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Abstract 

Traffic signs are one of the most important information that guide cars to travel, and the detection of traffic 

signs is an important component of autonomous driving and intelligent transportation systems. Constructing a 

traffic sign dataset with many samples and sufficient attribute categories will promote the development of 

traffic sign detection research. In this paper, we propose a new Chinese traffic sign detection benchmark, which 

adds more than 4,000 real traffic scene images and corresponding detailed annotations based on our CCTSDB 

2017, and replaces many original easily-detected images with difficult samples to adapt to the complex and 

changing detection environment. Due to the increase of the number of difficult samples, the new benchmark 

can improve the robustness of the detection network to some extent compared to the old version. At the same 

time, we create new dedicated test sets and categorize them according to three aspects: category meanings, sign 

sizes, and weather conditions. Finally, we present a comprehensive evaluation of nine classic traffic sign 

detection algorithms on the new benchmark. Our proposed benchmark can help determine the future research 

direction of the algorithm and develop a more precise traffic sign detection algorithm with higher robustness 

and real-time performance. 
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1. Introduction 

With the accelerated urbanization and rapid growth in the number of motor vehicles in China, urban 

road traffic throughput is increasing, and various traffic problems have emerged. Intelligent 

transportation systems (ITS) [1] can effectively use existing transportation facilities to ensure traffic 

safety and improve transportation efficiency, and is the main direction for the development of future 

transportation systems. Traffic sign detection, an important part of intelligent driving system, possesses 

high requirements for real-time, precision and robustness. Traffic sign detection is to predict whether a 

given image contains a traffic sign or not, and to perform coarse classification and localization of the 
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sign. Though traffic sign detection has been studied for decades and has been made some progress in 

recent years, but it has been still a challenging problem to achieve autonomous driving [2]. 

In order to fully evaluate the algorithm performance, it is crucial to collect representative datasets [3, 

4]. There are many factors that affect the performance of traffic sign detection, including lighting 

variations, complex backgrounds, object occlusions, weather variations, and different countries, and there 

is no single traffic sign dataset that can successfully encompass all scenarios [5–7]. At present, there are 

several datasets for traffic sign detection including GTSDB (German Traffic Sign Detection Benchmark) 

[8], LISATSD (Laboratory for Intelligent and Safe Automobiles Traffic Sign Dataset) [9], BTSD 

(Belgian Traffic Signs Dataset) [10], STSD (Swedish Traffic Signs Dataset) [11], CTSD (Chinese Traffic 

Sign Dataset) [12], T-T 100K (Tsinghua-Tencent 100K) [13], CCTSDB 2017 (CSUST Chinese Traffic 

Sign Detection Benchmark) [14], etc. However, most of these datasets suffer from small data volume, 

insignificant weather changes, incomplete annotation information, single image style, no dedicated test 

dataset, and some of them are not publicly available [15, 16]. Most existing traffic sign detection datasets 

do not pay enough attention to these problems or do not fully address them. 

Many typical deep learning methods and their extended algorithms have been applied to traffic sign 

detection, such as R-CNN [17–21], YOLO [22–24], SSD [25]. The detection performance of these 

algorithms varies for different attributes of the images. Besides many studies use different and few 

performance metrics, and thus cannot fully reflect the detection performance of the algorithms [26, 27]. 

Therefore, it is necessary to unify the metrics for performance evaluation, to comparatively evaluate 

performance of algorithms. 

As such, based on our previous benchmark CCTSDB 2017, we aim to generate a new benchmark 

CCTSDB 2021 for traffic sign detection in China. CCTSDB 2021 contains different image attributes 

(e.g., different categories, different sizes, weather variations, etc.) so as to restore the real environment 

of the detection scene as much as possible. The contributions of our paper are threefold: 

(1) On the basis of CCTSDB 2017, we add and annotate 5,268 new images of real traffic scenes 

including 3,268 training set images and 2,000 test set images. While expanding the amount of data, a part 

of easy samples from the old benchmark dataset is replaced to make the trained neural network more 

robust. The data and code are available at https://github.com/csust7zhangjm/CCTSDB2021.  

(2) We generate a new comprehensive and dedicated test set which is categorized according to three 

dimensions: category meanings (three types), weather conditions (six types), and sign sizes (five types). 

By virtue of our new test set, the experimental comparison can be fairer.  

(3) Nine different algorithms are evaluated on the new benchmark to show the strengths and 

weaknesses of the algorithms and to promote the development of new traffic sign detection algorithms. 

We use a unified performance evaluation metric, with six groups including precision, recall rate, miss 

rate, mAP, F1 and FPS (frames per second). These metrics allow the algorithms to be compared across 

the board in new dataset tests. 

 

2. Related Work  

2.1 ITS and Autonomous Driving 

ITS aim to make effective use of existing traffic facilities, analyze and process various traffic 

information, and transmit effective traffic information among vehicles, drivers, pedestrians and various 

traffic facilities, so as to reasonably plan traffic routes, reduce traffic load and environmental pollution, 

ensure traffic safety and improve transportation efficiency [28–30]. In September 2019, China issued 

“The Outline for Building China's Strength in Transport,” emphasizing to accelerate infrastructure 

construction and improving the capacity of the transportation system. 

