
Assessing ranking and effectiveness of
evolutionary algorithm hyperparameters
using global sensitivity analysis
methodologies
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192,
Timmis, J. and Nicosia, G. (2022) Assessing ranking and
effectiveness of evolutionary algorithm hyperparameters using
global sensitivity analysis methodologies. Swarm and
Evolutionary Computation, 74. 101130. ISSN 2210-6502 doi:
10.1016/j.swevo.2022.101130 Available at
https://centaur.reading.ac.uk/106167/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1016/j.swevo.2022.101130

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

http://www.reading.ac.uk/centaur

Swarm and Evolutionary Computation 74 (2022) 101130

Available online 23 July 2022
2210-6502/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Assessing ranking and effectiveness of evolutionary algorithm
hyperparameters using global sensitivity analysis methodologies

Varun Ojha *,a, Jon Timmis b, Giuseppe Nicosia c,d

a University of Reading, Reading, United Kingdom
b The University of Sunderland, Sunderland, United Kingdom
c University of Catania, Catania, Italy
d University of Cambridge, Cambridge, United Kingdom

A R T I C L E I N F O

Keywords:
Hyperparameter optimization
Evolutionary algorithms
Global sensitivity analysis
Algorithm design
Algorithm stability analysis

A B S T R A C T

We present a comprehensive global sensitivity analysis of two single-objective and two multi-objective state-of-
the-art global optimization evolutionary algorithms as an algorithm configuration problem. That is, we investigate
the quality of influence hyperparameters have on the performance of algorithms in terms of their direct effect and
interaction effect with other hyperparameters. Using three sensitivity analysis methods, Morris LHS, Morris, and
Sobol, to systematically analyze tunable hyperparameters of covariance matrix adaptation evolutionary strategy,
differential evolution, non-dominated sorting genetic algorithm III, and multi-objective evolutionary algorithm
based on decomposition, the framework reveals the behaviors of hyperparameters to sampling methods and
performance metrics. That is, it answers questions like what are hyperparameters influence patterns, how they
interact, how much they interact, and how much their direct influence is. Consequently, the ranking of hyper-
parameters suggests their order of tuning, and the pattern of influence reveals the stability of the algorithms.

1. Introduction

Optimization is at the core of advancement in machine learning and
problem-solving. Effective optimization plays a vital role in solving
problems, whether single-objective or multi-objective problems. For
example, be it a simple neural network or deep learning, or a simple
linear or nonlinear function, optimizing the coefficients (e.g., weights of
neural networks) is the most crucial aspect, which requires effective
optimization algorithms. Evolutionary algorithms (EAs) are global
optimization algorithms that iteratively guide a population towards a
final population, solving various problems. EAs are widely used because
of their agnostic nature to problems being solved [1]. However, their
effectiveness relies on hyperparameters like population size and genetic
operators [2]. Understanding the sensitivity of hyperparameters to an
algorithm’s performance can be formulated as an algorithm configuration
problem (ACP) [3,4], where informing optimal hyperparameter selection
is essential for solving various tasks such as the optimization of neural
networks [5], deep learning [6], and bio-inspired algorithms [7,8]. More
specifically, ACP can be described as a process or a framework that aims
to find a particular configuration of parameters for a target algorithm.
And it minimizes a cost metric incurred by the algorithm on a given

problem [9].
Since hyperparameters tuning is crucial in achieving high-quality

performance in solving optimization problems, methods such as
manual tuning, grid search, and Bayesian search optimization are used.
Bergstra and Bengio [10] have shown the importance of random search
instead of a grid search in sampling hyperparameter values. In addition,
manual tuning without proper knowledge of hyperparameters can lead to
too many trial-and-errors, and grid search and Bayesian search optimi-
zation are computationally expensive approaches that are often infea-
sible for such population-based optimization algorithms. Thus, Bergstra
and Bengio [10] suggest that tuning some hyperparameters is more
necessary than the others. Hence, our objective in this research is to
assess the ranking and effectiveness of hyperparameters of four
well-known EAs: covariance matrix adaptation evolutionary strategy
(CMA-ES) [11], differential evolution (DE) [12], non-dominated sorting
genetic algorithm III (NSGA-III) [13], and multi-objective evolutionary
algorithm based on decomposition (MOEA/D) [14].

We select these algorithms as they are state of the art algorithms in
single-objective and multi-objective optimization. They are the highly
cited algorithms not only within the scientific community of bio-
inspired computation but also in other scientific disciplinary areas

* Corresponding author.
E-mail address: v.k.ojha@reading.ac.uk (V. Ojha).

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

https://doi.org/10.1016/j.swevo.2022.101130
Received 14 October 2021; Received in revised form 11 April 2022; Accepted 11 July 2022

mailto:v.k.ojha@reading.ac.uk
www.sciencedirect.com/science/journal/22106502
https://www.elsevier.com/locate/swevo
https://doi.org/10.1016/j.swevo.2022.101130
https://doi.org/10.1016/j.swevo.2022.101130
https://doi.org/10.1016/j.swevo.2022.101130
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2022.101130&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Swarm and Evolutionary Computation 74 (2022) 101130

2

such as operations research, applied mathematics, electrical engineer-
ing, civil engineering and many other research areas [15]. These algo-
rithms are widely used in multiple multidisciplinary/interdisciplinary
problems and are widely used to address real-world problems and open
problems in a wide variety of research areas.

Moreover, researchers have massively investigated these algorithms
to improve their performance. For example, a number of improvements
to DE have been provided, including success-history based adaptive DE
versions [16,17], mutation operator improvement [7,18–22] and
scaling factor in mutation for accelerating convergence [23]. Similarly,
an improved step size (mutation) strategy for the CMA-ES algorithm is
investigated by Voß et al. [24], improved decomposition strategy like
normal boundary intersection-style Tchebycheff approach, adaptive
replacement strategies to assign a new solution to a sub-problem, and
adaptive weight vector adjustment strategy for sub-problems, respec-
tively proposed by Zhang et al. [25], Wang et al. [26], Qi et al. [27] for
MOEA/D algorithm. Similarly, for NSGA-III performance enhancement,
Cui et al. [28] designed an operator to balance the convergence and
diversity of the population.

Such usefulness makes these algorithms suitable candidates to be the
example of algorithms that can be used as test-beds for the sensitivity
analysis methodology presented in our research work. Obviously, our
methodology applies to all optimization algorithms with parameters (e.
g., evolutionary, randomized, hybrid, constrained [29], dynamic [15],
etc.). The algorithms used in the paper are only a good sample of single-
and multi-objective optimization algorithms. We think the optimization
research community and interdisciplinary research community
mentioned above will benefit as many more optimization algorithms,
including many-objective optimization algorithms [30–32], that can be
studied using the methodology proposed in this paper.

In this work, we develop a framework for comprehensive sensitivity
analysis of hyperparameters of these algorithms using global sensitivity
analysis methodologies: elementary effects [33] and variance-based
sensitivity analysis [34]. Using these methodologies, we assess the
effectiveness of EA hyperparameters. Such an analysis investigates a
model’s parameters (or an algorithm’s hyperparameters) influence on
its output [35,36], leading to the minimization of the number of critical
tunable hyperparameters to improve a model’s performance [37,38].

In our ACP framework, the performance of single-objective EAs was
assessed as per the best solution, while the performance of multi-
objective EAs was assessed using three metrics: generational distance
[39,40], inverse generational distance [13], and hyper-volume indicator
index [41]. To evaluate EAs, we use state-of-the-art optimization prob-
lems belonging to diverse families: for single-objective optimization, we
use a set of 33 problems [42–44], and for multi-objective optimization,
we use a set of 10 problems [13].

Our ACP framework assesses each algorithm on three sensitivity
analysis methods: Morris Latin Hypercube sampling [33], Morris sam-
pling [33], and Sobol [34]. For each sample drawn from a hyper-
parameter search space, we ran each algorithm on 30 independent runs
(for some, it was 10 times) and presented results using elementary ef-
fects and Sobol indices. These indices inform about (i) the direct effect
and (ii) the interaction effect of a hyperparameter with other hyper-
parameters. Moreover, these two effects form a comparative matrix of
low effect to high effect, where the diagonal from low direct and low
interaction effects to high direct and high interaction effects shows the
order and ranking of the hyperparameters. We ran algorithms on a suf-
ficiently large sample set. These experiments were computationally
expensive as they, in total, had 19 014 600 000 function evaluations.
Computation of these sensitivity analysis indices is expensive, but they
are a one-time effort, and once the ranking is determined, results are
informative to researchers for further analysis and solving optimization
problems. The source code and results are available at https://github.
com/vojha-code/SAofEAs.

Our results reveal the pattern and behavior of hyperparameters to
different sampling methods and matrices used to evaluate the

performance of the algorithm. These patterns show how hyper-
parameters interact with one another or how the influence of one
hyperparameter overwhelms the other. Moreover, results reveal how an
algorithm is susceptible to its various hyperparameters and sampling
methods, highlighting the stability of an algorithm. Consequently, these
experiments rank the hyperparameter importance for an algorithm. For
example, mutation type was found to have the strongest influence on the
performance of DE, and results suggest the high importance of popula-
tion size followed by the initial step size, crossover probability, and
mode of decomposition, respectively, in CMA-ES, NSGA-III, and MOEA/
D.

Later in Section 2, we present related work. Then, Sections 3–5
respectively describe algorithms, methodology, and experiments. The
results are discussed in Section 6, followed by conclusions in Section 7.
Supplementary A and B offer statistical tests and clustering analysis.

2. Related work

Hyperparameter tuning is a crucial subject that has continuously
been reported in the literature over the past decades [2]. This is because
an appropriate hyperparameter setting is challenging since EA hyper-
parameters exhibit linear and nonlinear effects [45], meaning that they
show various interactions among them [2,46,47]. Abundant literature is
available on EA hyperparameters tuning [45,46,48]. The majority of
which focus on the static or dynamic setting of the hyperparameters
[49–51]. However, a systematic study of the EA hyperparameters in-
fluence is rare [52], and it is largely attributed to the computationally
expansive nature of EAs and the empirical evaluation requirement for
the tuning of their hyperparameters [53]. For example, a package Irace
experimentally evaluates optimal hyperparameters for an optimization
algorithm [3]. Therefore, De Jong [2] posed questions like (i) what EA
hyperparameters are useful for improving performance, and (ii) how do
changes in a hyperparameter affect the performance of an EA?

Sensitivity analysis answers questions like how uncertainty in each of
the hyperparameters influences the uncertainty in the output of a model [54].
Hence, sensitivity analysis is useful in answering the questions of De
Jong [2]. However, sensitivity analysis is a computationally expansive
method since hyperparameters are sampled from a vast hyperparameter
search space. Therefore, the sensitivity analysis of EAs has very high
computational (time) as well as memory (space) overhead. This has
resulted in very few reported works available in the literature, despite its
advantages in suggesting a ranking of hyperparameter importance.

