MGN 73.36427 19.29477 25.725 138.229 -71.4913 5.1E-87 100 212 

Right-Pf 58.81078 13.84271 37.387 111.475 -96.4526 1E-99 100 193 

Right-PuA 206.3351 23.58036 152.978 277.144 15.75376 1E-28 100 169 

Right-PuI 219.0329 38.44851 140.973 320.705 40.63767 1.46E-63 100 62 

Right-PuL 166.8009 31.07548 108.388 275.429 -73.7061 2.63E-88 100 397 

Right-PuM 1145.116 119.2232 811.1949 1488.277 -57.408 8.29E-78 100 1833 

Right-VA 403.9922 49.41994 299.096 566.9789 -48.5229 7.97E-71 100 645 

Right-VAmc 9.02776 2.463819 4.459 15.778 -270.46 7.6E-144 100 76 

Right-VLa 602.6201 77.34003 443.156 891.114 35.33016 6.25E-58 100 328 

Right-VLp 887.7903 111.1463 639.6949 1288.651 -55.8796 1.11E-76 100 1512 

Right-VM 1.437333 1.090426 0.343 5.145 -925.229 3.45E-90 42 159 

Right-VPL 891.2992 118.3106 647.241 1254.008 19.78856 3.5E-36 100 656 
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uch as WMn MP-RAGE ( Tourdias et al., 2014 ), since sequences for

ast low angle shot MRI are readily available as a vendor product.

hile it is important to have segmentations that are faithful to their

nderlying neuroanatomy, it is also worth being pragmatic about the

imitations of automated segmentations and how we use them. At the

mplementation level it is plausible that heterogeneity in segmentation

fficacy will be observed across and within participants. This is despite

glesias et al. (2018) demonstrating high test-retest reliability for

ost nuclei volumes. For example, these differences could be driven

y changes in relative signal, intensity, and noise across multiple

cquisitions within the same individual ( Kiar et al., 2020 ). Other

mplementation-based sources of segmentation heterogeneity could

nclude differences across operating systems and software versions. For

xample, estimates of segmentation volumes are inconsistent across

ersions of FreeSurfer ( Gronenschild et al., 2012 ), and differences

n floating point arithmetic across operating systems and FreeSurfer

ersions also influences analyses ( Glatard et al., 2015 ). Practical

olutions, such as the use of Docker and Singularity containers, enable

he standardisation of computational resource, yet they cannot address

nherent differences in image acquisition which could be alleviated by

sing multi-modal imaging contrasts. 
8 
More broadly, the biological plausibility of measures should also be

onsidered when applying automated segmentation processes to study

tructure and function. Differences, such as those that are clinically rel-

vant or that change across developmental trajectories, should be ob-

erved at a level that is greater than noise that could be due to within-

ndividual variance or computational set-up. These differences, even if

mall, should be shown to be at least qualitatively reproducible. Ad-

itional considerations regarding biological plausibility include the ap-

lication of automatic registration tools. As an example, the original

ipeline in this study involved the use of FLIRT and FNIRT in FSL to

onvert images from subject space to MNI space. Yet, we found that

hese algorithms were unsuitable in terms of their accuracy for pro-

iding transformations within the thalamus. We therefore amended our

ipeline to use ANTs, rather than FSL for normalisation. Additionally, it

s worth considering the utility of applying these methods to studying

unctional changes using fMRI. For instance, the use of these segmenta-

ion techniques in studies with typical 3 tesla acquisition and analysis

arameters (3mm 

3 voxels, 8mm smoothing kernel) would mean that

t is likely that functionally relevant signal is not localised to specific

halamic nuclei. Therefore, we suggest that those wishing to study the

elevance of thalamic nuclei to functional processes carefully consider
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Figure 5. Average Hausdorff Distance between group-level segmented (vertical axis) regions and volumes in the Morel atlas (horizontal axis) in the left thalamus. 

Higher Average Hausdorff Distances shows there is greater dissimilarity and that segmented regions and volumes in the Morel atlas are less isometric. Dendrograms 

show the hierarchical structure of nuclei within the thalamus. Average Hausdorff Distances within BOLD boxes along the diagonal are show regions that are 

part of the same nuclear group or sub-group; nuclei from the Morel atlas and segmented volumes are not always equivalent (see Table 1 for an overview of 

abbreviations). 

Table 3 

Lowest Average Hausdorff Distance between each group-level segmentation and its corre- 

sponding volume within the Morel atlas. Higher Average Hausdorff Distances shows there 

is greater dissimilarity and that segmented regions and volumes in the Morel atlas are less 

isometric (see Table 1 for an overview of abbreviations). 

Segmentation Morel Distance (voxels) Segmentation Morel Distance (voxels) 

Left Right 

VA Vapc 0.332751 VA VApc 0.431525 

CM CM 0.460216 CM CM 0.437139 

AV AV 0.63198 AV AV 0.515158 

PuM PuM 0.659518 CeM CeM 0.542475 

MDm MDpc 0.735318 PuL LP 0.66192 

VPL VPLp 0.782243 VPL VPLp 0.663946 

MDl MDpc 0.873007 MDl MDpc 0.709001 

PuL LP 0.878453 PuM PuM 0.74441 

CeM CeM 1.00372 MDm MDpc 1.047935 

LGN PuI 1.130774 LP LD 1.163396 

VLa VLpv 1.19992 MGN SG 1.354912 

LP LD 1.255153 VLa VLa 1.363725 

MGN MGN 1.334352 VLp VLpv 1.453629 

VLp VLpv 1.364389 LGN PuI 1.493237 

PuA PuA 1.666463 PuI PuM 1.843849 

LD LD 1.743449 VAmc CeM 1.864043 

VAmc VM 2.13865 PuA PuA 1.943745 

PuI PuM 2.371877 CL AD 2.583181 

CL CL 2.379825 LD LD 2.850019 

Pf Pf 3.431893 Pf Pf 3.263468 

VM VPLa 3.63583 VM VPLp 3.556207 

L-Sg PuM 4.061324 L-Sg PuM 4.555451 
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Figure 6. Average Hausdorff Distance between group-level segmented (vertical axis) regions and volumes in the Morel atlas (horizontal axis) in the right thalamus. 