Autonomous driving is an indispensable step in ITS and the main development direction of global 

automobile manufacturers and transportation field at present and in the future [31–33]. Google obtained 

the first self-driving vehicle license in the United States in May 2012, and the original autonomous 



Human-centric Computing and Information Sciences                                                                                                                          Page 3 / 18 

driving team of Google was split into a subsidiary named Waymo at the end of 2016. In December 2015, 

Baidu launched an autonomous driving road test and announced the Apollo plan in April 2017. In 

February 2020, China's Ministry of Industry and Information Technology and other 10 ministries and 

commissions jointly issued “The national intelligent vehicle innovation and development strategy” to 

promote the construction of industry clusters for autonomous vehicles key parts. 

Traffic sign detection is an important part of the autonomous driving system [34, 35]. It requires 

comprehensive application of various technologies such as machine vision, artificial intelligence, image 

processing, and so on. It has high requirements for real-time, accuracy and robustness [36–38]. A vehicle-

based traffic sign detection system uses the camera mounted on the vehicle to collect the surrounding 

real traffic scene, and accurately predict the location and coarse category of traffic signs. These detection 

results will directly affect the fine-grained classification of traffic signs, and thus affect the vehicle control 

of autonomous driving system [39–41]. 

 

2.2 Traffic Sign Detection Algorithms 

At present, the traffic sign detection technology is mainly divided into two kinds: traffic sign detection 

based on traditional methods [42–44] including HOG+SVM [45], RBD [46], SRM [47], ICF [48], etc., 

and another kind of traffic sign detection based on deep learning [49, 50]. The traditional detection 

methods are mainly based on the inherent physical characteristics of object being detected, including 

color and shape-based detection [51, 52]. Based on the image color and shape information, these methods 

select the features of the regions, and then output the regions of interest that may contain traffic signs. 

However, the traditional detection method is a slightly cumbersome process and lacks in real-time. The 

models of artificial intelligence and deep learning that have emerged in recent years can use pixels 

directly as input to the model, without pre-processing operations on the image. These methods can 

achieve automatic extraction of object features, and predict the output to know the presence or absence 

of the object and to get information about its location. 

The success of deep learning-based object detection [53–55] can be attributed to the robustness of 

detection models, increased computational power, and the availability of large amounts of labeled data. 

Various novel convolutional approaches [56, 57] have been exploited. More and more effective neural 

network structures [58–60] have being explored. The fusion of multi-scale features [61, 62] can take full 

advantage of the small object feature [63–65]. The emergence of residual networks [66] solves the 

problem of network degradation. The authors of [67] proposed SPPNet to solve the problem of requiring 

a fixed input image size for feature extraction by CNN networks. [68] feeds the topmost layer of feature 

images in the network layer by layer and fuses them with the feature maps of the previous layer. [69] is 

able to describe the shape of an object by modeling the relative geometric positions of points and thus 

capturing local shape features. [70] obtains better voxel feature encoding methods by mixing voxel 

feature encoders of different scales at the point level, which results in speed and accuracy improvements. 

 

2.3 Traffic Sign Detection Datasets 

The GTSDB was proposed in 2013 and is one of the most widely-used benchmark for evaluating the 

performance of traffic sign detection algorithms. At the same time, GTSDB is also an internationally 

recognized measurement data set with high credibility. However, the data volume of this benchmark is 

small, which is not conducive to deep learning training. The LISATSD is a set of videos and annotated 

frames containing US traffic signs. It includes 47 US sign types with a total of 6,610 images, with traffic 

sign sizes ranging from 6×6 to 167×168, some images are in color and some are in grayscale. However, 

the category of this dataset is not well defined and the image resolution is too low. The STSD was created 

by recording a total of 350 km of roads and cities in Sweden, creating a dataset of about 20,000 images, 

but with only 20% of the data labeled. The CTSD was produced by the machine vision group of the 

Institute of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, and is an earlier 
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recognized dataset in China, but there are problems such as small amount of data and inaccurate labeling 

of individual images. The high-resolution dataset T-T 100K was proposed by Tsinghua University, the 

number of datasets is at the level of 100,000, 10 regions in five different cities in China were selected 

and 100,000 panoramas were obtained from Tencent's data center. However, the panorama has distortion 

problems, the street view does not have extreme weather, and the percentage of positive samples is less 

than 10%. The CCTSDB 2017 was produced by a team from Changsha University of Technology in 

2017. It is a relatively new benchmark in China, and there is an adequate number of benchmarks with the 

presence of multiple resolution images. However, there are still problems such as insufficient attribute 

categories and no dedicated test set. 