The dynamic tuning of hyperparameters requires hyperparameters
to adapt during an EA run [55], while static tuning informs which
hyperparameters to tune before an EA run [50]. A systematic approach,
like sensitivity analysis, is a static hyperparameter tuning approach.
Paul et al. [56] offered an introductory work on the usage of local and
global sensitivity analysis. However, they used a simple test case, and
they mainly performed a sensitivity analysis of EAs from a theoretical
perspective. Pinel et al. [52] performed a comprehensive sensitivity
analysis of a parallel asynchronous cellular genetic algorithm on a
scheduling problem. They comprehensively evaluated EAs population
size, mutation probability, crossover probability, and other cellular ge-
netic algorithm-related hyperparameters using the Fourier amplitude
sensitivity test (Fast99) [57]. Pinel et al. [52] reported a ranking of
hyperparameters on scheduling problem instances. On this scheduling
problem instance, the crossover probability was ranked first, and in
another instance, it was ranked third.

Our work takes an experimental approach to systematically analyze
the importance of hyperparameters of state-of-the-art EAs on a testbench
of state-of-the-art problems by applying Morris [33] and Sobol [34]
sensitivity analysis methodologies. Our methodology comprises both
single-objective and multi-objective EAs. Our framework offers a
ranking of hyperparameters and insights into their effectiveness on EA
performance. Our methodology is an Algorithm Configuration Problem
(ACP) framework as defined by Iommazzo et al. [4]. This approach is

V. Ojha et al.

https://github.com/vojha-code/SAofEAs
https://github.com/vojha-code/SAofEAs

Swarm and Evolutionary Computation 74 (2022) 101130

3

contextually similar to the AutoML approaches [58], where the effort is
to find the optimal configuration of algorithms and hyperparameters to
solve machine learning tasks through automatic data preparation,
feature engineering, hyperparameter optimization, and neural archi-
tecture search or even optimization of neural network components such
as activation functions [59]. Table 1 is a summary of hyperparameter
methods compared to sensitivity analysis methods.

In fact, the ACP scope covers a wider range of methodologies and
frameworks that seek to automate the design of algorithm configuration,
such as AutoMOEA [60], Auto Weka [61], Auto-sklearn [62], irace [3],
and others for machine learning hyperparameter optimization [63]. The
goal of these methodologies is to perform hyperparameter optimization
and automatic design of new algorithms by assessing components and
parameters that offer the best performance on a set of problem instances
[4,61]. The critical issue in such categorization is whether one would
consider, for instance, a new evolutionary operator design in an EA
framework as a new algorithms design or hyperparameter optimization?
In our work, we consider such a scenario as hyperparameter optimiza-
tion. However, we considered the ACP framework for the analysis of the
sensitivity and influence of the hyperparameters on the performance of
an algorithm rather than the optimization (or tuning) of the hyper-
parameters. For this, the framework systematically searches hyper-
parameters and assesses the performance of an algorithm, which is
contrary to finding specific optimal values for a hyperparameter as other
hyperparameter tuning methods would do. Hence, the goal of our ACP
framework is to inform the ranking of the effectiveness of hyper-
parameters for a set of EAs.

3. Evolutionary algorithms

EAs are population-based evolution-inspired algorithms. EAs itera-
tively find solutions to a problem by applying evolutionary operators to
candidate solutions. Selection, recombination, and mutation are among
evolutionary operators applied to candidate solutions that generate new
solutions in each generation. Such a process guides a sequence of gen-
erations from an initial population of candidate solutions to a final
population. Four different EAs are investigated in this research: two
single-objective and two multi-objective algorithms. Each of these EAs
has its own version of evolutionary operators. This Section briefly de-
scribes each of these EAs and their performance measure metrics.

3.1. Single-objective evolutionary algorithms

A single-objective optimization (SOO) algorithm (single solution-
based or population-based) minimizes an objective function (a cost func-
tion or a problem) as

f : Rn→R

x↦f (x), (1)

where x ∈ Rn is a candidate solution (a search point in a solution space
X), and we want f(x) to be as minimum as possible. An SOO algorithm
converges to a solution x∗ such that f(x∗) ≤ f(x), ∀x ∈ X. The solution x∗,
therefore, is a global minimum (global optimum). However, if for f(x∗) ≤

f(x) there exists some δ > 0 such that |x − x∗| ≤ δ for any x ∈ X, then the
solution x∗ is a local minimum (near-optimum).

We study two population-based single-objective global optimization
algorithms: CMA-ES [11] and DE [12]. The basic steps and operators of
CMA-ES and DE are as follows.

3.1.1. Covariance matrix adaptation evolution strategies (CMA-ES)
CMA-ES is a population-based evolutionary strategy optimization al-

gorithm [11]. CMA-ES algorithm generates new candidate solutions
during its search by sampling solutions from a multivariate normal dis-
tribution, N (m, C), uniquely determined by its mean m ∈ Rn and its
symmetric positive definite covariance matrix C ∈ Rn×n. The initial
population of λ candidate solutions at generation g = 0 is sampled as

xg
k ∼ mg + σgN (0,Cg) for k = 1,…, λ, (2)

where N (0,C) is a multivariate normal distribution with zero mean and
covariance matrix Cg ∈ I, and σg ∈ R>0 is an initial step size.

For generation g = 1, 2, …, multivariate normal distribution N (m,

Cg+1) is generated (updated) with mean m ∈ Rn and covariance matrix
C ∈ Rn×n updated with scalar factor σg ∈ R>0. Selection and recombi-
nation operations in CMA-ES are equivalent to computing moving mean
mg+1, a weighted average of selected points λratio from generation g.
Adding a random vector with zero-mean acts as a mutation in CMA-ES
during the offspring generation step. The steps size control and covari-
ance matrix adaptation (learning rate αμ) are additional two necessary
steps in a generation of CMA-ES [11].

3.1.2. Differential evolution (DE)
DE is a gradient-free EA, originally proposed by Storn and Price [12].

DE iteratively searches for a solution. For an initial population X = [x1,

x2,…, xλ] of size λ, DE repeats its steps selection, mutation, and recombi-
nation until an optimum solution vector x∗ is obtained, or until a
maximum iteration is reached. At each generation g = 1,2,…, DE
randomly selects three distinct candidate solutions xg

r1, xg
r2, and xg

r3 from
X such that xg

r1 ∕= xg
r2 ∕= xg

r3. The selection of a base vector xg
r1 plays a

crucial in DE.
A mutation operation is performed on a base vector xg

r1 to generate a
donor vector vg+1, which is generated using a mutation method btype, a
difference vector (xg

r2xg
r3), and acceleration coefficient β. A mutation

method btype = “DE/rand/1” or similar mutation is performed as

vg+1 = xg
r1 + β(xg

r2xg
r3). (3)

A crossover operation using a crossover method {bin, exp} is per-
formed to generate a trial vector ug+1 which takes its elements from a
donor vector vg+1 using a crossover probability P[X]. If the fitness f(ug+1)

is better than the target vector f(xg+1
t), then the trial vector ug+1 replaces

the target vector xg+1
t .

3.2. Multi-objective evolutionary algorithms

A multi-objective optimization (MOO) algorithm minimizes two or
more objective functions simultaneously as

F(x) ≡ (f1(x),…, fk(x)), i.e., F : Rn→Rk for k ≥ 2 (4)

such that no one objective of the problem can be improved without a
simultaneous detriment to at least one of the other objectives. Each fl(x),
l = 1,2,…, k is a scalar objective, and MOO optimizes the objective
vector F(x) where x ∈ Rn is its feasible solution. More specifically, a
MOO algorithm produces a set of non-dominated solutions {x1, x2, …,

Table 1
Hyperparameter tuning methods and sensitivity analysis (our framework).
Hyperparameter tuning methods are search techniques for optimal hyper-
parameter values whereas our framework finds ordering of their significance
and their sensitivity of influence on the algorithm.

Method Tuning Type Use

Manual
Tuning

static requires intuitive
guesses

trails and errors

Grid Search static systematic search uninformed search
Bayesian

Search
static informed search expansive and specific to

instances
AutoMOEA dynamic systematic and

informed
expansive and subjective

AutoML dynamic informed search expansive and specific to
problems

Our
Framework

Static ranking and analysis expansive but one at a time

V. Ojha et al.

Swarm and Evolutionary Computation 74 (2022) 101130

4

xλ′ }, also known as the Pareto-optimal solutions set [64].
A solution xi dominates other solution xj if for j = 1,2,…,λ, i ∕= j, and

for all objectives l = 1,2,…,k, fl(xi)≼fl(xj) holds, where ≼ should be read
as “better off.” On the contrary, a solution xi is non-dominated if, for at
least one objective l, fl(xi)≼fl(xj) does not hold. For each xi, a set of such
non-dominated solutions are called a Pareto-optimal set of solutions.

In this paper, we study the population-based multi-objective global
optimization algorithms NSGA-III [13] and MOEA/D [14] and investi-
gate their algorithmic hyperparameter setting in obtaining a better
Pareto-optimal set of solutions.

3.2.1. Non-dominated sorting genetic algorithm–III (NSGA-III)
NSGA-III is a population-based MOO algorithm [13]. NSGA-III uses

fast non-dominated sorting and niching operations to guide an initial
population X of size λ candidate solutions through a predefined number
of generations to a final population while simultaneously optimizing
trade-offs of multiple objectives. In each step of NSGA-III, crossover,
mutation, and non-dominated sorting is performed.

The fast non-dominated sorting sorts the λ candidate solutions into
several sets (called Fronts) of non-dominated solutions: F1, F2,…, Fs such
that the Front F1 contains all the non-dominated candidate solutions of
population X. That is, no one solution in F1 is dominated by any other
solutions. From all the remaining solutions (i.e., except the ones already
in F1), a new Front F2 that contains all the next non-dominated solutions
of X is determined. Similarly, Front F3 and other Fronts are subsequently
obtained using non-dominated sorting. Thus, it is possible to assign a
rank to the candidate solutions such that those on the Front F1 have rank
1, solutions in Front F2 have rank 2, and so on.

NSGA-III performs niching as its selection operation on non-
dominated sorting solutions. Niching takes advantage of a predefined
set of reference points placed on a normalized hyperplane of a
k-dimensional objective-space [65], where each individual x ∈ X in the
population is associated with reference points [13]. The total number of
reference points depends on the predefined number of divisions asso-
ciated with each objective axis. NSGA-III repeats its operations selection,
crossover, mutation, and recombination until a maximum iteration or a
termination condition is reached. The performance of NSGA-III is
measured in terms of the quality of solutions it produces in its iteration
and in the final population.

3.2.2. Multi-objective evolutionary algorithm based on decomposition
(MOEA/D)

MOEA/D solves a MOO problem by decomposing the MOO problem
into many single (scalar) objective sub-problems [14]. Tchebycheff
approach [66] or normal boundary interaction approach [65] are typi-
cally used approaches for decomposing a MOO problem into (say) N
scalar sub-problems. A uniform spread of N weight vectors {w1,…,wN}

and reference point z∗ = (z1
j ,…, zk

j) = min{fi(x)
⃒
⃒x ∈ X}, for i = 1,…, k

is used for computing j = 1,2,…,N scalar objectives yte(x
⃒
⃒wj).

The scalar objective in Tchebycheff decomposition method is

yte(x
⃒
⃒wj) = max1≤i≤k{wi

j

⃒
⃒
⃒fi(x) − z∗}), where the weight vector wj = (w1

j ,

…,wk
j). The optimal solution of yte(x|wi) for weight vector wi should be

close to a solution yte(x
⃒
⃒wj) for weight vector wj. Hence, in MOEA/D, a

neighborhood of weight vector wi is defined with many closest points in
{w1,…,wN}. The neighborhood may play a vital role in MOEA/D.