Higher Average Hausdorff Distances shows there is greater dissimilarity and that segmented regions and volumes in the Morel atlas are less isometric. Dendrograms 

show the hierarchical structure of nuclei within the thalamus. Average Hausdorff Distances within BOLD boxes along the diagonal are show regions that are part of 

the same nuclear group or sub-group; nuclei from the Morel atlas and segmented volumes are not always equivalent (see Table 1 for an overview of abbreviations). 

Figure 7. Spearman’s correlation between the volume of nuclei in the Morel 

atlas and the Average Hausdorff Distance of the group-level segmentation. 

A significant weak correlation was found between segmented volumes and 

Average Hausdorff Distances (r = -0.347, p = 0.021). The following regions 

within the Morel atlas are combined for the purpose of statistical analysis 

(LGN = (LGNmc + LGNpc), VA = (VAmc + VApc), VLp = (VLpd + VLpv), 

VPL = (VPLa + VPLp) (see Table 1 for an overview of abbreviations). The shaded 

region denotes 95% confidence intervals (bootstrapped, 1000 iterations). 
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cquisition and processing pipelines with respect to the metrics provided

ere to restrict the integration of signal across regions of the thalamus.

or instance, investigators may find it beneficial to combine segmenta-

ions from regions with high overlap and functional homogeneity, such

s the subnuclei of the mediodorsal thalamus, to improve the anatomi-
10 
al definition of their region of interest. Furthermore, consideration of

he size of segmented nuclei in relation to acquisition and processing

arameters are important to determine whether it could be considered

easible to acquire clean signal from a given region. 

In conclusion, this paper aimed to systematically validate the thala-

ic nuclei segmentation approach developed by Iglesias et al. (2018) us-

ng Human Connectome Project data and the Morel thalamic atlas de-

ived from histological staining post-mortem ( Krauth et al., 2010 ). Us-

ng volumetric, overlap, and isometry measures we show that the auto-

ated segmentation approach delineates between the anterior, lateral,

osterior, and medial portions of the thalamus, and that there is mixed

egmentation efficacy for individual nuclei within these groups. Impor-

antly, we find that the volumes for segmented nuclei are significantly

ifferent from those defined in the Morel atlas, calling for caution when

dopting this segmentation method. We also suggest important consid-

rations related to the functional relevance of these segmentations, de-

cribe potential pitfalls researchers may face when using these segmen-

ations within their own research, and recommend investigators under-

ake further validation work in addition to the results presented here

hen using this approach. 

Parcellations of thalamic nuclei in subject space generated by

reeSurfer, group-level mean probability maps in MNI space,

lus linear transformations and non-linear warps from sub-

ect space to MNI_T1_1mm_brain space are available publicly at

ttps://doi.org/10.17864/1947.000339 . 

unding 
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Table 4 

Lowest Average Hausdorff Distance between volumes within the Morel atlas and its correspond- 

ing group-level segmentation. Higher Average Hausdorff Distances shows there is greater dis- 

similarity and that segmented regions and volumes in the Morel atlas are less isometric (see 

Table 1 for an overview of abbreviations). 

Morel Segmentation Distance (voxels) Morel Segmentation Distance (voxels) 

Left Right 

VApc VA 0.332751 VApc VA 0.431525 

CM CM 0.460216 CM CM 0.437139 

AV AV 0.63198 AV AV 0.515158 

PuM PuM 0.659518 CeM CeM 0.542475 

MDpc MDm 0.735318 LP PuL 0.66192 

VPLp VPL 0.782243 VPLp VPL 0.663946 

LP PuL 0.878453 MDpc MDl 0.709001 

CeM CeM 1.00372 PuM PuM 0.74441 

PuI LGN 1.130774 LD LP 1.163396 

LGNpc LGN 1.19418 VAmc VA 1.270166 

VLpv VLa 1.19992 SG MGN 1.354912 

LD LP 1.255153 VLa VLa 1.363725 

MGN MGN 1.334352 MDmc MDm 1.407938 

VLa VLa 1.379999 VLpv VLp 1.453629 

VAmc VA 1.618183 PuI LGN 1.493237 

VPM CM 1.636273 AM AV 1.636578 

MDmc MDm 1.646026 Po MGN 1.641001 

PuA PuA 1.666463 Pf CM 1.693499 

SG MGN 1.757686 LGNpc LGN 1.762076 

CL MDm 1.963445 VPLa VPL 1.82221 

VPLa VPL 1.971193 PuA VPL 1.909816 

VLpd VLp 2.128442 VLpd VLp 2.062684 

VM VAmc 2.13865 MGN MGN 2.08619 

LGNmc LGN 2.169776 MV CeM 2.137629 

Pf CM 2.18454 VPM CM 2.396707 

Po MGN 2.294516 CL MDl 2.447928 

PuL LGN 2.330049 AD CL 2.583181 

AM AV 2.39251 PuL LGN 2.668344 

MV CeM 2.945644 sPf CM 2.785892 

sPf CM 3.005708 LGNmc LGN 2.818837 

AD AV 3.470230 VM VAmc 2.924402 

VPI VPL 3.562672 VPI MGN 3.220601 

Hb MDm 4.016412 Pv CeM 3.809648 

Pv CeM 4.120213 Hb Pf 3.843084 
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