With the development of the times, computer hardware is constantly being updated and the computing 

power of GPU hardware has increased significantly. However, the relatively slow development of traffic 

sign datasets has hindered the development of traffic sign detection to a certain extent, and most of the 

dataset production teams do not continuously update and adjust the datasets. Therefore, we produced a 

data-rich detection benchmark of Chinese traffic sign with a large amount and variety of data. Meanwhile, 

the new benchmark is comprehensively evaluated with classical algorithms in object detection to lay a 

solid foundation for the development of traffic sign detection technology. 

 

3. Our Traffic Sign Detection Benchmark  

In this section, we present a large-scale traffic sign detection benchmark called CCTSDB 2021. 

CCTSDB 2021 is an expansion of CCTSDB 2017 in which we capture, process and label new images. 

We remove the images with incomplete annotation information in CCTSDB 2017 and added 5,268 

images, and generate a dedicated test set. Next, we describe the process of creating the benchmark dataset 

and the statistical information related to the benchmark dataset. 

 

3.1 Image Selection and Annotation 

We randomly collected more than one thousand car recorder videos that have been publicly available 

online for different time periods, locations, and speeds. Thus, the coverage and diversity of our 

benchmark are well ensured. As the vehicle is equipped with different models of car recorders, so the 

length of each video captured varies from 15 seconds to 10 minutes, respectively, and the resolution of 

the videos is 860×480, 1280×720, 1920×1080, etc. The frame rate varies from 25 to 30 frames, and the 

bit rate format of the original videos varies between 2,000 kbps and 10,000 kbps. We retain original 

resolution and bit rate of the original videos to keep the diversity of the data. 

Due to data quality, diversity, and sample issues, some videos are not suitable for use in the study, and 

the line-of-sight videos need to be manually screened. We get a total of 423 videos containing traffic 

signs, and the videos containing traffic signs are divided into frames with a frame skip interval of 5, i.e., 

one image is saved every 5 frames. The images saved by the split-frame operation are then manually 

filtered once again, keeping only those images that contain traffic signs. The final filtered traffic sign 

images are labeled and positioned by sign category. For the quality of labeling, all our images are 

manually labeled and positioned on LableImg software. Finally, we restore all the annotated coordinates 

to the image and manually proofread them one by one to prevent any annotation or processing errors. As 

shown in Fig. 1, we standardize the benchmark production process into six steps. 

 

Collecting 

videos

Screening 

videos 

containing 

traffic signs

Splitting the 

videos

Screening 

images 

containing 

traffic signs

Performing 

image 

annotation

Manual 

proofreading

 

Fig. 1. Production process of CCTSDB 2021. 
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The annotation information format is shown in Fig. 2. The information in the red box in Fig. 2 is the 

annotation information that we use when conducting experiments, and we explain some of the important 

information. The annotation tag indicates the annotation file of an image, and the filename tag information 

indicates the file name. When there are n traffic signs in an image, there are n object tags. The name tag 

indicates the category meaning of the traffic sign, the bndbox tag indicates the position of the traffic sign in 

the image. The xmin tag indicates the horizontal coordinate of the top left corner of the traffic sign bounding 

box. The ymin tag indicates the vertical coordinate of the top left corner of the traffic sign bounding box. 

The xmax tag indicates the horizontal coordinate of the top left corner of the traffic sign bounding box. 

The ymax tag indicates the vertical coordinate of the lower right corner of the traffic sign bounding box. 

 
Fig. 2. Annotation information of the image. 

 

3.2 Training Set Statistics 

CCTSDB 2021 is an expansion of CCTSDB 2017, with a total of 16,356 images. All training images 

are located in the Train folder in JPG format, where the first 13,087 images are all from CCTSDB 2017 

and the last 3,269 images are added samples. To enrich the training set information, we acquire images 

from six different weather conditions. There were 22 images acquired from foggy days, 60 images from 

snowy days, 204 images from rainy days, 518 images at night, 1,201 images in cloudy weather, and 1,264 

images in sunny days. There are three types of traffic signs in the training set, including 13,876 

prohibition signs, 4,598 warning signs and 8,363 mandatory signs. As shown in Fig. 3, four sample 

images in the training set are displayed. 

 

3.3 Test Set Statistics 

In CCTSDB 2021, we produce a dedicated test set. More specifically, there are 2,000 images in total, 

and the first 1,500 images are positive sample images and the last 500 are negative sample images. All 

test images are located in the Test folder in JPG format. In addition, we divide the positive samples in 

the test set in more detail according to three dimensions: category meanings, sizes, and weather 

conditions, as detailed below. 

 

3.3.1 Classification based on meaning of traffic signs 

The meaning of traffic signs varies from country to country, and the correct classification of traffic 

sign meanings is the most basic requirement for detection algorithms. According to the definition of 

common traffic signs in road traffic signs and markings, we divide the signs appearing in the benchmark 

dataset into the following three categories according to their meanings, as shown in Fig. 4.  
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Fig. 3. Some examples of training set in CCTSDB 2021. 

 

Prohibitory

Warning

Mandatory

 
Fig. 4. Some Chinese traffic signs with meaningful classification. 