Moreover, each objective is optimized as a single (scalar) objective
problem. That is, ith objective is optimized such that it minimizes its
distance from a reference point on a k-objective space. Thus, all
decomposed sub-problems move towards the reference point z∗. MOEA/
D maintains T closest solution vectors (Neighbor) for each candidate
solution in successive steps. In each iteration, MOEA/D generates a new
solution by selecting two solution vectors using genetic operators and
evaluating them in order to update their neighborhood and the best
solution x∗. The details of the MOEA/D algorithm are available in Zhang

and Li [14].

3.3. Performance metrics

3.3.1. Single objective metrics
A population-based EA applied to solve a single-objective problem

offers the best solution in its final population. The best solution, x∗ is the
one that has the lowest f(x) value among all solutions of all generations
of a single-objective EA. Hence, the Best Solution obtained in fewer
generations in a lesser wall clock time measures the quality of a single-
objective EA.

3.3.2. Multi-objective metrics
Multi-objective EAs applied to a MOO problem typically offer a set of

solutions that satisfy trade-offs between the objectives. This set of so-
lutions is non-dominated solutions which are also known as a Pareto-
front. A multi-objective EA, therefore, guides a population of candi-
date solutions from current Pareto-front A toward a true Pareto-front Z. In
such a setting, three indicators are used to measure and compare the
performance of EAs on MOO problems: generational distance, inverse
generational distance, and hyper-volume indicator (Fig. 1):

Generational distance (GD) Generational distance GDi at an iteration,
i, measures the generational distance between current Pareto-front and
true Pareto-front of a multi-objective problem [39,40]. Generational
distance GDi is a measure of error between current Pareto-front and true
Pareto-front as

GDi≜

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
i=1d2

i

√

n
, (5)

where d2
i is the distance of the ith solution in current Pareto-front A from

the true Pareto-front Z [40], and GD is typically the average distance of
such n solutions (Fig. 1). Hence, GD is a minimization metric where a
low value indicates a better solution.

Inverse generational distance (IGD) Inverse generational point pro-
vides combined information on the solutions’ diversity and convergence
quality. It makes use of a set of target reference points in k-dimensional
objective space. Like GD, IGD compares solutions in the current Pareto-
front A with true Pareto-front Z. However, IGD uses a single reference and
computes the average Euclidean distance between all solutions that are
nearest to the target reference points [13] as

IGD(A,Z)≜
1
|Z|
∑|Z|

i=1
min
|A|

j=1
d
(
zi, aj

)
, (6)

where d(zi, aj) = ‖ zi, aj ‖2. Similar to GD, IGD is a measure of error
between the current Pareto-front and true Pareto-front. Hence, lower
values of IGD indicate a better solution.

Hypervolume indicator (HV) Hyper-volume indicator, HV measures
the dominance of Pareto-front solutions on a geometric space (e.g., area
for a 2D objective space) framed by the k-dimensional objective-space
with respect to a positive semi-axle r (see Fig. 1). Hence, HV measures
the quality Pareto-optimal solutions set [67], and it is an indicator of the
quality of the solutions obtained by two algorithms with respect to the
same reference frame. The goal is to maximize the hyper-volume indi-
cator index HV. A greater value indicates that the algorithm’s overall
performance is better with respect to another algorithm associated with
a smaller hyper-volume value. Moreover, the greatest contributing point
in a hyper-volume indicator analysis is the point covering the largest
area, which can be considered the best solution [68].

4. Global sensitivity analysis

The goal of the sensitivity analysis is to study how the uncertainty of a
model’s output depends on the uncertainty of its inputs [69,70]. The
elementary effects analysis, known as the “Morris method” [33], and

V. Ojha et al.

Swarm and Evolutionary Computation 74 (2022) 101130

5

variance-based sensitivity analysis, known as the “Sobol method” [34], are
used in this research for the global sensitivity analysis of the hyper-
parameters of four EAs. This framework of combining sensitivity anal-
ysis and EAs is an algorithms configuration problem that aims to inform
algorithm performance to variations in hyperparameter on problem
instances [4].

4.1. Elementary effects

The elementary effects (EE) technique, known as the “Morris method”
as it was originally introduced by Morris [33], is an effective way to
analyze the effects (sensitivity) of input variables on the outputs of a
model or a system. In our case, the Morris method assesses the EE of the
algorithmic hyperparameters on the performances of an EA. This is
useful in analyzing the sensitivity of EA hyperparameters as the Morris
method determines whether the effects of a hyperparameter on a
model’s outputs (EA performances on functions) are (a) insignificant
and negligible, (b) linearly correlated, or (c) non-linearly correlated or
involved in an interaction with other hyperparameters [70].

We briefly introduce the computation of EE as follows. Let us have Y
= f(X), or simply Y(X) be the output of a model f(⋅) (an algorithm) that
takes k hyperparameters X = {X1,X2,…,Xk} from a hyperparameter
space Ω of the p-level grid. Then we compute the elementary effect EEi of
ith hyperparameter Xi as

EEi =
Y(X1,…,Xi− 1,Xi + Δ,…,Xk) − Y(X1,…,Xi− 1,Xi,…,Xn)

Δ
, (7)

where Δ is a value in
(

1
p− 1,…,1 − 1

p− 1

)
which is an incremental change in

the values of hyperparameter Xi when Xi is sampled from p-level grid
hyperparameter space Ω. In this scenario, for k hyperparameters and p
discrete levels, Δ = p/2(p − 1) indicates the distance (length) between
two levels in the hyperspace Ω along ith axis. The total points in the
hyperparameter space Ω, therefore, are pk− 1[p − Δ(p − 1)] grid points,
which increase exponentially as the number of hyperparameters k in-
creases. However, we use a one-at-a-time (OAT) sampling technique for
generating r sample points from this space to compute r EEs for each
hyperparameter.

In the OAT sampling technique, hyperparameter Xi value is changed
from a grid point X(j)

i to the adjacent grid point X(j±1)
i by a length of Δ

while all other hyperparameters (say X∼i) remain as it is. Then the next
hyperparameter Xi+1 is chosen, whose value is changed while others
remain fixed. This way of sampling is a uniform, non-repeating random
walk through the grid of hyperspace Ω (we call it Morris [33]). Another
way of sampling points (a set X of hyperparameters) from the hyper-
space Ω is to use the Latin Hypercube Sample (LHS) based Morris
method (Morris LHS) [71], which is a stratified sampling approach to

cover all region of the hyperspace Ω. Here, we typically select r sample
points for each hyperparameter Xi. Hence, both OAT-based Morris LHS
and Morris sampling methods give us r(k + 1) sample points.

We measure two indices μi and σi indicate mean (central tendency)
and standard deviation of EEi of ith hyperparameter Xi. The measure

μi =
1
r
∑r

j=1
EEj

i (8)

indicates the overall influence of a hyperparameter Xi where a larger
measure of μi means a larger overall individual ability to influence the
outputs of an algorithm. We also measure the standard deviation σi of
EEi as

σi =

̅̅
1

r − 1
∑r

j=1

(
EEj

i − μi
)2

√

, (9)

where a large measure of σi indicates that a hyperparameter has high
interaction with other hyperparameters. The measure σ is an ensemble
influence. That is, if σi has a high value, which means that the computed
r elementary effects EEr

i of ith hyperparameter Xi varied a lot because of
the variation in the values of other hyperparameters as well. Whereas a
low value of σi means small differences in the computed r elementary
effects EEr

i of the ith hyperparameter Xi. This indicates that the influence
of a hyperparameter on a model’s output is independent of the choice of
other hyperparameters values. However, to understand the influence of
a hyperparameter, both μ and σ measures need to be seen together (see
Fig. 2). We normalized the values of μi and σi between 0 and 1 to
effectively show results as per Fig. 2.

4.2. Variance-based sensitivity analysis

The variance-based sensitivity analysis is known as the “Sobol method”
[34], and it shows how much variance of a model’s output depends on
its inputs. It is an in-depth sensitivity analysis method that uses two
sensitivity indices: (a) first-order effect Si to indicate a direct effect of a
hyperparameter Xi on a model’s output Y = f(X) and (b) total effect STi
to indicate a hyperparameter Xi interaction with its complementary
parameters X∼i.

The direct effect Si, irrespective of the hyperparameter interaction
STi, indicates that, on average, how much the model’s variance V[Y(X)]

could be reduced if the hyperparameter Xi is fixed to a value. Meaning a
low value of Si shows that the variance of the model’s output Y(X

⃒
⃒Xi =

x∗
i) does not depend on Xi, and fixing Xi to a value does not have much

impact on the model’s output, while for a high value of Si, it strongly
does. Indeed, a low value of Si indicates that ith hyperparameter’s in-
fluence is negligible. Similarly, the interaction effect or total effect STi =

0 indicates that the model’s output Y(X|Xi) does not depend on Xi, and it

Fig. 1. Example of a 2D objective space and computation of GD, IGD, and HV metrics. The current Pareto front is A = {a1, a2} and true Pareto front is Z = {z1,z2,z2},
and optimum of two-objective is a reference point r. The distance between two points is dij, and the area framed by a point with the reference point, r, is the area Di.

V. Ojha et al.

Swarm and Evolutionary Computation 74 (2022) 101130

6

is a non-influential parameter. The large values of interaction effect or
total-effect STi show proportionally strong interactions between the
hyperparameter Xi and its complementary parameter X∼i. The difference
STi − Si ≥ 0, i.e., total interaction influence minus direct influence,
shows how much ith hyperparameter is involved in interaction with
other hyperparameters. We normalized the values of Si and STi between
0 and 1 for lucid interpretation of their influence (see Fig. 2).

The first-order effect Si and total effect STi of Sobol method are
computed as

Si =
V(E(Y|Xi))

V(Y)
=

yA⋅yCi − f 2
0

yA⋅yA − f 2
0
=

1
N

∑N
j=1yj

Ayj
Ci
− f 2

0

1
N

∑N
j=1

(
yj

A
)2

− f 2
0

(10)

and

STi = 1 −
V(E(Y|X∼i))

V(Y)
= 1 −

yB⋅yCi − f 2
0

yA⋅yA − f 2
0
= 1 −

1
N

∑N
j=1yj

Byj
Ci
− f 2

0

1
N

∑N
j=1

(
yj

A
)2

− f 2
0

, (11)

where N is the number of random samples, yA = f(A), yB = f(B) and yCi

= f(Ci) are model output vectors on sample matrix A,B and Ci respec-
tively; and the estimated mean f2

0 is

f 2
0 =

(
1
N
∑N

j=1
yj

A

)2

. (12)

Matrices AN×k and BN×(k− 2k) are random sample points (hyperparameter
values), and each matrix Ci is formed by taking all columns of matrix B
except ith column, which is taken from ith column of matrix A. Such a
sampling is similar to OAT sampling, except its rows are not sorted in
any specific order, and all elements in a row differ from the other ele-
ments in the row.

5. Experiments

Our sensitivity analysis framework has four essential structural
components:

1. setup of EAs tunable hyperparameters and optimization problems
2. sampling of hyperparameters from hyperparameter space of

respective sensitivity analysis methods for respective algorithms
3. evaluation of EAs on optimization problem (testbench) for all

sampled hyperparameter points and for each hyperparameter sam-
ple, the evaluation of respective EAs over a number of independent
instances to obtain stable results and to observe expected (average-
case) performance of algorithms over performance measures

4. computation of Morris and Sobol indices

In the experiment, all EAs start with a population of initial candidate
solutions (uniformly randomly drawn from Rn, n being dimensionality
of the problem). Other commonalities among EAs are evolutionary op-
erators like “selection,” “mutation,” and/or “crossover” for generating
new (offspring) population and their evaluation. EAs repeat this process
for a number of generations until a termination condition is met. We set
the termination condition to be the desired number of function evaluations,
and we set this to a value of 10000 for all four algorithms for all prob-
lems. The other hyperparameters setting for our experiments were as
follows:

5.1. Single-objective algorithm hyperparameters

We analyzed two single-objective EAs over 33 optimization prob-
lems: 23 problems from testbench introduced in Yao et al. [42], and we
took 10 optimization problems regarding shifted problems from
CEC2014 (shifted Sphere, Ellipsoid, Ackley, and Griewank; and shifted
and rotated Rosenbrock, and Rastrigin) and CEC 2015 (shifted and
rotated Weierstrass, Schwefel, Katsuura, HappyCat) [43,44,72]. An EA
needs to find a single optimal solution for an SOO problem in a few
generations at the expanse of some wall-clock time. Hence, the Best
Solution was used for SOO evaluation. Table 2 lists the hyperparameter
tuning space of CMA-ES [11] and DE [12] algorithms.

The sensitivity analysis method setup for single-objective optimiza-
tion was as follows. We used p = 10 grid levels to form the hyper-
parameter space Ω for respective single objective EAs. From this
hyperparameter space, we select r = 50 sample points for each hyper-
parameter of CMA-ES and DE in the cases of Morris LHS and Morris
methods (see Eqs. (8) and (9)). This gave us 300 and 400 sample points
in total for CMA-ES and DE algorithms, respectively. The Sobol analysis
is 2 + k times more expensive than Morris methods since it evaluates
hyperparameter matrices A, B, and Ci, i = 1,2,…,k. For Sobol, we use
N = 100, which gave us 700 and 900 sample points in total for CMA-ES
and DE algorithms, respectively.

5.2. Multi-objective algorithm hyperparameters

We analyzed multi-objective EAs over a testbench consisting of four
families of optimization problems: (i) DTLZ1, DTLZ2, DTLZ3, and
DTLZ4 [73]; (ii) IDTLZ1 and IDTLZ2 [73]; (iii) CDTLZ2 [13]; and (iv)
WFG3, WFG6, and WFG7 [74]. EAs were evaluated and analyzed for
each listed MOO problem for 3 objectives, and each problem was solved
as a 10-dimensional problem. This setting was chosen based on the
computation effort required for these MOO problems.

Since the goal of the multi-objective EAs is to obtain a set of solutions
where no one objective dominates over the other objectives [14,64], we

Fig. 2. Morris (left) and Sobol (right) indices
interpretation. Top right corner circle in dark
gray is the ideal case where a hyperparameter
has high individual influence and high inter-
action (or total effect). Circles in white at the
top left and bottom right corners are cases that
have high importance in at least one direction.
Bottom left square in white shows the least
ideal case where hyperparameters are non-
influential, and fixing them at any values
within their defined domain will not influence
the algorithm’s performance. Arrow along the
diagonal direction indicates the order of the
hyperparameters’ importance and influence.

V. Ojha et al.

Swarm and Evolutionary Computation 74 (2022) 101130

7

use GD (minimization), IGD (minimization), and HV (maximization) as
the measures of EA performances (see Section 3.3.2). These metrics
result in higher values for a large population size λ compared to a small
population size λ. Thus, for population-fair performance analysis, the
metrics were calculated from a union of populations of all generations of
EAs and from not only the population of the last generation of the EAs.
Moreover, the values were averaged over 30 independent runs for each
sampled set of hyperparameters.

NSGA-III and MOEA/D have a few common tunable hyper-
parameters in addition to their subjective tunable hyperparameters.
Table 3 shows the domain setting of these common and subjective
tunable hyperparameters of NSGA-III and MOEA/D.

The sensitivity analysis method setup for multi-objective optimiza-
tion was as follows. We used p = 10 grid levels to form the hyper-
parameter space Ω for respective single objective EAs. From this
hyperparameter space, we select r = 20 sample points for each hyper-
parameter of CMA-ES and DE in the cases of Morris LHS and Morris
methods (see Eqs. (8) and (9)). This gave us 140 and 160 sample points
in total for NSGA-III and MOEA/D algorithms, respectively. In the Sobol
analysis, we used N = 30, and this gave us 240 and 270 sample points in
total for NSGA-III and MOEA/D algorithms, respectively, for their
matrices A and B from which Ci matrices were created. The number of
sampling points in this work is sufficiently large for good sensitivity
analysis [69–71].

All algorithms, methods, and sensitivity analysis experiments were
performed in MATLAB, and implementations of individual components
were taken from MATLAB libraries. We used a safe toolbox [75] to
implement sensitivity analysis sampling methods, indices calculations,
and workflows. Single objective algorithms were implemented using
ypea library [76]. We used the implementation of multi-objective opti-
mization problems and evaluation measure metrics related to optimi-
zation algorithms from PlatEMO library [77]. The entire workflow
framework was synchronized with the help of inbuilt functions of
MATLAB.

The whole experiment was expensive to run since the total number of
function evaluations was 19,014,600,000. The breakdown of this func-
tion evaluation was as follows (each multiplied by 10,000 concerning
termination condition): DE, 858,580; CMA-ES, 720,080; MOEA/D,
171,600; and NSGA-III, 151,200. For DE and CMA-ES, there were 33
objective functions, and each one was run at least 10 times for each
combination of hyperparameter settings. Similarly, for MOEA/D and
NSGA-III, there were 10 functions, and each was run 30 times for stable

results for each set. The hyperparameter sets were sampled in three
different ways for all algorithms: Morris LHS, Morris, and Sobol, as
mentioned in Sections 5.1 and 5.2. Our implementation of this frame-
work for sensitivity analysis of EAs and results are available in Ojha et al.
[78].

6. Results and discussion

The results of sensitivity analysis of each algorithm for their per-
formances on testbench were collected and processed to produce three
indicators: (i) sensitivity analysis indices matrix as per Fig. 2, (ii) or-
dered bar plot arranged from low to high normalized sensitivity analysis
total indices values, and (iii) mean score (average performance) of each
hyperparameter over select performance measures. Additionally, the
statistical tests and clustering analyses results are presented in supple-
mentary Sections A and B. This section describes hyperparameter in-
fluence, ranking, and quality through these three indicators.

Each sensitivity analysis method varies how they sample hyper-
parameter sets as they use strategies such as LHS, OAT based uniform
random walk, and OAT based uniform sampling. Morris LHS and Sobol
use the LHS strategy, which means they stratified the hyperspace to
draw samples to cover most of the sample space. Morris uses uniform
random walk sampling. In summary, each method may present its own
ordering of hyperparameters that influence ranking and interpretation.
Hence, we are also interested in the commonality of results among
methods.

6.1. Single-objective EAs

6.1.1. CMA-ES analysis
CMA-ES results are shown in Figs. 3–5, where Fig. 3 is a scatter plot

that presents sensitivity analysis indices as per Fig. 2. It shows the ten-
dency of the quality of influence a hyperparameter has on CMA-ES per-
formance on all 33 problems in the testbench. For instance, λ, the
population size in CMA-ES has a high overall influence and high inter-
action influence in all three sensitivity analysis methods. Hence, λ is the
most significant hyperparameter of the CMA-ES algorithm, and this
must be the first hyperparameter one must select to tune for the per-
formance improvement when CMA-ES is applied to solve a problem.

Population size λ Population size λ is the most influential factor in
CMA-ES algorithms. Both Morris and Sobol methods show a strong
overall influence and high interaction for λ. Morris LHS ranked it as a

Table 2
Hyperparameter domain range of CMA-ES [11] and DE [12]. For both algo-
rithms, the termination condition was 10,000 function evaluations.

Algo Params Domain Description

CMA-
ES

λ [10,1000] Population size
αμ [0,4] Learning rate
σ0 [0.1,2] Initial step size
σ0− scale {False, True} Re-scaling of σ0: convergence speed

controller
μλratio [0.1,1] Percentage of population’s elements

usage in co-variance matrix
estimation and update

DE λ [10,1000] Population size
X {bin,exp Crossover methods: Binomial and

Exponential
P[X] [0,1] Crossover probability
βmin [0,1] Minimum Acceleration coefficient
βmax [0,2] Maximum Acceleration coefficient,

βmax = βmin + βmax
btype {“best,” “target-to-

best,” “rand-to-best,”
“rand”}

Base vector selection methods
(mutation type or DE algorithm
version)

bλratio [0.01,0.5] Percentage of base vectors (solution)
to be used for difference vectors
computation

Table 3
Hyperparameter domain range of NSGA-III and MOEA/D and their shared
(Common) hyperparameters domain. For both algorithms, the termination con-
dition was 10,000 function evaluations.

Algo Params Domain Description

Common λ [10,1000] Population size.
P[X] [0,1] Simulated binary crossover

(SBX) probability
XDI [1,200] SBX distribution index
P[PM] [0,1] Polynomial mutation (PM)

probability
PMDI [1,200] PM distribution index

NSGA-III K [2,10] Tournament size
Selection Tournament Parents selection for

offspring generation
MOEA/

D
Mode {“penalty based boundary

intersection (PBI),”
“Tchebycheff,”
“Tchebycheff with
normalization,” “modified
Tchebycheff”}

Method for MOO
decomposition into many
SOO subproblems

ϵN [0.05,0.5] Neighbors: percentage of
the population considered
as neighbors for each sub-
problem generation

V. Ojha et al.

Swarm and Evolutionary Computation 74 (2022) 101130

8

high direct influence but slightly lower interaction influence than
covariance matrix size controller μλratio that has the highest interaction
and direct influence in the Morris LHS method. Since MOEA/D de-
composes problems into several single-objective problems, unsurpris-
ingly, the size of the population and related hyperparameters are the
most influential. This corroborates the fact that they offer exploration
capabilities to population-based algorithms, allowing them to search a
huge part of the search space concurrently. Figs. 4 and 5 confirm the
significance of λ in CMA-ES. Fig. 5 also suggests that variation in CMA-
ES performance is very high due to this interaction of population size
with other hyperparameters as we observe a highly fluctuating perfor-
mance of CMA-EA for varied λ values.

Covariance matrix size controller μλratio Hyperparameter μλratio, which
controls the percentage of population λ to be used for the covariance

matrix estimation and update, has high interaction and direct influence
on CMA-ES performance. The μλratio is the second most influential
hyperparameter across all three methods (see Fig. 4). The significance of
μλratio is evident as its values and the choice of λ are closely linked, and
the choice of this ratio will increase or decrease the size of the covari-
ance matrix that is at the core of the CMA-ES algorithm functioning.
Similar to the performance of λ, μλratio performance is largely variable for
its values (see Fig. 5).