 

A prohibition signs prohibit or restricts a certain traffic behavior of vehicles or pedestrians. The main 

colors of the prohibition sign are red, black and white, with a small amount of dark blue, and the shape 

of the sign is usually circular or square octagonal. Warning signs warn vehicles and pedestrians of 

dangerous locations ahead of the road. The main color scheme of the sign is yellow and black, and the 

shape of the sign is usually a square triangle. Mandatory signs indicate the movement of vehicles and 

pedestrians. The main color scheme of the sign is blue and white, and the shape of the sign is usually 

rectangular or circular. As shown in Fig. 5, there are 3,228 traffic signs in the whole test set, including 

2,177 prohibition signs, 718 mandatory signs and 333 warning signs according to their meanings. 

 

Prohibitory :2177

Warning:333

Mandatory :718

 

Fig. 5. Proportion of three types of traffic signs. 
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3.3.2 Classification based on size of traffic signs 

In general, the performance of the detection algorithm decreases as the size of the inspected object 

becomes smaller. For traffic participants, however, it is often the smaller traffic signs at a distance that 

are more suggestive. If a traffic sign is close, the driver is often too late to react or already knows the 

meaning of the sign when driving according to it. Therefore, the traffic sign detection algorithm needs to 

correctly detect more and more traffic signs that are smaller and further away under limited conditions. 

We counted the sizes of all flags in the full test set sample, divided them equally into four intervals, 

and then divided the interval with the largest size into two intervals. Because the larger the size of traffic 

signs can be easier to detect them relatively, we set smaller number of samples for the larger the size. The 

final sizes of the CCTSDB 2021 were classified into five categories: access small (XS), small (S), 

medium (M), large (L), and extra-large (XL). There were 813 XS size signs, 807 S size signs, 828 M size 

signs, 408 L size signs, and 372 XL size signs in the test set according to the traffic sign size. T-T 100K 

divides the size of traffic signs into three intervals: small, medium, and large. Their corresponding pixel 

area sizes are shown in Table 1. From the table, we can see that we subdivide three more size categories 

within the small object range corresponding to T-T 100K, so the CCTSDB 2021 focuses more on the 

detection of small objects. 

 

Table 1. Cropped image size comparison between T-T 100K and CCTSDB 2021 

T-T 100K CCTSDB 2021 (number of traffic signs) 

small, area ≤322 pixels XS, area ≤210 pixels (813) 

S, area >210 pixels and area ≤400 pixels (807) 

M, area >400 pixels and area ≤1000 pixels (828) 

medium, area >322 pixels and area ≤962 pixels L, area >1000 pixels and area ≤2000 pixels (408) 

large, area >962 pixels XL, area >2000 pixels (372) 

 

Table 2. Characteristics of various types of weather 

Weather 

classification 

Number of 

images 
Image characteristics 

Sunny 400 There is strong sunlight, the direction of the light source is opposite to the direction of travel, 

the traffic signs are directly illuminated by sunlight, and the object light is clear. 

There is strong sunlight, the direction of the light source is the same as the direction of travel, 

the front of the traffic sign is not directly illuminated by sunlight, and the target is dark and 

blurred. 

Cloud 300 No obvious direct sunlight, no obvious light source direction, the object is relatively clear. 

Night 500 Since the traffic signs are coated with special fluorescent materials, the direct illumination 

of vehicle lights on the traffic signs at night will make a clear contrast between the traffic 

signs and the background. 

Due to the different vehicle angles, the vehicle lights are scattered on the traffic signs and 

the light intensity is insufficient, making the overall traffic signs dark and blurred. 

Snow 100 There is snow on the ground, the image is easily overexposed, and the traffic signs are white. 

Foggy 40 There is water mist in the air, overall white, and blurred traffic signs. 

Rain 160 The overall environment is dark, the ground is easily reflective, and the front windshield and 

traffic signs appear blurred with rainwater. 

 

3.3.3 Classification based on weather and environment 

After checking some car recorder videos, we found some traffic sign detection problems related to 

weather and light environment. Extreme weather conditions (such as rain, snow or fog) can temporarily 

degrade the image quality of a car recorder, and dim light, overexposure and glare can have a negative 
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effect on the visibility of traffic signs. Therefore, we consider the impact of changes in weather conditions 

on traffic sign detection at specific times and in specific areas. 

We divided the weather lighting conditions of all sample images in the test set into six categories: 

foggy, snow, rain, night, sunny, and cloud, for a total of 1,500 images. It is worth noting that the weather 

environment attribute is only present in the test set images, and is not present in the training set. As shown 

in Table 2, the test images will show different characteristics under different weather as well as lighting 

conditions, which is a great challenge for the detection algorithm. Examples of the data set is shown in 

Fig. 6. 

 

sunny cloud

night snow

foggy rain
 

Fig. 6. Examples of weather environment classification. 

 

In Fig. 7, we counted the number of each sign in the test set data for different weather environment 

attributes. There are 579 sunny signs, 655 cloudy signs, 1,279 night signs, 488 rainy signs, 61 foggy 

signs, and 166 snowy signs according to the weather environment classification. The proportion of all 

kinds of weather is different in real life, and the proportion of all kinds of images in the dataset is also 

different. 