Initial step size σ0 Fig. 4 confirms the significance of σ0 (initial step
size) influence as this emerged as the next best hyperparameter in Morris
and Sobol methods. Morris LHS, which is a stratified sampling method
that covers the most hyperspace region, suggests that σ0 is taken from
most regions of its possible values and the CMA-ES performance had
varied because of such sampling. However, the scores remain relatively

Fig. 3. Single objective algorithms sensitivity analysis. CMA-ES and DE hyperparameters sensitivity analysis are shown in column 1 and column 2, respectively. Rows
1, 2, and 3, respectively, indicate Morris LHS, Morris, and Sobol methods. The upper right legend belongs to CMA-ES and the lower right to DE. A symbol and a color
represent each hyperparameter. An eclipse centered at a hyperparameter is the span of the standard deviation of the influence along with direct and interaction
influences. A larger width of the eclipse of a hyperparameter in the x-axis direction means more variation in direct dominance of that hyperparameter, and a larger
height in the y-axis direction means its variation in total (or interaction) influence. In each plot, the further apart a hyperparameter in the diagonal direction from the
origin (0,0) is, the higher its importance to the algorithm. CMA-ES hyperparameter λ, μλratio, σ0, αμ, and σ0− scale respectively are population size, percentage of the
population for covariance matrix, initial step size, learning rate, and convergence speed controller. DE hyperparameters λ, btype, bλratio, X, P[X], βmin, and βmax
respectively are population size, base vector selection type (mutation type), percentage of the population for base vector selection, crossover-type, crossover
probability, minimum acceleration coefficient, and maximum acceleration coefficient. Table 2 contains the hyperparameter name, definition and domain infor-
mation. Supporting statistical tests [79] between direct and interaction effects and clustering analysis are provided in supplementary Sections A and B.

V. Ojha et al.

Swarm and Evolutionary Computation 74 (2022) 101130

9

high (see Fig. 5). The performance σ0 in Morris LHS is also impacted by
the fact that for almost half of the time, its re-scaling was switched off by
σ0− scale. Accordingly, σ0− scale should have a higher influence on Morris
LHS than σ0, which indeed is the case (see Fig. 4). Examining Fig. 5, we
may observe that for range [1,2] of σ0 values, CMA-ES mean perfor-
mances were largely consistent (or above certain high scores). More
precisely, a range [0.8, 1.5) σ0 produces the best performance.

Learning-rate αμ Learning-rate αμ was found to be non-influential.

However, since the performance of CMA-ES was consistent with its
chosen values across all three methods, the learning-rate αμ was better
than re-scaling σ0− scale. Moreover, the learning-rate αμ shows more
interaction with other hyperparameters than the convergence speed
controller σ0− scale. This is also evident as the gray bars are larger than the
white bars in Fig. 4 and drop in performance for only a very small range
of values around 2 in Fig. 5).

Convergence controller σ0− scale CMA-ES convergence controller

Fig. 4. Ordering (small to larger) of the sum of sensitivity analysis indices of single objective algorithms. CMA-ES (row 1) and DE (row 2) algorithms hyper-
parameters performance across all problems (functions). Columns 1, 2, and 3 respectively show performance evaluated using Morris LHS, Morris, and Sobol methods.
The white color portion of a bar is the direct influence normalized value in [0, 1] and gray color portion is interaction (total) influence value in [0,1]. Larger height bar
implies a higher influence. Table 2 contains the hyperparameter name, definition and domain information.

Fig. 5. CMA-ES and DE algorithms average performance on 10 runs (for 72 cases, 30 runs) of each hyperparameter set. CMA-ES and DE algorithms had 2740 and
2,980 hyperparameter sample sets evaluated in total (black dots) by Morris LHS (blue lines), Morris (cyan lines), Sobol (green lines) methods. Each dot in a subplot is
a mean performance of a bin of total samples. Along x-axis there are 50 bins from lower to higher values which are plotted against each hyperparameter normalized
score filtered (using Gaussian filter with sigma 2) in the y-axis. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

V. Ojha et al.

Swarm and Evolutionary Computation 74 (2022) 101130

10

hyperparameter σ0− scale, a hyperparameter meant for re-scaling of initial
step size σ0 on and off, is the least influential in both Morris and Sobol
methods (see Fig. 3). This result is supported by both Figs. 4 and 5.
However, it is an influential hyperparameter in the sense that it has a
very high influence on σ0, which is the third most influential hyper-
parameter. From Fig. 5, it is evident that no re-scaling of σ0 performs
better than re-scaled σ0. This is the reason why for Morris LHS, σ0 is the
least influence hyperparameter.

CMA-ES hyperparameters ranking In summary, we may provide a
ranking of hyperparameters for CMA-ES from the most to least influential
hyperparameter as λ, μλratio, σ0, αμ, and σ0− scale. One may ignore tuning αμ
and σ0− scale completely as setting a sufficiently large function evaluation
number would neutralize their importance in the CMA-ES algorithm.

6.1.2. DE analysis
DE versions btype DE results are shown in Figs. 3–5, where Fig. 3 shows

the quality of influence each hyperparameter has on DE performance
over 33 problems. As per the result of the three sensitivity analysis
methods, it is clear that the type of DE base vector selection method
(mutation type) btype (DE version) is by far the most significant hyper-
parameter. Examining Fig. 5, we observe that the type of DE mutation
strategy best and rand have lower scores, and they fluctuate. In com-
parison, the base vector selection methods target-to-best and best-to-best
performed more consistently with high scores. Therefore, the average
performance of DE over the testbench was highly sensitive to the se-
lection of btype. We also observe that btype in Fig. 3 remains at (1,1) corner
of the plot, meaning it had both a high direct effect and high interaction
effect.

Population size λ Overall population size λ is the second most influ-
ential hyperparameter in DE (cf. Figs. 3 and 4). Comparatively, it had
produced better scores for larger population sizes than the smaller
population sizes (see Fig. 5). However, the size of the population of DE
was a distant second influential hyperparameter. This indicates that
except for small population size (less than 200), DE’s performance was
invariable when the population size was increased from 200 to 1000
(Fig. 5). This was when the number of function evaluations was the same
for each population size, i.e., the number of function evaluations was
10,000 for each population size.

Crossover-type X and crossover probability P[X] The crossover related
hyperparameters are the type of crossover X and the probability of
crossover P[X]. Between these, P[X] plays a vital role in DE’s perfor-
mance, and the type of DE btype was the least influential (cf. Figs. 3 and
4). For crossover-type binomial offered better scores than the crossover-
type exponential (see Fig. 5). The crossover probability P[X] has its usage
only for binomial crossover. Hence, it was an influential hyperparameter
in this setting.

Base vectors selection pool bλratio The hyperparameter bλratio defines the
percentage of the population used for the selection of base vectors for
DE. We found that bλratio has a negligible influence on the performance of
DE (cf. Figs. 3 and 4).

Acceleration coefficients βmin and βmax Similar to bλratio, acceleration
coefficients hyperparameters βmin and βmax are least significant in DE.
However, setting an appropriate range is vital for DE performance, as we
observed in Fig. 5. This is evident because βmin and βmax acquire a rela-
tively moderate influence in Morris LHS methods (see Fig. 4). Since the
Morris LHS method uses a stratified sampling approach, it forced the
selection of βmin and βmax values across their whole range and the per-
formance of DE is impacted negatively by the higher values of βmin and
βmax. Examining Fig. 5, we observed that βmin scores for values in [0.0,
0.5] performed consistently with better scores than the values in (0.5,
1.0]. However, Morris and Sobol had a uniform distribution and show
that the influence of this hyperparameter is non-influential; therefore,
setting these values somewhere in [0.0, 0.5] will suffice, and one may not
need to exhaustively tune this hyperparameter.

Similarly, βmax was found sensitive to its range selection. Fig. 5 offers

us the ways to investigate which range had a positive influence and
which had a negative. We observe that the lower values had higher
scores than the larger values of βmax (see Fig. 5). Investigating closely, we
found that scores in [0.2, 0.9] are by far better than the scores for other
values. This means tuning βmax values within range [0.2,0.9] for a
problem is an appropriate strategy.

DE hyperparameters ranking In summary, we rank DE hyper-
parameters from the most significant to least significant as btype, λ, P[X],
bλratio, βmax, βmin, and X. That one would safely use DE with binomial
crossover and set appropriate values (discussed above) of βmax, βmin.

6.1.3. Remarks on SOO hyperparameter rankings and algorithms
We evaluated two single objective optimization algorithms and

presented rankings of their hyperparameter influence based on a com-
bined assessment of three sensitivity analysis methods. Each method, as
mentioned, has its own way of drawing samples from the hyper-
parameter space and thus has produced its own ranking. However, the
results reveal some obvious signs of influence based on direct and
interaction effects.

Supplementary A provides rich information on statistical tests among
hyperparameters that one can thoroughly examine to reach the pre-
sented ranking and may find more information should one is interested
in studying specific hyperparameters. For instance, the interaction effect
of population size in CMA-ES is more significant than its direct effect
(see Supplementary A), which confirms the analysis presented in Fig. 5.
Additionally, clustering analysis of hyperparameters and objective
function provides information behaviors of the algorithm on the class of
problems they solve (see supplementary B). For example, the type of
mutation in DE forms a distinct cluster of its performance characteris-
tics, and all other hyperparameters are grouped together in one cluster
(see supplementary B).

As a consequence of this analysis and the results presented in Section
6.1, it is clear that DE is a more stable algorithm than CMA-ES. See vari-
ation in scores of the hyperparameters of the CMA-ES algorithm
compared to DE’s hyperparameters in Fig. 5 and high interaction among
CMA-ES’s hyperparameters. In contrast, DE has a clear ranking of
hyperparameters. Additionally, during the experiments, CMA-ES failed
to solve some classes of problems for some combination of hyper-
parameters (see results in [78]).

6.2. Multi-objective EAs

6.2.1. NSGA-III analysis
Population size λ Results of NSGA-III are presented in Figs. 6–8. In

Fig. 6, we present results of three measures GD, IGD, and HV; see col-
umns in Fig. 6, and along rows in Fig. 6, we present Morris LHS, Morris,
and Sobol sensitivity methods. For NSGA-III, we clearly observe that the
population size λ is a significant hyperparameter, and the probability of
crossover is the second most significant hyperparameter. Population size
influence has approximately equal high direct influence and high
interaction influence. That is, although population size is the most sig-
nificant hyperparameter, NSGA-III performance varied because of the
variation of the other hyperparameters as well (see NSGA-III has a
monotonous line for λ in Fig. 8 that indicates a more liner influence on
NSGA-III). This fact was found true across all methods and all measures
as the eclipse of its influence centered around coroner (1,1) in Fig. 6, and
the white and gray bars have comparable lengths in Fig. 8.

An examination of scores of the population size shows that popula-
tion size does not fluctuate much for the HV metric after a certain
population size, but for GD and IGD metrics, the scores keep increasing
for increasing population size (see Fig. 8). However, this is monotonous,
and one would expect such performance for GD and IGD metrics. The
probability of crossover shows more fluctuations in all three metrics.
Therefore, the variations in the performance of NSGA-III after a suffi-
ciently large population size (in this case, 200) come from the variations
of other hyperparameters, including crossover probability.

V. Ojha et al.

Swarm and Evolutionary Computation 74 (2022) 101130

11

Crossover and mutation hyperparameters The probability of crossover
P[X] shows a more linear relationship between its values and NSGA-III
performance measures GD, IGD, and HV. For increasing values of
crossover probability, we see decreasing GD and IGD scores (signs of
better performance) and increasing scores of HV for some values (see
Fig. 8). A crossover rate of around 0.6 leads to better solutions along the
problem’s objective dimensions, i.e., increasing scores of HV and lower

scores of GD and IGD. This fact is supported by the strong direct and
interaction influence of crossover P[X] for IGD and HV metrics and
relatively direct influence on GD. The Sobol method on P[X] does show a
very strong total influence compared to direct influence on all metrics.
In summary, the P[X] performance has a behavior of monotonous in-
crease and is one of the most influential hyperparameters in NSGA-III.

For crossover related hyperparameter crossover distribution indices

Fig. 6. NSGA-III hyperparameters sensitivity analysis. Columns 1, 2, and 3 respectively indicate performance metrics GD, IGD, and HV. Rows 1, 2, and 3,
respectively, indicate Morris LHS, Morris, and Sobol methods. Legends of hyperparameter are shown at the bottom. Each hyperparameter is represented by a symbol
and a color. An eclipse centered at a hyperparameter is the standard deviation of its influence and direction of its influence. The further apart a hyperparameter in the
diagonal direction from the origin (0,0) is, the higher its importance to the algorithm. A larger width of the eclipse of a hyperparameter in the x-axis direction means
more variation in the direct influence of a hyperparameter, and a larger height in the y-axis direction means variation in total (or interaction) influence. Supporting
statistical tests and clustering analysis are provided in supplementary Sections A and B.

V. Ojha et al.

Swarm and Evolutionary Computation 74 (2022) 101130

12

XDI, the performance remains consistent and largely non-influential (cf.
Figs. 6 and 8) as only for a certain range of its value (a small range
around 100), it shows a spike in the performance of NSGA-III. Similarly,
the mutation distribution index PMDI, the performance of NSGA-III is
better for a certain range (around 100–150 or low values of PMDI, see
Fig. 8). For both XDI and PMDI, this phenomenon occurred roughly
around a value of 100 of these indices, which aligned with the range for
these hyperparameters suggested in Deb and Deb [80], Deb et al. [81].

Similar to the probability of crossover P[X], the probability of mu-
tation P[PM] shows a sudden change in performance around a value of
0.6, but in a complementary direction (see a drop in HV and spike in GD
and IGD metric in Fig. 8). The direct and interaction influence of mu-
tation related hyperparameters P[PM] and PMDI is low for NSGA-III (cf.

Figs. 6 and 7).
Tournament size K Tournament size K, probability of polynomial

mutation P[PM], polynomial mutation distribution index PMDI and
simulated binary crossover (SBX) distribution index XDI have compa-
rable significance. However, they differ in different methods and met-
rics. Among these hyperparameters, tournament size K clearly shows a
high influence on NSGA-III performance. Tournament size K shows more
interaction influence than direct influence, except for the HV metric of
the Sobol method. The high score of K in Fig. 8 with clear fluctuation is
the evidence of its interaction with other hyperparameters, but the
scores (especially in GD and IGD scores) show an upward trend, indi-
cating it has comparatively less influence on guiding the population
towards true Pareto-front than hyperparameters P[PM], PMDI and XDI.

Fig. 7. NSGA-III algorithm’s hyperparameters performance across all problems (functions). Rows 1, 2, and 3 respectively, show performance evaluated using GD,
IGD, and HV metrics. Columns 1, 2, and 3, respectively indicate Morris LHS, Morris, and Sobol methods. The white color portion of a bar is direct influence
normalized value in [0, 1] and gray color portion is interaction (total) influence value in [0,1]. A larger height bar implies a higher influence, and hyperparameters in
each subplot are arranged from low to high influence.

Fig. 8. NSGA-III algorithm average performance on 30 runs of each set of hyperparameters. NSGA-III hyperparameter (x-axis) against the mean metric value (y-axis).
Rows 1, 2, and 3, respectively, are GD, IGD, and HV metrics. The scores are normalized between 0 and 1 and smooth out using a Gaussian 1D filter with sigma 0.99.
The y-axis is GD, IGD, and HV metrics values normalized between a score of 0 and 1, where 0 is the best score for GD and IGD, and 1 is the best score for HV. A total of
520 samples were evaluated for the NSGA-III algorithm jointly by Morris LHS (blue lines), Morris (cyan lines), and Sobol (green lines) methods. The hyperparameter
values are arranged in 20 bins (lower values to higher values) across the x-axis. Each line in each plot connects the mean values of 20 bins of such samples. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

V. Ojha et al.

Swarm and Evolutionary Computation 74 (2022) 101130

13

We may also confirm that the lower value of K is more influential than its
higher values.

NSGA-III hyperparameters ranking Considering the hyperparameters’
performance influence, we rank them from most influential to least
influential hyperparameters as λ, P[X], XDI, K, P[PM], and PMDI. Here, λ is
effective up to a certain population size, and then λ saturates. The tuning
of crossover P[X] linearly influences NSGA-III, and XDI, P[PM], and PMDI
require setting a fixed value, but their influence fluctuates, i.e., they are
affected by the setting of values of other hyperparameters a lot.

6.2.2. MOEA/D analysis
Population size λ MOEA/D results are shown in Figs. 9–11. In Fig. 9,

the results of three sensitivity analysis methods for three metrics of
MOEA/D performance are presented. Unlike NSGA-III results, popula-
tion size λ is not a clear most significant hyperparameter for MOEA/D
multi-objective algorithm. Rather, MOEA/D’s hyperparameters Mode,
the MOO decomposition method, is also among the influential hyper-
parameters. Morris LHS method shows that the Mode is the most sig-
nificant hyperparameter overall on three metrics. Fig. 11 also confirms
this fact as for the population size values, the GD, IGD, and HV metrics

Fig. 9. MOEA/D hyperparameters sensitivity analysis. Columns 1, 2, and 3 respectively indicate performance metrics GD, IGD, and HV. Rows 1, 2, and 3,
respectively, indicate Morris LHS, Morris, and Sobol methods. Legends of hyperparameter are shown at the bottom. Each hyperparameter is represented by a symbol
and a color. An eclipse centered at a hyperparameter is the standard deviation of its influence and direction of its influence. Further apart a hyperparameter in the
diagonal direction from the origin (0,0) is, the higher its importance to the algorithm. A larger width of the eclipse of a hyperparameter in the x-axis direction means
more variation in the direct influence of a hyperparameter, and a larger height in the y-axis direction means variation in total (or interaction) influence. Supporting
statistical tests and clustering analysis are provided in supplementary Sections A and B.

V. Ojha et al.

Swarm and Evolutionary Computation 74 (2022) 101130

14

show a strong relation.
For example, the HV metric in Fig. 11 shows a linear trend, but it has

clear fluctuations in scores. This is because population size has high
interaction with other hyperparameters, and tuning population size
alone cannot compensate for the role of the other hyperparameters in
the performance of MOEA/D on the GD metric. However, for the IGD
metric, population size improves the performance of MOEA/D. This
shows a highly fluctuating behavior of population size in MOEA/D for
varied metrics, i.e., MOEA/D performance has a nonlinear relationship
with the population size. This means population size is rather highly
involved with interaction with other hyperparameters as the variation in
other hyperparameters also influences the performance of MOEA/D.

MOO decomposition type Mode The next set of hyperparameters that

we observe as highly influential is Mode, as it shows high interaction and
high overall influence in Morris LHS, Morris, and Sobol for GD and HV
metrics. HV metric for Sobol placed the hyperparameters on the direct
influence to high total influence diagonal (see Fig. 9), which suggests
that the hyperparameters either have a good high interaction or good
overall influence. Hence, the sum of these, presented in Fig. 10, differs
only marginally. Sobol rank Mode is second in the GD metric as both
high interaction and high overall influence and third in the HV metric as
it has a high direct influence.

Examining the performance of Mode in Fig. 11, we confirm that the
type of MOO decomposition “Tchebycheff with normalization” had the
best performance, followed by “penalty based boundary intersection
(PBI)” and “Tchebycheff” has significantly poor performance and

Fig. 10. MOEA/D algorithm’s hyperparameters performance across all problems (functions). Rows 1, 2, and 3, respectively, show performance evaluated using GD,
IGD, and HV metrics. Columns 1, 2, and 3 respectively indicate metric Morris LHS, Morris, and Sobol methods. The white color portion of a bar is direct influence
normalized value in [0, 1] and gray color portion is interaction (total) influence value in [0,1]. A larger height bar implies a higher influence, and hyperparameters in
each subplot are arranged from low to high influence.

Fig. 11. MOEA/D algorithm average performance on 30 runs of each set of hyperparameters. MOEA/D hyperparameter (x-axis) against the mean metric value
(y-axis). Rows 1, 2, and 3, respectively, are GD, IGD, and HV metrics. The scores are normalized between 0 and 1 and smooth out using a Gaussian 1D filter with
sigma 0.99. The y-axis is GD, IGD, and HV metrics values normalized between a score of 0 and 1, where 0 is the best score for GD and IGD, and 1 is the best score for
HV. A total of 590 samples were evaluated for the MOEA/D algorithm jointly by Morris LHS (blue lines), Morris (cyan lines), Sobol (green lines) methods. The
hyperparameter values are arranged in 20 bins (lower values to higher values) across the x-axis. Each line in each plot connects the mean values of 20 bins of such
samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

V. Ojha et al.

Swarm and Evolutionary Computation 74 (2022) 101130

15

“modified Tchebycheff,” decomposition mode had the worse scores
among MOO decomposition methods. MOEA/D hyperparameter ϵN re-
fers to the number of neighbors for selecting the percentage of the
population for sub-problems selection MOEA/D has an equivalent in-
fluence as the probability of mutation distribution index PMDI. However,
ϵN value less than 0.2 show a sharp improvement in MOEA/D
performance.

Crossover and mutation hyperparameters Genetic operator related
hyperparameters P[X], XDI, P[PM] and PMDI show varied significance on
different metrics on different sensitivity methods. For example, the
probability of mutation distribution index PMDI has a high influence on
HV metrics (pink diamond and eclipse in Fig. 9) and a high total influ-
ence on HV metrics in the Sobol method. The probability of mutation
P[PM] is second to PMDI in total influence on HV as per the Sobol
method. This suggests that mutation has a high influence in diversifying the
population in MOEA/D, helping it produces a better Pareto-front. We also
observe that P[PM] and PMDI have mirror image like performance (see
Fig. 11), which suggests that values of P[PM] around 0.8 and higher
values of PMDI are more effective in MOEA/D performance. The prob-
ability of crossover P[X] has competing performance in the MOEA/D,
and it is similar to performances of mutation related hyperparameters.
That is, unlike NSGA-III, the probability of crossover does not outshine
the crossover and mutation related hyperparameters.

MOEA/D hyperparameters ranking In summary, the ranking of hyper-
parameters of MOEA/D from the most influential to least influential
hyperparameters is λ, Mode, PMDI, P[PM], P[X], ϵN, and XDI.