 

 

Fig. 7. Weather environment classification statistics of traffic signs. 
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4. Experiments 

The task of our neural network is to detect the location [71] of the traffic sign in the image and then 

discriminate which of the prohibition signs, mandatory signs, and warning signs the object belongs to. 

We evaluated nine representative detection algorithms on the CCTSDB 2021, all of which were network 

trained on the training set and evaluated on a dedicated test set. Among the detected algorithms, there are 

R-CNN related detection algorithms including Faster R-CNN [18], Libra R-CNN [72], Dynamic R-CNN 

[19] and Sparse R-CNN [73], YOLO related detection algorithms including YOLOv3 [23], YOLOv4 

[24] and YOLOv5 [74], SSD related detection algorithms including SSD [25], and we also evaluated the 

first stage detection algorithms in RetinaNet [75]. 

 

4.1 Experimental Details 

All code for training and testing the models was run in a Linux environment with Ubuntu 16.04, CUDA 

version 10.1, and the framework adopted for the experiments was PyTorch. The processor model is Intel 

Xeon CPU E5-2640 2.40 GHz, the graphics card model is GeForce RTX 2080 Ti, the graphics memory 

size is 11 G, and the memory size is 16 G. Among them, YOLOv4 and YOLOv5 were not tested on this 

platform due to the non-support of MMDetection, and all the remaining algorithms extract features from 

the dataset in JSON format [76] through the MMDetection platform to test the algorithm performance. 

Empirically the hyperparameters of various algorithms are set as follows. The initial learning rate of 

YOLOv4 is 0.001 and the weight decay parameter is 0.0005 for a total of 100 training batches, and the 

learning rate is adjusted to 0.001 again for the 51st training batch. YOLOv5 has an initial learning rate 

of 0.001, a momentum size of 0.98, and a weight decay parameter of 0.001, and is trained for a total of 

50 batches. All algorithms running on MMDetection have a momentum size of 0.9. The Libra R-CNN, 

YOLOv3, and RetinaNet algorithms have an initial learning rate of 0.1, and the remaining algorithms 

have a momentum value of 0.2. The weight decay parameter for YOLOv3 is 0.0005, and the weight 

decay parameter for the remaining algorithms running on MMDetection is 0.0001. The Faster R-CNN, 

Libra R-CNN, Dynamic R-CNN, and Sparse R-CNN algorithms were trained in 12 batches uniformly, 

and the 8th and 11th batches reduced the learning rate to one-tenth of the original rate. The SSD algorithm 

was trained for 24 batches, and the 16th and 22nd batches reduced the learning rate to one-tenth of the 

original rate. YOLOv4 and YOLOv5 use the Adam optimization algorithm, and other algorithms tested 

on the MMDetection platform adopt the SDG strategy as the optimization algorithm. 

 

4.2 Evaluation Metrics  

Since the majority of algorithms refer to a single performance metric that is insufficient to fully reflect 

the detection performance of the algorithm, there is also a need to unify the metrics for performance 

evaluation on a completely new benchmark. TP denotes the number of samples that predicted positive 

samples correctly, FP denotes the number of samples that predicted negative samples as positive samples, 

and FN is the number of samples that predicted positive samples incorrectly. In the evaluation metric, 

FPS indicates the number of images processed per second. We use precision (P) [77], recall rate (R) [77], 

miss rate (MR) [77], mAP [77], F1 [77] and speed FPS to measure the performance of the proposed 

algorithm. P(R) is a function with R as the parameter, and classes is the number of meaning categories 

of the dataset. Therefore, the metric can be calculated according to the following formula: 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 
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𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

𝑀𝑅 = 1 −
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝑚𝐴𝑃 =
1

𝑐𝑙𝑎𝑠𝑠𝑒𝑠
∑ ∫ 𝑃(𝑅)𝑑𝑅

1

0

𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑖=1

 (4) 

𝐹1 =
2𝑃𝑅

𝑃 + 𝑅
 (5) 

 

4.3 Experimental Results 

In order to comprehensively evaluate the dataset, we select six common metrics for evaluation. In the 

meanwhile, the selected algorithm is also a classical detection algorithm in one-stage and two-stage 

detection networks. In our experimental evaluation of traffic sign detection, a dedicated test benchmark 

dataset is used. This test set greatly increases the number of samples and attribute categories for each 

type of traffic signs and is able to measure them with the most demanding performance metrics. In the 

experiments, the threshold value of IOU (intersection over union) is selected as 0.5, and the experimental 

results are shown in Table 3, algorithms are sorted by time from top to bottom. 