6.2.3. Remarks on MOO hyperparameter rankings and algorithms
Providing ranking to hyperparameters for MOO is more challenging

than SOO since it uses three distinct sensitivity analysis methods and
uses three distinct performance metrics. However, we look for potential
agreement between these distinct measures. We observe that the pop-
ulation size λ clearly emerged as the most influential hyperparameter in
all three analyses and metrics for NSGA-III, and the probability of
crossover was the second most influential. These two hyperparameters
significantly dominate all other hyperparameters in NSGA-III. Whereas
for MOEA/D, the population size λ dominates only for the GD metric and
for Morris analysis. For HV and IGD metric and Morris LHS and Sobol
analysis, Mode and mutation probability are dominant factors. Unlike
NSGA-III, there is no clear, significantly dominant hyperparameter in
MOEA/D. Therefore, considering hyperparameters’ strong variability
and dependency on the type of hyperparameter sampling methods and
type of performance metrics, we may confirm that NSGA-III is a more
stable algorithm than MOEA/D.

7. Conclusions

We present a framework for systematic and methodological analysis
of the effectiveness of the evolutionary algorithm hyperparameters. This
analysis results in (i) identifying the pattern of influence each hyper-
parameter has on the algorithm, (ii) recommending rankings of hyper-
parameter influence, and (iii) analyzing the stability of algorithms
related to hyperparameter sampling and performance metrics. We apply
our methodology to state-of-the-art evolutionary algorithms: two single-
objective algorithms and two multi-objective algorithms. The single-
objective algorithms used are covariance matrix adaptation evolu-
tionary strategy (CMA-ES), differential evolution (DE), and multi-
objective algorithms used are non-dominated sorting genetic algo-
rithm III (NSGA-III), and multi-objective evolutionary algorithm based
on decomposition (MOEA/D). Our methodology involves two global
sensitivity analysis methods, Morris and Sobol. This methodology is
computationally heavy, but it produces widely usable and effective
recommendations on hyperparameters ranking, being the order in
which one can tune EA hyperparameters to achieve high performance.
For example, the initial step size, base vector selection type (mutation),
probability of crossover, and mode multi-objective problem

decomposition were among the most influential hyperparameters of
CMA-ES, DE, NSGA-III, and MOEA/D algorithms, respectively. The re-
sults show how the hyperparameters interact with one another when
they are sampled differently, and different performance measures are
used. This framework can further analyze the sensitivity and influence of
adaptive and dynamically tuneable hyperparameters for future work.
Furthermore, since different hyperparameters sampling methods
showed varied ranking, this work can further study the influence of the
sampling method or sensitivity of an algorithm or its hyperparameters
towards a particular type of sampling.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.swevo.2022.101130

References

[1] K. De Jong, Evolutionary computation: a unified approach. Proceedings of the
2016 on Genetic and Evolutionary Computation Conference Companion, 2016,
pp. 185–199.

[2] K. De Jong, Parameter setting in EAs: a 30 year perspective, Stud. Comput. Intell.
(SCI) 54 (2007) 1–18.

[3] M. López-Ibáñez, J. Dubois-Lacoste, L.P. Cáceres, M. Birattari, T. Stützle, The irace
package: iterated racing for automatic algorithm configuration, Oper. Res.
Perspect. 3 (2016) 43–58.

[4] G. Iommazzo, C. d’Ambrosio, A. Frangioni, L. Liberti, Algorithmic configuration by
learning and optimization. Cologne-Twente Workshop on Graphs and
Combinatorial Optimization, 2019.

[5] M. Crossley, A. Nisbet, M. Amos, Quantifying the impact of parameter tuning on
nature-inspired algorithms. The 12th European Conference on Artificial Life, MIT
Press, 2013, pp. 925–932.

[6] R. Taylor, V. Ojha, I. Martino, G. Nicosia, Sensitivity analysis for deep learning:
ranking hyper-parameter influence. 2021 IEEE 33rd International Conference on
Tools with Artificial Intelligence (ICTAI), IEEE, 2021, pp. 512–516.

[7] S. Das, A. Abraham, U.K. Chakraborty, A. Konar, Differential evolution using a
neighborhood-based mutation operator, IEEE Trans. Evol. Comput. 13 (3) (2009)
526–553.

[8] V.K. Ojha, A. Abraham, V. Snášel, ACO for continuous function optimization:
aperformance analysis. 2014 14th International Conference on Intelligent Systems
Design and Applications, IEEE, 2014, pp. 145–150.

[9] K. Eggensperger, M. Lindauer, F. Hutter, Pitfalls and best practices in algorithm
configuration, J. Artif. Intell. Res. 64 (2019) 861–893.

[10] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach.
Learn. Res. 13 (2012) 281–305.

[11] N. Hansen, A. Ostermeier, Adapting arbitrary normal mutation distributions in
evolution strategies: the covariance matrix adaptation. Proceedings of IEEE
International Conference on Evolutionary Computation, 1996, pp. 312–317.

[12] R. Storn, K. Price, Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces, J. Global Optim. 11 (1997) 341–359, https://
doi.org/10.1023/A:1008202821328.

[13] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, Part I: solving problems
with box constraints, IEEE Trans. Evol. Comput. 18 (4) (2013) 577–601.

[14] Q. Zhang, H. Li, MOEA/D: a multiobjective evolutionary algorithm based on
decomposition, IEEE Trans. Evol. Comput. 11 (6) (2007) 712–731.

[15] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, X. Yao, A survey of
evolutionary continuous dynamic optimization over two decades—Part B, IEEE
Trans. Evol. Comput. 25 (4) (2021) 630–650.

[16] A. Viktorin, R. Senkerik, M. Pluhacek, T. Kadavy, A. Zamuda, Distance based
parameter adaptation for success-history based differential evolution, Swarm Evol.
Comput. 50 (2019) 100462.

[17] A.P. Piotrowski, J.J. Napiorkowski, Step-by-step improvement of jade and shade-
based algorithms: success or failure? Swarm Evol. Comput. 43 (2018) 88–108.

[18] J. Cheng, Z. Pan, H. Liang, Z. Gao, J. Gao, Differential evolution algorithm with
fitness and diversity ranking-based mutation operator, Swarm Evol. Comput. 61
(2021) 100816.

[19] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art, IEEE
Trans. Evol. Comput. 15 (1) (2010) 4–31.

[20] S.M. Islam, S. Das, S. Ghosh, S. Roy, P.N. Suganthan, An adaptive differential
evolution algorithm with novel mutation and crossover strategies for global
numerical optimization, IEEE Trans. Syst., Man, Cybern., Part B (Cybernetics) 42
(2) (2011) 482–500.

V. Ojha et al.

https://doi.org/10.1016/j.swevo.2022.101130
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0001
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0001
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0001
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0002
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0002
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0003
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0003
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0003
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0004
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0004
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0004
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0005
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0005
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0005
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0006
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0006
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0006
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0007
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0007
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0007
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0008
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0008
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0008
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0009
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0009
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0010
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0010
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0011
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0011
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0011
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0013
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0013
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0013
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0014
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0014
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0015
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0015
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0015
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0016
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0016
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0016
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0017
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0017
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0018
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0018
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0018
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0019
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0019
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0020
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0020
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0020
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0020

Swarm and Evolutionary Computation 74 (2022) 101130

16

[21] A. Biswas, S. Das, A. Abraham, S. Dasgupta, Design of fractional-order PIλDμ
controllers with an improved differential evolution, Eng. Appl. Artif. Intell. 22 (2)
(2009) 343–350.

[22] S. Das, A. Abraham, A. Konar, Automatic clustering using an improved differential
evolution algorithm, IEEE Trans. Syst., Man, Cybern. - Part A 38 (1) (2007)
218–237.

[23] S. Das, A. Konar, U.K. Chakraborty, Two improved differential evolution schemes
for faster global search. Proceedings of the 7th Annual Conference on Genetic and
Evolutionary Computation, 2005, pp. 991–998.

[24] T. Voß, N. Hansen, C. Igel, Improved step size adaptation for the MO-CMA-ES.
Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation, ACM, 2010, pp. 487–494.

[25] Q. Zhang, H. Li, D. Maringer, E. Tsang, MOEA/D with NBI-style Tchebycheff
approach for portfolio management. IEEE Congress on Evolutionary Computation,
IEEE, 2010, pp. 1–8.

[26] Z. Wang, Q. Zhang, A. Zhou, M. Gong, L. Jiao, Adaptive replacement strategies for
MOEA/D, IEEE Trans. Cybern. 46 (2) (2015) 474–486.

[27] Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, J. Wu, MOEA/D with adaptive weight
adjustment, Evol. Comput. 22 (2) (2014) 231–264.

[28] Z. Cui, Y. Chang, J. Zhang, X. Cai, W. Zhang, Improved NSGA-III with selection-
and-elimination operator, Swarm Evol. Comput. 49 (2019) 23–33.

[29] J. Yuan, H.-L. Liu, Z. He, A constrained multi-objective evolutionary algorithm
using valuable infeasible solutions, Swarm Evol. Comput. 68 (2022) 101020.

[30] J. Liang, K. Qiao, C. Yue, K. Yu, B. Qu, R. Xu, Z. Li, Y. Hu, A clustering-based
differential evolution algorithm for solving multimodal multi-objective
optimization problems, Swarm Evol. Comput. 60 (2021) 100788.

[31] D. Han, W. Du, X. Wang, W. Du, A surrogate-assisted evolutionary algorithm for
expensive many-objective optimization in the refining process, Swarm Evol.
Comput. 69 (2022) 100988.

[32] G. Rivera, C.A.C. Coello, L. Cruz-Reyes, E.R. Fernandez, C. Gomez-Santillan,
N. Rangel-Valdez, Preference incorporation into many-objective optimization: an
ant colony algorithm based on interval outranking, Swarm Evol. Comput. 69
(2022) 101024.

[33] M.D. Morris, Factorial sampling plans for preliminary computational experiments,
Technometrics 33 (2) (1991) 161–174.

[34] I.M. Sobol, S. Kucherenko, Global sensitivity indices for nonlinear mathematical
models, review, Wilmott Mag. 2005 (2005) 56–61, https://doi.org/10.1002/
wilm.42820050114.

[35] B. Iooss, A. Saltelli, Introduction to sensitivity analysis, in: R. Ghanem, D. Higdon,
H. Owhadi (Eds.), Handbook of Uncertainty Quantification, Springer, 2016,
pp. 1–20, https://doi.org/10.1007/978-3-319-11259-6_31-1.

[36] R. Brooks, M. Semenov, P. Jamieson, Simplifying sirius: sensitivity analysis and
development of a meta-model for wheat yield prediction, Eur. J. Agron. 14 (2001)
43–60, https://doi.org/10.1016/S1161-0301(00)00089-7.

[37] P. Conca, G. Stracquadanio, G. Nicosia, Automatic tuning of algorithms through
sensitivity minimization, in: P. Pardalos, M. Pavone, G.M. Farinella, V. Cutello
(Eds.), Machine Learning, Optimization, and Big Data, Springer, 2015, pp. 14–25.

[38] M.C. Hill, D. Kavetski, M. Clark, M. Ye, M. Arabi, D. Lu, L. Foglia, S. Mehl, Practical
use of computationally frugal model analysis methods, Groundwater 54 (2) (2016)
159–170.

[39] D.A.V. Veldhuizen, G.B. Lamont, Evolutionary computation and convergence to a
pareto front. Late Breaking Papers at the 1998 Genetic Programming Conference,
Stanford University, 1998, pp. 221–228.