 

Table 3. Comprehensive test results of CCTSDB 2021 

Method P (%) R (%) MR (%) mAP (%) F1 FPS 

Faster R-CNN [18] 84.43 54.98 45.02 56.58 0.60 4.87 

SSD [25] 86.47 27.74 72.26 49.20 0.42 22.33 

RetinaNet [75] 86.70 52.88 47.12 57.78 0.65 8.88 

YOLOv3 [23] 84.63 42.71 57.29 50.48 0.54 20.34 

Libra R-CNN [72] 83.72 60.04 39.96 61.35 0.70 8.81 

YOLOv4 [24] 76.16 52.50 47.50 51.69 0.59 16.55 

Dynamic R-CNN [19] 86.98 58.33 41.67 60.01 0.69 9.03 

Sparse R-CNN [73] 94.12 52.58 47.42 59.65 0.67 8.45 

YOLOv5 [74] 90.80 69.20 30.80 76.30 0.78 123.46 

 

From the corresponding data measured from the nine models on the CCTSDB 2021 listed in Table 3, 

we learn that the results of each metric detected by this benchmark dataset are relatively low due to the 

addition of many difficult samples in CCTSDB 2021. Overall, the two-stage algorithms are more highly 

precise but slower than single-stage algorithms. The more outstanding value of precision is the two-stage 

detection algorithm Sparse R-CNN, with a P value of 94.12%. The fastest is the one-stage detection 

algorithm YOLOv5, which has an FPS value of 123.46. This is because the two-stage object detection 

algorithms first extract the candidate frame for the image, and then conduct a secondary correction based 

on the candidate region to get the detection point result, with higher detection precision, but slower 

detection speed. However, the single-stage detection algorithms directly calculate the image to generate 

the detection results, fast detection speed, but low detection precision. Besides, the leakage rate and recall 

rate are interrelated, and the sum of the two is always 1. Therefore, the lowest leakage rate is the YOLOv5 

algorithm with the highest recall rate value. In addition, mAP is the average of the area under the curve 

drawn for each category using a combination of points with precision and recall rate, so the highest mAP 

value is 76.30% for the YOLOv5 algorithm, which has relatively high precision and recall rate. The F1 

combines the results of precision and recall rate, and when the F1 is higher, it indicates that the method 

is more effective. The highest F1 value among the above algorithms is YOLOv5, which is 0.78. 



Human-centric Computing and Information Sciences                                                                                                                          Page 11 / 18 

In order to enrich the experimental results, we set different thresholds of IOU in the test and measured 

the corresponding values of mAP. We set the IOU thresholds in the range of 0.1 to 0.9, and the interval 

between the thresholds is 0.2. The experimental results are shown in Table 4, and from the results we can 

learn that for each detection model, the detected mAP values become smaller to some extent when the 

IOU threshold increases. For the network model, when the IOU threshold increases, the obtained mAP 

values decrease. This is because the increased IOU threshold makes the bounding box filtered by the 

model less, thus retaining the correct bounding box to a great extent. However, the stability of this 

algorithm is higher for traffic sign detection because the mAP of YOLOv5 decreases relatively slowly. 

When the IOU threshold is taken as 0.7, Libra R-CNN, Dynamic R-CNN, Sparse R-CNN and YOLOv5 

algorithms still have some validity with mAP values greater than 50%. The YOLOv5 does not cause 

significant differences in the detected mAP values due to changes in the IOU threshold, and all values 

measured are greater than 70%. A large part of the reason is due to the auto learning bounding box anchors 

in the YOLOv5, which automatically learns the size of the anchor frame to improve detection performance 

to some extent since the object detection framework often requires scaling the original image size. 

 

Table 4. Detection results of CCTSDB 2021 in different IOU thresholds (unit: %) 

Method IOU0.1 IOU0.3 IOU0.5 IOU0.7 IOU0.9 

Faster R-CNN [18] 58.17 57.96 56.58 47.06 3.07 

SSD [25] 61.56 58.99 49.20 29.54 3.19 

RetinaNet [75] 58.61 58.45 57.78 49.46 5.24 

YOLOv3 [23] 55.89 55.45 50.48 31.92 0.81 

Libra R-CNN [72] 61.52 61.51 61.35 55.58 5.83 

YOLOv4 [24] 70.80 68.45 51.69 11.20 0.13 

Dynamic R-CNN [19] 60.10 60.07 60.01 55.86 6.06 

Sparse R-CNN [73] 60.38 60.15 59.65 52.87 4.41 

YOLOv5 [74] 75.40 76.90 76.30 76.50 72.10 

 

Tables 5–7 show the experimental results in various cases after dividing the test set, but mAP 

represents the average value of the average accuracy of all categories, so it is more appropriate to use the 

pair of metrics P and R in Tables 5–7. The CCTSDB 2021 provides a coarse classification of traffic sign 

detection, and we classify all traffic signs into three major categories: prohibitory, warning, and 

mandatory. Among them, 67.4% were prohibition signs, 10.4% were warning signs, and 22.2% were 

mandatory signs. The data results of precision and recall rate of each category measurement when the 

IOU threshold was taken as 0.5 are shown in Table 5. 

 

Table 5. Detection results of CCTSDB 2021 in different meaning categories (unit: %) 

Method 
Prohibitory Warning Mandatory 

P R P R P R 

Faster R-CNN [18] 90.60 55.51 83.63 67.93 79.05 41.49 

SSD [25] 80.75 24.84 86.15 26.60 92.50 31.79 

RetinaNet [75] 93.68 52.46 81.96 63.66 84.47 42.53 

YOLOv3 [23] 88.15 42.31 82.37 54.39 83.37 31.44 

Libra R-CNN [72] 92.24 57.82 80.65 71.26 78.26 51.03 

YOLOv4 [24] 75.85 50.11 76.20 59.40 76.42 47.99 

Dynamic R-CNN [19] 95.44 57.53 84.86 70.55 80.65 46.91 

Sparse R-CNN [73] 97.12 50.22 90.82 68.17 94.43 39.35 

YOLOv5 [74] 90.90 69.80 90.40 82.00 91.10 55.80 

 

As can be seen from Table 5, among the nine detection models, the Sparse R-CNN algorithm has the 

highest detection precision for prohibition signs with a P value of 97.12%. The YOLOv5 algorithm has 
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the highest detection recall rate for warning signs with a R value of 82.00%. The better overall 

performance of the Sparse R-CNN algorithm for detection results is due to the fact that the algorithm 

introduces learnable proposal features that combine with the coarse region of interest information 

extracted from proposal boxes to better represent some details of the object. During network model 

training, YOLOv5 transfers each batch of training data through the data loader and performs data 

augmentation simultaneously. Since the data loader performs three kinds of data augmentation: scaling, 

color space adjustment and mosaic data augmentation, the high R value is obtained by YOLOv5. 

Generally speaking, the smaller the traffic sign, the less likely it is to be detected. However, during 

actual road travel, detecting relatively distant traffic signs allows traffic participants to have more reaction 

time. In CCTSDB 2021, we classify the sizes of the test set into five categories based on the pixel sizes 

of the traffic signs in the image: extremely small (XS), small (S), medium (M), large (L), and extremely 

large (XL). When we perform size classification, we do not classify an image into any of the five 

categories if there are traffic signs of two or more sizes in the image. We counted the detection results 

for five different sizes of traffic signs at an IOU threshold of 0.5, and the precision and recall rate of each 

algorithm's detection are shown in Table 6. 

 

Table 6. Detection results of CCTSDB 2021 in different object sizes (unit: %) 

Method 
XS S M L XL 

P R P R P R P R P R 

Faster R-CNN [18] 77.14 48.67 83.62 78.08 88.97 79.23 85.06 88.09 85.26 81.31 

SSD [25] 74.84 16.61 72.92 25.44 89.48 32.68 97.74 54.60 99.29 82.65 

RetinaNet [75] 77.64 47.00 86.67 64.77 91.59 78.03 85.60 88.50 86.04 84.15 

YOLOv3 [23] 86.76 39.24 86.10 66.33 92.88 68.79 80.68 60.68 89.21 71.39 

Libra R-CNN [72] 70.19 52.75 79.88 81.25 87.91 81.26 85.60 88.66 76.19 84.03 

YOLOv4 [24] 62.44 36.96 70.16 46.47 77.36 59.97 91.55 96.55 96.09 97.43 

Dynamic R-CNN [19] 81.24 51.42 83.48 78.87 91.38 80.25 83.28 90.04 83.44 84.31 

Sparse R-CNN [73] 91.19 53.97 94.55 74.69 95.56 75.62 95.56 81.10 93.47 78.23 

YOLOv5 [74] 75.60 55.90 88.60 75.70 94.70 88.30 97.30 89.00 96.90 91.30 

 

The precision and recall rate of each algorithm are generally smaller to some extent when the size of 

traffic signs becomes smaller. However, Sparse R-CNN still has good performance in detecting traffic signs 

at very small-scale sizes, with a P value of 91.19% and the best recall rate result is the YOLOv5 algorithm 

with a R value of 55.90%. The Sparse R-CNN with better detection performance is because the features 

of the region of interest are solved to obtain the final features. In this way, those bounding boxes that 

contain most of the foreground information have an impact on the final object location and classification. 

In addition, the self-attentive module also facilitates the detection of small objects. SSD extracts six 

feature maps with different scales, so the network model has better performance in the detection of large 

traffic signs, and the P values are 97.74% and 99.29% respectively. Due to mosaic data augmentation, 

the R results of YOLOv4 in L scale and XL scale are higher, i.e., 96.55% and 97.43% respectively. 

In real life, weather conditions are complex and variable, and the performance of the detection 

algorithm varies with the weather environment in which the inspected object is located. We classify the 

weather conditions in the CCTSDB 2021 into six categories. The detection results of the test set under 

six weather conditions at an IOU threshold of 0.5 are shown in Table 7. 