[40] D.A.V. Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, Ohio, 1999. Ph.D. thesis.

[41] E. Zitzler, L. Thiele, Multiobjective optimization using evolutionary algorithmsa
comparative case study. International Conference on Parallel Problem Solving from
Nature, Springer, 1998, pp. 292–301.

[42] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Trans. Evol.
Comput. 3 (2) (1999) 82–102.

[43] J.J. Liang, B.Y. Qu, P.N. Suganthan, Problem Definitions and Evaluation Criteria
for the CEC 2014 Special Session and Competition on Single Objective Real-
Parameter Numerical Optimization. Technical Report, Zhengzhou University,
Zhengzhou China and Nanyang Technological University, Singapore, 2013.

[44] J. Liang, B. Qu, P. Suganthan, Q. Chen, Problem Definitions and Evaluation Criteria
for the CEC 2015 Competition on Learning-Based Real-Parameter Single Objective
optimization. Technical Report, Zhengzhou University, Zhengzhou China and
Nanyang Technological University, Singapore, 2014.

[45] C.F. Lima, F.G. Lobo, Parameter-less optimization with the extended compact
genetic algorithm and iterated local search. Genetic and Evolutionary Computation
Conference, Springer, 2004, pp. 1328–1339.

[46] T. Jansen, K.A.D. Jong, I. Wegener, On the choice of the offspring population size
in evolutionary algorithms, Evol. Comput. 13 (4) (2005) 413–440.

[47] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution
strategies, Evol. Comput. 9 (2) (2001) 159–195.

[48] A. Greco, S.D. Riccio, J. Timmis, G. Nicosia, Assessing algorithm parameter
importance using global sensitivity analysis, in: I. Kotsireas, P. Pardalos, K.
E. Parsopoulos, D. Souravlias, A. Tsokas (Eds.), Analysis of Experimental
Algorithms, Springer, 2019, pp. 392–407, https://doi.org/10.1007/978-3-030-
34029-2_26.

[49] A.E. Eiben, Z. Michalewicz, M. Schoenauer, J.E. Smith, Parameter control in
evolutionary algorithms. Parameter setting in evolutionary algorithms, Springer,
2007, pp. 19–46.

[50] O. Kramer, Evolutionary self-adaptation: a survey of operators and strategy
parameters, Evol. Intell. 3 (2) (2010) 51–65.

[51] P.L. Iglesias, D. Mora, F.J. Martinez, V.S. Fuertes, Study of sensitivity of the
parameters of a genetic algorithm for design of water distribution networks,
J. Urban Environ. Eng. 1 (2) (2007) 61–69.

[52] F. Pinel, G. Danoy, P. Bouvry, Evolutionary algorithm parameter tuning with
sensitivity analysis, in: P. Bouvry, M.A. Kłopotek, F. Leprévost, M. Marciniak,
A. Mykowiecka, H. Rybiński (Eds.), Security and Intelligent Information Systems,
Springer, 2012, pp. 204–216.

[53] J. Maturana, F. Lardeux, F. Saubion, Autonomous operator management for
evolutionary algorithms, J. Heuristics 16 (6) (2010) 881–909.

[54] A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice:
A guide To Assessing scientific Models vol. 1, John Wiley & Sons, 2004.

[55] Y. Lou, S.Y. Yuen, G. Chen, Non-revisiting stochastic search revisited: results,
perspectives, and future directions, Swarm Evol. Comput. 61 (2021) 100828.

[56] G. Paul, C.L. Müller, I.F. Sbalzarini, Sensitivity analysis from evolutionary
algorithm search paths. EVOLVE - A bridge between Probability, Set Oriented
Numerics and Evolutionary Computation, in: Studies in Computational
Intelligence, Springer, 2011.

[57] A. Saltelli, S. Tarantola, K.-S. Chan, A quantitative model-independent method for
global sensitivity analysis of model output, Technometrics 41 (1) (1999) 39–56.

[58] X. He, K. Zhao, X. Chu, AutoML: a survey of the state-of-the-art, Knowledge-Based
Syst. 212 (2021) 106622.

[59] V.K. Ojha, A. Abraham, V. Snášel, Simultaneous optimization of neural network
weights and active nodes using metaheuristics. 2014 14th International Conference
on Hybrid Intelligent Systems, IEEE, 2014, pp. 248–253.

[60] L.C. Bezerra, M. López-Ibánez, T. Stützle, Comparing decomposition-based and
automatically component-wise designed multi-objective evolutionary algorithms.
International Conference on Evolutionary Multi-Criterion Optimization, Springer,
2015, pp. 396–410.

[61] C. Thornton, F. Hutter, H.H. Hoos, K. Leyton-Brown, Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms.
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2013, pp. 847–855.

[62] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, F. Hutter, Auto-sklearn 2.0:
Hands-free AutoML via meta-learning, arXiv:2007.04074(2020).

[63] M. Feurer, F. Hutter, Hyperparameter optimization. Automated Machine Learning,
Springer, Cham, 2019, pp. 3–33.

[64] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[65] I. Das, J.E. Dennis, Normal-boundary intersection: a new method for generating the
Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optim. 8
(3) (1998) 631–657.

[66] K. Miettinen, Nonlinear Multiobjective Optimization vol. 12, Springer, 2012.
[67] C.M. Fonseca, L. Paquete, M. López-Ibánez, An improved dimension-sweep

algorithm for the hypervolume indicator. IEEE International Conference on
Evolutionary Computation, IEEE, 2006, pp. 1157–1163.

[68] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G. Da Fonseca, Performance
assessment of multiobjective optimizers: an analysis and review, IEEE Trans. Evol.
Comput. 7 (2) (2003) 117–132.

[69] A. Saltelli, Sensitivity analysis for importance assessment, Risk Anal. 22 (3) (2002)
579–590.

[70] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,
S. Tarantola, Global Sensitivity Analysis: The Primer, John Wiley & Sons, 2008.

[71] F. Campolongo, A. Saltelli, J. Cariboni, An effective screening design for sensitivity
analysis of large models, Environ. Model. Softw. 22 (2007) 1509–1518.

[72] J.J. Liang, S. Baskar, P.N. Suganthan, A.K. Qin, Performance evaluation of
multiagent genetic algorithm, Nat. Comput. 5 (1) (2006) 83–96.

[73] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization
test problems. Proceedings of 2002 IEEE Congress on Evolutionary Computation
vol. 1, 2002, pp. 825–830, https://doi.org/10.1109/CEC.2002.1007032.

[74] S. Huband, P. Hingston, L. Barone, L. While, A review of multiobjective test
problems and a scalable test problem toolkit, IEEE Trans. Evol. Comput. 10 (5)
(2006) 477–506.

[75] F. Pianosi, F. Sarrazin, T. Wagener, An effective screening design for sensitivity
analysis of large models, Environ. Model. Softw. 70 (2015) 80–85.

[76] S. Heris, YPEA: Yarpiz evolutionary algorithms, 2019. https://github.com/smkala
mi/ypea. Accessed on 22 September 2021.

[77] Y. Tian, R. Cheng, X. Zhang, Y. Jin, PlatEMO: a MATLAB platform for evolutionary
multi-objective optimization, IEEE Comput. Intell. Mag. 12 (4) (2017) 73–87.

[78] V. Ojha, J. Timmis, G. Nicosia, Sensitivity analysis evolutionary algorithms, 2022.
https://github.com/vojha-code/SAofEAs. Accessed on 10 February 2022.

[79] D. Kalpić, N. Hlupić, M. Lovrić, Student’s t-Tests, Springer, 2011, pp. 1559–1563.
[80] K. Deb, D. Deb, Analysing mutation schemes for real-parameter genetic algorithms,

Int. J. Artif. Intell. Soft Comput. 4 (1) (2014) 1–28.
[81] K. Deb, R.B. Agrawal, et al., Simulated binary crossover for continuous search

space, Complex Syst. 9 (2) (1995) 115–148.

V. Ojha et al.

http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0021
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0021
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0021
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0022
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0022
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0022
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0023
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0023
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0023
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0024
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0024
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0024
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0025
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0025
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0025
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0026
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0026
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0027
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0027
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0028
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0028
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0029
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0029
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0030
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0030
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0030
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0031
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0031
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0031
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0032
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0032
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0032
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0032
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0033
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0033
https://doi.org/10.1002/wilm.42820050114
https://doi.org/10.1002/wilm.42820050114
https://doi.org/10.1007/978-3-319-11259-6_31-1
https://doi.org/10.1016/S1161-0301(00)00089-7
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0037
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0037
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0037
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0038
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0038
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0038
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0039
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0039
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0039
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0040
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0040
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0040
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0041
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0041
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0041
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0042
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0042
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0043
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0043
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0043
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0043
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0044
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0044
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0044
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0044
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0045
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0045
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0045
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0046
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0046
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0047
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0047
https://doi.org/10.1007/978-3-030-34029-2_26
https://doi.org/10.1007/978-3-030-34029-2_26
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0049
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0049
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0049
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0050
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0050
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0051
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0051
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0051
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0052
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0052
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0052
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0052
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0053
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0053
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0054
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0054
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0055
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0055
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0056
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0056
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0056
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0056
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0057
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0057
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0058
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0058
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0059
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0059
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0059
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0060
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0060
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0060
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0060
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0061
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0061
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0061
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0061
http://arxiv.org/abs/2007.04074
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0063
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0063
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0064
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0064
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0065
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0065
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0065
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0066
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0067
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0067
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0067
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0068
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0068
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0068
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0069
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0069
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0070
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0070
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0071
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0071
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0072
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0072
https://doi.org/10.1109/CEC.2002.1007032
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0074
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0074
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0074
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0075
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0075
https://github.com/smkalami/ypea
https://github.com/smkalami/ypea
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0077
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0077
https://github.com/vojha-code/SAofEAs
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0079
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0080
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0080
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0081
http://refhub.elsevier.com/S2210-6502(22)00100-6/sbref0081

	Assessing ranking and effectiveness of evolutionary algorithm hyperparameters using global sensitivity analysis methodologies
	1 Introduction
	2 Related work
	3 Evolutionary algorithms
	3.1 Single-objective evolutionary algorithms
	3.1.1 Covariance matrix adaptation evolution strategies (CMA-ES)
	3.1.2 Differential evolution (DE)

	3.2 Multi-objective evolutionary algorithms
	3.2.1 Non-dominated sorting genetic algorithm–III (NSGA-III)
	3.2.2 Multi-objective evolutionary algorithm based on decomposition (MOEA/D)

	3.3 Performance metrics
	3.3.1 Single objective metrics
	3.3.2 Multi-objective metrics

	4 Global sensitivity analysis
	4.1 Elementary effects
	4.2 Variance-based sensitivity analysis

	5 Experiments
	5.1 Single-objective algorithm hyperparameters
	5.2 Multi-objective algorithm hyperparameters

	6 Results and discussion
	6.1 Single-objective EAs
	6.1.1 CMA-ES analysis
	6.1.2 DE analysis
	6.1.3 Remarks on SOO hyperparameter rankings and algorithms

	6.2 Multi-objective EAs
	6.2.1 NSGA-III analysis
	6.2.2 MOEA/D analysis
	6.2.3 Remarks on MOO hyperparameter rankings and algorithms

	7 Conclusions
	Declaration of Competing Interest
	Supplementary material
	References