From Table 7, we can learn that the precision and recall rate of the detection algorithm are relatively 

high under sunny, snowy and cloudy conditions, indicating that the algorithm is more effective in 

detecting without interference such as rain and fog. The precision and recall rate of the detection 

algorithm are relatively low in rain and fog and at night, indicating that rain and fog will have some 

influence on the detection of traffic signs, and also the visibility is relatively low at night, which is not 

conducive to the detection of traffic signs. In addition, it can be seen from Table 7 that the impact of 

traffic sign detection in rainy days is greater than that in snow and fog days. This is because in the image, 
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only a small amount of water droplets in fog days are attached to the windshield, and most of the snow 

in snow days is on the ground. However, YOLOv3 have high precision even in the case of blurred vision 

and certain occlusion. The YOLOv3 still has good detection performance in rain and fog because the 

algorithm makes extensive use of residual structures for cross-layer connectivity, and to reduce the 

negative effects of pooling, the algorithm uses a convolution with a step size of 2 for subsampling in the 

network structure. 

 

Table 7. Detection results of CCTSDB 2021 in different weather conditions (unit: %) 

Method 
Sunny Cloud Night Rain Foggy Snow 

P R P R P R P R P R P R 

Faster R-CNN [18] 85.47 77.42 92.74 57.61 76.89 47.87 61.35 34.61 77.00 67.09 96.27 91.12 

SSD [25] 90.56 32.65 84.45 21.77 85.22 24.59 57.88 27.53 85.42 32.99 95.65 28.10 

RetinaNet [75] 90.71 75.37 93.43 53.92 81.09 43.81 67.98 39.55 69.45 64.86 90.18 88.49 

YOLOv3 [23] 92.01 64.03 87.12 44.65 75.98 34.81 91.17 31.55 88.66 56.39 87.54 70.59 

Libra R-CNN [72] 82.08 78.93 94.47 58.84 80.07 52.52 66.67 48.25 69.24 71.74 90.39 91.12 

YOLOv4 [24] 83.83 53.95 74.24 52.92 67.65 32.47 22.43 13.41 85.00 37.43 64.32 40.84 

Dynamic R-CNN [19] 86.26 78.92 93.87 58.40 83.70 52.26 64.21 41.13 70.57 69.52 96.25 89.48 

Sparse R-CNN [73] 96.56 73.27 96.72 55.97 91.48 44.15 69.69 34.07 92.11 81.11 95.01 88.49 

YOLOv5 [74] 95.90 85.10 94.00 81.20 86.10 60.60 47.9 46.7 64.80 81.30 96.10 80.70 

 

We tested the last 500 negative samples of the test set, which has a special experimental procedure. 

We used the trained network model for batch testing of the negative sample images, which do not have 

any traffic signs in them, and if there is a detection result in the image, then it means that the image is 

misdetected. The false detection rate is the ratio of the number of false detected images to the number of 

negative sample images, and we denote the false detection rate as F. Because we only need to know 

whether there is a test result on the negative samples, we can know whether it is wrongly detected, so we 

only need to use F. We set the threshold to 0.5, and the experimental results are shown in Table 8. 

 

Table 8. Detection results of negative samples 

Method F (%) 

Faster R-CNN [18] 17.60 

SSD [25] 0.40 

RetinaNet [75] 4.40 

YOLOv3 [23] 2.60 

Libra R-CNN [72] 37.20 

YOLOv4 [24] 7.40 

Dynamic R-CNN [19] 8.80 

Sparse R-CNN [73] 6.60 

YOLOv5 [74] 7.00 

 

In the experimental results, the SSD has the lowest false detection rate for negative samples with a 

value of 0.04%. This is because the SSD algorithm utilizes six feature maps of different sizes for both 

classification and regression. Low-level features have higher resolution and contain more location and 

detail information, but they are less semantic and more noise due to less convolution undergone. High-

level features have stronger semantic information, but have very low resolution and poor perception of 

details [78–80]. The fusion of features at different scales is an important reason why the SSD has the 

lowest false detection rate for negative samples [81–83]. 

 

5. Conclusion 
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In this paper, we expand the CCTSDB 2017 to address the problems of that benchmark and propose a 

large Chinese traffic sign detection benchmark named CCTSDB 2021. This benchmark contains a total 

of 17,856 images of real traffic scenes and corresponding detailed annotations, which is a much larger 

amount of data, and in CCTSDB 2021, we generate a more difficult and dedicated test set, which contains 

as many scenes as possible. In the test data, we divided Chinese traffic signs into three categories 

according to their meaning categories: prohibition signs, warning signs and mandatory signs, five 

categories according to the sizes of traffic signs in the images: extremely small, small, medium, large and 

extremely large, and six categories according to the weather categories: sunny, rain, night, foggy, snow 

and cloud. We also selected nine existing classical detection algorithms to be evaluated on the Chinese 

traffic sign detection benchmark. The evaluation metrics we selected are more comprehensive, with six 

sets of data: P, R, MR, mAP, F1 and FPS. For negative samples, we measured the results of their false 

detection rate. In addition, we evaluate three dimensions for traffic sign category meaning, weather 

category and size, allowing the algorithm to be evaluated comprehensively on the CCTSDB 2021. 
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